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Abstract. In the Nelson–Oppen combination method for satisfiability
modulo theories, the combined theories must be stably infinite; in gentle
combination, one theory has to be gentle, and the other has to satisfy
a similar yet weaker property; in shiny combination, only one has to be
shiny (smooth, with a computable minimal model function and the finite
model property); and for polite combination, only one has to be strongly
polite (smooth and strongly finitely witnessable). For each combination
method, we prove that if any of its assumptions are removed, then there is
no general method to combine an arbitrary pair of theories satisfying the
remaining assumptions. We also prove new theory combination results
that weaken the assumptions of gentle and shiny combination.3

1 Introduction

Let us start at the middle. Polite theory combination [17] was not the first
method to combine two theories (see, e.g., [15,23]). It was also not the last (see,
e.g., [10,14,4]). However, it is one of the most influential approaches to theory
combination. In fact, it has found its way to the implementation of the state-of-
the-art SMT-solver cvc5 [1] (and also CVC4 [2] and CVC3 [3]).

The history of polite combination is illustrated in Figure 1, that focuses on
decidable theories (marked by the large rectangle). The left circle corresponds to
decidable theories that can be combined with any other decidable theory over a
disjoint signature. We call such theories combinable. In [17], it was argued that
a sufficient condition for combinability is politeness, a technical notion that con-
cerns cardinalities of models. In other words, [17] claimed that the red-hatched
region of Figure 1 is empty. Then, the paper [11] discovered a bug in the proof
from [17], and offered to replace politeness by a seemingly stronger notion, strong
politeness (the name is due to [7]). It was proved in [11] that strongly polite the-
ories are combinable, which positions the small circle that represents strongly
polite theories completely within the circle representing combinable theories.

While [11] found a bug in the proof of [17], it left two questions open: (i) does
politeness imply combinability, as [17] claimed, only with a different proof? and
(ii) do polite theories that are not strongly polite exist? In terms of Figure 1:
3 This work was funded by NSF-BSF grant 2020704, ISF grant 619/21, and the

Colman-Soref fellowship.
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Fig. 1: An illustration of the contributions of [17,11,25] and the current paper.

(i) is the red-hatched region empty? and (ii) is the entire hatched region empty?
Question (ii) was recently resolved in [21,25]: a theory named Tf was found wan-
dering around the hatched region. However, question (i) remained unanswered,
as it was unclear whether Tf resided in the red hatched region or the blue one.

In this paper we solve question (i), by placing Tf in the red-hatched region: it
is polite but uncombinable. To show this, we introduce a new decidable theory,
named T=, over a disjoint signature, and prove that its combination with Tf is
undecidable.

Tf and T= are not merely mustard watches [19]. They show that being polite
is not enough (for theory combination), finally closing the question of polite-
ness vs. combinability, that remained open since [11]. Foundationally, they show
that the fix of [11] was indeed necessary. And practically, they justify the im-
plementation overhead of adopting the more complicated definition of strong
politeness.

The existence of Tf and T= can be seen as a limitation theorem: they show
that the polite combination method cannot be applied if strong politeness is
weakened to politeness. We present similar limitation theorems for other combi-
nation methods. For the Nelson–Oppen method [15], we show that if only one of
the theories is assumed to be stably infinite, then the combination method fails;
this was previously proven in [5], but that study did not broach any combination
methods other than Nelson–Oppen. We provide a similar treatment for gentle
combination [10]. Finally, for a theory to be shiny [22], it has to satisfy three
requirements. For each one, we show its necessity as well. Surprisingly, we can
reuse Tf and T= for almost all limitation theorems, except for one. Therefore,
we use two more theories. The first, T∞, is also taken from [25]. The second,
T≤, is new, and can be seen as a generalization of the theory from [5] that was
used for the Nelson-Oppen limitation theorem. For all theories (old and new),
we prove that they satisfy the required properties for each limitation theorem.

Additionally, we prove two new combination theorems, based on the gentle
and shiny combination methods. These theorems relax some of the requirements
for theory combination, while ensuring the decidability of the combined theories.
In a sense, the new theorems remedy the limitation theorems that we prove.

This paper is organized as follows. Section 2 surveys notions regarding theory
combination. Section 3 proves our main theorems, exhibiting limits of common
combination methods. Section 4 improves the proofs of Section 3 by only us-
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̸= (x1, . . . , xn) =

n−1∧
i=1

n∧
j=i+1

¬(xi = xj)

ψ≥n = ∃x1 . . . xn. ̸= (x1, . . . , xn)

ψ≤n = ∃x1, . . . , xn. ∀ y.
n∨

i=1

y = xi

ψ=n = ψ≥n ∧ ψ≤n

Fig. 2: Cardinality formulas.

ing theories over finite signatures. Section 5 proves new combination theorems.
Section 6 concludes and provides directions for future research.

2 Preliminaries

We use N to denote the set of naturals including 0, and N∗ to denote N \ {0}. If
X is a set, |X| is its cardinality, and |N| = ℵ0.

2.1 First-order logic

A signature is a pair Σ = (FΣ ,PΣ) where: FΣ is a set of function symbols,
each with arity n ∈ N; and PΣ is a set of predicate symbols, each with arity
m ∈ N, containing at least the equality =, of arity 2. Σ is said to be empty if it
has no function and predicate symbols other than =. Two signatures are said to
be disjoint if the only symbol they share is =. We define terms, literals, clauses
(i.e., disjunctions of literals), cubes (i.e., conjunctions of literals), formulas and
sentences in the usual way. If t is a unary function symbol and x a variable, we
define by induction the terms t0(x) := x and tn+1(x) := t(tn(x)). The set of
variables in a formula φ is denoted by vars(φ).

Σ-interpretations A are defined as usual: dom(A) is the domain of A; for a
function symbol f of arity n, fA : dom(A)n → dom(A); for a predicate symbol
P of arity m, PA ⊆ dom(A)m; for a variable x, xA ∈ dom(A). For a term α, αA

is its value in A, and for a set Γ of terms, ΓA = {αA : α ∈ Γ}. If A satisfies φ,
we write A ⊨ φ. Formulas from Figure 2 are satisfied by A when |dom(A)| is: at
least n (for ̸= (x1, . . . , xn) and ψ≥n); at most n (for ψ≤n); exactly n (for ψ=n).

A theory T is a class of all interpretations that satisfy a (finite or infi-
nite) set of sentences Ax(T ) called the axiomatization of T ; φ is said to be
T -satisfiable when there is a T -interpretation satisfying φ; it is T -valid when
every T -interpretation satisfies φ. Two formulas φ and ψ are T -equivalent when
a T -interpretation satisfies φ if and only if it satisfies ψ. T is decidable if the set
of T -satisfiable quantifier-free formulas is decidable.

2.2 Theory combination theorems

In what follows, Σ, Σ1, Σ2 are signatures, and T , T1, T2 are Σ, Σ1, Σ2-theories,
respectively. We assume Σ1 and Σ2 are disjoint, and T1 and T2 are decidable.
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Σ1∪Σ2 is the signature obtained by collecting all function and predicates symbols
from Σ1 and Σ2. T1 ⊕T2 is the Σ1 ∪Σ2-theory axiomatized by Ax(T1)∪Ax(T2).

We start with Nelson–Oppen. T is stably infinite if for every quantifier-free
T -satisfiable formula φ there is an infinite T -interpretation A with A |= φ.

Theorem 1 ([15]). T1 ⊕ T2 is decidable, if both T1 and T2 are stably infinite.

Next, we define politeness. T is smooth if for every quantifier-free T -satisfiable
formula φ, T -interpretation A that satisfies φ, and cardinal κ > |dom(A)|, there
is a T -interpretation B that satisfies φ with |dom(A)| = κ (notice smoothness
implies stable infiniteness, as we can choose an infinite κ). T is finitely witnessable
if there exists a function wit (called a witness) from the quantifier-free formulas
of Σ into themselves such that, for every quantifier-free formula φ, one has
that: (I) φ and ∃−→x .wit(φ) are T -equivalent, where −→x = vars(wit(φ)) \ vars(φ);
(II) if wit(φ) is T -satisfiable there exists a T -interpretation A that satisfies
wit(φ) with dom(A) = vars(wit(φ))A. T is polite if it is both smooth and finitely
witnessable. The following was stated as a theorem in [18], but its proof was later
refuted in [11]. It therefore it remained a conjecture, which essentially states that
politeness is enough for theory combination.

Conjecture 1 ([18]). T1 ⊕ T2 is decidable, provided that T2 is polite.

Next: strong politeness. Given a finite set of variables V and an equivalence
relation E on V , the arrangement induced by E on V , denoted by δEV or δV if E
is clear, is the conjunction, for x, y ∈ V , of all formulas x = y, if xEy, or ¬(x =
y) otherwise. T is strongly finitely witnessable if it is finitely witnessable, with
witness wit, which in addition satisfies: (II ′) for every quantifier-free formula
φ, finite set of variables V , and arrangement δV on V , if wit(φ) ∧ δV is T -
satisfiable then there exists a T -interpretation A that satisfies wit(φ) ∧ δV with
dom(A) = vars(wit(φ) ∧ δV )

A. In that case wit is called a strong witness. T
is strongly polite if it is smooth and strongly finitely witnessable (it was shown
in [16, Theorem 2] that in this definition, smoothness can be replaced by stable
infiniteness).

Theorem 2 ([11]). T1 ⊕ T2 is decidable, provided that T2 is strongly polite.

We continue to shiny combination. T has the finite model property if, for
every quantifier-free T -satisfiable formula φ4 and T -interpretation A that sat-
isfies φ, there exists a T -interpretation B that satisfies φ with |dom(B)| < ℵ0.
Let Nω = N ∪ {ℵ0}. The minimal model function minmod of T is a function
from the quantifier-free formulas of Σ to Nω such that for every quantifier-free
T -satisfiable formula φ: (I) there exists a T -interpretation A that satisfies φ
with |dom(A)| = minmod(φ); (II) if B is a T -interpretation that satisfies φ,
minmod(φ) ≤ |dom(B)|.5 T is shiny if it is smooth, and it has both the fi-
nite model property and a computable minimal model function. Note that [6,7]
4 This notion is often not restricted to a quantifier-free φ, but in SMT it usually is.
5 The function minmod is only guaranteed to exist if FΣ ∪ PΣ is countable.
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showed that shininess is equivalent to strong politeness for decidable theories. In
our context, however, we disassemble these notions to their more rudimentary
ingredients, and when doing so, the equivalence does not necessarily hold.

