CS 498 Expressive Grammars for Natural Language Processing: Theory and Applications

Lecture 15

Julia Hockenmaier juliahmr@cs.uiuc.edu

Where we are

Formalisms we have covered so far:

Context-free grammars, Dependency Grammars, Tree-Adjoining Grammars

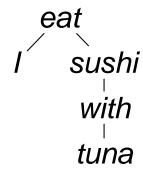
Today: Combinatory Categorial Grammar (CCG)
 Categories, derivations, non-local dependencies

• The next lectures:

Extracting CCGs from treebanks, building a CCG parser, showing the (weak) equivalence of TAG and CCG

Why categorial grammar?

- Phrase-structure grammar stipulates arbitrary categories and rules.
- Can we define a calculus over syntactic categories that
 - does not rely on arbitrary categories or rewrite rules?
 - describes how the meaning of sentences is built compositionally from the meaning of words?


Why CCG?

- CCG is mildly context-sensitive (like TAG)
 Captures crossing dependencies, but is still efficiently parseable
- CCG has a flexible constituent structure:
 - Simple, unified treatment of extraction and coordination
 - Psycholinguistic motivation: allows incremental processing
- CCG has a transparent syntax-semantics interface If we know the syntax of a sentence, we also know its meaning.
- CCG requires no traces or null elements
 Parsing algorithms (e.g. CKY) are straightforward to apply.

What is 'the meaning' of a sentence?

I eat sushi with tuna

• A dependency structure:

• A logical formula:

$$eat(x,y) \land I(x) \land sushi(y) \land with(y,z) \land tuna(z)$$

Overview

- Part I: The basics (local dependencies)
 - The ingredients: categories, rules, derivations
 - Simple syntactic phenomena: modification, simple coordination
 - Syntactic derivations and semantic interpretations
- Part II: The interesting stuff (long-range dependencies)
 - Bounded dependencies: control and raising
 - Unbounded dependencies: extraction and coordination
 - Scrambling

Part I: The basics

CCG: The machinery

- Categories specify subcat lists of words/constituents.
- Combinatory rules specify how constituents can combine.
- The lexicon specifies which categories a word can have.
- Derivations spell out process of combining constituents.

CCG categories

- Simple categories: NP, S, PP.
- Complex categories: S\NP, (S\NP)/NP,(NP\NP)/NP
 Functions which return a result if they get an argument:

NP
$$S \setminus NP$$
 \Longrightarrow SHedrinks coffeeHe drinks coffee(S\NP)/NPNP \Longrightarrow S\NPdrinkscoffeedrinks coffee(NP\NP)/NPNP\NP \Longrightarrow NP\NPwithmilkwith milk

CCG rules

Function application: $(S\NP)/NP NP \Rightarrow S\NP$

 $\mathsf{NP} \; \mathsf{S} \backslash \mathsf{NP} \qquad \Rightarrow \; \mathsf{S}$

Type raising: NP $\Rightarrow S/(S\backslash NP)$

Function composition: $S/(S\backslash NP)/NP \Rightarrow S/NP$

Coordination: NP conj NP \Rightarrow NP

CCG rules

These are really rule schemas, ie.:

Function application: $X/Y Y \Rightarrow X$

 $\mathbf{Y} \mathbf{X} \mathbf{Y} \Rightarrow \mathbf{X}$

Type raising: $X \Rightarrow T/(T \setminus X)$

 $X \Rightarrow T(T/X)$

Function composition: $X/Y Y/Z \Rightarrow X/Z$

 $Y \setminus Z X \setminus Y \Rightarrow X \setminus Z$

Coordination: $X conj X \Rightarrow X$

CCG rules

These are really rule schemas, ie.:

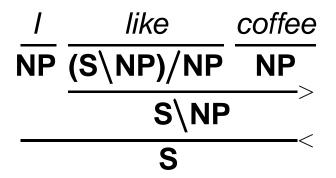
Function application: $X/Y Y \Rightarrow X$

