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Abstract

This study aims to introduce a modal extension M4CC of Arieli, Avron, and Za-

mansky’s ideal paraconsistent four-valued logic 4CC as a Gentzen-type sequent

calculus and prove the Kripke-completeness and cut-elimination theorems for

M4CC. The logic M4CC is also shown to be decidable and embeddable into

the normal modal logic S4. Furthermore, a subsystem of M4CC, which has

some characteristic properties that do not hold for M4CC, is introduced and

the Kripke-completeness and cut-elimination theorems for this subsystem are

proved. This subsystem is also shown to be decidable and embeddable into S4.

Keywords: Ideal paraconsistent four-valued logic, Gentzen-type sequent

calculus, Kripke-completeness theorem, Cut-elimination theorem, Embedding

theorem

1. Introduction

In this study, a modal extension M4CC of Arieli, Avron, and Zamansky’s

ideal paraconsistent four-valued logic, known as 4CC [5, 6, 7], is introduced. We

prove theorems for syntactically and semantically embedding M4CC into the

normal modal logic S4. We prove the Kripke-completeness and cut-elimination

theorems for M4CC using these embedding theorems. We also obtain the
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decidability result of M4CC and the finite model property for M4CC using

these embedding theorems. Furthermore, we introduce a subsystem M4CC⋆

of M4CC and prove theorems for syntactically and semantically embedding

M4CC⋆ into S4 and vice versa. Similarly, we prove the Kripke-completeness

and cut-elimination theorems for M4CC⋆ as well as the decidability result of

M4CC⋆ and the finite model property for M4CC⋆ using these embedding theo-

rems.

The proposed logic M4CC is introduced as a Gentzen-type sequent calculus

and is a modal extension of the Gentzen-type sequent calculus EPL, which was

introduced by us in [20, 23]. The calculus EPL was shown in [23] to be theorem-

equivalent to Arieli and Avron’s original Gentzen-type sequent calculus G4CC

[5, 6] for 4CC. Another proposed logic, M4CC⋆, is obtained from M4CC by

deleting some initial sequents, which correspond to the principle (∼α ∧ −α)→β

of quasi-explosion and the law ∼α ∨ −α of quasi-excluded middle, where∼ and−

are a paraconsistent negation connective and conflation connective, respectively.

The logic M4CC⋆ is a modal extension of the Gentzen-type sequent calculus PL,

which was introduced by us in [20, 23], as an embeddable subsystem of 4CC.

The original non-modal logic 4CC is an extension of Belnap and Dunn’s

useful four-valued logic (also called first-degree entailment logic) [8, 9, 12], and

is a variant of the logic of logical bilattices [3, 4]. The logic 4CC is also a

specific type of paraconsistent logics [35] with multiple names: they are called

paradefinite logics by Arieli and Avron [5, 6], non-alethic logics by da Costa, and

paranormal logics by Béziau [10]. Regardless of their names, paradefinite logics

incorporate the properties of both paraconsistency, which rejects the principle

(α ∧ ∼α)→β of explosion, and paracompleteness, which rejects the law α ∨ ∼α

of excluded middle. By these properties, paradefinite logics are known to be

appropriate for handling inconsistent and incomplete information [5].

Moreover, 4CC is known to be one of the most important ideal paraconsistent

(or paradefinite) logics that have natural many-valued semantics. The logic 4CC

is maximal relative to classical logic, which means that any attempt to add to

it a tautology of classical logic, which is not provable in 4CC, should necessary
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result in classical logic. The exact definition and motivation for introducing

this property was described in [7]. The logic 4CC is also related to connexive

logics [2, 26, 43] because its Hilbert-style axiom system contains a characteristic

axiom scheme corresponding to Boethius’ theses. For more information on the

relation between 4CC and connexive logics, see [23].

Although 4CC is an important ideal paraconsistent (or paradefinite) logic, a

modal extension of 4CC, which is suitable for actual applications concerning, for

example, some additional situations on knowledge (belief) and/or time (any time

in the future), has not been studied yet. Therefore, this study aims to propose

the modal extension M4CC of 4CC and show the completeness theorem with

respect to a Kripke semantics for M4CC as well as the finite model property for

M4CC. Since adding S4-type modality allows one to formulate naturally both

Gentzen-type sequent calculus and Kripke semantics for the resulting system

that can also suitably handle knowledge and/or time, we develop M4CC as a

system combining 4CC with S4. However, we can also combine 4CC and one

of the other normal modal logics such as K. By imposing some appropriate

modifications, a similar method of proof can also be used to show the Kripke-

completeness, cut-elimination, and finite model property for such extensions.

It was argued in [20, 23] that the embedding-based proof method used in

[20, 23] for proving the completeness and cut-elimination theorems for another

propositional non-modal paradefinite logic, PL, seems insufficient for 4CC be-

cause it is unclear how a translation function can be defined for 4CC. However,

in the present paper, we have shown that this argument is not true. Namely, we

can use the embedding-based proof method for proving the completeness and

cut-elimination theorems for M4CC and hence for the subsystem 4CC.

This work is regarded as a continuation of the previous work [23]. In [23], an

alternative Gentzen-type sequent calculus (called EPL) for 4CC and its subsys-

tem (called PL) were introduced. The proposed logics, i.e., M4CC and M4CC⋆,

are also regarded as modal extensions of EPL and PL, respectively. The dif-

ferences between PL and EPL are explained as follows. The logic EPL (i.e.,

4CC) has the negative symmetry property, which represents a type of symmetry
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between − and ∼, but PL has no such property. Similarly, the extended logic

M4CC has this property, but M4CC⋆ has no such property. On the contrary, PL

has the quasi-paraconsistency and quasi-paracompleteness properties that reject

the law of quasi-explosion and the law of quasi-excluded middle, but EPL has

no such properties (i.e., EPL has these axioms). Similarly, the logic M4CC⋆ has

these properties, but M4CC has no such properties. In other words, the S4-type

modalities in M4CC and M4CC⋆ are formalized on the basis of preserving these

characteristic properties.

The logic PL was introduced to obtain a good paradefinite logic that can

simulate classical logic. Such logic is required in application areas that use both

paraconsistent and classical negations. Some paraconsistent logics that can

simulate classical logic were studied in [21, 23], where it was shown that some

bidirectional embeddings (i.e., embeddings from the underlying paraconsistent

logic into classical logic and vice versa) characterize such logic. We believe

that the existence of such bidirectional embeddings is important in formalizing

good paradefinite logic because such bidirectional embeddings are regarded as

an analogue of the concept “bisimulation” (i.e., ones can simulate each other)

which is known as an important concept in the concurrency theory in computer

science. Thus, our motivation for introducing M4CC⋆, which is another aim of

this study, is to extend this idea to also apply to modal logic. Although we have

obtained such extended bidirectional embeddings from M4CC⋆ into S4 and vice

versa, we have not yet obtained extended bidirectional embeddings from M4CC

into S4 and vice versa. We have only obtained single-directional embeddings

from M4CC into S4. Nevertheless, using such extended bidirectional and single-

directional embeddings, we can easily prove the Kripke-completeness and cut-

elimination theorems for M4CC⋆ and M4CC as well as the decidabilities and

finite model properties of M4CC⋆ and M4CC. The finite model property of a

slightly different version of M4CC was presented by us in [24] using a direct

proof method. However, the proof in [24] had a gap, and hence, such a finite

model property has not yet been proved.

The structure of this paper is summarized as follows.
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In Section 2, we introduce M4CC, M4CC⋆, and a Gentzen-type sequent

calculus GS4 for S4 and define Kripke semantics for these systems. We also

obtain some basic propositions for these systems and semantics and discuss

some of their properties. These systems introduced in this section have the box

modal operator □ as an explicit modal operator (i.e., □ is introduced by some

logical inference rules). In these systems, the diamond modal operator ♢ is also

handled as an implicit modal operator (i.e., ♢ is handled as an abbreviation of

a combination of □ and negations).

In Section 3, we prove some main theorems for M4CC and M4CC⋆. First, we

prove several theorems for syntactically embedding M4CC⋆ into (a Gentezen-

type sequent calculus GS4 for) S4 and vice versa. Using such a syntactical

embedding theorem, we show the cut-elimination theorem for M4CC⋆ and the

decidability of M4CC⋆. Then, as corollaries of the cut-elimination theorem, we

obtain quasi-paraconsistency and quasi-paracompleteness for M4CC⋆. Next, we

prove several theorems for semantically embedding M4CC⋆ into S4 and vice

versa. Using such a semantical embedding theorem, we prove the Kripke-

completeness theorem for M4CC⋆ and the finite model property of M4CC⋆.

Similarly, we prove several syntactical and semantical embeddings of M4CC⋆

into (a Gentezen-type sequent calculus GS4 for) S4. But, these embedding the-

orems are single-directional. Using these embedding theorems, we show the cut-

elimination and Kripke-completeness theorems for M4CC and the decidability

and finite model property of M4CC. Then, as a corollary of the cut-elimination

theorem, we obtain the negative symmetry property for M4CC.

In Section 4, we introduce other versions M4CC♢, M4CC⋆
♢, and GS4♢ and

define Kripke semantics for them. These systems are extensions of M4CC,

M4CC⋆, and GS4 by adding the diamond modal operator ♢ as an explicit modal

operator (i.e., ♢ is introduced by some logical inference rules). Using a similar

embedding-based method, we show that the same main theorems (except the

finite model property) as those for M4CC and M4CC⋆ also hold for M4CC♢

and M4CC⋆
♢. The finite model property does seem to hold for these systems as

well (even if it is not proved in this paper).
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In Section 5, we present the conclusion of this paper, some remarks on K-type

modal extensions, which are based on the normal modal logic K, and related

works on modal extensions of many-valued logics.

2. Modal extensions

2.1. Sequent calculi

Formulas of modal extensions of ideal paraconsistent four-valued logic and

its relatives are constructed from countably many propositional variables by

the logical connectives ∧ (conjunction), ∨ (disjunction), → (implication), ∼

(paraconsistent negation) and − (conflation), and □ (box). We use the symbol

♢ (diamond) to denote the abbreviation of ∼−□∼−, where, as will shown

later, ∼− is considered to be the classical negation connective (i.e., the classical

negated formulas of the form ¬α can be defined as ∼−α). In what follows, we

use small letters p, q, ... to denote propositional variables, Greek small letters

α, β, ... to denote formulas, and Greek capital letters Γ,∆, ... to represent finite

(possibly empty) sets of formulas. Let A be a set of symbols (i.e., alphabet).

Then, the notation A⋆ is used to represent the set of all words of finite length

of the alphabet A. For any ♯ ∈ {∼,−,□}⋆, we use an expression ♯Γ to denote

the set {♯γ | γ ∈ Γ}. We use the symbol Φ to denote the set of all propositional

variables, the symbol Φ∗ to denote the set of all formulas, and the symbols Φ∼

and Φ− to denote the sets {∼p | p ∈ Φ} and {−p | p ∈ Φ}, respectively. We use

the symbol ≡ to denote the equality of symbols. A sequent is an expression of

the form Γ ⇒ ∆. We use an expression α ⇔ β to represent the abbreviation of

the sequents α ⇒ β and β ⇒ α. An expression L ⊢ S means that a sequent S

is provable in a sequent calculus L. If L of L ⊢ S is clear from the context, we

omit L in it. We say that two sequent calculi L1 and L2 are theorem-equivalent

if {S | L1 ⊢ S} = {S | L2 ⊢ S}. A rule R of inference is said to be admissible

in a sequent calculus L if the following condition is satisfied: For any instance

S1 · · ·Sn

S
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of R, if L ⊢ Si for all i, then L ⊢ S. Moreover, R is said to be derivable in L if

there is a derivation from S1, · · · , Sn to S in L. Note that a rule R of inference

is admissible in a sequent calculus L if and only if two sequent calculi L and

L+R are theorem-equivalent.