Theorem 3 ([23]). T1 ⊕ T2 is decidable, provided that T2 is shiny.

The spectrum Spec(T , φ) of T w.r.t. a quantifier-free formula φ is the set of
countable cardinalities of T -interpretations that satisfy φ. Roughly, T is gentle
if, given a conjunction φ of literals, Spec(T , φ) can be computed, and is either a
finite set of finite cardinalities or a co-finite6 set of cardinalities. Formally, T is
gentle if there is an algorithm that, for every conjunction φ of literals, outputs a
pair (b, S), with b a boolean and S ⊂ N∗ is finite, such that (i) if b is true, then
Spec(T , φ) = S and (ii) if b is false, then Spec(T , φ) = Nω \S. Note that a gentle
theory is decidable, because φ is T -satisfiable if and only if Spec(T , φ) ̸= ∅.

Theorem 4 ([10, Theorem 3]). T1⊕T2 is decidable, when T1 is gentle, and T2
is either: (i) gentle, (ii) finitely axiomatizable, or (iii) there is an algorithm that,
for a conjunction φ of Σ2-literals, outputs a finite S ⊂ Nω with Spec(T , φ) = S.7

3 Limitations of theory combination methods

In this section, we examine what is the outcome of dropping each assumption on
the theories from Theorems 1 to 4. We show that each of these theorems break
if we drop any of the assumptions it makes regarding the combined theories.

All of these theorems have the following form: if T1 and T2 are over disjoint
signatures and are decidable, and in addition, T1 admits some properties, and
T2 admits some properties, then T1 ⊕ T2 is also decidable. Thus, our limitation
proofs always consist of examples for theories T1 and T2 that admit all but one
of the properties, such that T1 ⊕ T2 is undecidable.

In Section 3.2 we show that the Nelson–Oppen combination method fails
if we drop the requirement of stable infiniteness from one of the theories. We
show a similar result for gentle combination. In Section 3.3, dedicated to po-
lite combination, we show that it fails if we drop any of the requirements for
polite combination from T2. This includes dropping strong finite witnessability
in exchange for finite witnessability, namely, replacing strong politeness by po-
liteness. We also show that dropping smoothness from the polite combination
method results in failure. In Section 3.4, a similar investigation is carried out for
shiny theories. For each of the three components of shininess, we show that it is
critical for the possibility of combination.

But first, we introduce the theories that will be used to demonstrate the
limits of the various combination theorems in Section 3.1.

6 A set S is co-finite if its complement N \ S is finite.
7 Notice that in (i), S ⊆ N∗, and in (ii) S ⊆ Nω.

5



Name Function Symbols Predicate Symbols
Σ1 ∅ ∅
Σs {s} ∅
Σn

P ∅ {Pn | n ∈ N∗}

Table 1: Signatures. Predicate symbols are 0-ary. The function symbol is unary.

3.1 The theories that we use

Since the Nelson–Oppen and gentle methods require one property each (stable
infiniteness and gentleness, respectively), the polite method requires 2 properties
(smoothness and strong finite witnessability), and the shiny method requires 3
properties (smoothness, the finite model property, and the computability of the
minimal model function), we have 1 + 1 + 2 + 3 = 7 variants to consider, each
removing exactly one property as an assumption from a combination theorem.
For each such variant, we need to provide 2 theories, T1 and T2 for which the
variant fails. So, in total, we need to produce 7 · 2 = 14 theories as examples.

Remarkably, we are able to cover all the aforementioned variants using only
4 theories, that are defined over 3 signatures. Out of these 4 theories, only 2
are used for all but one of the variants. From these 4 theories, we create 3
ordered pairs of theories (T1 and T2). Two pairs are used to show the limits of 3
combination approaches each, and the third pair is used for one limit. Clearly,
even if we were only concerned with shininess, 3 distinct ordered pairs would
have been necessary, as there are three properties to exclude. Thus, the number
of pairs of theories that we present is optimal.

The signatures for the theories are described in Table 1. Σ1 is simply the
empty signature. Atomic formulas are therefore only equalities between variables.
Σs has a unary function symbol s. And Σn

P has infinitely many 0-ary predicate
symbols P1, P2, . . ..

The 4 theories are described in Table 2. The first two are taken from [25],
which introduced and studied a wide collection of theories. T∞ is the theory over
the empty signature whose models have infinitely many elements.

Tf is more involved. Its axiomatization as a Σs-theory assumes the existence
of a non-computable function f : N∗ → {0, 1}, such that f(1) = 1, and for every
k ≥ 1, f maps half of the numbers between 1 and 2k to 1, and the other half
to 0. Such a function was proven to exist in [25, Lemma 6]. The axiomatization
utilizes two derived functions: f0(k) returns the number of numbers between 1
and k that f maps to 0, while f1(k) returns the number of numbers between 1
and k that f maps to 1. Obviously, when k is a power of 2, then f0(k) = f1(k).
Now, f itself is not a part of the signature Σs of Tf . Instead, the axiomatization
relies on the formulas from Figure 3, that involve counting elements for which
the function symbol s acts as the identity. Intuitively, a finite Tf -interpretation
A with n elements has f0(n) of them satisfying sA(e) ̸= e, and f1(n) satisfying
sA(e) = e; an infinite such interpretation has infinitely many elements of each
kind.

The definition of T≤ assumes an arbitrary non-computable function F : N∗ →
N∗ ∪ {ℵ0} such that the set {(m,n) ∈ N∗ × N∗ | F (m) ≥ n} is decidable. Such
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ψ=

≥n = ∃−→x .[ ̸= (x1, . . . , xn)∧
n∧

i=1

p(xi)], ψ ̸=
≥n = ∃−→x .[ ̸= (x1, . . . , xn)∧

n∧
i=1

¬p(xi)],

ψ=

=n = ∃−→x . [ ̸= (x1, . . . , xn) ∧
n∧

i=1

p(xi) ∧ ∀x. [p(x) →
n∨

i=1

x = xi]],

ψ ̸=
=n = ∃−→x . [̸= (x1, . . . , xn) ∧

n∧
i=1

¬p(xi) ∧ ∀x. [¬p(x) →
n∨

i=1

x = xi]].

Fig. 3: Formulas for the axiomatization of Tf . −→x stands for x1, . . . , xn, and p(x)
for s(x) = x.

Name Signature Axiomatization Source
T∞ Σ1 {ψ≥n : n ∈ N∗} [25]
Tf Σs {[ψ=

≥f1(k)
∧ ψ ̸=

≥f0(k)
] ∨

∨k
i=1[ψ

=
=f1(i)

∧ ψ ̸=
=f0(i)

] : k ∈ N∗} [25]
T≤ Σn

P {Pn → ψ≤F (n) : n ∈ N∗, F (n) ∈ N∗} new
T= Σn

P {Pn → ψ=n : n ∈ N∗} new

Table 2: Theories. f : N∗ → {0, 1} is assumed to be a non-computable function,
such that f(1) = 1 and, for every k ≥ 0, f maps half of the numbers between 1
and 2k to 1, and the other half to 0. fi(k) is the number of numbers between 1
and k that are mapped by f to i. F : N∗ → N∗ ∪ {ℵ0} is non-computable, but
the set {(m,n) | F (m) ≥ n} is decidable. Formulas from Figure 3 are used.

a function F exists: for example, suppose F maps every n ∈ N∗ to the number
of steps the nth Turing machine (under some encoding) takes to halt, returning
ℵ0 if it does not halt. This function is clearly not computable. But, given m and
n, we can decide whether F (m) ≥ n by executing the mth Turing machine for n
steps. If a T≤-interpretation A satisfies Pn, then it has at most F (n) elements.8

Finally, T= consists of all Σn
P -interpretations A in which for all n ∈ N∗,

either Pn is interpreted as false, or |A| = n. It therefore allows quantifier-free
formulas to enforce finite sizes of models, as Pn being true implies the model has
n elements.

3.2 Nelson–Oppen and gentle combination

We begin by proving the sharpness of Theorem 1 in the following sense: although
two theories can be combined if both are stably-infinite, this is no longer the
case if only one has that property. This result was previously proven in [5,
Theorem 4.1], but with a different proof.

Theorem 5. There are decidable theories T1 and T2 over disjoint signatures
such that T1 is stably infinite but T1 ⊕ T2 is undecidable.
8 T≤ generalizes the theory TM∞ from [5].
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Proof (sketch). 9 Take T1 and T2 to be Tf and T=, respectively. Clearly, their sig-
natures (namely Σs and Σn

P ) are disjoint. Further, Tf is shown in [9, Lemma 54]
to be stably infinite; it was also proven to have the same set of quantifier-free sat-
isfiable formulas as the theory of an uninterpreted unary function, which makes
it decidable. Finally, although both Tf and T= are decidable, Tf ⊕ T= is not.
Indeed, the formulas Pn+1 ∧ φ=

≥f1(n)+1, where

φ=

≥n :=
∧

1≤i<j≤n

¬(xi = xj) ∧
n∧

i=1

s(xi) = xi,

are T=⊕Tf -satisfiable if and only if f(n+1) = 1, whereas f is a non-computable
function. ⊓⊔

Clearly, Theorem 1 and the proof of Theorem 5 imply that T= is not stably
infinite. And indeed, for every n, the formula Pn is T=-satisfiable, but only by a
finite model.

As it turns out, the same theories can be used to show a similar result for
gentleness.

Theorem 6. There are decidable theories T1 and T2 over disjoint signatures
such that T1 is gentle, but T1 ⊕ T2 is undecidable.