 $Y X \setminus Y \Rightarrow X$

Type raising: $X \Rightarrow T/(T \setminus X)$

 $X \Rightarrow T \setminus (T/X)$

Function composition: $X/Y Y/Z \Rightarrow X/Z$


 $Y \setminus Z \times X \setminus Y \Rightarrow X \setminus Z$

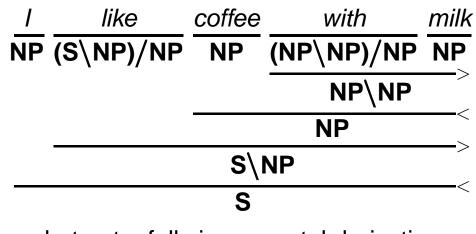
Coordination: $X conj X \Rightarrow X$

These are order-preserving rules (context-free only). More later...

$$\frac{I}{NP} \frac{\textit{like}}{(S\backslash NP)/NP} \frac{\textit{coffee}}{NP}$$

$$\frac{\textit{I}}{\textit{NP}} \frac{\textit{like}}{\textit{(S\backslash NP)/NP}} \frac{\textit{coffee}}{\textit{NP}} > \frac{\textit{S/NP}}{\textit{S/NP}}$$

$$\frac{I}{NP} \frac{\textit{like}}{(S\backslash NP)/NP} \frac{\textit{coffee}}{NP}$$


$$\frac{\frac{1}{NP}}{\frac{NP}{S/(S\backslash NP)}} \frac{like}{(S\backslash NP)/NP} \frac{coffee}{NP}$$

$$\frac{\frac{\textit{Iike}}{\mathsf{NP}} \frac{\textit{coffee}}{\mathsf{(S\backslash NP)/NP}}}{\frac{\mathsf{S/(S\backslash NP)}}{\mathsf{S/NP}}} = \frac{\mathsf{coffee}}{\mathsf{NP}}$$

$$\frac{\frac{\textit{Iike}}{\mathsf{NP}} \frac{\textit{coffee}}{\mathsf{(S\backslash NP)/NP}} \frac{\mathsf{NP}}{\mathsf{NP}}}{\frac{\mathsf{S/(S\backslash NP)}}{\mathsf{S/NP}}} > B}$$

$$\frac{\frac{| like |}{NP} \frac{coffee}{(S\backslash NP)/NP}}{\frac{S/(S\backslash NP)}{S/NP}} = \frac{S/NP}{S}$$

- Type-raising and composition permit alternative derivations.
 This is an example of incremental derivation.
- Here, *I like* is a constituent.
 (If you don't like that, we'll later see examples where that makes a lot more sense.)
- But in general, not every substring can be a constituent.

but not a fully incremental derivation:

The syntax-semantics interface

Every syntactic rule has a **semantic interpretation**:

```
Function application X/Y:\lambda x.f(x) Y:a \Rightarrow X:f(a) Function composition X/Y:\lambda x.f(x) X/Y:\lambda x.g(x) \Rightarrow X/Z:\lambda x.f(gx) Type-raising X:a \Rightarrow T/(T\backslash X):\lambda f.f(a)
```

```
\frac{l}{\mathsf{NP}:I'} \frac{like}{(\mathsf{S}\backslash\mathsf{NP})/\mathsf{NP}:\lambda x.\lambda y.like'xy} \frac{\mathsf{coffee}}{\mathsf{NP}:\mathsf{coffee}'} \\ \frac{\mathsf{S}\backslash\mathsf{NP}:\lambda y.like'coffee'y}{\mathsf{S}:like'coffee'I'} \\
```

The CCG lexicon

 This requires a lexicon which pairs words with their syntactic categories and semantic interpretations, e.g.

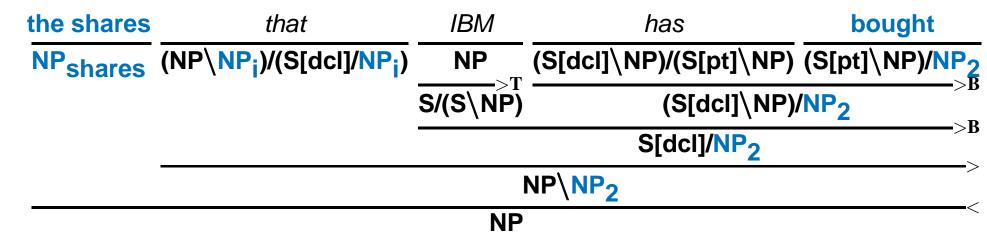
eat:(S\NP)/NP: $\lambda x.\lambda y.eat'(x,y)$, S\NP: $\lambda x.eat'(x)$

sushi: NP:sushi'

. . .