A Gentzen-type sequent calculus M4CC for a modal extension of the ideal

paraconsistent four-valued logic 4CC is defined as follows.

Definition 2.1 (M4CC). The initial sequents of M4CC are of the following

form, for any propositional variable p,

p ⇒ p ∼p ⇒ ∼p −p ⇒ −p ∼p,−p ⇒ ⇒ ∼p,−p.

The structural inference rules of M4CC are of the form:

Γ ⇒ ∆, α α,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π
(cut) Γ ⇒ ∆

α,Γ ⇒ ∆
(we-left) Γ ⇒ ∆

Γ ⇒ ∆, α
(we-right).

The non-negated logical inference rules of M4CC are of the form:

α, β,Γ ⇒ ∆

α ∧ β,Γ ⇒ ∆
(∧left)

Γ ⇒ ∆, α Γ ⇒ ∆, β

Γ ⇒ ∆, α ∧ β
(∧right)

α,Γ ⇒ ∆ β,Γ ⇒ ∆

α ∨ β,Γ ⇒ ∆
(∨left)

Γ ⇒ ∆, α, β

Γ ⇒ ∆, α ∨ β
(∨right)

Γ ⇒ ∆, α β,Σ ⇒ Π

α→β,Γ,Σ ⇒ ∆,Π
(→left)

α,Γ ⇒ ∆, β

Γ ⇒ ∆, α→β
(→right)

α,Γ ⇒ ∆

□α,Γ ⇒ ∆
(□left)

□Γ,∼♢Σ,−□Π ⇒ α

□Γ,∼♢Σ,−□Π ⇒ □α
(□right).

The negated logical inference rules of M4CC are of the form:

α,Γ ⇒ ∆

∼∼α,Γ ⇒ ∆
(∼∼left)

Γ ⇒ ∆, α

Γ ⇒ ∆,∼∼α
(∼∼right)

Γ ⇒ ∆, α

∼−α,Γ ⇒ ∆
(∼−left)

α,Γ ⇒ ∆

Γ ⇒ ∆,∼−α
(∼−right)

∼α,Γ ⇒ ∆ ∼β,Γ ⇒ ∆

∼(α ∧ β),Γ ⇒ ∆
(∼∧left)

Γ ⇒ ∆,∼α,∼β

Γ ⇒ ∆,∼(α ∧ β)
(∼∧right)

∼α,∼β,Γ ⇒ ∆

∼(α ∨ β),Γ ⇒ ∆
(∼∨left)

Γ ⇒ ∆,∼α Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α ∨ β)
(∼∨right)
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α,∼β,Γ ⇒ ∆

∼(α→β),Γ ⇒ ∆
(∼→left)

Γ ⇒ ∆, α Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α→β)
(∼→right)

∼α,Γ ⇒ ∆

∼♢α,Γ ⇒ ∆
(∼♢left)

□Γ,∼♢Σ,−□Π ⇒ ∼α

□Γ,∼♢Σ,−□Π ⇒ ∼♢α
(∼♢right).

The conflated logical inference rules of M4CC are of the form:

α,Γ ⇒ ∆

−−α,Γ ⇒ ∆
(−−left)

Γ ⇒ ∆, α

Γ ⇒ ∆,−−α
(−−right)

Γ ⇒ ∆, α

−∼α,Γ ⇒ ∆
(−∼left)

α,Γ ⇒ ∆

Γ ⇒ ∆,−∼α
(−∼right)

−α,−β,Γ ⇒ ∆

−(α ∧ β),Γ ⇒ ∆
(−∧left)

Γ ⇒ ∆,−α Γ ⇒ ∆,−β

Γ ⇒ ∆,−(α ∧ β)
(−∧right)

−α,Γ ⇒ ∆ −β,Γ ⇒ ∆

−(α ∨ β),Γ ⇒ ∆
(−∨left)

Γ ⇒ ∆,−α,−β

Γ ⇒ ∆,−(α ∨ β)
(−∨right)

Γ ⇒ ∆, α −β,Σ ⇒ Π

−(α→β),Γ,Σ ⇒ ∆,Π
(−→left)

α,Γ ⇒ ∆,−β

Γ ⇒ ∆,−(α→β)
(−→right)

−α,Γ ⇒ ∆

−□α,Γ ⇒ ∆
(−□left)

□Γ,∼♢Σ,−□Π ⇒ −α

□Γ,∼♢Σ,−□Π ⇒ −□α
(−□right).

A Gentzen-type sequent calculus M4CC⋆ for a modal paradefinite logic,

which is a subsystem of M4CC, is defined as follows.

Definition 2.2 (M4CC⋆). M4CC⋆ is obtained from M4CC by deleting the ini-

tial sequents of the following form, for any propositional variable p,

∼p,−p ⇒ ⇒ ∼p,−p.

Remark 2.3.

1. (−→left) and (−→right) correspond to the Hilbert-style axiom scheme

−(α→β) ↔ α→−β, which is a characteristic axiom scheme for connexive

logics [2, 26, 43].

2. Based on the use of (∼−left), (∼−right), (−∼left), (−∼right), we can

define the classical negation ¬α (i.e., the negation of classical logic) by

∼−α or −∼α. In the later section, we will also use the symbol ¬ to

denote ∼−.
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3. The □-free fragment of M4CC is theorem-equivalent to the Gentzen-type

sequent calculus G4CC which was originally introduced by Arieli and Avron

in [5, 6] for the ideal paraconsistent logic 4CC [5, 6, 7]. See [23] for the

detail of the equivalence among related systems.

4. G4CC [5, 6] is obtained from the □-free fragment of M4CC by replac-

ing (p ⇒ p), (∼p ⇒ ∼p), (−p ⇒ −p), (∼p,−p ⇒), (⇒ ∼p,−p), (−∧left),

(−∧right), (−∨left), (−∨right), (−→left), (−→right), (−−left),

(−−right), (−∼left), and (−∼right) with α ⇒ α, (−left), and (−right).

5. The □-free fragment of M4CC is theorem-equivalent to the system which

is obtained from G4CC by adding (∼α,−α ⇒), (⇒ ∼α,−α), (∼left) and

(∼right).

6. The rules (□right), (∼♢right) and (−□right) are just generalizations of

the standard S4-type rule (□rightS4). Indeed, the sequents ∼♢α ⇔ □∼α

and −□α ⇔ □−α are provable in cut-free M4CC. Hence, the context

□Γ,∼♢Σ,−□Π in these rules can be interpreted as □Γ,□∼Σ,□−Π, re-

vealing thus its structure as a genuine generalization of □Γ to formulas

with ∼ and −.

Proposition 2.4. Let L be M4CC or M4CC⋆. Then, the following sequents

are provable in cut-free L for any formulas α and β:

1. α ⇒ α,

2. ∼∼α ⇔ α,

3. ∼−α ⇔ −∼α,

4. ∼(α ∧ β) ⇔ ∼α ∨ ∼β,

5. ∼(α ∨ β) ⇔ ∼α ∧ ∼β,

6. ∼(α→β) ⇔ α ∧ ∼β,

7. −−α ⇔ α,

8. −(α ∧ β) ⇔ −α ∧ −β,

9. −(α ∨ β) ⇔ −α ∨ −β,

10. −(α→β) ⇔ α→−β.
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Proof. Straightforward. One can prove 1 by induction on α. Q.E.D.

Proposition 2.5. The following sequents are provable in cut-free M4CC for

any formulas α and β:

1. ∼α,−α ⇒,

2. ⇒ ∼α,−α,

3. ∼α ∧ −α ⇒ β (the principle of quasi-explosion),

4. ⇒ ∼α ∨ −α (the law of quasi-excluded middle).

Proof. Straightforward. We can prove 1 and 2 by induction on α. Q.E.D.

Proposition 2.6. Let ♢α be the abbreviation of ∼−□∼−. The following se-

quents are provable in cut-free M4CC for any formulas α and β:

1. ∼♢α ⇔ □∼α,

2. −□α ⇔ □−α.

Proof. We show only (1) below.

.... Proposition 2.5(2)
⇒ ∼α,−α

−∼−α ⇒ ∼α
(−∼left)

−□∼−α ⇒ ∼α
(−□left)

−□∼−α ⇒ □∼α
(□right)

∼∼−□∼−α ⇒ □∼α
(∼∼left)

.... Proposition 2.5(1)
∼α,−α ⇒

∼α ⇒ −∼−α
(−∼right)

□∼α ⇒ −∼−α
(□left)

□∼α ⇒ −□∼−α
(−□right)

□∼α ⇒ ∼∼−□∼−α
(∼∼right)

Q.E.D.

Proposition 2.7. The following rules are derivable in M4CC using (cut):

Γ ⇒ ∆,−α

∼α,Γ ⇒ ∆
(∼left)

−α,Γ ⇒ ∆

Γ ⇒ ∆,∼α
(∼right)

Γ ⇒ ∆,∼α

−α,Γ ⇒ ∆
(−left)

∼α,Γ ⇒ ∆

Γ ⇒ ∆,−α
(−right).

Proof. Straightforward. We show only the derivability of (∼left) as follows.

Γ ⇒ ∆,−α

.... Proposition. 2.4 (1)
∼α,−α ⇒

∼α,Γ ⇒ ∆
(cut).

Q.E.D.
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Remark 2.8. Proposition 2.7 will be used to show the negative symmetry prop-

erty for M4CC. Proposition 2.7 can also be strengthened to the cut-free version

after showing the cut-elimination theorem for M4CC (i.e., these rules are indeed

admissible in cut-free M4CC).

In order to show some syntactical embedding theorems, we introduce a

Gentzen-type sequent calculus GS4 for the normal modal logic S4. Formulas

of GS4 are constructed from countably many propositional variables by logical

connectives ∧, ∨, →, □, and ¬ (classical negation). We use the symbol ♢ in

GS4 to denote the abbreviation of ¬□¬ (i.e., ♢α is the abbreviation of ¬□¬α).

Definition 2.9 (GS4). The system GS4 is obtained from the {∼,−}-free part

of M4CC⋆ by adding the modal inference rule of the form:

□Γ ⇒ α
□Γ ⇒ □α

(□rightS4)

and adding the classical negation inference rules of the form:

Γ ⇒ ∆, α

¬α,Γ ⇒ ∆
(¬left)

α,Γ ⇒ ∆

Γ ⇒ ∆,¬α (¬right).

Note that the modal inference rule (□left) in M4CC⋆ is also included in GS4.

Remark 2.10. We have the following well-known theorems for GS4. See e.g.,

[33, 34, 42].

1. (Cut-elimination for GS4): The rule (cut) is admissible in cut-free GS4.

2. (Decidability for GS4): The system GS4 is decidable.

2.2. Kripke semantics

In what follows, we use the symbol ¬ to denote ∼−. We assume the commu-

tativity of ∧ or ∨. We have the following fact: for any formulas α1, ..., αm, β1, ..., βn,

⊢ α1, ..., αm ⇒ β1, ..., βn iff ⊢ α1 ∧ · · · ∧ αm ⇒ β1 ∨ · · · ∨ βn.