Proof (sketch). We reuse the proof of Theorem 5, but flip the roles of the
theories. Now, we set T1 to be T= and T2 to be Tf . Tf and T= are both decidable,
are over disjoint signatures, but T= ⊕ Tf is undecidable. The only thing left to
show is that T= is gentle, which indeed can be shown. ⊓⊔

Theorem 4 and the proof of Theorem 6 tell us that Tf is not gentle. And
indeed, were Tf gentle, one would be able to calculate f . Similarly, Tf does not
satisfy any of the other two requirements from Theorem 4.

3.3 Polite combination

Theorem 2 demands two properties from T2 in order for it to be combinable with
any decidable theory T1 over a disjoint signature: strong finite witnessability
and smoothness. We start by showing that if smoothness is removed from the
requirements, the theorem fails.

Theorem 7. There are decidable theories T1 and T2 over disjoint signatures
such that T2 is strongly finitely witnessable but T1 ⊕ T2 is undecidable.

Proof (sketch). Take T1 to be Tf and T2 to be T=, as was done in the proof of
Theorem 5, where both theories were shown to be decidable while their combi-
nation was shown to be undecidable. The only thing that is left to be shown,
and indeed can be shown by providing an appropriate strong witness, is that T=
is strongly finitely witnessable. ⊓⊔
9 Due to lack of space, some proofs are omitted, and can be found in the appendix.
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As before, Theorem 2 and the proof of Theorem 7 imply that T= is not
smooth. And indeed, it is not, as it is not even stably infinite.

Next, we show that dropping the strong finite witnessability requirement also
leads to a failure in the polite combination method.

Theorem 8. There are decidable theories T1 and T2 over disjoint signatures
such that T2 is smooth but T1 ⊕ T2 is undecidable.

Proof. Take T1 to be T= and T2 to be Tf , again as in the proof of Theorem 6,
only now we rely on the fact that, proven in [9, Lemma 54], that Tf is smooth,
and as we already know, T= ⊕ Tf is not decidable. ⊓⊔

Clearly, Theorem 2 and the proof of Corollary 1 imply that Tf is not strongly
finitely witnessable. This was also proven in [9, Lemma 56].

Now, Tf was proven in [9, Lemmas 55] to not be smooth, but it is also finitely
witnessable (without being strongly finitely witnessable), which makes it polite.
Thus, the proof of Theorem 8 also gives us the following corollary, by again
taking T1 to be T= and T2 to be Tf .

Corollary 1. There are decidable theories T1 and T2 over disjoint signatures
such that T2 is polite but T1 ⊕ T2 is undecidable.

Recall that [17] claimed that politeness is enough for theory combination, but
a problem in the proof was later discovered and corrected in [11] by strengthening
the politeness assumption to strong politeness. But was the problem of [17] in
the proof or in the statement itself? In other words: does Conjecture 1 hold?
What we immediately get from Corollary 1 is that it does not.

Corollary 2. Conjecture 1 does not hold.

Hence, politeness is not enough for theory combination, which justifies the
title of this paper.

3.4 Shiny combination

In this section we consider the three requirements Theorem 3 makes on one of
the combined theories, namely: computability of the minimal model function,
the finite model property, and smoothness.

We start with the computability of the minimal model function.

Theorem 9. There are decidable theories T1 and T2 over disjoint signatures
such that T2 is smooth and has the finite model property, but T1 ⊕T2 is undecid-
able.

Proof. By taking T1 to be T= and T2 to be Tf , we can use proofs of previous
theorems in order to show most properties that are needed. Further, it was
proven in [26, Theorem 2] that Tf admits the finite model property. ⊓⊔

9



From Theorem 3 and the proof of Theorem 9, Tf does not have a computable
minimal model function, which was also proven in [8, Lemma 126].

For the next sharpness theorem we need the following lemma, according to
which for decidable theories, strong finite witnessability implies computability
of the minimal model function. This was essentially proven in [7], but was never
explicitly stated there; indeed, as they were focused on strong politeness and
shininess, they have assumed smoothness, even if that assumption was never
actually used in the part of the proof that concerned the computability of the
minimal model function.

Lemma 1. If T is decidable and strongly finitely witnessable, then it has a com-
putable minimal model function.

Remark 1. Notice that the reciprocal of Lemma 1 is not true: decidability and
computability of the minimal model function do not entail strong finite witness-
ability. For example, T ∞

even, defined in [21] by the axiomatization {¬ψ=2·n+1 |
n ∈ N}, is proven in [8, Lemma 126] to have a computable minimal model func-
tion; furthermore it is decidable, as it satisfies all and only the quantifier-free
formulas that are satisfiable in first-order logic, but it is not strongly finitely
witnessable (as proven in [21]).

Now, using Lemma 1, we show that shiny combination (Theorem 3) fails
without the smoothness requirement. We once again essentially reuse Theorem 5
to obtain the following:

Theorem 10. There are decidable theories T1 and T2 over disjoint signatures
such that T2 has the finite model property and a computable minimal model
function, but T1 ⊕ T2 is undecidable.

Proof. Take T1 and T2 to be Tf and T=, respectively: we have already shown
that they are both decidable even though Tf ⊕ T= is not. From Lemma 1 and
the fact that T= is strongly finitely witnessable (which was established in the
proof of Theorem 7), we get T= has a computable minimal model function. Using
then [26, Theorem 2], according to which finite witnessability implies the finite
model property, T= has the finite model property. ⊓⊔

Next, we show that the requirement of the finite model property cannot
be removed. Unlike the previous results, we are unable to reuse T= and Tf .
Therefore, we use the theory T∞ from [25] and the theory T≤.

Theorem 11. There are decidable theories T1 and T2 over disjoint signatures
such that T2 is smooth and has a computable minimal model function, but T1⊕T2
is undecidable.

Proof (sketch). Take T1 to be T≤ and T2 to be T∞, axiomatized in Table 2.
Clearly, they are defined over disjoint signatures. T∞ is smooth and has a com-
putable minimal model function. The proofs for these facts are simple, and are
given in [9, Lemma 22] and [8, Lemma 130]. It is also decidable, as it satisfies
all quantifier-free formulas in its signature that are satisfiable in first-order logic
(and only them). Perhaps surprisingly, it is possible to show that T≤ is decidable.
However, it can also be shown that T≤ ⊕ T∞ is not. ⊓⊔

10



Name 0-ary Functions 1-ary Functions Predicates
Σa

t {a} {t} ∅

Table 3: A finite signature.

ψorb
≥n(x) =

∧
0≤i<j≤n−1

¬(ti(x) = tj(x)) for n ∈ N∗ \ {1}

ψorb
=1 (x) = t(x) = x

ψorb
=n (x) = ψorb

≥n(x) ∧ ¬ψorb
≥n+1(x) for n ≥ 2

Fig. 4: Formulas in Σa
t .

4 Finite signatures

Every proof in Section 3 uses a pair of theories, one of them always over the
infinite signatureΣn

P (in all cases the used theory is T=, except for in Theorem 11,
where the Σn

P -theory T≤ is used instead). And indeed, both T= and T≤ are
theories that are relatively easy to understand. This is, among other things,
thanks to the availability of infinitely many predicates.

In this section, we aim to provide finitistic proofs of the limitation theorems
from Section 3, in the sense that all theories that are used are over finite sig-
natures. Doing so provides a more succinct set of examples, over more minimal
signatures. The cost, however, is that the theories that we use in this section are
more complex.

4.1 New theories over finite signatures

The two theories over the infinite signature Σn
P from Section 3 are T= and T≤.

They will be replaced by theories over the finite signature Σa
t : this signature has

a unary function t, a constant a, and no predicates, as described in Table 3.
In order to introduce the new theories, we define the formulas ψorb

≥n(x) and
ψorb
=n (x) in Figure 4.

The orbit (see e.g., [20,12]) of an element e in a Σa
t -interpretation A is the

set {(tA)n(e) | n ∈ N}. Since e itself is always an element of this set, the orbit is
always non-empty. We sometimes view this set as the following sequence indexed
by n: e, tA(e), (tA)2(e), . . . In this context, in an interpretation A that satisfies
ψorb
≥n(x), we have that there are at least n elements that can be obtained by

recursively applying tA to xA, meaning its orbit has at least n elements; similar,
if A satisfies ψorb

=n (x), the orbit of xA has precisely n elements.
With these formulas, we can now define the new theories over Σa

t . These are
specified in Table 4. In the finite T 2

orb-interpretations, the orbit of the interpre-
tation of the constant symbol a consists of at least half of the elements of the
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Name Signature Axiomatization Source
T 2
orb Σa

t {ψorb
=n (a) → ψ≤2n : n ∈ N∗} new

T orb
≤ Σa

t {ψorb
=n (a) → ψ≤F (n)+n : n ∈ N∗, F (n) ∈ N∗} new

Table 4: Theories over the finite signature Σa
t . In the definition of T orb

≤ , the
function F admits the same assumptions as in Table 2. The axiomatizations
utilize formulas that are defined in Figure 4.

interpretation; meanwhile in the infinite T 2
orb-interpretations this orbit is infinite.

T orb
≤ is very similar to T≤, replacing Pn by the assumption that the orbit has

size n, and also concluding that the number of elements in the domain is at most
F (n) + n (and not F (n) as in T≤).

With these new theories, we can now turn to making the proofs of the theo-
rems from Section 3 rely solely on finite signatures.

4.2 Finitizing the proofs of Theorems 5 to 10 and Corollary 1

The proof of Theorem 5 sets T1 to be Tf and T2 to be T=. In order to only use
finite signatures, we set T2 to be T 2

orb instead.10

As for T1, we can still use Tf , but we need to restrict the possible functions
f it relies on. To make it clear that the functions f are now required to satisfy
some extra properties we denote them by g, so that Tf becomes Tg. We then
require g : N∗ → {0, 1} to be any non-computable function such that: g(1) = 1
and g is zero as often as it is 1 in each interval from 1 to 2k (as required for f
in the definition of Tf ); and in addition to the requirements in Tf , we now also
require that g(2n + 1) = g(2n + 2) for all n ≥ 2. Such functions exist: for an
example, take the function f : N∗ → {0, 1} defined in [25], make g(1) = g(3) = 1,
g(2) = g(4) = 0, and g(2n + 1) = g(2n + 2) = f(n + 1) for n ≥ 2. Since Tf is
decidable and stably infinite regardless of the specific f , we have Tg is decidable
and stably infinite.

