
word embeddings
what, how and whither

Yoav Goldberg
Bar Ilan University

one morning,
 as a parsing researcher woke

from an uneasy dream,
he realized that

he somehow became an expert
in distributional lexical semantics.

and that everybody calls them
 "distributed word embeddings" now.

how did this happen?
• People were really excited about word embeddings

and their magical properties.

• Specifically, we came back from NAACL, where
Mikolov presented the vector arithmetic analogies.

• We got excited too.

• And wanted to understand what's going on.

the quest for understanding
• Reading the papers? useless. really.

• Fortunately, Tomas Mikolov released word2vec.

• Read the C code. (dense, but short!)

• Reverse engineer the reasoning behind the algorithm.

• Now it all makes sense.

• Write it up and post a tech-report on arxiv.

math > magic

the revelation

• The math behind word2vec is actually pretty simple.

• Skip-grams with negative sampling are especially
easy to analyze.

• Things are really, really similar to what people have
been doing in distributional lexical semantics for
decades.

• this is a good thing, as we can re-use a lot of their findings.

this talk
• Understanding word2vec

• Rants:

• Rants about evaluation.

• Rants about word vectors in general.

• Rants about what's left to be done.

understanding
word2vec

word2vec

Seems magical.

“Neural computation, just like in the brain!”

How does this actually work?

Seems magical.

“Neural computation, just like in the brain!”

How does this actually work?

How does word2vec work?

word2vec implements several different algorithms:

Two training methods

I Negative Sampling
I Hierarchical Softmax

Two context representations

I Continuous Bag of Words (CBOW)
I Skip-grams

We’ll focus on skip-grams with negative sampling.

intuitions apply for other models as well.

How does word2vec work?

word2vec implements several different algorithms:

Two training methods

I Negative Sampling
I Hierarchical Softmax

Two context representations

I Continuous Bag of Words (CBOW)
I Skip-grams

We’ll focus on skip-grams with negative sampling.

intuitions apply for other models as well.

How does word2vec work?

I Represent each word as a d dimensional vector.
I Represent each context as a d dimensional vector.
I Initalize all vectors to random weights.
I Arrange vectors in two matrices, W and C.

How does word2vec work?
While more text:

I Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

I w is the focus word vector (row in W).
I ci are the context word vectors (rows in C).

I Try setting the vector values such that:

σ(w · c1)+σ(w · c2)+σ(w · c3)+σ(w · c4)+σ(w · c5)+σ(w · c6)

is high

I Create a corrupt example by choosing a random word w ′

[a cow or comet close to calving]
c1 c2 c3 w ′ c4 c5 c6

I Try setting the vector values such that:

σ(w ′· c1)+σ(w ′· c2)+σ(w ′· c3)+σ(w ′· c4)+σ(w ′· c5)+σ(w ′· c6)

is low

How does word2vec work?
While more text:

I Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

I Try setting the vector values such that:

σ(w · c1)+σ(w · c2)+σ(w · c3)+σ(w · c4)+σ(w · c5)+σ(w · c6)

is high

I Create a corrupt example by choosing a random word w ′

[a cow or comet close to calving]
c1 c2 c3 w ′ c4 c5 c6

I Try setting the vector values such that:

σ(w ′· c1)+σ(w ′· c2)+σ(w ′· c3)+σ(w ′· c4)+σ(w ′· c5)+σ(w ′· c6)

is low

How does word2vec work?
While more text:

I Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

I Try setting the vector values such that:

σ(w · c1)+σ(w · c2)+σ(w · c3)+σ(w · c4)+σ(w · c5)+σ(w · c6)

is high

I Create a corrupt example by choosing a random word w ′

[a cow or comet close to calving]
c1 c2 c3 w ′ c4 c5 c6

I Try setting the vector values such that:

σ(w ′· c1)+σ(w ′· c2)+σ(w ′· c3)+σ(w ′· c4)+σ(w ′· c5)+σ(w ′· c6)

is low

How does word2vec work?

The training procedure results in:
I w · c for good word-context pairs is high.
I w · c for bad word-context pairs is low.
I w · c for ok-ish word-context pairs is neither high nor low.

As a result:
I Words that share many contexts get close to each other.
I Contexts that share many words get close to each other.

At the end, word2vec throws away C and returns W .

Reinterpretation

Imagine we didn’t throw away C. Consider the product WC>

The result is a matrix M in which:
I Each row corresponds to a word.
I Each column corresponds to a context.
I Each cell correspond to w · c, an association measure

between a word and a context.