Let Γ be a set {α1, ..., αm} (m ≥ 0). Then, we use an expression Γ∗ to denote

α1 ∨ · · · ∨ αm if m ≥ 1, or otherwise ¬(p→p) where p is a fixed propositional

11



variable. We also use an expression Γ∗ to denote α1 ∧ · · · ∧ αm if m ≥ 1, or

otherwise p→p where p is a fixed propositional variable.

We now introduce Kripke semantics for M4CC and M4CC⋆.

Definition 2.11 (Kripke frame). A structure ⟨M,R⟩ is called a Kripke frame

if

1. M is a non-empty set,

2. R is a transitive and reflexive binary relation on M .

Definition 2.12 (Paraconsistent M4CC-valuation). A paraconsistent M4CC-

valuation |=∗ on a Kripke frame ⟨M,R⟩ is a mapping from the set Φ∪Φ∼ ∪Φ−

to the power set 2M of M such that

(*) x ∈|=∗ (−p) iff x /∈|=∗ (∼p).

We will write x |=∗ p, x |=∗ ∼p, and x |=∗ −p for x ∈ |=∗ (p), x ∈ |=∗ (∼p), and

x ∈ |=∗ (−p), respectively. We will also use the same notation as x |=∗ α for an

extended paraconsistent M4CC-valuation for any formula α. The paraconsistent

M4CC-valuation |=∗ is extended to the mapping from the set Φ∗ of all formulas

to 2M by:

1. x |=∗ α ∧ β iff x |=∗ α and x |=∗ β,

2. x |=∗ α ∨ β iff x |=∗ α or x |=∗ β,

3. x |=∗ α→β iff x |=∗ α implies x |=∗ β,

4. x |=∗ □α iff ∀y ∈ M [xRy implies y |=∗ α],

5. x |=∗ ∼∼α iff x |=∗ α,

6. x |=∗ ∼−α iff x ̸|=∗ α,

7. x |=∗ ∼(α ∧ β) iff x |=∗ ∼α or x |=∗ ∼β,

8. x |=∗ ∼(α ∨ β) iff x |=∗ ∼α and x |=∗ ∼β,

9. x |=∗ ∼(α→β) iff x |=∗ α and x |=∗ ∼β,

10. x |=∗ ∼□α iff ∃y ∈ M [xRy and y |=∗ ∼α],

11. x |=∗ −−α iff x |=∗ α,

12. x |=∗ −∼α iff x ̸|=∗ α,
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13. x |=∗ −(α ∧ β) iff x |=∗ −α and x |=∗ −β,

14. x |=∗ −(α ∨ β) iff x |=∗ −α or x |=∗ −β,

15. x |=∗ −(α→β) iff x |=∗ α implies x |=∗ −β,

16. x |=∗ −□α iff ∀y ∈ M [xRy implies y |=∗ −α].

Definition 2.13 (Paraconsistent M4CC⋆-valuation). A paraconsistent M4CC⋆-

valuation |=∗ on a Kripke frame ⟨M,R⟩ is a mapping from Φ∪Φ∼ ∪Φ− to 2M .

Note that a paraconsistent M4CC⋆-valuation has no condition (*) in Defintion

2.12. The paraconsistent M4CC⋆-valuation |=∗ is extended to the mapping from

Φ∗ to 2M by the clauses 1–16 in Definition 2.12.

Definition 2.14 (Paraconsistent Kripke M4CC- and M4CC⋆-models).

Let L be M4CC or M4CC⋆. A paraconsistent Kripke L-model is a structure

⟨M,R, |=∗⟩ such that

1. ⟨M,R⟩ is a Kripke frame,

2. |=∗ is a paraconsistent L-valuation on ⟨M,R⟩.

A formula α is true in a paraconsistent Kripke L-model ⟨M,R, |=∗⟩ iff x |=∗

α for any x ∈ M , and is L-valid (in a Kripke frame) iff it is true for every

paraconsistent L-valuation |=∗ (on the Kripke frame). A sequent Γ ⇒ ∆ is

called L-valid (denoted as L |= Γ ⇒ ∆) iff the formula Γ∗→∆∗ is L-valid.

Next, we show a characteristic theorem for the paraconsistent M4CC-valuation.

Theorem 2.15. In Definition 2.12, the requirement (∗), together with clauses

11–16, can be replaced with the following single requirement:

(**) x |=∗ −α iff x ̸|=∗ ∼α.

Proof.

(=⇒) : We prove that (∗∗) holds in every paraconsistent M4CC-valuation |=∗

on every Kripke frame ⟨M,R⟩, every x ∈ M and every formula α. We do so

by induction on α, and show some cases. We show only some cases for the

first condition of (**). The cases for the second condition of (**) can be shown

similarly.
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1. Case α ≡ p ∈ Φ: If α is a propositional variable, then (∗∗) directly follows

from (∗).

2. Caseα ≡ α1 ∧ α2: If α ≡ α1 ∧ α2, then by clause 13 we have x |=∗ −α iff

both x |=∗ −α1 and x |=∗ −α2. By the induction hypothesis, the latter

holds iff x ̸|=∗ ∼α1 and x ̸|=∗ ∼α2, which by clause 7 holds iff x ̸|=∗ ∼α.

3. Case α ≡ ∼β: If α ≡ ∼β, then by clause 12 we have x |=∗ −α iff x ̸|=∗ β,

which, by clause 6 holds iff x ̸|=∗ ∼∼β = ∼α.

4. Case α ≡ −β: If α ≡ −β, then by clause 11 we have that x |=∗ −α iff

x |=∗ β, which by clause 6 holds iff x ̸|= ∼−β ≡ ∼α.

5. Case α ≡ □β: If α ≡ □β, then by clause 16 we have x |=∗ −α iff for every

y ∈ M , xRy implies y |=∗ −β. By the induction hypothesis, the latter

holds iff for every y ∈ M , xRy implies y ̸|=∗ ∼β. By clause 10, this holds

iff x ̸|=∗ ∼□β ≡ ∼α.

(⇐=) : We prove that in every paraconsistent M4CC-valuation |=∗ on every

Kripke frame ⟨M,R⟩, every x ∈ M and every formula α, clauses (∗) and 11–

16 hold, provided that (∗∗) holds. We explicitly show (∗), 11, 12, 13, and 16,

leaving the rest to the reader.

(∗): (∗) is a particular instance of (∗∗) for the case of propositional variables.

(11): Using (∗∗) and 6, x |=∗ −−α iff x ̸|=∗ ∼−α iff x |=∗ α.

(12): Using (∗∗) and 5, x |=∗ −∼α iff x ̸|=∗ ∼∼α iff x ̸|= α.

(13): Using (∗∗) and 7, x |=∗ −(α1 ∧ α2) iff x ̸|=∗ ∼(α1 ∧ α2) iff x ̸|=∗ ∼α1 and

x ̸|=∗ ∼α2 iff x |=∗ −α1 and x |=∗ −α2.

(16): Using (∗∗) and 10, x |=∗ −□α iff x ̸|=∗ ∼□α iff y ̸|=∗ ∼α for every y ∈ M

such that xRy, iff y |=∗ −α for every y ∈ M such that xRy. Q.E.D.

In particular, we have the following corollary.

Corollary 2.16. For any paraconsistent M4CC-valuation |=∗ on a Kripke frame

⟨M,R⟩, any x ∈ M , and any formula α,

1. x |=∗ ∼α iff x ̸|=∗ −α,

2. |=∗ (∼α) ∩ |=∗ (−α) = ∅.
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We can also obtain the following proposition.

Proposition 2.17. The following formulas are M4CC-valid for any formulas

α and β:

1. (∼α ∧ −α)→β (the principle of quasi-explosion),

2. ∼α ∨ −α (the law of quasi-excluded middle).

Proof. By using Corollary 2.16. Q.E.D.

In order to show some semantical embedding theorems, we introduce the

standard Kripke semantics for GS4.

Definition 2.18 (Valuation for GS4). A valuation |= on a Kripke frame

⟨M,R⟩ is a mapping from Φ to 2M . We will write x |= p for x ∈ |= (p).

The valuation |= is extended to a mapping from Φ∗ to 2M by:

1. x |= α ∧ β iff x |= α and x |= β,

2. x |= α ∨ β iff x |= α or x |= β,

3. x |= α→β iff x |= α implies x |= β,

4. x |= ¬α iff x ̸|= α,

5. x |= □α iff ∀y ∈ M [xRy implies y |= α].

Proposition 2.19. The following condition holds for |=:

6. x |= ♢α iff ∃y ∈ M [xRy and y |= α].

Proof. Straightforward. Q.E.D.

Definition 2.20 (Kripke model for GS4). A Kripke model is a structure

⟨M,R, |=⟩ such that

1. ⟨M,R⟩ is a Kripke frame,

2. |= is a valuation on ⟨M,R⟩.
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A formula α is true in a Kripke model ⟨M,R, |=⟩ iff x |= α for any x ∈ M ,

and is GS4-valid in a Kripke frame ⟨M,R⟩ iff it is true for every valuation |=

on the Kripke frame. A sequent Γ ⇒ ∆ is called GS4-valid (denoted as GS4 |=

Γ ⇒ ∆) iff the formula Γ∗→∆∗ is GS4-valid.

Remark 2.21. We have the following well-known theorems for GS4. See e.g.,

[25, 18].

1. (Completeness for GS4): The following completeness theorem holds for

GS4 for any sequent Γ ⇒ ∆: GS4 ⊢ Γ ⇒ ∆ iff GS4 |= Γ ⇒ ∆.

2. (Finite model property for GS4): The following finite model property holds

for GS4 for any sequent Γ ⇒ ∆: Γ ⇒ ∆ is GS4-valid in any finite Kripke

frame iff GS4 ⊢ Γ ⇒ ∆.

3. Main theorems

3.1. Syntactical embedding and cut-elimination theorems for M4CC⋆

Next, we introduce a GS4-translation function for formulas of M4CC⋆, and

by using this translation, we show several theorems for embedding M4CC⋆ into

GS4.

Definition 3.1. We fix a set Φ of propositional variables, and define the sets

Φn := {pn | p ∈ Φ} and Φc := {pc | p ∈ Φ} of propositional variables. The

language LM4CC⋆ of M4CC⋆ is defined using Φ, ∧,∨,→,□,∼, and −. The

language LGS4 of GS4 is defined using Φ, Φn, Φc, ∧, ∨, →, □, and ¬. A

mapping f from LM4CC⋆ to LGS4 is defined inductively by:

1. For any p ∈ Φ, f(p) := p, f(∼p) := pn ∈ Φn and f(−p) := pc ∈ Φc,

2. f(α ∧ β) := f(α) ∧ f(β),

3. f(α ∨ β) := f(α) ∨ f(β),

4. f(α→β) := f(α)→f(β),

5. f(□α) := □f(α),

6. f(∼(α ∧ β)) := f(∼α) ∨ f(∼β),
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7. f(∼(α ∨ β)) := f(∼α) ∧ f(∼β),

8. f(∼(α→β)) := f(α) ∧ f(∼β),

9. f(∼∼α) := f(α),

10. f(∼−−α) := f(∼α),

11. f(∼−α) := ¬f(α),

12. f(∼□α) := ♢f(∼α),

13. f(−(α ∧ β)) := f(−α) ∧ f(−β),

14. f(−(α ∨ β)) := f(−α) ∨ f(−β),

15. f(−(α→β)) := f(α)→f(−β),

16. f(−−α) := f(α),

17. f(−∼∼α) := f(−α),

18. f(−∼α) := ¬f(α),

19. f(−□α) := □f(−α).