Although it can be shown that T 2
orb is decidable, Tg ⊕ T 2

orb is undecidable.
Indeed, were it decidable, one would be able to calculate the function g by
using the fact that ψorb

=n+1(a) ∧ φ=

≥g1(2n)+2 is Tg ⊕ T 2
orb-satisfiable if and only if

g(2n + 1) = g(2n + 2) = 1 for n ≥ 2: if we know g up to 2n we can calculate
g1(2n), obtain the formula ψorb

=n+1(a) ∧ φ=

≥g1(2n)+2, and by testing whether it
is Tg ⊕ T 2

orb-satisfiable we find the value for g(2n + 1) = g(2n + 2). We know
g(1) = g(3) = 1 and g(2) = g(4) = 0, and then we proceed from there on forward
inductively.

We can mimic the same process for other results from Section 3, by replacing
T= by T 2

orb, and instantiating Tf by Tg with f satisfying the aforementioned
condition. In particular, we can do so in: Theorem 6, by proving that T 2

orb is

10 Notice that [5] has also produced a finitary proof of Theorem 5, using a theory named
TM∀ω over a finite signature.
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also gentle; Theorem 7, by proving that T 2
orb is strongly finitely witnessable;

Theorem 8, and Corollary 1, by remembering Tg is both smooth and polite;
Theorem 9, as Tg has the finite model property; and Theorem 10, by proving that
T 2
orb has a computable minimal model function, and the finite model property.

4.3 Finitizing the proof of Theorem 11

Finally, notice that the proof of Theorem 11 sets T1 to be T≤, which is defined
over an infinite signature, and T2 to be T∞. While we can leave T2 as T∞, we
replace T≤ by its Σa

t -variant T orb
≤ , in order to get two theories over a finite

signature.
The proof that T orb

≤ is decidable follows the proof that T 2
orb is decidable. Yet

the combination T orb
≤ ⊕T∞ is not decidable, ψorb

=n (a) being satisfiable in it if, and
only if, F (n) = ℵ0.

5 New combination theorems

In this section we prove new combination theorems, that strengthen Theorems 3
and 4. In Section 5.1, we show that the conditions from Theorem 4 can be
weakened. In Section 5.2, we show that the finite model property can be dis-
missed from shiny combination, as long as we compensate it by requiring an-
other property from the second theory being combined. This does not contradict
Theorem 11, as the example there does not meet the additional criterion.

In what follows, we assume that Σ1 and Σ2 are disjoint signatures, and that
T1 is a Σ1-theory, and T2 a Σ2-theory.

5.1 Recovering gentle combination

Assuming T1 is gentle, Theorem 4 provided three conditions on T2, any one of
which suffices for theory combination. We prove a strengthening of Theorem 4.

Definition 1. We say that a theory T has computable finite spectra if there is
an algorithm that, given a quantifier-free formula φ and k ∈ N∗, decides whether
k ∈ Spec(T , φ).

Intuitively, having computable finite spectra means that we can query the
set Spec(T , φ) to check whether it contains a given finite cardinality. In contrast
to gentleness, it does not imply that we can compute any concrete set S, nor
does it require the ability to check whether ℵ0 is in the spectra.

Theorem 12. Suppose that T1 is gentle and T2 has computable finite spectra.
Then, T1 ⊕ T2 is decidable.

Each of the three properties in Theorem 4 imply that T2 has computable
finite spectra, so Theorem 12 is indeed a strengthening. We now present two
theories that can be combined by Theorem 12 but not by any other combination
method discussed in this paper.

13



Example 1. Fix any n ∈ N∗ and let T1 = T≤n be the Σ1-theory axiomatized by
{ψ≤n}. Now, let T2 be T≤ from Table 2. Then, T≤n and T≤ are decidable, T≤n

is gentle, and T≤ has computable finite spectra. By Theorem 12, T≤n ⊕ T≤ is
decidable. On the other hand, T≤ does not satisfy any of the three properties
in Theorem 4. Furthermore, neither theory is strongly polite, shiny, or stably
infinite, and so none of the other combination theorems can be used to decide
this combination of theories.

5.2 Recovering shiny combination without finite models

In Theorem 11 we have seen that the shiny combination theorem fails if the
finite model property is dropped from the definition of shininess. However, we
now show that we can do without the finite model property if we impose another
condition on the other theory being combined.

Definition 2. We say that a theory T is infinitely decidable if it is decidable
whether a quantifier-free formula is satisfied by an infinite T -interpretation.

A very similar notion to infinite decidability, that also requires the theory to
be decidable, was defined in [5] and called ∃∞-decidability, but not considered
along gentleness.

Theorem 13. Let T1 and T2 be decidable theories over disjoint signatures. Sup-
pose that T1 is smooth and has a computable minimal model function and that
T2 is infinitely decidable. Then, T1 ⊕ T2 is decidable.

In the next example, we present 2 theories that can be combined using The-
orem 13, but not with any other combination theorem studied in this paper.

Example 2. Let T h
∞ be the Σn

P -theory axiomatized by

{P1 → ψ=1} ∪ {P1 → ¬Pn : n ≥ 2} ∪ {Pn → ψ≥m : m,n ≥ 2, h(n) = 1},

for h : N∗ → {0, 1} a non-computable function. Also, consider the theory T∞
from Table 2. Both theories are decidable. It can be shown that T h

∞ is neither sta-
bly infinite nor has computable finite spectra, and so it cannot be combined with
T∞ using the Nelson–Oppen method, the gentle method, or the new method we
propose in Theorem 12. It can also be shown that neither theory is strongly po-
lite or shiny, and so they cannot be combined using the polite or shiny methods.
But, T∞ has a computable minimal model function and is smooth. Further, T h

∞
is infinitely decidable. By Theorem 13, T∞⊕T h

∞ is decidable. Thus, Theorem 13
is able to combine two theories that none of the other methods can.11

11 We use T∞ in the example to keep things simple, reusing the theories that are already
defined in the paper. However, any decidable theory T on a countable signature
(disjoint from Σn

P ) with only infinite models could replace T∞, such as the theory of
dense linear orders without endpoints [13].
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Approach Property Theorem
Infinite Finite

T1 T2 T1 T2

Nelson–Oppen (Thm. 1) Stable Infiniteness Thm. 5 Tf T= Tg T 2
orb

Gentle (Thm. 4) Gentleness∗ Thm. 6 T= Tf T 2
orb Tg

Polite (Thm. 2)
Smoothness Thm. 7 Tf T= Tg T 2

orb

Strong Finite Witnessability∗∗ Thm. 8 T= Tf T 2
orb Tg

Shiny (Thm. 3)

Comp. Min. Mod. Thm. 9 T= Tf T 2
orb Tg

Smoothness Thm. 10 Tf T= Tg T 2
orb

Finite Model Property∗ Thm. 11 T≤ T∞ T orb
≤ T∞

Table 5: Summary of the main results. Only 3 tuples of theories were used, and
these are assigned different colors in the table.
∗ Theorems 12 and 13, in a sense, remedy Theorems 6 and 11.
∗∗ In particular, Corollary 1 is a consequence of the proof of Thm. 8.

6 Conclusion

For each combination method and each of its associated properties, we have
proven in Section 3 that the corresponding combination theorem fails if the
property is not assumed. The proofs always involve producing two theories that
are decidable while their combination is not. The proofs of these results were
improved in Section 4, where only finite signatures were used.

Table 5 lists the theories used in Sections 3 and 4. It also lists the original
combination theorem whose limits are identified. Notice that for each theorem
we produced 2 pairs of theories: one pair for its original proof, and another pair
for its improved proof. In total, we were able to prove all theorems, with finite
and infinite signatures, using only three quadruples of theories, built from only
six theories, by reusing the introduced theories as much as possible.

We have also proven that politeness is not enough for theory combination.
Further, we have introduced two new combination theorems, based on shiny and
gentle combinations (Theorems 12 and 13).

The main direction for further work is to find more theorems like Theorems 12
and 13, with the purpose of varying the set of requirements for theory combi-
nation. We hope that such theorems will make it to introduce algorithms for
new combination of theories. In addition, we are working on stronger limitation
theorems: while the classical combination methods provide sufficient conditions
for combinability, we plan to study necessary conditions.

Acknowledgments We thank Christophe Ringeissen, Pascal Fontaine, and Cesare
Tinelli for fruitful discussions that led to and helped writing this paper.
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A Proof of Theorem 5

Proposition 1. The theory T= is gentle.

Proof. Let φ be a conjunction of literals. Write φ = φ1 ∧ φ2, where φ1 contains
the equalities and disequalities in φ and φ2 contains the literals of the form Pn

and ¬Pn in φ.
If φ1 is unsatisfiable in equational logic, then Spec(T=, φ) = ∅; otherwise, let

m be the size of the smallest interpretation that satisfies φ1, which is possible
since the theory of equality is shiny (see [23]).

If φ2 contains no positive literals, then Spec(T=, φ) = {n ∈ N∗ | n ≥ m} ∪
{ℵ0}. If φ2 contains exactly one positive literal Pn, then Spec(T=, φ) = {n}. If
φ2 contains two positive literals Pn and Pn′ where n ̸= n′, then Spec(T=, φ) = ∅.

Thus, we have shown that Spec(T=, φ) is either a finite set of finite cardinali-
ties that can be computed or a cofinite set whose complement can be computed;
that is, T= is gentle. ⊓⊔

Proposition 2. The theory T= ⊕ Tf is undecidable.

Proof. Let

φ=

≥n :=
∧

1≤i<j≤n

¬(xi = xj) ∧
n∧

i=1

s(xi) = xi.