CCG is a lexicalized formalism:

The lexicon is where all the language-specific information is represented.


Approximating predicate-argument structure with word-word dependencies

• The **argument slots** of functor categories define dependencies:

$$\frac{\frac{\textit{like}}{\textit{S[dcl]} \backslash \textit{NP}_1) / \textit{NP}_2}}{\textit{S[dcl]} \backslash \textit{NP}_1} > \frac{\textit{coffee}}{\textit{NP}} > \frac{\textit{S[dcl]} \backslash \textit{NP}_1}{\textit{S[dcl]} \backslash \textit{NP}_1) / \textit{NP}_2}, 2, \textit{coffee} > \frac{\textit{like}}{\textit{S[dcl]} \backslash \textit{NP}_1) / \textit{NP}_2}, 2, \textit{coffee} > \frac{\textit{coffee}}{\textit{NP}_1 } > \frac{\textit{coffee}}{\textit{NP}_1$$

This also includes long-range dependencies.

Long-range dependencies in CCG

 $\langle bought, (S[pt]\NP_1)/NP_2, 2, shares \rangle$

- Long-range dependencies are **local**.
- They are projected from the lexicon by the derivation.

Derivations and interpretations

- Syntactic derivations...
 - ... describe constituency
 - ... account for **unbounded dependencies**that arise through extraction and coordination
 (but don't require traces to do so)
 - ... are **not a level of representation** in the theory, just a record of the process which builds the interpretation (the interface between spoken form and its meaning)
- Semantic interpretations...
 - ... account for **bounded dependencies**that arise in binding, raising and control
 (c-command is defined here)

Part II: The interesting parts

A. Bounded dependencies

Control and raising

 Bounded dependencies: co-index arguments within the lexical category of the verb (and re-use the corresponding variable in the semantic interpretation)

```
tries ((S[dcl]\NP_i)/(S[to]\NP_i)): \lambda p. \lambda y. try'(p(ana'y)y)
persuades ((S[dcl]\NP)/(S[to]\NP_i))/NP_i: \lambda x. \lambda p. \lambda y. persuade'(p(ana'x)xy)
```

Modals and auxiliaries are like subject control:

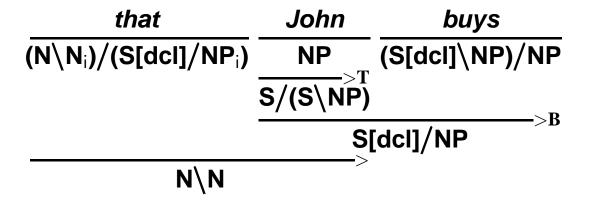
```
might ((S[dcl]\NP<sub>i</sub>)/(S[b]\NP<sub>i</sub>)): \lambda p. \frac{\lambda y}{\lambda y}.might'(p(\frac{ana'y}{y})y)
```

B. Unbounded dependencies

- Use type-raising and composition to form "incomplete" constituents.
- Wh-words subcategorize for "incomplete" constituents (and use co-indexation to pass the dependencies)

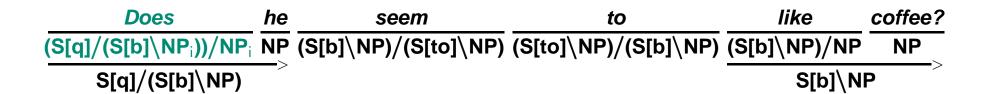
- Use type-raising and composition to form "incomplete" constituents.
- Wh-words subcategorize for "incomplete" constituents (and use co-indexation to pass the dependencies)

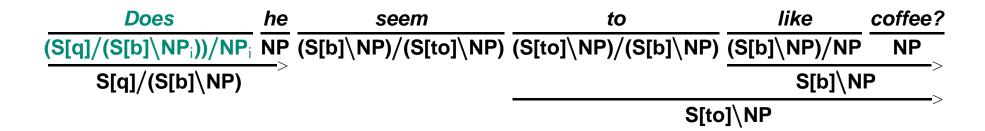
$$\frac{that}{(N\backslash N_i)/(S[dcl]/NP_i)} \frac{John}{NP} \frac{buys}{(S[dcl]\backslash NP)/NP}$$