An expression f(Γ) denotes the result of replacing every occurrence of a

formula α in Γ by an occurrence of f(α). Analogous notation is used for the

other mapping g discussed later.

Remark 3.2. A similar translation has been used by Gurevich [17], Rautenberg

[37], and Vorob’ev [41] to embed Nelson’s constructive logic [1, 27] into intuition-

istic logic. Some similar translations have also recently been used, for example,

in [21, 22, 23] to embed some paraconsistent logics into classical logic.

Proposition 3.3. Let ♢ in M4CC⋆ be the abbreviation of ∼−□∼−. Then, the

following condition holds for f :

f(∼♢α) := □f(∼α).

Proof. We show this proposition as follows. f(∼♢α) = f(∼∼−□∼−α) =

f(−□∼−α) = □f(−∼−α) = □¬f(−α) = □f(∼−−α) = □f(∼α). Note that

the last equivalence is derived from condition 10 of f . Q.E.D.

We now show a weak theorem for syntactically embedding M4CC⋆ into GS4.
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Theorem 3.4 (Weak syntactical embedding from M4CC⋆ into GS4).

Let Γ, ∆ be sets of formulas in LM4CC⋆ , and f be the mapping defined in Defi-

nition 3.1.

1. If M4CC⋆ ⊢ Γ ⇒ ∆, then GS4 ⊢ f(Γ) ⇒ f(∆).

2. If GS4 − (cut) ⊢ f(Γ) ⇒ f(∆), then M4CC⋆ − (cut) ⊢ Γ ⇒ ∆.

Proof. • (1): By induction on the proofs P of Γ ⇒ ∆ in M4CC⋆. We distinguish

the cases according to the last inference of P , and show some cases.

1. Case ∼p ⇒ ∼p: The last inference of P is of the form: ∼p ⇒ ∼p for any

p ∈ Φ. In this case, we obtain GS4 ⊢ f(∼p) ⇒ f(∼p), i.e., GS4 ⊢ pn ⇒ pn

(pn ∈ Φn), by the definition of f .

2. Case (∼−left): The last inference of P is of the form:

Γ ⇒ ∆, α

∼−α,Γ ⇒ ∆
(∼−left).

By induction hypothesis, we have GS4 ⊢ f(Γ) ⇒ f(∆), f(α). Then, we

obtain the required fact:

....
f(Γ) ⇒ f(∆), f(α)

¬f(α), f(Γ) ⇒ f(∆)
(¬left)

where ¬f(α) coincides with f(∼−α) by the definition of f .

3. Case (−→left): The last inference of P is of the form:

Γ ⇒ ∆, α −β,Σ ⇒ Π

−(α→β),Γ,Σ ⇒ ∆,Π
(−→left).

By induction hypothesis, we have GS4 ⊢ f(Γ) ⇒ f(∆), f(α) and GS4 ⊢

f(−β), f(Σ) ⇒ f(Π). Then, we obtain the required fact:

....
f(Γ) ⇒ f(∆), f(α)

....
f(−β), f(Σ) ⇒ f(Π)

f(α)→f(−β), f(Γ), f(Σ) ⇒ f(∆), f(Π)
(→left)

where f(α)→f(−β) coincides with f(−(α→β)) by the definition of f .

18



4. Case (□right): The last inference of P is of the form:

□Γ,∼♢Σ,−□Π ⇒ α

□Γ,∼♢Σ,−□Π ⇒ □α
(□right).

By induction hypothesis, we have GS4 ⊢ f(□Γ), f(∼♢Σ), f(−□Π)⇒ f(α)

where f(□Γ), f(∼♢Σ) and f(−□Π) coincide with □f(Γ), □f(∼Σ) and

□f(−Π), respectively, by the definition of f and Proposition 3.3. Then,

we obtain the required fact:

....
□f(Γ),□f(∼Σ),□f(−Π) ⇒ f(α)

□f(Γ),□f(∼Σ),□f(−Π) ⇒ □f(α)
(□rightS4)

where □f(α) coincides with f(□α) by the definition of f .

5. Case (−□right): The last inference of P is of the form:

□Γ,∼♢Σ,−□Π ⇒ −α

□Γ,∼♢Σ,−□Π ⇒ −□α
(−□right).

By induction hypothesis, we have GS4 ⊢ f(□Γ), f(∼♢Σ), f(−□Π) ⇒

f(−α) where f(□Γ), f(∼♢Σ) and f(−□Π) coincide with □f(Γ), □f(∼Σ)

and □f(−Π), respectively, by the definition of f and Proposition 3.3.

Then, we obtain the required fact:

....
□f(Γ),□f(∼Σ),□f(−Π) ⇒ f(−α)

□f(Γ),□f(∼Σ),□f(−Π) ⇒ □f(−α)
(□rightS4)

where □f(−α) coincides with f(−□α) by the definition of f .

• (2): By induction on the proofs Q of f(Γ) ⇒ f(∆) in GS4 − (cut). We

distinguish the cases according to the last inference of Q, and show some cases.

1. Case (¬left): The last inference of Q is (¬left).

(a) Subcase (1): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(α)

f(∼−α), f(Γ) ⇒ f(∆)
(¬left)
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where f(∼−α) coincides with ¬f(α) by the definition of f . By in-

duction hypothesis, we have M4CC⋆ − (cut) ⊢ Γ ⇒ ∆, α. We thus

obtain the required fact:

....
Γ ⇒ ∆, α

∼−α,Γ ⇒ ∆
(∼−left).

(b) Subcase (2): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(α)

f(−∼α), f(Γ) ⇒ f(∆)
(¬left)

where f(−∼α) coincides with ¬f(α) by the definition of f . By in-

duction hypothesis, we have M4CC⋆ − (cut) ⊢ Γ ⇒ ∆, α. We thus

obtain the required fact:

....
Γ ⇒ ∆, α

−∼α,Γ ⇒ ∆
(−∼left).

2. Case (□rightS4): The last inference of Q is (□rightS4).

(a) Subcase (1): The last inference of Q is of the form:

f(□Γ), f(∼♢Σ), f(−□Π) ⇒ f(α)

f(□Γ), f(∼♢Σ), f(−□Π) ⇒ f(□α)
(□rightS4)

where f(□Γ), f(∼♢Σ), f(−□Π) and f(□α) coincide with □f(Γ),

□f(∼Σ), □f(−Π) and □f(α), respectively, by the definition of f

and Proposition 3.3. By induction hypothesis, we have M4CC⋆ −

(cut) ⊢ □Γ,∼♢Σ,−□Π ⇒ α. We thus obtain the required fact:

....
□Γ,∼♢Σ,−□Π ⇒ α

□Γ,∼♢Σ,−□Π ⇒ □α
(□right).

(b) Subcase (2): The last inference of Q is of the form:

f(□Γ), f(∼♢Σ), f(−□Π) ⇒ f(∼α)

f(□Γ), f(∼♢Σ), f(−□Π) ⇒ f(∼♢α)
(□rightS4)
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where f(□Γ), f(∼♢Σ), f(−□Π) and f(∼♢α) coincide with □f(Γ),

□f(∼Σ), □f(−Π) and □f(∼α), respectively, by the definition of f

and Proposition 3.3. By induction hypothesis, we have M4CC⋆ −

(cut) ⊢ □Γ,∼♢Σ,−□Π ⇒ ∼α. We thus obtain the required fact:

....
□Γ,∼♢Σ,−□Π ⇒ ∼α

□Γ,∼♢Σ,−□Π ⇒ ∼♢α
(∼♢right).

(c) Subcase (3): The last inference of Q is of the form:

f(□Γ), f(∼♢Σ), f(−□Π) ⇒ f(−α)

f(□Γ), f(∼♢Σ), f(−□Π) ⇒ f(−□α)
(□rightS4)

where f(□Γ), f(∼♢Σ), f(−□Π) and f(−□α) coincide with □f(Γ),

□f(∼Σ), □f(−Π) and □f(−α), respectively, by the definition of f

and Proposition 3.3. By induction hypothesis, we have M4CC⋆ −

(cut) ⊢ □Γ,∼♢Σ,−□Π ⇒ −α. We thus obtain the required fact:

....
□Γ,∼♢Σ,−□Π ⇒ −α

□Γ,∼♢Σ,−□Π ⇒ −□α
(−□right).

Q.E.D.

Using Theorem 3.4 and the cut-elimination theorem for GS4, we obtain the

following cut-elimination theorem for M4CC⋆.

Theorem 3.5 (Cut-elimination for M4CC⋆). The rule (cut) is admissible

in cut-free M4CC⋆.

Proof. Suppose M4CC⋆ ⊢ Γ ⇒ ∆. Then, we have GS4 ⊢ f(Γ) ⇒ f(∆) by

Theorem 3.4 (1), and hence GS4 − (cut) ⊢ f(Γ) ⇒ f(∆) by the cut-elimination

theorem for GS4. By Theorem 3.4 (2), we obtain M4CC⋆ − (cut) ⊢ Γ ⇒ ∆.

Q.E.D.

Using Theorem 3.4 and the cut-elimination theorem for GS4, we obtain a

strong theorem for syntactically embedding M4CC⋆ into GS4.
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Theorem 3.6 (Syntactical embedding from M4CC⋆ into GS4). Let Γ, ∆

be sets of formulas in LM4CC⋆ , and f be the mapping defined in Definition 3.1.

1. M4CC⋆ ⊢ Γ ⇒ ∆ iff GS4 ⊢ f(Γ) ⇒ f(∆).

2. M4CC⋆ − (cut) ⊢ Γ ⇒ ∆ iff GS4 − (cut) ⊢ f(Γ) ⇒ f(∆).

Proof. • (1): (=⇒): By Theorem 3.4 (1). (⇐=): Suppose GS4 ⊢ f(Γ) ⇒ f(∆).

Then we have GS4 − (cut) ⊢ f(Γ) ⇒ f(∆) by the cut-elimination theorem for

GS4. We thus obtain M4CC⋆ − (cut) ⊢ Γ ⇒ ∆ by Theorem 3.4 (2). Therefore

we have M4CC⋆ ⊢ Γ ⇒ ∆.

• (2): (=⇒): Suppose M4CC⋆ − (cut) ⊢ Γ ⇒ ∆. Then we have M4CC⋆ ⊢

Γ ⇒ ∆. We then obtain GS4 ⊢ f(Γ) ⇒ f(∆) by Theorem 3.4 (1). Therefore

we obtain GS4 − (cut) ⊢ f(Γ) ⇒ f(∆) by the cut-elimination theorem for GS4.

(⇐=): By Theorem 3.4 (2). Q.E.D.

Theorem 3.7 (Decidability for M4CC⋆). The system M4CC⋆ is decidable.

Proof. By decidability of GS4, for each α, it is possible to decide if f(α) is

provable in GS4. Then, by Theorem 3.6, M4CC⋆ is also decidable. Q.E.D.

Using Theorem 3.5, we can obtain some characteristic properties of M4CC⋆,

which do not hold for M4CC. Such properties are defined as follows.

Definition 3.8.

1. A sequent system L is called quasi-explosive with respect to the combina-

tion of two different negation-like connectives ♯ and ♮ if L ⊢ ♯α, ♮α ⇒ β for

any formulas α and β. A sequent system L is called quasi-paraconsistent

with respect to the combination of ♯ and ♮ if L is not quasi-explosive with

respect to the combination of ♯ and ♮.