Reinterpretation

Imagine we didn’t throw away C. Consider the product WC>

The result is a matrix M in which:
I Each row corresponds to a word.
I Each column corresponds to a context.
I Each cell correspond to w · c, an association measure

between a word and a context.

Reinterpretation

Does this remind you of something?

Very similar to SVD over distributional representation:

Reinterpretation

Does this remind you of something?
Very similar to SVD over distributional representation:

What is SGNS learning?

• A 𝑉𝑊 × 𝑉𝐶 matrix

• Each cell describes the relation between a specific word-context pair

𝑤 ⋅ 𝑐 = ?

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

?= 𝑉 𝑊

𝑉𝐶

What is SGNS learning?

• We prove that for large enough 𝑑 and enough iterations

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

?= 𝑉 𝑊

𝑉𝐶

What is SGNS learning?

• We prove that for large enough 𝑑 and enough iterations

• We get the word-context PMI matrix

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

𝑀𝑃𝑀𝐼= 𝑉 𝑊

𝑉𝐶

What is SGNS learning?

• We prove that for large enough 𝑑 and enough iterations

• We get the word-context PMI matrix, shifted by a global constant

𝑂𝑝𝑡 𝑤 ⋅ 𝑐 = 𝑃𝑀𝐼 𝑤, 𝑐 − log 𝑘

𝑊

𝑑

𝑉 𝑊 𝐶

𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

𝑀𝑃𝑀𝐼= 𝑉 𝑊

𝑉𝐶

− log 𝑘

What is SGNS learning?

• SGNS is doing something very similar to the older approaches

• SGNS is factorizing the traditional word-context PMI matrix

• So does SVD!

• Do they capture the same similarity function?

SGNS vs SVD

Target Word SGNS SVD

dog dog

rabbit rabbit

cat cats pet

poodle monkey

pig pig

SGNS vs SVD

Target Word SGNS SVD

wines wines

grape grape

wine grapes grapes

winemaking varietal

tasting vintages

SGNS vs SVD

Target Word SGNS SVD

October October

December December

November April April

January June

July March

But word2vec is still better, isn’t it?

• Plenty of evidence that word2vec outperforms traditional methods
• In particular: “Don’t count, predict!” (Baroni et al., 2014)

• How does this fit with our story?

The Big Impact of “Small” Hyperparameters

Hyperparameters

• word2vec is more than just an algorithm…

• Introduces many engineering tweaks and hyperpararameter settings
• May seem minor, but make a big difference in practice

• Their impact is often more significant than the embedding algorithm’s

• These modifications can be ported to distributional methods!

Levy, Goldberg, Dagan (In submission)

rant number 1
• ACL sessions this year:

rant number 1
• ACL sessions this year:

• Semantics: Embeddings

• Semantics: Distributional Approaches

• Machine Learning: Embeddings

• Lexical Semantics

• ALL THE SAME THING.

key point
• Nothing magical about embeddings.

• It is just the same old distributional word similarity
in a shiny new dress.

what am I going
to talk about

in the remaining time?

sort-of a global trend

• I have no idea.

• I guess you'd like each word in the vocabulary you
care about to get enough examples.

• How much is enough? let's say 100.

turns out I don't have good, definitive
answers for most of the questions.

but boy do I have strong opinions!

• My first (and last) reaction:

• Why do you want to do it?

• No, really, what do you want your document
representation to capture?

• We'll get back to this later.

• But now, let's talk about...

the magic of cbow

the magic of cbow
• Represent a sentence / paragraph / document as a

(weighted) average vectors of its words.

• Now we have a single, 100-dim representation of
the text.

• Similar texts have similar vectors!

• Isn't this magical? (no)

the math of cbow

the math of cbow

the math of cbow

the math of cbow

the magic of cbow
• It's all about (weighted) all-pairs similarity

• ... done in an efficient manner.

• That's it. no more, no less.

• I'm amazed by how few people realize this.

 (the math is so simple... even I could do it)

this also explains
king-man+woman

this also explains
king-man+woman

and once we understand
we can improve

and once we understand
we can improve

and once we understand
we can improve

math > magic

can we improve analogies
even further?

which brings me to:

which brings me to:

• Yes. Please stop evaluating on word analogies.

• It is an artificial and useless task.

• Worse, it is just a proxy for (a very particular kind of) word
similarity.

• Unless you have a good use case, don't do it.