Given that f is non-computable, it suffices to show that for each n ∈ N∗, the
sentence Pn+1 ∧ φ=

≥f1(n)+1 is T= ⊕ Tf -satisfiable if and only if f(n + 1) = 1; if
T h
P ⊕ Tf were decidable, this would allow us to compute f(n+ 1) recursively in

terms of f(1), . . . , f(n).
First, suppose f(n+1) = 1. Then, f1(n+1) = f1(n)+ 1. Since Tf is smooth

[9, Lemma 54] and has an interpretation of size 1, there is a Tf -interpretation of
every size in N∗. Further, any Tf -interpretation of size m ∈ N∗ satisfies φ=

≥f1(m).
Thus, there is a Tf -interpretation A of size n + 1 satisfying φ=

≥f1(n)+1. We can
extend A to a T= ⊕ Tf -interpretation B satisfying Pn+1 ∧ φ=

≥f1(n)+1 by letting
PB
n+1 be true and PB

n′ be false for all n′ ̸= n+ 1.
Second, suppose f(n+1) = 0. Then, f1(n+1) = f1(n), so any Tf -interpretation

A of size n+1 satisfies ψ=

=f1(n)
and therefore does not satisfy φ=

≥f1(n)+1. Hence,
Pn+1 ∧ φ=

≥f1(n)+1 is T= ⊕ Tf -unsatisfiable. ⊓⊔

B Proof of Theorem 6

It suffices to show that T= is gentle, and this was done in Proposition 1.

C Proof of Theorem 7

Proposition 3. The theory T= is strongly finitely witnessable.
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Proof. It suffices to define a strong witness forΣn
P -formulas that are conjunctions

of literals, so let φ be a conjunction of literals. If φ does not contain any literals
of the form Pn, then let wit(φ) := φ ∧ w = w (where w is fresh). Otherwise, let
n be the largest natural number such that the literal Pn is in φ. Then, let

wit(φ) := φ ∧
∧

1≤i<j≤n

wi ̸= wj ,

where each wi is a fresh variable.
First, we show that φ and ∃−→w .wit(φ) are T=-equivalent, where −→w = vars(wit(φ))\

vars(φ). This is clear if φ does not contain any literals of the form Pn. Otherwise,
let n be the largest natural number such that the literal Pn is in φ. Since T= has
the axiom Pn → ψ=n, any T=-interpretation that satisfies φ has n elements. In
particular, any T=-interpretation that satisfies φ satisfies

∃−→w .
∧

1≤i<j≤n

wi ̸= wj .

It follows that φ and ∃−→w . wit(φ) are T=-equivalent.
Now, let δ be an arrangement on a finite set of variables V such that wit(φ)∧

δ has a T=-interpretation A′ satisfying it. We need to show that there is a
T=-interpretation A satisfying wit(φ) ∧ δ such that dom(A) = vars(wit(φ) ∧
δ)A. If φ does not contain any literals of the form Pn, then we get our desired
interpretation A by letting dom(A) = vars(wit(φ) ∧ δ)A

′
, letting xA = xA

′

for each variable x ∈ vars(wit(φ) ∧ δ) (and letting xA be arbitrary for x /∈
vars(wit(φ)∧ δ)), and letting PA

n be false for all n ∈ N∗. Otherwise, let n be the
(necessarily unique) natural number such that the literal Pn is in φ. Then, A′

has exactly n elements, so dom(A′) = {wA′

1 , . . . , wA′

n }. Thus, we can simply take
A = A′ in this case. ⊓⊔

D Proof of Lemma 1

We actually prove this in the many-sorted setting,12 and then Lemma 1 follows
as a particular instance, where the number of sorts is 1. As mentioned, this
was already proven in [7] (also for the many-sorted case), but not explicitly
stated. More precisely, there, they proved shininess from strong politeness, and
so relied on smoothness. However, a careful look at the proof reveals the fact
that smoothness was not relied on in the specific part of the proof that showed
the computability of the minimal model function. To be safe, we provide a full
proof here.

Let Σ be a many-sorted, first-order signature, S a finite set of its sorts, and
varsσ(φ) be the set of variables of sort σ in φ.

12 See [25] for the definitions of a many-sorted signature, and what an interpretation
is in that case.
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Finite witnessability: A Σ-theory T is finitely witnessable w.r.t. S if there exists
a function wit (called a witness) from the quantifier-free formulas of Σ into
themselves such that, for every quantifier-free formula φ, one has that: (I) φ
and ∃−→x . wit(φ) are T -equivalent, where −→x = vars(wit(φ)) \ vars(φ); (II) if
wit(φ) is T -satisfiable there exists a T -interpretation A that satisfies wit(φ)
with σA = varsσ(wit(φ))A.

Strong finite witnessability: A Σ-theory T is strongly finitely witnessable w.r.t.
S if it is finitely witnessable w.r.t. S, with witness wit, which in addition satisfies:
(II ′) for every quantifier-free formula φ, finite set of variables V , and arrange-
ment δV on V , if wit(φ)∧ δV is T -satisfiable then there exists a T -interpretation
A that satisfies wit(φ) ∧ δV with σA = varsσ(wit(φ) ∧ δV )A. In that case wit is
called a strong witness.

Minimal model function The minimal model function minmod w.r.t. S of a Σ-
theory T is a function from the quantifier-free formulas of Σ to the power set of
NS

ω (that is, the set of functions from S to Nω) such that: (I) if φ is a quantifier-
free T -satisfiable formula and n ∈ minmod(φ), there exists a T -interpretation
A that satisfies φ with |σA| = n(σ) for every σ ∈ S; (II) if φ is a quantifier-free
T -satisfiable formula, n ∈ minmod(φ), and B is a T -interpretation that satisfies
φ with |σB| ≠ n(σ) for some σ ∈ S, there exists σ∗ ∈ S such that n(σ∗) < |σB

∗ |.

Theorem 14. If T is decidable and strongly finitely witnessable with respect to
a finite set of sorts S, then it has a computable minimal model function with
respect to S.

Proof. Assume, without loss of generality, that S = {σ1, . . . , σn} so that we may
write an element of the minimal model function as (n1, . . . , nn). Let wit be the
strong witness for T , V be the set of variables in wit(φ), Vi the set of variables
in wit(φ) of sort σi, Eqi(V ) the set of equivalence relations on Vi (finite and
easily algorithmically found), and Eq(V ) the product of Eqi(V ). We then define
minmod(φ) as the set of minimal elements of the set

T (φ) = {(|V1/E1|, . . . , |Vn/En|) : E ∈ Eq(V ) and wit(φ) ∧ δEV is T -satisfiable},

under the order such that (n1, . . . , nn) ≤ (m1, . . . ,mn) if and only if ni ≤ mi for
each 1 ≤ i ≤ n, and where: E = (E1, . . . , En), and δEV is the arrangement on V
inducing the equivalence Ei on each Vi. This is computable as wit is computable,
T is decidable, and the set whose minimal elements we must find is finite.

Take an element (|V1/E1|, . . . , |Vn/En|) of minmod(φ), meaning wit(φ)∧δEV
is T -satisfiable; as wit is a strong witness, there is a T -interpretation A that
satisfies wit(φ) ∧ δEV with σA

i = varsσi(wit(φ) ∧ δEV )A = V A
i for every σi ∈ S.

Since A satisfies δEV , V A
i has as many elements as Vi/Ei, and so (|σA

1 |, . . . , |σA
n |) =

(|V1/E1|, . . . , |Vn/En|), meaning the first property of a minimal model function
is satisfied.

Now, suppose for the sake of contradiction that there is a tuple (|V1/E1|, . . . ,
|Vn/En|) in minmod(φ) and a T -interpretation A that satisfies φ such that
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|σA
i | ≤ |Vi/Ei|, for all σi ∈ S, and for at least one of them |σA

i | < |Vi/Ei|. As wit
is a strong witness we have that A satisfies ∃−→x . wit(φ), for −→x = vars(wit(φ)) \
vars(φ), and therefore there is a T -interpretation B, differing from A at most on
the values assigned to −→x , that satisfies wit(φ). Let Fi be the equivalence relation
induced by B over Vi, and F = (F1, . . . , Fn), so that B satisfies wit(φ) ∧ δFV .
Again, by using the fact that wit is a strong witness there must exist a third T -
interpretation C that satisfies wit(φ) ∧ δFV with σC

i = varsσi
(wit(φ) ∧ δFV )C = V C

i

for each 1 ≤ i ≤ n. Using C satisfies δFV , |σC
i | = |Vi/Fi|, and since B also satisfies

δFV , |Vi/Fi| ≤ |σB
i | = |σA

i |. This means that (|σC
1 |, . . . , |σC

n|), although being in
T (φ), is strictly less than (|V1/E1|, . . . , |Vn/En|), a minimal element of T (φ),
leading to a contradiction and finishing the proof. ⊓⊔

E Proof of Theorem 11

Proposition 4. The theory T≤ is decidable.

Proof. It suffices to show that it is decidable whether a conjunction of literals is
T≤-satisfiable, so let φ be a conjunction of literals. Write φ = φ1 ∧φ2, where φ1

contains the equalities and disequalities in φ and φ2 contains the literals of the
form Pn and ¬Pn in φ.

We describe our decision procedure as follows. If φ1 is unsatisfiable in equa-
tional logic, then φ is T≤-unsatisfiable. Otherwise, let m be the size of the small-
est interpretation that satisfies φ1.

We claim that, in this case, φ is T≤-satisfiable if and only if for every n
such that the literal Pn is in φ2, we have F (n) ≥ m. This is because if the
latter condition holds, we can extend an interpretation that satisfies φ1 to a
T≤-interpretation A satisfying φ by setting PA

n to true for every n such that
the literal Pn is in φ2 and setting PA

n to false otherwise. Otherwise, there is
some n such that the literal Pn is in φ2 and F (n) < m. In this case, there is
no interpretation that satisfies φ1 of size at most F (n), so φ is T≤-unsatisfiable
(since Pn → ψ≤F (n) is an axiom of T≤). ⊓⊔

Proposition 5. The theory T∞ is decidable.