2. A sequent system L is called quasi-exclusive with respect to the combina-

tion of two different negation-like connectives ♯ and ♮ if L ⊢ ⇒ ♯α, ♮α for

any formula α. A sequent system L is called quasi-paracomplete with re-

spect to the combination of ♯ and ♮ if L is not quasi-exclusive with respect

to the combination of ♯ and ♮.
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Remark 3.9. The quasi-paraconsistency and quasi-paracompleteness represent

the relationship between ∼ and −, and are regarded as analogues of the para-

consistency and paracompleteness, which reject the axiom schemes (∼α∧α)→β

(the principle of explosion) and ∼α ∨ α (the law of excluded middle), respec-

tively. The quasi-paraconsistency and quasi-paracompleteness reject the axiom

schemes (∼α∧−α)→β (the principle of quasi-explosion) and ∼α∨−α (the law

of quasi-excluded middle), respectively.

Theorem 3.10 (Quasi-paraconsistency and quasi-paracompleteness for M4CC⋆).

We have:

1. The system M4CC⋆ is quasi-paraconsistent with respect to the combination

of ∼ and −.

2. The system M4CC⋆ is quasi-paracomplete with respect to the combination

of ∼ and −.

Proof. We show only (1) below. Consider sequent ∼p,−p ⇒ q where p and q

are distinct propositional variables. Then, the unprovability of this sequent is

guaranteed by Theorem 3.5. Q.E.D.

Next, we introduce an M4CC⋆-translation function for formulas of GS4,

and by using this translation, we show some theorems for embedding GS4 into

M4CC⋆.

Definition 3.11. Let LM4CC⋆ and LGS4 be the languages defined in Definition

3.1. A mapping g from LGS4 to LM4CC⋆ is defined inductively by:

1. For any p ∈ Φ, any pn ∈ Φn and any pc ∈ Φc, g(p) := p, g(pn) := ∼p and

g(pc) := −p,

2. g(α ∧ β) := g(α) ∧ g(β),

3. g(α ∨ β) := g(α) ∨ g(β),

4. g(α→β) := g(α)→g(β),

5. g(¬α) := ∼−g(α),
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6. g(□α) := □g(α).

Theorem 3.12 (Weak syntactical embedding from GS4 into M4CC⋆).

Let Γ, ∆ be sets of formulas in LGS4, and g be the mapping defined in Definition

3.11.

1. If GS4 ⊢ Γ ⇒ ∆, then M4CC⋆ ⊢ g(Γ) ⇒ g(∆).

2. If M4CC⋆ − (cut) ⊢ g(Γ) ⇒ g(∆), then GS4 − (cut) ⊢ Γ ⇒ ∆.

Proof. • (1): By induction on the proofs P of Γ ⇒ ∆ in GS4. We distinguish

the cases according to the last inference of P , and show only the following cases.

1. Case p⋆ ⇒ p⋆ with ⋆ ∈ {n, c}: The last inference of P is of the form:

p⋆ ⇒ p⋆ for any p⋆ ∈ Φ⋆ with ⋆ ∈ {n, c}. In this case, we obtain M4CC⋆ ⊢

g(pn) ⇒ g(pn) and M4CC⋆ ⊢ g(pc) ⇒ g(pc) i.e., M4CC⋆ ⊢ ∼p ⇒ ∼p and

M4CC⋆ ⊢ −p ⇒ −p, by the definition of g.

2. Case (¬left): The last inference of P is of the form:

Γ ⇒ ∆, α

¬α,Γ ⇒ ∆
(¬left)

By induction hypothesis, we have M4CC⋆ ⊢ g(Γ) ⇒ g(∆), g(α). We then

obtain the required fact:

....
g(Γ) ⇒ g(∆), g(α)

∼−g(α), g(Γ) ⇒ g(∆)
(∼−left)

where ∼−g(α) coincides with g(¬α) by the definition of g.

3. Case (□rightS4): The last inference of P is of the form:

□Γ ⇒ α
□Γ ⇒ □α

(□rightS4)

By induction hypothesis, we have M4CC⋆ ⊢ g(□Γ) ⇒ g(α) where g(□Γ)

coincides with □g(Γ) by the definition of g. We then obtain the required

fact: ....
□g(Γ) ⇒ g(α)

□g(Γ) ⇒ □g(α)
(□right)
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where □g(α) coincides with g(□α) by the definition of g.

• (2): By induction on the proofs Q of g(Γ) ⇒ g(∆) in M4CC⋆ − (cut). We

distinguish the cases according to the last inference of Q, and show only the

following cases.

1. Case (∼−left): The last inference of Q is of the form:

g(Γ) ⇒ g(∆), g(α)

∼−g(α), g(Γ) ⇒ g(∆)
(∼−left)

where ∼−g(α) coincides with g(¬α) by the definition of g. By induction

hypothesis, we have GS4 − (cut) ⊢ Γ ⇒ ∆, α. We thus obtain the required

fact: ....
Γ ⇒ ∆, α

¬α,Γ ⇒ ∆
(¬left).

2. Case (□right): The last inference of Q is of the form:

g(□Γ) ⇒ g(α)

g(□Γ) ⇒ □g(α)
(□right)

where g(□Γ) and □g(α) coincide with □g(Γ) and g(□α), respectively, by

the definition of g. By induction hypothesis, we have GS4 − (cut) ⊢

□Γ ⇒ α. We thus obtain the required fact:

....
□Γ ⇒ α
□Γ ⇒ □α

(□rightS4).

Q.E.D.

Theorem 3.13 (Syntactical embedding from GS4 into M4CC⋆). Let Γ,

∆ be sets of formulas in LGS4, and g be the mapping defined in Definition 3.11.

1. GS4 ⊢ Γ ⇒ ∆ iff M4CC⋆ ⊢ g(Γ) ⇒ g(∆).

2. GS4 − (cut) ⊢ Γ ⇒ ∆ iff M4CC⋆ − (cut) ⊢ g(Γ) ⇒ g(∆).

Proof. By using Theorems 3.12 and 3.5. Similar to Theorem 3.6. Q.E.D.
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3.2. Semantical embedding and Kripke-completeness theorems for M4CC⋆

Next, we show a theorem for semantically embedding M4CC⋆ into GS4.

Prior to prove the semantical embedding theorem, we need to show some lem-

mas.

Lemma 3.14. Let f be the mapping defined in Definition 3.1. For any para-

consistent Kripke M4CC⋆-model ⟨M,R, |=∗⟩, we can construct a Kripke model

⟨M,R, |=⟩ such that for any formula α and any x ∈ M ,

x |=∗ α iff x |= f(α).

Proof. Suppose that ⟨M,R, |=∗⟩ is a paraconsistent Kripke M4CC⋆-model

where |=∗ is a mapping from Φ ∪ Φ∼ ∪ Φ− to 2M . Suppose that ⟨M,R, |=⟩ is a

Kripke model where |= is a mapping from Φ∪Φn ∪Φc to 2M such that for any

x ∈ M and any q ∈ Φ,

1. x |=∗ q iff x |= q,

2. x |=∗ ∼q iff x |= qn,

3. x |=∗ −q iff x |= qc.

Then, the lemma is proved by induction on α.

• Base step:

1. Case when α ≡ q where q is a propositional variable: x |=∗ q iff x |= q (by

the assumption) iff x |= f(q) (by the definition of f).

2. Case when α ≡ ∼q where q is a propositional variable: x |=∗ ∼q iff x |= qn

(by the assumption) iff x |= f(∼q) (by the definition of f).

3. Case when α ≡ −q where q is a propositional variable: x |=∗ −q iff x |= qc

(by the assumption) iff x |= f(−q) (by the definition of f).

• Induction step: We show some cases.

1. Case α ≡ β ∧ γ: x |=∗ β ∧ γ iff x |=∗ β and x |=∗ γ iff x |= f(β) and

x |= f(γ) (by induction hypothesis) iff x |= f(β) ∧ f(γ) iff x |= f(β ∧ γ)

(by the definition of f).
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2. Case when α ≡ β→γ: x |=∗ β→γ iff x |=∗ β implies x |=∗ γ iff x |= f(β)

implies x |= f(γ) (by induction hypothesis) iff x |= f(β)→f(γ) iff x |=

f(β→γ) (by the definition of f).

3. Case α ≡ □β: x |=∗ □β iff ∀y ∈ M [xRy implies y |=∗ β] iff ∀y ∈ M [xRy

implies y |= f(β)] (by induction hypothesis) iff x |= □f(β) iff x |= f(□β)

(by the definition of f).

4. Case α ≡ ∼∼β: x |=∗ ∼∼β iff x |=∗ β iff x |= f(β) (by induction

hypothesis) iff x |= f(∼∼β) (by the definition of f).

5. Case α ≡ ∼(β ∧ γ): x |=∗ ∼(β ∧ γ) iff x |=∗ ∼β or x |=∗ ∼γ iff x |= f(∼β)

or x |= f(∼γ) (by induction hypothesis) iff x |= f(∼β) ∨ f(∼γ) iff x |=

f(∼(β ∧ γ)) (by the definition of f).

6. Case when α ≡ ∼(β→γ): x |=∗ ∼(β→γ) iff x |=∗ β and x |=∗ ∼γ iff

x |= f(β) and x |= f(∼γ) (by induction hypotheses) iff x |= f(β)∧ f(∼β)

iff x |= f(∼(β→γ)) (by the definition of f).

7. Case α ≡ ∼□β: x |=∗ ∼□β iff ∃y ∈ M [xRy and y |=∗ ∼β] iff ∃y ∈

M [xRy and y |= f(∼β)] (by induction hypothesis) iff x |= ♢f(∼β) (By

Proposition 2.19) iff x |= f(∼□β) (by the definition of f).

8. Case α ≡ ∼−β: x |=∗ ∼−β iff x ̸|=∗ (β) iff x ̸|= f(β) (by induction

hypothesis) iff x |= ¬f(β) iff x |= f(∼−β) (by the definition of f).

9. Case when α ≡ −(β∧γ): x |=∗ −(β∧γ) iff x |=∗ −β and x |=∗ −γ iff x |=

f(−β) and x |= f(−γ) (by induction hypothesis) iff x |= f(−β) ∧ f(−γ)

iff x |= f(−(β ∧ γ)) (by the definition of f).

10. Case α ≡ −(β→γ): x |=∗ −(β→γ) iff x |=∗ β implies x |=∗ −γ iff x |= f(β)

implies x |= f(−γ) (by induction hypothesis) iff x |= f(β)→f(−γ) iff

x |= f(−(β→γ)) (by the definition of f).

11. Case α ≡ −□β: x |=∗ −□β iff ∀y ∈ M [xRy implies y |=∗ −β] iff ∀y ∈

M [xRy implies y |= f(−β)] (by induction hypothesis) iff x |= □f(−β) iff

x |= f(−□β) (by the definition of f). Q.E.D.

Lemma 3.15. Let f be the mapping defined in Definition 3.1. For any

Kripke model ⟨M,R, |=⟩, we can construct a paraconsistent Kripke M4CC⋆-
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model ⟨M,R, |=∗⟩ such that for any formula α and any x ∈ M ,

x |= f(α) iff x |=∗ α.

Proof. Similar to the proof of Lemma 3.14. Q.E.D.

Theorem 3.16 (Semantical embedding from M4CC⋆ into GS4). Let f

be the mapping defined in Definition 3.1. For any sequent Γ ⇒ ∆,

M4CC⋆ |= Γ ⇒ ∆ iff GS4 |= f(Γ) ⇒ f(∆).