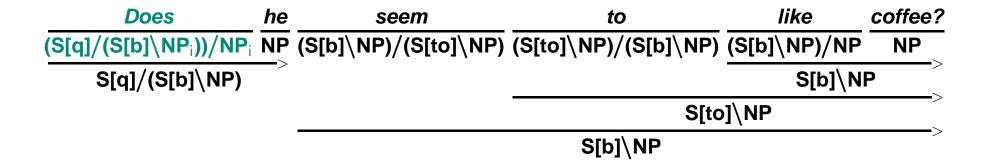

- Use type-raising and composition to form "incomplete" constituents.
- Wh-words subcategorize for "incomplete" constituents (and use co-indexation to pass the dependencies)

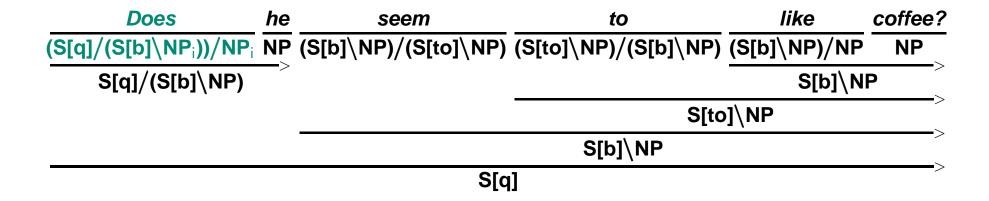
$$\frac{\textit{that}}{(\mathsf{N}\backslash\mathsf{N_i})/(\mathsf{S[dcl]/NP_i})} \frac{\textit{John}}{\overset{\mathsf{NP}}{\mathsf{S/(S\backslash\mathsf{NP})}}} \frac{\textit{buys}}{(\mathsf{S[dcl]}\backslash\mathsf{NP})/\mathsf{NP}}$$

- Use type-raising and composition to form "incomplete" constituents.
- Wh-words subcategorize for "incomplete" constituents (and use co-indexation to pass the dependencies)


$$\frac{\textit{that}}{(N\backslash N_i)/(S[dcl]/NP_i)} \frac{\textit{John}}{NP} \frac{\textit{buys}}{(S[dcl]\backslash NP)/NP} \frac{S/(S\backslash NP)}{S[dcl]/NP} >_B$$


- Use type-raising and composition to form "incomplete" constituents.
- Wh-words subcategorize for "incomplete" constituents (and use co-indexation to pass the dependencies)




Questions

 $\frac{\textit{Does}}{(S[q]/(S[b]\backslash NP_i))/NP_i} \frac{\textit{he}}{NP} \frac{\textit{seem}}{(S[b]\backslash NP)/(S[to]\backslash NP)} \frac{\textit{to}}{(S[to]\backslash NP)/(S[b]\backslash NP)} \frac{\textit{like}}{(S[b]\backslash NP)/NP} \frac{\textit{coffee?}}{NP}$

Does	he	S	seem	to	like	coffee?
$\overline{(S[q]/(S[b]\backslash NP_i)}$)/NP _i NP	(S[b]\NP)/(S[to]\NP)	$\frac{1}{(S[to]\NP)/(S[b]\NP)}$	$\overline{(S[b]\backslash NP)/NP}$	NP
S[q]/(S[b]\	<u>√NP)</u>				S[b]\N	P
				to]\NP	>	
				S[b]\NP		 >
			S[c	1]		 >
What	C	loes	he	seem	to	like?
	(S[q]/(S[I	o]\NP;))/N	IP; NP (S[b]\	NP)/(S[to]\NP)(S[to]\	NP)/(S[b]\NP) (S[b]\NP) <mark>/NF</mark>