• Alternatively: show that it correlates well with a real and
useful task.

let's take a step back
• We don't really care about the vectors.

• We care about the similarity function they induce.

• (or, maybe we want to use them in an external task)

• We want similar words to have similar vectors.

• So evaluating on word-similarity tasks is great.

• But what does similar mean?

many faces of similarity
• dog -- cat

• dog -- poodle

• dog -- animal

• dog -- bark

• dog -- leash

many faces of similarity
• dog -- cat

• dog -- poodle

• dog -- animal

• dog -- bark

• dog -- leash

• dog -- chair

• dog -- dig

• dog -- god

• dog -- fog

• dog -- 6op

many faces of similarity
• dog -- cat

• dog -- poodle

• dog -- animal

• dog -- bark

• dog -- leash

• dog -- chair

• dog -- dig

• dog -- god

• dog -- fog

• dog -- 6op

same POS

edit distance

same letters

rhyme

shape

some forms of similarity look
more useful than they really are
• Almost every algorithm you come up with will be

good at capturing:

• countries

• cities

• months

• person names

some forms of similarity look
more useful than they really are
• Almost every algorithm you come up with will be

good at capturing:

• countries

• cities

• months

• person names

useful for tagging/parsing/NER

some forms of similarity look
more useful than they really are
• Almost every algorithm you come up with will be

good at capturing:

• countries

• cities

• months

• person names

but do we really want
"John went to China in June"

to be similar to
"Carl went to Italy in February"

??

useful for tagging/parsing/NER

there is no single
downstream task

• Different tasks require different kinds of similarity.

• Different vector-inducing algorithms produce
different similarity functions.

• No single representation for all tasks.

• If your vectors do great on task X, I don't care that
they suck on task Y.

"but my algorithm works great for all these
different word-similarity datasets!

doesn't it mean something?"

"but my algorithm works great for all these
different word-similarity datasets!

doesn't it mean something?"

• Sure it does.

• It means these datasets are not diverse enough.

• They should have been a single dataset.

• (alternatively: our evaluation metrics are not
discriminating enough.)

which brings us back to:

• This is really, really il-defined.

• What does it mean for legal contracts to be similar?

• What does it mean for newspaper articles to be similar?

• Think about this before running to design your next super-
LSTM-recursive-autoencoding-document-embedder.

• Start from the use case!!!!

case in point:

skip thought vectors

• Terrible name. (really)

• Beautiful idea. (really!)

• Impressive results.

Impressive results:

• Is this actually useful? what for?

• Is this the kind of similarity we need?

Impressive results:

so how to evaluate?
• Define the similarity / task you care about.

• Score on this particular similarity / task.

• Design your vectors to match this similarity

• ...and since the methods we use are distributional and
unsupervised...

• ...design has less to do with the fancy math
(= objective function, optimization procedure) and
more with what you feed it.

context matters

What’s in a Context?

• Importing ideas from embeddings improves distributional methods

• Can distributional ideas also improve embeddings?

• Idea: change SGNS’s default BoW contexts into dependency contexts

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Example

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Target Word

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Syntactic Dependency Context

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Syntactic Dependency Context

prep_withnsubj

dobj

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Syntactic Dependency Context

prep_withnsubj

dobj

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies

Dumbledore Sunnydale

hallows Collinwood

Hogwarts half-blood Calarts

(Harry Potter’s school) Malfoy Greendale

Snape Millfield

Related to
Harry Potter

Schools

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies

nondeterministic Pauling

non-deterministic Hotelling

Turing computability Heting

(computer scientist) deterministic Lessing

finite-state Hamming

Related to
computability

Scientists

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies

singing singing

dance rapping

dancing dances breakdancing

(dance gerund) dancers miming

tap-dancing busking

Related to
dance

Gerunds

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

What is the effect of different context types?

• Thoroughly studied in distributional methods
• Lin (1998), Padó and Lapata (2007), and many others…

General Conclusion:

• Bag-of-words contexts induce topical similarities

• Dependency contexts induce functional similarities
• Share the same semantic type
• Cohyponyms

• Holds for embeddings as well

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

• Same algorithm, different inputs -- very different
kinds of similarity.

• Inputs matter much more than algorithm.

• Think about your inputs.

• They are neither semantic nor syntactic.

• They are what you design them to be through
context selection.

• They seem to work better for semantics than for
syntax because, unlike syntax, we never quite
managed to define what "semantics" really means,
so everything goes.

with proper care, we can
perform well on syntax, too.