Proof. By Lemmas 3.14 and 3.15. Q.E.D.

Theorem 3.17 (Kripke-completeness for M4CC⋆). For any sequent Γ ⇒ ∆,

M4CC⋆ ⊢ Γ ⇒ ∆ iff M4CC⋆ |= Γ ⇒ ∆.

Proof. We have the following. M4CC⋆ ⊢ Γ ⇒ ∆ iff GS4 ⊢ f(Γ) ⇒ f(∆) (by

Theorem 3.6) iff G4S |= f(Γ) ⇒ f(∆) (by the completeness theorem for GS4)

iff M4CC⋆ |= Γ ⇒ ∆ (by Theorem 3.16). Q.E.D.

Theorem 3.18 (Finite model property for M4CC⋆). For any sequent Γ ⇒ ∆,

Γ ⇒ ∆ is M4CC⋆-valid in any finite Kripke frame iff M4CC⋆ ⊢ Γ ⇒ ∆.

Proof. We can modify Lemmas 3.14 and 3.15 for finite models. Using such

modified lemmas and the finite model property for GS4, we can obtain the

required property. Q.E.D.

Next, we show a theorem for semantically embedding GS4 into M4CC⋆.

Lemma 3.19. Let g be the mapping defined in Definition 3.11. For any

Kripke model ⟨M,R, |=⟩, we can construct a paraconsistent Kripke M4CC⋆-

model ⟨M,R, |=∗⟩ such that for any formula α and any x ∈ M ,

x |= α iff x |=∗ g(α).
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Proof. Suppose that ⟨M,R, |=⟩ is a Kripke model where |= is a mapping from

Φ∪Φn∪Φc to 2M . Suppose that ⟨M,R, |=∗⟩ is a paraconsistent Kripke M4CC⋆-

model where |=∗ is a mapping from Φ∪Φ∼ ∪Φ− to 2M such that for any x ∈ M

and any q ∈ Φ,

1. x |=∗ q iff x |= q,

2. x |=∗ ∼q iff x |= qn,

3. x |=∗ −q iff x |= qc.

Then, the lemma is proved by induction on α.

• Base step:

1. Case α ≡ p where q is a propositional variable: x |= q iff x |=∗ q (by the

assumption) iff x |=∗ g(q) (by the definition of g).

2. Case α ≡ qn where qn is a propositional variable in Φn: x |= qn iff x |=∗ ∼q

(by the assumption) iff x |=∗ g(qn) (by the definition of g).

3. Case α ≡ qc where qc is a propositional variable in Φc: x |= qc iff x |=∗ −q

(by the assumption) iff x |=∗ g(qc) (by the definition of g).

• Induction step: We show some cases.

1. Case α ≡ β∧γ: x |= β∧γ iff x |= β and x |= γ iff x |=∗ g(β) and x |=∗ g(γ)

(by induction hypothesis) iff x |=∗ g(β) ∧ g(γ) iff x |=∗ g(β ∧ γ) (by the

definition of g).

2. Case α ≡ ¬β: x |= ¬β iff x ̸|= β iff x ̸|=∗ g(β) (by induction hypothesis)

iff x |=∗ ∼−g(β) iff x |=∗ g(¬β) (by the definition of g).

3. Case α ≡ □β: x |= □β iff ∀y ∈ M [xRy implies y |= β] iff ∀y ∈ M [xRy

implies y |=∗ g(β)] (by induction hypothesis) iff x |=∗ □g(β) iff x |= g(□β)

(by the definition of g). Q.E.D.

Lemma 3.20. Let g be the mapping defined in Definition 3.11. For any para-

consistent Kripke M4CC⋆-model ⟨M,R, |=∗⟩, we can construct a Kripke model

⟨M,R, |=⟩ such that for any formula α and any x ∈ M ,
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x |=∗ g(α) iff x |= α.

Proof. Similar to the proof of Lemma 3.19. Q.E.D.

Theorem 3.21 (Semantical embedding from GS4 into M4CC⋆). Let g be

the mapping defined in Definition 3.11. For any sequent Γ ⇒ ∆,

GS4 |= Γ ⇒ ∆ iff M4CC⋆ |= g(Γ) ⇒ g(∆).

Proof. By Lemmas 3.19 and 3.20. Q.E.D.

3.3. Theorems for M4CC

Next, we introduce a GS4-translation function for formulas of M4CC, and

by using this translation, we show several theorems for embedding M4CC into

GS4.

Definition 3.22. We fix a set Φ of propositional variables, and define the set

Φn := {pn | p ∈ Φ} of propositional variables. The language LM4CC of M4CC

is the same as that of M4CC⋆, i.e., it is defined using Φ, ∧,∨,→,□,∼, and −.

The new alternative language L∗
GS4 of GS4 is defined using Φ, Φn, ∧, ∨, →, □,

and ¬. Note that Φc is not used in L∗
GS4, which differs from Definition 3.1 for

M4CC⋆.

A mapping f from LM4CC to L∗
GS4 is defined inductively by the conditions

2–17 in Definition 3.1 and the following new condition:

1∗. For any p ∈ Φ, f(p) := p, f(∼p) := pn, and f(−p) := ¬pn where pn ∈ Φn.

We now show a weak theorem for syntactically embedding M4CC into GS4.

Theorem 3.23 (Weak syntactical embedding from M4CC into GS4).

Let Γ, ∆ be sets of formulas in LM4CC, and f be the mapping defined in Defi-

nition 3.22.

1. If M4CC ⊢ Γ ⇒ ∆, then GS4 ⊢ f(Γ) ⇒ f(∆).

2. If GS4 − (cut) ⊢ f(Γ) ⇒ f(∆), then M4CC − (cut) ⊢ Γ ⇒ ∆.
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Proof. Since the proof of (2) is the same as that for M4CC⋆, we show only

(1) by induction on the proofs P of Γ ⇒ ∆ in M4CC. We distinguish the cases

according to the last inference of P , and show only the following cases which

are not included in or differ from the cases for M4CC⋆.

1. Case ∼p,−p ⇒: The last inference of P is of the form: ∼p,−p ⇒ for any

p ∈ Φ. In this case, using (¬left), we obtain GS4 ⊢ f(∼p), f(−p) ⇒, i.e.,

GS4 ⊢ pn,¬pn ⇒ (pn ∈ Φn) by the definition of f .

2. Case ⇒ ∼p,−p: Similar to Case ∼p,−p ⇒.

3. Case −p ⇒ −p: The last inference of P is of the form: −p ⇒ −p for

any p ∈ Φ. In this case, we obtain GS4 ⊢ f(−p) ⇒ f(−p), i.e., GS4 ⊢

¬pn ⇒ ¬pn (pn ∈ Φn) by the definition of f . Q.E.D.

Theorem 3.24 (Cut-elimination for M4CC). The rule (cut) is admissible

in cut-free M4CC.

Proof. Similar to the proof of Theorem 3.5. By using Theorem 3.23. Q.E.D.

Theorem 3.25 (Syntactical embedding from M4CC into GS4). Let Γ,

∆ be sets of formulas in LM4CC, and f be the mapping defined in Definition

3.22.

1. M4CC ⊢ Γ ⇒ ∆ iff GS4 ⊢ f(Γ) ⇒ f(∆).

2. M4CC − (cut) ⊢ Γ ⇒ ∆ iff GS4 − (cut) ⊢ f(Γ) ⇒ f(∆).

Proof. Similar to the proof of Theorem 3.6. By using Theorem 3.23 and the

cut-elimination theorem for GS4. Q.E.D.

Theorem 3.26 (Decidability for M4CC). The system M4CC is decidable.

Proof. Similar to the proof of Theorem 3.7. By using Theorem 3.25. Q.E.D.

We show the following characteristic property of M4CC.

Theorem 3.27 (Negative symmetry for M4CC). For any formulas α and

β,
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M4CC − (cut) ⊢ ∼α ⇒ ∼β iff M4CC − (cut) ⊢ −β ⇒ −α.

Proof. By Theorem 3.24 and Proposition 2.7, we have the fact that (∼left),

(∼right), (−left), and (−right) are admissible in cut-free M4CC. This fact im-

plies the required fact. Q.E.D.

Remark 3.28.

1. The negative symmetry property does not hold for M4CC⋆. Similarly to

[23], this can be shown by the fact that the sequent −p ⇒ −∼∼p is not

provable in M4CC⋆, while the sequent ∼p ⇒ ∼∼∼p is.

2. We cannot introduce an M4CC-translation function g for formulas of GS4,

and hence we cannot show some theorems for embedding GS4 into M4CC.

This situation differs from that for M4CC⋆.

3. A reason why we cannot introduce such a function g from GS4 into M4CC

is explained as follows. Suppose that we define the condition concerning −

as g(¬pn) = −p, which is in a sense natural. On the other hand, we also

have: g(¬pn) = ∼−g(pn) = ∼−∼p. Thus, we obtain the inappropriate

result −p = ∼−∼p.

Next, we show a theorem for semantically embedding M4CC into GS4. Prior

to prove the semantical embedding theorem, we need to show some lemmas.

Lemma 3.29. Let f be the mapping defined in Definition 3.22. For any para-

consistent Kripke M4CC-model ⟨M,R, |=∗⟩, we can construct a Kripke model

⟨M,R, |=⟩ such that for any formula α and any x ∈ M ,

x |=∗ α iff x |= f(α).

Proof. Similar to the proof Lemma 3.14. Let Φ¬n be the set {¬pn | pn ∈ Φn}.

Suppose that ⟨M,R, |=∗⟩ is a paraconsistent Kripke M4CC-model where |=∗ is a

mapping from Φ∪Φ∼ ∪Φ− to 2M with the valuation condition (∗) in Definition

2.12. Suppose that ⟨M,R, |=⟩ is a Kripke model where |= is a mapping from

Φ ∪ Φn ∪ Φ¬n to 2M such that for any x ∈ M and any q ∈ Φ,
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1. x |=∗ q iff x |= q,

2. x |=∗ ∼q iff x |= qn,

3. x |=∗ −q iff x |= ¬qn.

Then, the lemma is proved by induction on α. Since the proof of the induc-

tion step is the same as that for M4CC⋆, we show only the following proof of

the base step which differs from that for M4CC⋆.

Case when α ≡ −q where q is a propositional variable: x |=∗ −q iff

x |= ¬qn (by the assumption) iff x |= f(−q) (by the definition of f).

Q.E.D.

Lemma 3.30. Let f be the mapping defined in Definition 3.22. For any

Kripke model ⟨M,R, |=⟩, we can construct a paraconsistent Kripke M4CC-model

⟨M,R, |=∗⟩ such that for any formula α and any x ∈ M ,

x |= f(α) iff x |=∗ α.

Proof. Similar to the proof of Lemma 3.29. Q.E.D.

Theorem 3.31 (Semantical embedding from M4CC into GS4). Let f be

the mapping defined in Definition 3.22. For any sequent Γ ⇒ ∆,

M4CC |= Γ ⇒ ∆ iff GS4 |= f(Γ) ⇒ f(∆).

Proof. By Lemmas 3.29 and 3.30. Q.E.D.

Theorem 3.32 (Kripke-completeness for M4CC). For any sequent Γ ⇒ ∆,

M4CC ⊢ Γ ⇒ ∆ iff M4CC |= Γ ⇒ ∆.

Proof. Similar to the proof of Theorem 3.17. By using Theorem 3.31 and the

completeness theorem for GS4. Q.E.D.