Does	he	seem	n	to	like	coffee?
$S[q]/(S[b]\NP_i))/NP_i$	\overline{NP}	$(\overline{S[b]NP)/(S}$	(to]\NP	$\frac{1}{(S[to]\NP)/(S[b]\NP)}$	$\overline{(S[b]\NP)/NP}$	NP
S[q]/(S[b]\NP)	 >				S[b]\N	P
				S[t	o]\NP	 >
				S[b]\NP		 >
			S[q	<i>i</i>]		>
What	d	does	he	seem	to	like?
S[wq]/(S[q]/NP) (S[q]]/(S[t	Σ]\ΝΡ ;))/ΝΡ;	NP (S[b]	\NP)/(S[to]\NP)(S[to]\	\\\\NP)/(S[b]\\\NP)	(S[b]\NP) <mark>/</mark>

Does	he	see	e m	to	like	coffee?
$(S[q]/(S[b]\NP_i))$	$\overline{/NP_i}$ \overline{NP}	(S[b]\NP)/	(S[to]\NP)	$\overline{(S[to]\NP)/(S[b]\NP)}$	$\overline{(S[b]\NP)/NP}$	NP
S[q]/(S[b]\	NP)				S[b]\N	P (
				S[t	o]\NP	 >
				S[b]\NP		 >
			S[c	1]		
What		does	he	seem	to	like?
S[wq]/(S[q] <mark>/NP</mark>)	(S[q]/(S[b]\NP;))/NF	P; NP (S[b]	\NP)/(S[to]\NP)(S[to]	\NP)/(S[b]\NP)	(S[b]\NP) <mark>/N</mark>
	S[q]]/(S[b]\NP)			(S[to]\NP) <mark>/</mark>	/NP

Does	he	seer	m	to		like	coffee?	
$(S[q]/(S[b]\NP_i))$	NP; NP	$\overline{(S[b]\NP)/(S[b])}$	S[to]\NP)	$\overline{(S[to]\NP)/(S[b])}$]\NP)	(S[b]\NP)/NP	NP	
S[q]/(S[b]\I	>					S[b]\N	P (
				S[to]\NP			 >	
				S[b]\NP			 >	
			S[q	1			>	
What		does	he	seem		to	like?	
S[wq]/(S[q]/NP)					S[to]\			
	S[q]/(S[b]\NP)	 >	-		(S[to]\NP) <mark>/</mark>		
				(S[b]\NP)	/NP			

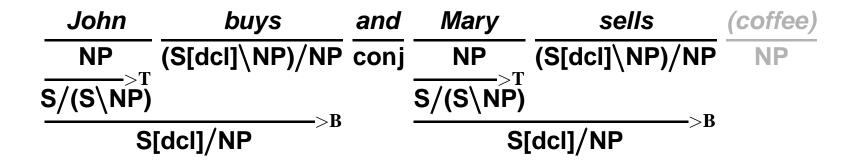
Does	he	seel	m	to		like	coffee?	
$(S[q]/(S[b]\backslash NP_i))$	NP _i NP	(S[b]\NP)/(S[to]\NP)	(S[to]\NP)/(S[b]\NP)	(S[b]\NP)/NF	NP	
S[q]/(S[b]\	>					S[b]\N	>	
					S[to	o]\NP	 >	
				S[b]\NF)		 >	
			S[d	1]				
What		does	he	seem		to	like?	
S[wq]/(S[q]/NP)	(S[q]/(S	[b]\NP;))/NP;	NP (S[b]	\NP)/(S[to]\NP)	(S[to]\	NP)/(S[b]\NP)	(S[b]\NP) <mark>/N</mark>	
	S[q	 				(S[to]\NP) <mark>/NP</mark>		
				(S[b]\NP) <mark>/NP</mark>		 >	
				S[q] <mark>/NP</mark>				

coom

liko

coffoo?

				(S[b]\NP) <mark>/NP</mark> S[q] <mark>/NP</mark>		
	S[q]]/(S[b]\NP)			(S[to]\NP)	/NP
S[wq]/(S[q] <mark>/NP</mark>)	(S[q]/(S[[b]\NP _i))/NP _i	NP (S[b]\ >	\NP)/(S[to]\NP)(S[to]\ 	NP)/(S[b]\NP)	(S[b]\NP) <mark>/</mark>
What		does	he	seem	to	like?
			S[q]		 >
				S[b]\NP		 >
				S[to	o]\NP	 >
S[q]/(S[b]\	NP)				S[b]\N	IP
$S[q]/(S[b]NP_i)$	$\overline{/NP_i}$ \overline{NP}	(S[b]\NP)/(S[to]\NP)	$\overline{(S[to]\NP)/(S[b]\NP)}$	(S[b]\NP)/NP	NP
Dues	110	366		ιο	IINE	COHEC!