• Ling, Dyer, Black and Trancoso, NAACL 2015:
using positional contexts with a small window size
work well for capturing parts of speech, and as
features for a neural-net parser.

• In our own work, we managed to derive good
features for a graph-based parser (in submission).

• also related: many parsing results at this ACL.

what's left to do?
• Pretty much nothing, and pretty much everything.

• Word embeddings are just a small step on top of
distributional lexical semantics.

• All of the previous open questions remain open,
including:

• composition.

• multiple senses.

• multi-word units.

looking beyond words
• word2vec will easily identify that "hotfix" if similar to

"hf", "hot-fix" and "patch"

• But what about "hot fix"?

• How do we know that "New York" is a single entity?

• Sure we can use a collocation-extraction method,
but is it really the best we can do? can't it be
integrated in the model?

• Actually works pretty well

• But would be nice to be able to deal with typos and
spelling variations without relying only on seeing
them enough times in the corpus.

• I believe some people are working on that.

MRL: morphologically rich language

what happens when we look
outside of English?

• Things don't work nearly as well.

• Known problems from English become more extreme.

• We get some new problems as well.

a quick look at Hebrew

word senses
ספר

book(N). barber(N). counted(V). tell!(V). told(V).

חומה
brown (feminine, singular)

wall (noun)
her fever (possessed noun)

multi-word units
עורך דין •

בית ספר •

שומר ראש •

יושב ראש •

ראש עיר •

בית שימוש•

words vs. tokens

and when from the house
וכשמהבית

words vs. tokens

and when from the house
וכשמהבית

בצל

בצל

in shadow

onion

and of course: inflections

• nouns, pronouns and adjectives
--> are inflected for number and gender

• verbs
--> are inflected for number, gender, tense, person

• syntax requires agreement between
 - nouns and adjectives
 - verbs and subjects

and of course: inflections

she saw a brown fox

he saw a brown fence

and of course: inflections

she saw a brown fox

he saw a brown fence
[masc]

[masc]

[fem]

[fem]

and of course: inflections

חום שועל ראתה היא

חומה גדר ראה הוא

she saw a brown fox

he saw a brown fence
[masc]

[masc]

[fem]

[fem]

inflections and dist-sim

• More word forms -- more sparsity

• But more importantly: agreement patterns affect the
resulting similarities.

adjectives
green [m,sg]

ירוק
green [f,sg]

ירוקה
green [m,pl]

ירוקים

blue [m,sg] gray [f,sg] gray [m,pl]

orange [m,sg] orange [f,sg] blue [m,pl]

yellow [m,sg] yellow [f,sg] black [m,pl]

red [m,sg] magical [f,g] heavenly [m,pl]

verbs
(he) walked

הלך
(she) thought

חשבה
(they) ate
אכלו

(they) walked (she) is thinking (they) will eat

(he) is walking (she) felt (they) are eating

(he) turned (she) is convinved (he) ate

(he) came closer (she) insisted (they) drank

nouns
Doctor [m,sg]

רופא
Doctor [f, sg]

רופאה

psychiatrist [m,sg] student [f, sg]

psychologist [m, sg] nun [f, sg]

neurologist [m, sg] waitress [f, sg]

engineer [m, sg] photographer [f, sg]

nouns
sweater
סוודר

shirt
חולצה

jacket suit

down robe

overall dress

turban helmet

nouns
sweater
סוודר

shirt
חולצה

jacket suit

down robe

overall dress

turban helmet

masculine feminine

nouns
sweater
סוודר

shirt
חולצה

jacket suit

down robe

overall dress

turban helmet

masculine feminine
completely arbitrary

inflections and dist-sim

• Inflections and agreement really influence the results.

• We get a mix of syntax and semantics.

• Which aspect of the similarity we care about? what
does it mean to be similar?

• Need better control of the different aspects.

inflections and dist-sim
• Work with lemmas instead of words!!

• Sure, but where do you get the lemmas?

• ...for unknown words?

• And what should you lemmatize? everything?
somethings? context-dependent?

• Ongoing work in my lab -- but still much to do.

looking for an
interesting project?

choose an
interesting language!

(good luck in getting it accepted to ACL, though)

to summarize
• Magic is bad. Understanding is good. Once you

Understand you can control and improve.

• Word embeddings are just distributional semantics in
disguise.

• Need to think of what you actually want to solve.
--> focus on a specific task!

• Inputs >> fancy math.

• Look beyond just words.

• Look beyond just English.