Theorem 3.33 (Finite model property for M4CC). For any sequent Γ ⇒ ∆,

Γ ⇒ ∆ is M4CC-valid in any finite Kripke frame iff M4CC ⊢ Γ ⇒ ∆.

Proof. Similar to the proof of Theorem 3.18. Using the appropriate modifica-

tions of Lemmas 3.29 and 3.30 and the finite model property for GS4, we can

obtain the required property. Q.E.D.
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4. Adding ♢ as an explicit modal operator

4.1. Sequent calculi and Kripke semantics

We consider an extended language with the diamond modal operator ♢ as

an explicit modal operator instead of the abbreviation of ∼−□∼−.

Gentzen-type sequent calculi M4CC♢ and M4CC⋆
♢ for the extended language

with ♢ are defined as follows.

Definition 4.1 (M4CC♢ and M4CC⋆
♢). The systems M4CC♢ and M4CC⋆

♢

are respectively obtained from M4CC and M4CC⋆ by replacing (□right), (∼♢right),

and (−□right) with the logical inference rules of the form:

□Γ,∼♢Σ,−□Π ⇒ ♢∆,∼□Ω,−♢Λ, α

□Γ,∼♢Σ,−□Π ⇒ ♢∆,∼□Ω,−♢Λ,□α
(□right∗)

□Γ,∼♢Σ,−□Π ⇒ ♢∆,∼□Ω,−♢Λ,∼α

□Γ,∼♢Σ,−□Π ⇒ ♢∆,∼□Ω,−♢Λ,∼♢α
(∼♢right∗)

□Γ,∼♢Σ,−□Π ⇒ ♢∆,∼□Ω,−♢Λ,−α

□Γ,∼♢Σ,−□Π ⇒ ♢∆,∼□Ω,−♢Λ,−□α
(−□right∗)

and adding the logical inference rules of the form:

α,□∆,∼♢Ω,−□Λ ⇒ ♢Γ,∼□Σ,−♢Π

♢α,□∆,∼♢Ω,−□Λ ⇒ ♢Γ,∼□Σ,−♢Π
(♢left)

Γ ⇒ ∆, α

Γ ⇒ ∆,♢α
(♢right)

∼α,□∆,∼♢Ω,−□Λ ⇒ ♢Γ,∼□Σ,−♢Π

∼□α,□∆,∼♢Ω,−□Λ ⇒ ♢Γ,∼□Σ,−♢Π
(∼□left)

Γ ⇒ ∆,∼α

Γ ⇒ ∆,∼□α
(∼□right)

−α,□∆,∼♢Ω,−□Λ ⇒ ♢Γ,∼□Σ,−♢Π

−♢α,□∆,∼♢Ω,−□Λ ⇒ ♢Γ,∼□Σ,−♢Π
(−♢left)

Γ ⇒ ∆,−α

Γ ⇒ ∆,−♢α
(−♢right).

Definition 4.2. Kripke semantics for M4CC⋆
♢ and M4CC♢ are defined by

adding the following valuation clauses to the Kripke semantics for M4CC⋆ and

M4CC, respectively:

1. x |=∗ ♢α iff ∃y ∈ M [xRy and y |=∗ α],

2. x |=∗ ∼♢α iff ∀y ∈ M [xRy implies y |=∗ ∼α],

3. x |=∗ −♢α iff ∃y ∈ M [xRy and y |=∗ −α].

We have the following propositions.
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Proposition 4.3. Let L be M4CC♢ or M4CC⋆
♢. The sequents of the form

α ⇒ α for any formula α are provable in cut-free L.

Proof. Straightforward. We can prove this by induction on α. Q.E.D.

Proposition 4.4. The following sequents are provable in cut-free M4CC for

any formulas α and β:

1. ∼α,−α ⇒,

2. ⇒ ∼α,−α,

Proof. Straightforward. We can prove them by induction on α. Q.E.D.

Proposition 4.5. Let L be M4CC♢ or M4CC⋆
♢, and let ¬ be the abbreviation

of ∼−. The following sequents are provable in cut-free L for any formulas α

and β:

1. ¬□α ⇔ ♢¬α,

2. ¬♢α ⇔ □¬α,

3. ∼□α ⇔ ♢∼α,

4. ∼♢α ⇔ □∼α,

5. −□α ⇔ □−α,

6. −♢α ⇔ ♢−α.

Proof. We show only the following cases.

1. Case (1):

.... Proposition 4.3
α ⇒ α

⇒ ∼−α, α
(∼−right)

⇒ ♢∼−α, α
(♢right)

⇒ ♢∼−α,□α
(□right∗)

∼−□α ⇒ ♢∼−α
(∼−left)

.... Proposition 4.3
α ⇒ α

α,∼−α ⇒ (∼−left)

□α,∼−α ⇒ (□left)

□α,♢∼−α ⇒ (♢left∗)

♢∼−α ⇒ ∼−□α
(∼−right)

2. Case (3):

.... Proposition 4.3
∼α ⇒ ∼α
∼α ⇒ ♢∼α

(♢right)

∼□α ⇒ ♢∼α
(∼□left)

.... Proposition 4.3
∼α ⇒ ∼α
∼α ⇒ ∼□α

(∼□right)

♢∼α ⇒ ∼□α
(♢left).
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Q.E.D.

Next, we introduce an extension GS4♢ of GS4 by adding some logical infer-

ence rules for ♢.

Definition 4.6 (GS4♢). The system GS4♢ is obtained from GS4 by replacing

(□right) with the logical inference rule of the form:

□Γ ⇒ ♢∆, α

□Γ ⇒ ♢∆,□α
(□rightS4∗)

and adding (♢right) introduced in Definition 4.1 and the logical inference rule

of the form:
α,□Γ ⇒ ♢∆

♢α,□Γ ⇒ ♢∆
(♢leftS4∗).

Remark 4.7.

1. Almost the same system as GS4♢ was originally introduced by Kripke in

[25] (p. 91) in order to deal with □ and ♢ simultaneously. The system was

introduced by modifying Ohnishi and Matsumoto’s Gentzen-type sequent

calculus introduced in [33]. This system has also recently investigated and

extended by Grigoriev and Petrukhin in [16].

2. In GS4♢, the characteristic inference rules are (□rightS4∗) and (♢leftS4∗).

Using these rules, we can show that the following sequents are provable in

cut-free GS4♢ for any formula α:

(a) ¬□α ⇔ ♢¬α,

(b) ¬♢α ⇔ □¬α.

For more information on these characteristic rules, see [25] (p. 91) and

[16] (pp. 692-693).

3. It is known that the cut-elimination and Kripke-completeness theorems

hold for GS4♢. In addition to these theorems, the decidability for GS4♢

can be obtained in a straightforward way. For more information on these

theorems, see [25, 16]. On the other hand, as far as we know, the finite

model property for GS4♢ is unknown in the literature. However, the finite
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model property does seem to hold for GS4♢ as well, because it is clear that

GS4♢ is definitionally equivalent to GS4, in which case the finite model

property for GS4♢ follows from that for GS4.

The Kripke semantics for GS4♢ is naturally defined as follows.

Definition 4.8. A Kripke semantics for GS4♢ is defined by adding the follow-

ing valuation clause to the Kripke semantics for GS4:

x |= ♢α iff ∃y ∈ M [xRy and y |= α].

4.2. Theorems for M4CC⋆
♢

Next, we introduce a GS4♢-translation function for formulas of M4CC⋆
♢, and

by using this translation, we show several theorems for syntactically embedding

M4CC⋆
♢ into GS4♢.

Definition 4.9. The language LM4CC⋆
♢

of M4CC⋆
♢ is obtained from the lan-

guage LM4CC⋆ defined in Definition 3.1 by adding ♢. The language LGS4♢ of

GS4 is obtained from the language LGS4 defined in Definition 3.1 by adding ♢.

A mapping f♢ from LM4CC⋆
♢
to LGS4♢ is obtained from the conditions of the

mapping f defined in Definition 3.1 by adding the following conditions:

1. f♢(♢α) := ♢f♢(α),

2. f♢(∼♢α) := □f♢(∼α),

3. f♢(−♢α) := ♢f♢(−α).

We then obtain the following theorem. We remark that the proof of this

theorem does not require a similar proposition to Proposition 3.3.

Theorem 4.10 (Weak syntactical embedding from M4CC⋆
♢ into GS4♢).

Let Γ, ∆ be sets of formulas in LM4CC⋆
♢
, and f♢ be the mapping defined in Def-

inition 4.9.

1. If M4CC⋆
♢ ⊢ Γ ⇒ ∆, then GS4♢ ⊢ f♢(Γ) ⇒ f♢(∆).

2. If GS4♢ − (cut) ⊢ f♢(Γ) ⇒ f♢(∆), then M4CC⋆
♢ − (cut) ⊢ Γ ⇒ ∆.
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Proof. We show only (1) by induction on the proofs P of Γ ⇒ ∆ in M4CC⋆
♢.

We distinguish the cases according to the last inference of P , and show only the

following cases

1. Case (∼□left): The last inference of P is of the form:

∼α,□∆,∼♢Ω,−□Λ ⇒ ♢Γ,∼□Σ,−♢Π

∼□α,□∆,∼♢Ω,−□Λ ⇒ ♢Γ,∼□Σ,−♢Π
(∼□left).

By induction hypothesis, we have

GS4♢ ⊢ f♢(□α), f♢(□∆), f♢(∼♢Ω), f♢(−□Λ)⇒ f♢(♢Γ), f♢(∼□Σ),

f♢(−♢Π)

where f♢(□∆), f♢(∼♢Ω), f♢(−□Λ), f♢(♢Γ), f♢(∼□Σ) and f♢(−♢Π) co-

incide with□f♢(∆),□f♢(∼Ω),□f♢(−Λ), ♢f♢(Γ), ♢f♢(∼Σ) and♢f♢(−Π),

respectively, by the definition of f♢. We then obtain the required fact:

....
f♢(∼α),□f♢(∆),□f♢(∼Ω),□f♢(−Λ) ⇒ ♢f♢(Γ),♢f♢(∼Σ),♢f♢(−Π)

♢f♢(∼α),□f♢(∆),□f♢(∼Ω),□f♢(−Λ) ⇒ ♢f♢(Γ),♢f♢(∼Σ),♢f♢(−Π)
(♢leftS4∗)

where ♢f♢(∼α) coincides with f♢(∼□α) by the definition of f♢.

2. Case (−♢right): The last inference of P is of the form:

Γ ⇒ ∆,−α

Γ ⇒ ∆,−♢α
(−♢right).

By induction hypothesis, we have GS4♢ ⊢ f♢(Γ) ⇒ f♢(∆), f♢(−α). We

then obtain the required fact:

....
f♢(Γ) ⇒ ♢f♢(∆), f♢(−α)

f♢(Γ) ⇒ ♢f♢(∆),♢f♢(−α)
(♢right)

where ♢f♢(−α) coincides with f♢(−♢α) by the definition of f♢. Q.E.D.

Theorem 4.11 (Syntactical embedding from M4CC⋆
♢ into GS4♢). Let Γ,

∆ be sets of formulas in LM4CC⋆
♢
, and f♢ be the mapping defined in Definition

4.9.
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1. M4CC⋆
♢ ⊢ Γ ⇒ ∆ iff GS4♢ ⊢ f♢(Γ) ⇒ f♢(∆).

2. M4CC⋆
♢ − (cut) ⊢ Γ ⇒ ∆ iff GS4♢ − (cut) ⊢ f♢(Γ) ⇒ f♢(∆).

Proof. Similar to the proof of Theorem 3.6. By using Theorem 4.10. Q.E.D.