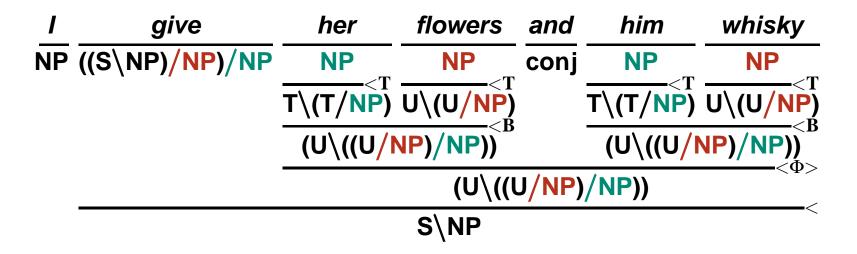

Right node raising

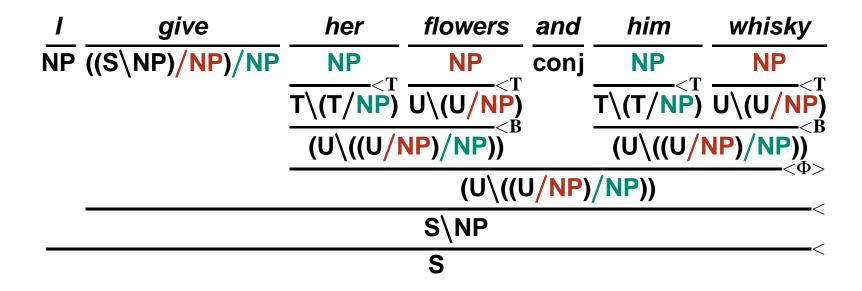
- Use type-raising and composition to form "incomplete" constituents.
- RNR is just coordination of such "incomplete" constituents:

$$\frac{\textit{John}}{\mathsf{NP}} \, \frac{\textit{buys}}{(\mathsf{S[dcl]} \backslash \mathsf{NP})/\mathsf{NP}} \, \frac{\textit{and}}{\mathsf{conj}} \, \frac{\textit{Mary}}{\mathsf{NP}} \, \frac{\textit{sells}}{(\mathsf{S[dcl]} \backslash \mathsf{NP})/\mathsf{NP}} \, \frac{(\textit{coffee})}{\mathsf{NP}}$$

Right node raising

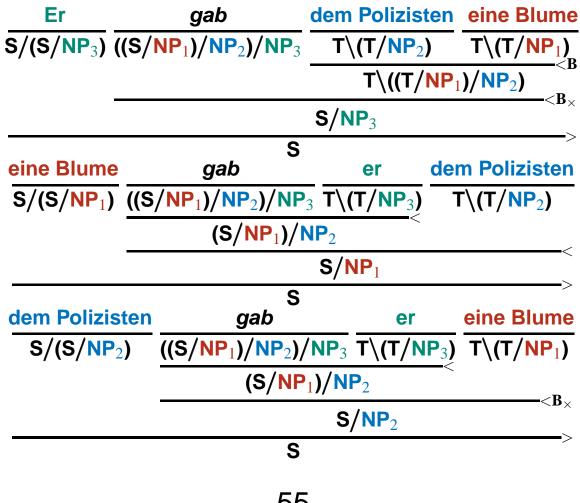
- Use type-raising and composition to form "incomplete" constituents.
- RNR is just coordination of such "incomplete" constituents:




$$\frac{I}{\mathsf{NP}} \frac{give}{((\mathsf{S}\backslash\mathsf{NP})/\mathsf{NP})/\mathsf{NP}} \frac{her}{\mathsf{NP}} \frac{flowers}{\mathsf{NP}} \frac{and}{\mathsf{conj}} \frac{him}{\mathsf{NP}} \frac{whisky}{\mathsf{NP}}$$