Proof. We prove T∞ and equational logic satisfy the same quantifier-free formu-
las, and since the latter is decidable so will be T∞. Of course equational logic
satisfies all quantifier-free formulas that T∞ satisfies, given that it has more
models than T∞. Reciprocally, suppose the quantifier-free formula φ is satisfied
by equational logic, and let A be an interpretation that satisfies φ. We consider
the interpretation B with dom(B) = dom(A) ∪ B, for a set B = {bn : n ∈ N}
disjoint from dom(A), and xB = xA for all variables x. B is a T∞-interpretation,
of course, but it also satisfies φ, which can be proven by a simple induction on
the subformulas of φ. ⊓⊔

Proposition 6. The theory T∞ ⊕ T≤ is undecidable.
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Proof. It suffices to show that Pn is T∞⊕T≤-satisfiable if and only if F (n) = ℵ0.
If F (n) = ℵ0, then Pn is satisfied by the T∞⊕T≤-interpretation A of size ℵ0 where
PA
n is true and PA

n′ is false for all n′ ̸= n. If F (n) < ℵ0, then any T≤-interpretation
satisfying Pn must be finite (since T≤ has the axiom Pn → ψ≤F (n)). Hence, Pn

is T∞ ⊕ T≤-unsatisfiable. ⊓⊔

F Proofs concerning T 2
orb

Proposition 7. The theory T 2
orb is gentle.

Proof. Let: vars(φ) equal {x1, . . . , xn}; Mi be the maximum of j such that tj(xi)
shows up in φ; M ′

0 be the maximum of j such that tj(a) appears in φ, and if it
doesn’t we set M ′

0 to 0; M0 =M ′
0 +

∑n
i=1(Mi +1); and take fresh variables xi,j ,

for 0 ≤ i ≤ n and 0 ≤ j ≤ Mi. We then flatten and Ackermannize φ, meaning:
we replace any term tj(xi) by xi,j , and any term tj(a) by x0,j , in order to obtain
the formula of equational logic φ′; and define the formula φ∗ as φ′ ∧ Fun(V ),
where V = {xi,j : 0 ≤ i ≤ n, 0 ≤ j ≤Mi} and

Fun(V ) =
∧

0≤i,p≤n

∧
0≤j<Mi

∧
0≤q<Mp

(xi,j = xp,q) → (xi,j+1 = xp,q+1).

Now, consider the set Eq(V ) of equivalence relations on V , which is easily com-
putable; [xi,j ]E shall denote in what follows the equivalence class under E with
representative xi,j . We define a subset Eq′(V ) of Eq(V ) such that E is in Eq′(V )
if, and only if, when defining the interpretation of equational logic with domain
V/E and where xi,j is assigned the value [xi,j ]E (an interpretation we shall
denote by V/E), φ∗ is true in this interpretation (this can be decided algorith-
mically given the finiteness of V/E).

For E ∈ Eq′(V ) we define a partial function tE on V/E by making tE([xi,j ]E) =
[xi,j+1]E for all i ∈ {0, . . . , n} and j ∈ {0, . . . ,Mi − 1} (notice that tE([xi,Mi

]E)
may still be defined if [xi,Mi

]E = [xp,q]E for a q ∈ {0, . . . ,Mp − 1}). This is well-
defined: if [xi,j ]E = [xp,q]E for 0 ≤ i, p ≤ n, 0 ≤ j < Mi and 0 ≤ q < Mp, we
have that V/E satisfies xi,j = xp,q; since it also satisfies Fun(V ), we have that
it satisfies xi,j+1 = xp,q+1, meaning that tE([xi,j ]E) = [xi,j+1]E = [xp,q+1]E =
tE([xp,q]E). The partial function tE can be computed by an exhaustive search,
as V , and thus V/E, is finite.

We then let BE
0 be the orbit of [x0,0]E under tE : for a partial function, this

means either the list {tjE([x0,0]E) : j ∈ N} if tE is always defined on tjE([x0,0]E);
or the list {t0E([x0,0]E), . . . , tJE([x0,0]E)}, if tE is defined on all tjE([x0,0]E) for
0 ≤ j ≤ J − 1, but not on tJE([x0,0]E); this can be easily found algorithmically.13
Define Eq′′(V ) as the subset of Eq′(V ) where 2|BE

0 | ≥ |V/E|. For every E ∈
Eq′′(V ), define the interval I(E) as

I(E) =

{
[|V/E|, 2|BE

0 |] if tE is defined for all of BE
0 ,

{n ∈ N∗ : n ≥ |V/E|} ∪ {ℵ0} otherwise,

13 The proof of Proposition 13 continues from here.
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and we state that
Spec(φ) =

⋃
E∈Eq′′(V )

I(E)

if Eq′′(V ) is not empty, and Spec(φ) = ∅ otherwise. Given that the sets I(E) are
computable and either finite or cofinite, so is Spec(φ) if the identity truly holds,
meaning T 2

orb is gentle. We prove the identity in three cases.

1. If Eq′′(V ) is not empty and tE is defined for all of BE
0 , for each 0 ≤ j ≤

2|BE
0 | − |V/E| take a set B with cardinality j disjoint from V/E, and we

define a T 2
orb-interpretation Aj as follows.

We make dom(Aj) = (V/E)∪B, which then has |V/E|+j ≤ 2|BE
0 | elements.

Of course aAj = [x0,0]E . tAj (b) = tE(b) for all b where tE is defined, and
tAj (b) = b otherwise: this way the orbit of aAj under tA has |BE

0 | elements,
making Aj a T 2

orb-interpretation. And, finally, xAj = [x]E for all variables
x ∈ V , xAj

i = [xi,0]E for all variables xi in φ, and arbitrarily otherwise, so
Aj satisfies φ as E ∈ Eq′(V ).
There cannot exist a T 2

orb-interpretation A that induces the equivalence E
on V with fewer than |V/E| elements, obviously. And there cannot exist a
T 2
orb-interpretation A that induces the equivalence E on V with more than

2|BE
0 | elements as the orbit of aA under tA has necessarily |BE

0 | elements.
2. If Eq′′(V ) is not empty and tE is not defined over all of BE

0 , take any j ∈ N
and a set B = {b1, . . . , bj} with cardinality j disjoint from V/E, and we
define a T 2

orb-interpretation Aj as follows.
First dom(Aj) = (V/E) ∪ B, so |dom(Aj)| = |V/E| + j. Second, of course
aAj = [x0,0]E . Third: tAj (b) = tE(b) for all b where tE is defined; tAj (b) = b1
for the one element b ∈ BE

0 where tE is not defined; tAj (bi) = bi+1 for
1 ≤ i ≤ j − 1; and, for all elements b where tAj hasn’t been defined yet,
including bj , tA(b) = b. Notice that, this way, the orbit of aAj under tAj has
size |BE

0 |+ j, and since 2(|BE
0 |+ j) ≥ |V/E|+ 2j ≥ |V/E|+ j = |dom(Aj)|

we get Aj is a T 2
orb-interpretation. And, finally, xAj = [x]E for all variables

x ∈ V , xAj

i = [xi,0]E for all variables xi in φ, and arbitrarily otherwise, so
Aj satisfies φ as E ∈ Eq′(V ).
Of course an interpretation that satisfies φ and induces the equivalence E
must have at least |V/E| elements, so we are done.

3. Suppose a T 2
orb-interpretation A satisfies φ: we can change the values assigned

to the variables xi,j while keeping φ satisfied, as they are not in φ, so that
xAi,j = (tA)j(xAi ); take then the equivalence E on V such that xi,jExp,q if
xAi,j = xAp,q. Of course φ∗ is satisfied by V/E , so E ∈ Eq′(V ). If tE is defined
for all elements of the orbit of [x0,0]E under tE , we have that |dom(A)| =
2|BE

0 | and, since |dom(A)| ≥ |V/E|, we get 2|BE
0 | ≥ |V/E|; if it is not, then

it contains M0 elements, and since |V/E| ≤M0 we again get 2|BE
0 | ≥ |V/E|,

proving that Eq′′(V ). Therefore, for φ to be satisfiable we must have some
E ∈ Eq′′(V ).

⊓⊔
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Proposition 8. The theory T 2
orb is decidable.

Proof. Follows from Proposition 7: a quantifier-free formula φ is T 2
orb-satisfiable

if and only if Spec(φ) is not empty, something that is decidable. ⊓⊔

Proposition 9. The theory T 2
orb is strongly finitely witnessable.

Proof. Let x1 through xn be the variables in a quantifier-free formula φ, Mi be
the maximum of j such that tj(xi) occurs in φ, M ′

0 be the maximum of j such
that tj(x0) occurs in φ, M0 be M ′

0+
∑n

i=1(Mi+1), and take fresh variables xi,j ,
for 0 ≤ i ≤ n and 0 ≤ j ≤Mi. We state

wit(φ) = φ ∧
n∧

i=0

Mi∧
j=0

xi,j = tj(xi)

is a strong witness for T 2
orb. Of course it maps quantifier-free formulas into other

quantifier-free formulas, and is computable. Furthermore, for −→x = vars(wit(φ))\
vars(φ), it is obvious that ∃−→x .wit(φ) implies φ, since wit(φ) itself already implies
φ. Reciprocally, if the T 2

orb-interpretation A satisfies φ, we produce a new T 2
orb-

interpretation B by changing the values assigned by A to those variables in −→x
so that xBi,j = (tA)j(xAi ); this way B satisfies wit(φ), and therefore A satisfies
∃−→x . wit(φ).

Now, take a finite set of variables V (not to be confused with the V used
in the proof above that T 2

orb is decidable), an arrangement δV over V , and a
T 2
orb-interpretation A that satisfies wit(φ)∧ δV : there are two cases we consider;

for simplicity, let U denote vars(wit(φ)).