We then obtain the following theorems in a similar way as those for M4CC⋆.

Theorem 4.12.

1. (Cut-elimination for M4CC⋆
♢): The rule (cut) is admissible in cut-free

M4CC⋆
♢.

2. (Decidability for M4CC⋆
♢): The system M4CC⋆

♢ is decidable.

3. (Quasi-paraconsistency for M4CC⋆
♢): The system M4CC⋆

♢ is quasi-paraconsistent

with respect to the combination of ∼ and −.

4. (Quasi-paracompleteness for M4CC⋆
♢): The system M4CC⋆

♢ is quasi-paracomplete

with respect to the combination of ∼ and −.

Next, we introduce an M4CC⋆
♢-translation function for formulas of GS4♢,

and by using this translation, we can show some theorems for embedding GS4♢

into M4CC⋆
♢.

Definition 4.13. Let LM4CC⋆
♢
and LGS4♢ be the languages defined in Definition

4.9. A mapping g♢ from LGS4♢ to LM4CC⋆
♢

is obtained from the conditions of

the mapping g defined in Definition 3.11 by adding the following condition:

g♢(♢α) := ♢g♢(α).

We then obtain the following theorem in a similar way as that for M4CC⋆.

Theorem 4.14 (Syntactical embedding from GS4♢ into M4CC⋆
♢). Let Γ,

∆ be sets of formulas in LGS4♢ , and g♢ be the mapping defined in Definition

4.13.

1. GS4♢ ⊢ Γ ⇒ ∆ iff M4CC⋆
♢ ⊢ g♢(Γ) ⇒ g♢(∆).

2. GS4♢ − (cut) ⊢ Γ ⇒ ∆ iff M4CC⋆
♢ − (cut) ⊢ g♢(Γ) ⇒ g♢(∆).
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We also have the following theorems in a similar way as these for M4CC⋆.

We remark that the proof of Theorem 4.15 does not require a similar proposition

to Proposition 2.19.

Theorem 4.15 (Semantical embedding from M4CC⋆
♢ into GS4♢). Let f♢

be the mapping defined in Definition 4.9. For any sequent Γ ⇒ ∆,

M4CC⋆
♢ |= Γ ⇒ ∆ iff GS4♢ |= f♢(Γ) ⇒ f♢(∆).

Theorem 4.16 (Kripke-completeness for M4CC⋆
♢). For any sequent Γ ⇒ ∆,

M4CC⋆
♢ ⊢ Γ ⇒ ∆ iff M4CC⋆

♢ |= Γ ⇒ ∆.

Theorem 4.17 (Semantical embedding from GS4♢ into M4CC⋆
♢). Let g♢

be the mapping defined in Definition 4.13. For any sequent Γ ⇒ ∆,

GS4♢ |= Γ ⇒ ∆ iff M4CC⋆
♢ |= g♢(Γ) ⇒ g♢(∆).

4.3. Theorems for M4CC♢

Next, we introduce a GS4♢-translation function for formulas of M4CC♢, and

by using this translation, we can show several theorems for embedding M4CC♢

into GS4♢.

Definition 4.18. We fix a set Φ of propositional variables, and define the set

Φn := {pn | p ∈ Φ} of propositional variables. The language LM4CC♢ of M4CC♢

is the same as the language LM4CC⋆
♢
of M4CC⋆

♢. The new alternative language

LGS4∗♢
of GS4♢ is defined using Φ, Φn, ∧, ∨, →, □, ♢, and ¬.

A mapping f♢ from LM4CC♢ to LGS4∗♢
is obtained from the conditions of the

mapping f defined in Definition 3.22 by adding the following conditions:

1. f♢(♢α) := ♢f♢(α),

2. f♢(∼♢α) := □f♢(∼α),

3. f♢(−♢α) := ♢f♢(−α).

We can obtain the following theorems in a similar way as those for M4CC.
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Theorem 4.19 (Syntactical embedding from M4CC♢ into GS4♢). Let Γ,

∆ be sets of formulas in LM4CC♢ , and f♢ be the mapping defined in Definition

4.18.

1. M4CC♢ ⊢ Γ ⇒ ∆ iff GS4♢ ⊢ f♢(Γ) ⇒ f♢(∆).

2. M4CC♢ − (cut) ⊢ Γ ⇒ ∆ iff GS4♢ − (cut) ⊢ f♢(Γ) ⇒ f♢(∆).

Theorem 4.20.

1. (Cut-elimination for M4CC♢): The rule (cut) is admissible in cut-free

M4CC♢.

2. (Decidability for M4CC♢): The system M4CC♢ is decidable.

3. (Negative symmetry for M4CC♢): For any formulas α and β,

M4CC♢ − (cut) ⊢ ∼α ⇒ ∼β iff M4CC♢ − (cut) ⊢ −β ⇒ −α.

Theorem 4.21 (Semantical embedding from M4CC♢ into GS4♢). Let f♢

be the mapping defined in Definition 4.18. For any sequent Γ ⇒ ∆,

M4CC♢ |= Γ ⇒ ∆ iff GS4♢ |= f♢(Γ) ⇒ f♢(∆).

Theorem 4.22 (Kripke-completeness for M4CC♢). For any sequent Γ ⇒ ∆,

M4CC♢ ⊢ Γ ⇒ ∆ iff M4CC♢ |= Γ ⇒ ∆.

5. Conclusions, remarks, and related works

In this study, we introduced a modal extension M4CC of Arieli, Avron, and

Zamansky’s ideal paraconsistent four-valued logic known as 4CC [5, 6, 7]. We

proved several theorems for syntactically embedding M4CC into a Gentzen-type

sequent calculus for the normal modal logic S4. Furthermore, using such a syn-

tactical embedding theorem, we obtained the cut-elimination theorem for M4CC

and the decidability result for M4CC. We obtained the negative symmetry the-

orem for M4CC as a corollary of the cut-elimination theorem. We also proved

several theorems for semantically embedding M4CC into S4. Furthermore, us-

ing such a semantical embedding theorem, we obtained the Kripke-completeness
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theorem for M4CC and the finite model property of M4CC. Moreover, we in-

troduced another logic M4CC⋆ that is obtained from M4CC by deleting some

initial sequents which correspond to the principle of quasi-explosion and the

law of a quasi-excluded middle. We proved several theorems for syntactically

embedding M4CC⋆ into a Gentzen-type sequent calculus for S4 and vice versa.

Furthermore, using such a syntactical embedding theorem, we obtained the cut-

elimination theorem for M4CC⋆ and the decidability result for M4CC⋆. We also

obtained the quasi-paraconsistency and quasi-paracompleteness for M4CC⋆ as

corollaries of the cut-elimination theorem. We also proved several theorems for

semantically embedding M4CC⋆ into S4. Furthermore, using such a semantical

embedding theorem, we obtained the Kripke-completeness theorem for M4CC⋆

and the finite model property of M4CC⋆. Furthermore, we introduced the ex-

tended systems M4CC♢ and M4CC⋆
♢ by adding some logical inference rules

for ♢. It was shown that the same theorems (except the finite model prop-

erty) as those for M4CC and M4CC⋆ hold for M4CC♢ and M4CC⋆
♢ in a similar

embedding-based method.

Next, we address some remarks on K-type modal extensions, which are based

on the normal modal logic K. We can construct K-type modal extensions and can

prove the same theorems as those for M4CC and M4CC⋆. We now address the

K-type modal extensions M4CCK and M4CC⋆
K, which are analogues of M4CC

and M4CC⋆, respectively, as follows.

Definition 5.1 (M4CCK and M4CC⋆
K). Let ♢ be the abbreviation of ∼−□∼−

or −∼□−∼. The systems M4CCK and M4CC⋆
K are obtained from M4CC and

M4CC⋆ defined in Definitions 2.1 and 2.2 by replacing the logical inference rules

concerning □ by the logical inference rules concerning □ of the form:

Γ,∼Σ,−Π ⇒ α

□Γ,∼♢Σ,−□Π ⇒ □α
(□regularity)

Γ,∼Σ,−Π ⇒ ∼α

□Γ,∼♢Σ,−□Π ⇒ ∼♢α
(∼♢regularity)

Γ,∼Σ,−Π ⇒ −α

□Γ,∼♢Σ,−□Π ⇒ −□α
(−□regularity).

A Gentzen-type sequent calculus GK for K is presented as follows.

42



Definition 5.2 (GK). The system GK is obtained from GS4 defined in Def-

inition 2.9 by replacing the logical inference rule concerning □ with the logical

inference rule of the form:

Γ ⇒ α
□Γ ⇒ □α

(□regularityK).

The Kripke-type semantics for M4CCK, M4CC⋆
K, and GK are obtained from

those for M4CC, M4CC⋆, and GS4, respectively, by deleting the reflexive and

transitive conditions on the accessibility relations R used for them (i.e., R has no

condition). Then, we can prove the same theorems for M4CCK and M4CC⋆
K as

those for M4CC and M4CC⋆ by imposing some appropriate modifications. On

the other hand, we do not know how to construct cut-free and Kripke-complete

Gentzen-type sequent calculi for the extended logics with ♢ as an explicit modal

operator.

In the remainder of this section, we address some related works on some

modal extensions of many-valued logics. The idea of extending many-valued

logics to modal many-valued logic is not new. Some traditional results in this

respect are found, such as in [13, 14]. Nevertheless, the modal extensions of

many-valued logics have not yet been studied intensively. Some many-valued

modal logics over finite residuated lattices were studied by Bou et al. in [11],

with special attention to some basic classes of Kripke frames and their axioma-

tizations. One may refer also to [16, 22, 36, 28, 30, 31, 32, 29, 38, 39], wherein

some modal extensions of Belnap and Dunn’s useful four-valued logic and re-

lated logics have been studied and certain properties of such logics from proof-

theoretic, semantic, and algebraic viewpoints have also been analyzed. We now

address some of these studies. Some three- and four-valued modal logics, which

are extensions of Belnap and Dunn’s four-valued logic and its three-valued vari-

ant were introduced by Odintsov and Wansing in [31], by providing them with

the sound and complete tableau calculi, Kripke semantics, and modal algebras

with twist structures. By considering the many-valued Kripke structures and

their counterpart modal algebras in the sense of the topological duality theory,

a family of four-valued modal logics, which are modal extensions of Belnap and
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Dunn’s four-valued logic, was studied by Rivieccio et al. in [38]. A Belnapian

version BK of the least normal modal logic K with the addition of strong nega-

tion was introduced by Odintsov and Speranski in [30], and a systematic study of

the lattices of logic containing BK was carried out by them. Modal multilattice

logic based on S4 was studied by Kamide and Shramko in [22]. A Gentzen-type

sequent calculus and a Kripke semantics for this S4 modal multilattice logic

were developed by them. However, some of the results by Kamide and Shramko

for the S4 modal multilattice logic were not correct. The Gentzen-type sequent

calculus proposed in [22] was not Kripke-complete with respect to the Kripke

semantics for the S4 modal multilattice logic. The wrong results by Kamide and

Shramko were correct by Grigoriev and Petrukhin in [16]. Modal multilattice

logic based on S5 was studied by Grigoriev and Petrukhin in [16]. A hyper se-

quent calculus and a Kripke semantics for this S5 modal multilattice logic was

introduced, and the cut-elimination and Kripke-completeness theorems for the

S5 modal multilattice logic were proved by them.
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