$$\frac{I}{\mathsf{NP}} \, \frac{\mathsf{give}}{((\mathsf{S} \backslash \mathsf{NP})/\mathsf{NP})/\mathsf{NP}} \, \frac{\mathsf{her}}{\mathsf{NP}} \, \frac{\mathsf{flowers}}{\mathsf{NP}} \, \frac{\mathsf{and}}{\mathsf{conj}} \, \frac{\mathsf{him}}{\mathsf{NP}} \, \frac{\mathsf{whisky}}{\mathsf{NP}}$$

$$\frac{\textit{I}}{\mathsf{NP}} \underbrace{\frac{\textit{give}}{((\mathsf{S} \backslash \mathsf{NP}) / \mathsf{NP}) / \mathsf{NP}}}_{\mathsf{T} \backslash (\mathsf{T} / \mathsf{NP})} \underbrace{\frac{\textit{flowers}}{\mathsf{NP}}}_{\mathsf{T} \backslash (\mathsf{U} / \mathsf{NP})} \underbrace{\frac{\textit{and}}{\mathsf{conj}}}_{\mathsf{T} \backslash (\mathsf{T} / \mathsf{NP})} \underbrace{\frac{\textit{him}}{\mathsf{NP}}}_{\mathsf{T} \backslash (\mathsf{U} / \mathsf{NP})} \underbrace{\frac{\textit{whisky}}{\mathsf{NP}}}_{\mathsf{T} \backslash (\mathsf{T} / \mathsf{NP})} \underbrace{\frac{\textit{whisky}}{\mathsf{NP}}}_{\mathsf{T} \backslash (\mathsf{U} / \mathsf{NP})}$$


$$\frac{I}{\mathsf{NP}} \frac{\mathsf{give}}{\mathsf{((S\backslash NP)/NP)/NP}} \frac{\mathsf{her}}{\mathsf{NP}} \frac{\mathsf{flowers}}{\mathsf{NP}} \frac{\mathsf{and}}{\mathsf{conj}} \frac{\mathsf{him}}{\mathsf{NP}} \frac{\mathsf{whisky}}{\mathsf{NP}} \\ \frac{\mathsf{T}\backslash (\mathsf{T/NP})}{\mathsf{T}\backslash (\mathsf{U}\backslash (\mathsf{U}/\mathsf{NP})/\mathsf{NP}))} \frac{\mathsf{NP}}{\mathsf{T}\backslash (\mathsf{T/NP})} \frac{\mathsf{NP}}{\mathsf{T}\backslash (\mathsf{T/NP})} \frac{\mathsf{NP}}{\mathsf{U}\backslash (\mathsf{U}/\mathsf{NP})/\mathsf{NP})} \\ \frac{\mathsf{T}\backslash (\mathsf{T/NP})}{\mathsf{U}\backslash (\mathsf{U}/\mathsf{NP})/\mathsf{NP}))} \frac{\mathsf{NP}}{\mathsf{V}\backslash (\mathsf{U}/\mathsf{NP})/\mathsf{NP})} \frac{\mathsf{NP}}{\mathsf{V}\backslash (\mathsf{U}/\mathsf{NP})/\mathsf{NP})} \\ \frac{\mathsf{NP}}{\mathsf{V}\backslash (\mathsf{U}/\mathsf{NP})/\mathsf{NP})} \frac{\mathsf{NP}}{\mathsf{V}\backslash (\mathsf{U}/\mathsf{NP})} \frac{\mathsf{NP}}{\mathsf{V}\backslash (\mathsf{U}/\mathsf{NP})/\mathsf{NP})} \\ \frac{\mathsf{NP}}{\mathsf{V}\backslash (\mathsf{U}/\mathsf{NP})/\mathsf{NP})} \frac{\mathsf{NP}}{\mathsf{V}\backslash (\mathsf{U}/\mathsf{NP})} \frac{\mathsf{NP}}{\mathsf{V}} \frac{\mathsf{NP}}{\mathsf{V}\backslash (\mathsf{U}/\mathsf{NP})} \frac{\mathsf{NP}}{\mathsf{V}} \frac{\mathsf{NP$$

Scrambling

Verb has standard category. Use type-raising and (crossing) composition