1. Suppose that the orbit of aA under tA is a subset of UA ∪ V A, and we
then define an interpretation B by making: dom(B) = UA ∪ V A; aB =
aA; tB(b) = tA(b) whenever the latter value is in dom(B), and otherwise
tB(b) = b (this way, the orbit of aB under tB is the same as the orbit of aA
under tA, and since |dom(B)| ≤ |dom(A)| we get B is a T 2

orb-interpretation);
and xB = xA for every variable x ∈ U ∪ V , and arbitrarily otherwise (so
dom(B) = vars(wit(φ) ∧ δV )B)).
It is clear that B satisfies δV , given the definition of how it assigns values
to variables; since xBi,j = xAi,j and xAi,j = (tA)j(xAi ), and thus (tB)j(xBi ) =

(tA)j(xAi ) (for 0 ≤ j ≤Mi), we get B satisfies
∧n

i=0

∧Mi

j=0 xi,j = tj(xi).
Finally, for any atomic subformula of φ of the form tj(xi) = tq(xp) (the
cases tj(xi) = tq(a) and tj(a) = tq(a) being analogous), since (tB)j(xBi ) =
(tA)j(xAi ) and (tB)q(xBp ) = (tA)q(xAp ), we get that the subformula is true in
B if and only if it is true in A; since φ is quantifier-free, B satisfies φ, and
thus wit(φ), and we are done.

2. Suppose then that the orbit of aA under tA is not entirely contained in
UA ∪ V A: there are, however, at least M0 + 1 (distinct) elements of it in
UA∪V A. For simplicity, assume {b1, . . . , bR} is an enumeration of V A \UA.
We then define an interpretation B as follows: dom(B) = UA∪V A; aB = aA;
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tB(c) = tA(c) whenever the latter is in UA, (tB)M0+1(aB) = b1, tB(br) =
br+1 for 1 ≤ r < R, and if tB(c) hasn’t been defined yet we make it equal
to c (the orbit of aB under tB has then M0 + R + 1 elements, and since
|UA| ≤ 2M0 +1 and |V A \UA| = R we conclude B is a T 2

orb-interpretation);
and xB = xA for every variable x ∈ U ∪ V , and arbitrarily otherwise (so
dom(B) = vars(wit(φ) ∧ δV )B)).
We finally prove B satisfies wit(φ) ∧ δV just as in the item above.

⊓⊔

Proposition 10. The theory T 2
orb has the finite model property.

Proof. Follows from Proposition 9 and the fact that strong finite witnessability
implies the finite model property, as shown in [26]. ⊓⊔

Proposition 11. The theory T 2
orb has a computable minimal model function.

Proof. Follows from Lemma 1 and Propositions 8 and 9. ⊓⊔

Proposition 12. The theory Tg ⊕ T 2
orb is undecidable.

Proof. Assume instead Tg ⊕ T 2
orb is decidable, and let us define a function G :

N∗ → {0, 1} and formulas φn by making: G(1) = G(3) = 1 and G(2) = G(4) = 0;
assuming G defined up to 2n, φn equal to ψorb

=n+1(a) ∧ φ=

≥G1(2n)+2 (where, as
before, G1(n) = |{1 ≤ i ≤ n : G(i) = 1}|), and

G(2n+ 1) = G(2n+ 2) =

{
1 if φn is Tg ⊕ T 2

orb-satisfiable,
0 otherwise;

Of course G is computable, but we shall show that G = g and reach a contradic-
tion; assume this is true for all values up to 2n for n ≥ 2, meaning in particular
that G1(n) = g1(n), and we shall show g(2n+ 1) = g(2n+ 2) = 1 if and only if
φn is Tg ⊕ T 2

orb-satisfiable.
If it is satisfiable, there is a Tg ⊕ T 2

orb-interpretation A that satisfies φn, and
thus ψorb

=n+1(a) as well as φ=

≥g1(2n)+2; from the axiom ψorb
=n+1(a) → ψ≤2n+2 of T 2

orb
we get A has at most 2n + 2 elements, and from the axiomatization of Tg we
get that it has at most g1(2n+2) elements satisfying s(x) = x. The fact that A
satisfies φ=

≥g1(2n)+2 implies it has at least g1(2n)+2 elements satisfying s(x) = x,
and these two last facts are only compatible if g(2n+ 1) = g(2n+ 2) = 1.

Reciprocally, suppose g(2n + 1) = g(2n + 2) = 1, and so there exists a
Tg-interpretation A with exactly g1(2n + 2) = g1(2n) + 2 elements satisfying
s(x) = x, and g0(2n+2) = g0(2n) satisfying s(x) ̸= x (and thus 2n+2 elements
in total, which we name a1 through a2n+2). Extend A to a Σa

t ⊕Σs-interpretation
B by making aB = a1, tB(ai) = ai+1 for 1 ≤ i ≤ n, tB(an+1) = an+1, and
tB(ai) = ai for n+2 ≤ i ≤ 2n+2: ψorb

=n+1(a) is then true in B, while all ψorb
=m(a), for

m ̸= n+1, are obviously false. We prove that B is then a Tg⊕T 2
orb-interpretation

that satisfies φn, which shall finish the proof. B is certainly a Tg-interpretation,
vacuously satisfies all axioms ψorb

=m(a) → ψ≤2m for m ̸= n + 1, and satisfies
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ψorb
=n+1(a) → ψ≤2n+2 given that it satisfies ψorb

=n+1(a) and has 2n + 2 elements,
making of it a Tg ⊕ T 2

orb-interpretation. Furthermore, as mentioned before it
satisfies ψorb

=n+1(a), and satisfies φ=

≥g1(2n)+2 since it has g1(2n+ 2) = g1(2n) + 2

elements that satisfy s(x) = x. ⊓⊔

G Proofs concerning T orb
≤

Proposition 13. The theory T orb
≤ is decidable.

Proof. This is essentially the same as the proof of Proposition 8, the proofs being
exactly the same up to Footnote 13. The difference is that φ is T orb

≤ -satisfiable
if and only if there is an E ∈ Eq′(V ) such that

|B0|+ F (|B0|) ≥ |V/E|.

Now, we may not be able to calculate F (|B0|), but we can equivalently write
this condition as F (|B0|) ≥ |V/E| − |B0|, and such tests being computable are
a prerequisite for F . ⊓⊔

Proposition 14. The theory T∞ ⊕ T orb
≤ is undecidable.

Proof. Consider the formulas ψorb
=n : we state that they are T∞ ⊕ T orb

≤ -satisfiable
if and only if F (n) = ℵ0, what we know cannot be tested algorithmically.

Take first an n such that F (n) = ℵ0, and define an interpretation A as
follows: dom(A) = N (so A is a T∞-interpretation) and aA = 0; tA(i) = i + 1
for all i ̸= n− 1, and tA(n− 1) = 0, so the orbit of 0 is {0, . . . , n− 1}, meaning
A satisfies ψorb

=n and, since F (n) = ℵ0 and A is infinite we have that it is a
T orb
≤ -interpretation; and xA can be defined arbitrarily for all variables x. This

means A is a T∞ ⊕ T orb
≤ -interpretation that satisfies φ.

Reciprocally, suppose A is a T∞ ⊕ T orb
≤ -interpretation that satisfies ψorb

=n : if
F (n) ∈ N∗ we have |dom(A)| ≤ F (n) + n, which is finite and thus contradicts
the fact that A is supposed to be a T∞-interpretation. Thus F (n) = ℵ0. ⊓⊔

H Proof of Theorem 12

The key to the proof is the following result due to Fontaine.

Lemma 2 ([10, Corollary 1]). Let T1 and T2 be theories over disjoint signa-
tures Σ1 and Σ2, respectively. Suppose that it is decidable whether Spec(T1, φ1)∩
Spec(T2, φ2) = ∅, where φ1 and φ2 are conjunctions of literals over the signatures
Σ1 and Σ2, respectively. Then, T1 ⊕ T2 is decidable.

In light of the lemma, the following implies Theorem 12.

Lemma 3. Let T1 and T2 be decidable theories over disjoint signatures Σ1 and
Σ2 respectively. Suppose that T1 is gentle and T2 has computable finite spectra.
Then, it is decidable whether Spec(T1, φ1) ∩ Spec(T2, φ2) = ∅, where φ1 and φ2

are conjunctions of literals over the signatures Σ1 and Σ2 respectively.
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Proof. Let φ1 and φ2 be conjunctions of literals over the signatures Σ1 and Σ2

respectively. We describe our decision procedure as follows. Since T1 is gentle,
Spec(T1, φ1) is either of the form S or S ∪ {n ∈ Nω | n ≥ k} for some k ∈ N∗,
where S ⊂ N∗ is a finite set. We have S ∩ Spec(T2, φ2) = ∅ if and only if
n /∈ Spec(T2, φ2) for each n ∈ S, which we can check algorithmically since T2 has
computable finite spectra. We also have {n ∈ Nω | n ≥ k} ∩ Spec(T2, φ2) = ∅
if and only if φ2∧ ̸= (x1, . . . , xk) is T2-unsatisfiable (where the variables xi
are fresh). These computations allow us to determine whether Spec(T1, φ1) ∩
Spec(T2, φ2) = ∅. ⊓⊔

We also prove here that Theorem 12 is a strengthening of Theorem 4.

Proposition 15. If a theory T is gentle, then T has computable finite spectra.

Proof. Let φ be a quantifier-free formula, and let k ∈ N∗. If T is gentle, then
we can compute an explicit representation of the set Spec(T , φ), from which we
can decide whether k ∈ Spec(T , φ). ⊓⊔

Proposition 16. If a theory T is finitely axiomatizable, then T has computable
finite spectra.

Proof. Let φ be a quantifier-free formula, and let k ∈ N∗. Let Σ be the signature
over which T is defined. We may assume that Σ only contains the symbols
appearing in Ax(T ) ∪ {φ} so that, in particular, Σ is finite. We can enumerate
the Σ-interpretations of size k, checking whether any of them satisfy all of the
formulas in Ax(T ) ∪ {φ}. If we find a T -interpretation of size k satisfying φ,
then k ∈ Spec(T , φ); otherwise, k /∈ Spec(T , φ). ⊓⊔

Proposition 17. Suppose that for a theory T , there is an algorithm that, given
a conjunction φ of literals, outputs a finite set S ⊂ Nω such that Spec(T , φ) = S.
Then, T has computable finite spectra.

Proof. Let φ be a quantifier-free formula, and let k ∈ N∗. Without loss of gen-
erality, φ is a conjunction of literals (the general case follows by putting φ
in disjunctive normal form). We can compute a finite set S ⊂ Nω such that
Spec(T , φ) = S, from which we can decide whether k ∈ Spec(T , φ). ⊓⊔

I Proofs concerning Example 1

Proposition 18. For any n ∈ N∗, the theory T≤n is gentle (and therefore de-
cidable).

Proof. Let φ be a conjunction of literals. If φ is unsatisfiable in equational logic,
then Spec(T≤n, φ) = ∅. Otherwise, let m be the size of the size of the smallest
interpretation that satisfies φ. Then, Spec(T≤n, φ) = [m,n]. ⊓⊔

That T≤ is decidable is proved in Proposition 4.
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Proposition 19. The theory T≤ has computable finite spectra.

Proof. Let φ be a conjunction of literals, and let k ∈ N∗. Write φ = φ1 ∧ φ2,
where φ1 contains the equalities and disequalities in φ and φ2 contains the
literals of the form Pn and ¬Pn in φ.

We describe our decision procedure as follows. If φ1 is unsatisfiable in equa-
tional logic, then φ is T≤-unsatisfiable, so k /∈ Spec(T≤, φ). Otherwise, let m
be the size of the smallest interpretation that satisfies φ1. If k < m, then
k /∈ Spec(T≤, φ). So assume that k ≥ m.

We claim that, in this case, k ∈ Spec(T≤, φ) if and only if for every n such
that the literal Pn is in φ2, we have F (n) ≥ k. This is because if the latter
condition holds, we can extend an interpretation of size k that satisfies φ1 to
a T≤-interpretation A of size k satisfying φ by setting PA

n to true for every n
such that the literal Pn is in φ2 and setting PA

n to false otherwise. Otherwise,
there is some n such that the literal Pn is in φ2 and F (n) < k. Then, there
is no interpretation of φ2 of size k (since Pn → ψ≤F (n) is an axiom of T≤), so
k /∈ Spec(T≤, φ). ⊓⊔

Proposition 20. The theory T≤ is not gentle.

Proof. It suffices to show that it is undecidable whether Spec(T≤, φ) is infinite.
And indeed, Spec(T≤, Pn) is infinite if and only if F (n) = ℵ0, which is undecid-
able by our assumptions on F . ⊓⊔

Proposition 21. The theory T≤ is not finitely axiomatizable.

Proof. If T is a finitely axiomatizable Σn
P -theory, then the predicate Pn does

not appear in the axiomatization of T for some n such that F (n) < ℵ0. Then,
Pn → ψ≤F (n) is T≤-valid but not T -valid. ⊓⊔

Proposition 22. There is no algorithm that, given a conjunction of literals φ
in the language of T≤, outputs a finite set S ⊂ Nω such that Spec(T≤, φ) = S

Proof. Indeed, Spec(T≤,⊤) is not even a finite set. ⊓⊔

Proposition 23. For any n ∈ N∗, the theory T≤n is not stably infinite (and
therefore neither strongly polite nor shiny).

Proof. The theory has no models of size greater than n and hence no infinite
models. ⊓⊔

Proposition 24. The theory T≤ is not stably infinite (and therefore neither
strongly polite nor shiny).

Proof. Let n ∈ N∗ be such that F (n) < ℵ0. Then, Pn has no infinite T≤-models,
since Pn → ψ≤F (n) is an axiom of T≤. ⊓⊔
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J Proof of Theorem 13

In light of Lemma 2, the following implies Theorem 13.

Lemma 4. Let T1 and T2 be decidable theories over disjoint signatures Σ1

and Σ2 respectively. Suppose that T1 is smooth and has a computable minimal
model function and that T2 is infinitely decidable. Then, it is decidable whether
Spec(T1, φ1)∩Spec(T2, φ2) = ∅, where φ1 and φ2 are conjunctions of literals over
the signatures Σ1 and Σ2 respectively.

Proof. Let φ1 and φ2 be conjunctions of literals over the signaturesΣ1 andΣ2 re-
spectively. We describe our decision procedure as follows. If φ1 is T1-unsatisfiable,
then Spec(T1, φ1) ∩ Spec(T2, φ2) = ∅, so suppose φ1 is T1-satisfiable.

If minmodT1
(φ1) = n for some n ∈ N∗, then Spec(T1, φ1) = {m ∈ N∗ | m ≥

n}∪{ℵ0}, since T1 is smooth. In this case, we have Spec(T1, φ1)∩Spec(T2, φ2) = ∅
if and only if φ2 has no T2-interpretations of size at least n, which happens exactly
when φ2∧ ≠ (x1, . . . , xn) is T2-unsatisfiable (where the variables xi are fresh).

If minmodT1
(φ1) = ℵ0, then Spec(T1, φ1) = {ℵ0}. In this case, we have

Spec(T1, φ1) ∩ Spec(T2, φ2) = ∅ if and only if φ2 is not satisfied by any infinite
T2-interpretation, which we can check since T2 is infinitely decidable. ⊓⊔

K Proofs concerning Example 2

Proposition 25. The theory T h
∞ is not stably-infinite.

Proof. P1 is only satisfied by a T h
∞-interpretation with one element. ⊓⊔

Proposition 26. The theory T h
∞ is not strongly polite.

Proof. Follows from Proposition 25, which implies T h
∞ is not smooth. ⊓⊔

Proposition 27. The theory T∞ is not strongly polite.

Proof. T∞ was proven in [25] not to be strongly finitely witnessable, so the result
follows. ⊓⊔

Proposition 28. The theory T h
∞ is not shiny.

Proof. Follows from Proposition 25, which implies T h
∞ is not smooth. ⊓⊔

Proposition 29. The theory T∞ is not shiny.

Proof. T∞ does not have the finite model property, and therefore is not shiny,
since it is not trivial but has no finite models. ⊓⊔

Proposition 30. The theory T h
∞ does not have computable finite spectra.

Proof. For all n ≥ 2, we have 1 ∈ Spec(T h
∞, Pn) if and only if h(n) = 0, which is

undecidable by assumption. ⊓⊔
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Proposition 31. The theory T∞ has a computable minimal model function.

Proof. Proven in [24]. ⊓⊔

Proposition 32. The theory T∞ is smooth.

Proof. Obvious, but proven in [25]. ⊓⊔

Proposition 33. The theory T h
∞ is decidable.

Proof. Given a quantifier-free formula φ, assume without loss of generality φ is a
cube and write φ = φ1 ∧φ2, where φ1 contains only equalities and disequalities,
and φ2 contains only the predicates Pn and their negations. We state φ is T h

∞-
satisfiable if, and only if, φ1 is satisfiable in equational logic, φ2 does not contain
a predicate and its negation, and if φ2 contains the literal P1, then φ1 has a model
in equational logic of size 1 and φ2 contains no other positive literals.

If φ is T h
∞-satisfiable so is φ1, and by forgetting the predicates on a T h

∞-
interpretation that satisfies φ1 we get an interpretation in equational logic that
satisfies that formula. Of course φ2 is also satisfiable, and then we cannot
have both Pn and ¬Pn in φ2. Finally, if φ2 contains the literal P1, any T h

∞-
interpretation A that satisfies φ must satisfy P1 as well, and by the axiom
P1 → ψ=1 of T h

∞ we get A has only one element; by forgetting its predicates, we
get an interpretation in equational logic that satisfies φ1 and has only one ele-
ment. Furthermore, by the axioms P1 → ¬Pn we get A satisfies ¬Pn for n ≥ 2,
and thus φ2 cannot contain the positive literals Pn.

For the reciprocal, start by assuming φ2 does not contain the literal P1, and
since φ1 is satisfiable in equational logic it has an infinite model A, as equational
logic is stably-infinite; turn A into a Σn

P -interpretation by setting PA
n to true

if the literal Pn occurs in φ2, and otherwise to false, meaning it satisfies φ2 as
well (this is possible because φ2 cannot contain both a literal and its negation).
A then satisfies the axioms P1 → ψ=1 and P1 → ¬Pn vacuously, as it does not
satisfy P1; and it satisfies the axioms Pn → ψ≥m for h(n) = 1 since it is infinite
and therefore satisfies all ψ≥m. If φ2 contains P1, we take an interpretation A in
equational logic that satisfies φ1 with only one element, and make it into a Σn

P -
interpretation by setting PA

1 to true, and all other PA
n to false (so A satisfies φ2

as well, since that formula cannot contain any positive literals other than P1). It
satisfies P1 → ψ=1 as it contains only one element, P1 → ¬Pn as all Pn different
from P1 are false in A, and Pn → ψ≥m (for n ≥ 2 with h(n) = 1) vacuously. ⊓⊔

Proposition 34. The theory T h
∞ is infinitely decidable.

Proof. Given a quantifier-free formula φ, we assume, without loss of generality,
that φ is a cube; write then φ = φ1 ∧ φ2, where φ1 contains only equalities
and disequalities, and φ2 contains only the predicates Pn and their negations.
As proven in Proposition 33, T h

∞ is decidable, so we only need to worry whether
T h
∞-satisfiable φ are satisfied by an infinite T h

∞-interpretation: we state that such
φ have infinite T h

∞-models if and only if P1 does not appear as a literal in φ2.
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One direction is obvious: if φ1 contains P1 and the T h
∞-interpretation A

satisfies φ, by the axiom P1 → ψ=1 we get A can only have one element. If
P1 is not in φ2 we proceed as in the proof of Proposition 33: as equational
logic is stably-infinite, take an infinite interpretation A that satisfies φ1; and
set PA

n to true if and only if the positive literal Pn occurs in φ2, so A, as a
Σn

P -interpretation, satisfies φ2 as well. ⊓⊔
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