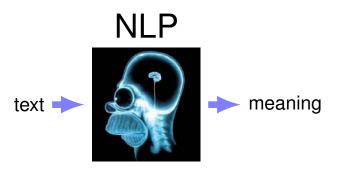
Seminar in Algorithms for NLP (Structured Prediction)

Yoav Goldberg

yogo@macs.biu.ac.il

March 5, 2013

Natural Language Processing?



Reminder: Machine Learning

Input (Labeled) Data

Output Function f(x)

Input (Labeled) Data oranges

apples

Output Function f(x)

Input (Labeled) Data oranges

apples

Output

Function f(x)

f(*)=orange

 $f(\Theta)=apple$

Input (Labeled) Data oranges

apples

Output

Function f(x)

f(●)=orange

f()=apple

f(**>**)=

Input (Labeled) Data oranges

apples

Output

Function f(x)

f()=orange

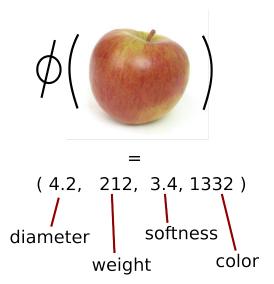
f() = apple

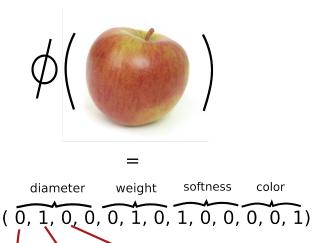
f()=apple

Functions return numbers

$$f(x) > 0 \rightarrow \text{apple}$$

 $f(x) < 0 \to \text{orange}$





4.5 to 5

4 to 4.5

$$f(<1,0,0,0,1,0,0,1,1,0,0,0,1>)$$

$$f(<1,0,0,0,1,0,0,1,1,0,0,0,1>)$$

 $f(x) = wx$

$$f(<1,0,0,0,1,0,0,1,1,0,0,0,1>)$$

$$f(x) = wx$$

$$f(x) = w_1x_1 + w_2x_2 + w_3x_3 + \cdots + w_nx_n$$

$$f(<1,0,0,0,1,0,0,1,1,0,0,0,1>)$$

$$f(x) = wx$$

$$f(x) = w_1x_1 + w_2x_2 + w_3x_3 + \cdots + w_nx_n$$

Learning: find w that classifies well (separates apples from oranges)

$$f(<1,0,0,0,1,0,0,1,1,0,0,0,1>)$$

$$f(x) = wx$$

$$f(x) = w_1x_1 + w_2x_2 + w_3x_3 + \cdots + w_nx_n$$

Learning: find w that classifies well (separates apples from oranges)

Many algorithms (MaxEnt, SVM, ...)

Types of learning problems

Goal of Learning

Given instances x_i and labels $y_i \in \mathcal{Y}$, learn a function f(x) such that, on most inputs x_i , $f(x_i) = y_i$, and which will generalize well to unseen (x, y) pairs.

(not quite accurate: more formally we want f() to achieve *low loss* with respect to some *loss function*, under *regularization constraints*.)

Common learning scenarios

- ▶ Binary Classification: $\mathcal{Y} = \{-1, 1\}$
- ▶ Multiclass Classification: $\mathcal{Y} = \{0, 1, ..., k\}$
- ▶ Regression: $\mathcal{Y} = \mathbb{R}$

The Perceptron Algorithm (binary)

```
    Inputs: items x<sub>1</sub>,..., x<sub>n</sub>, classes y<sub>1</sub>,..., y<sub>n</sub>, feature function φ(x)
    w ← 0
    for k iterations do
    for x<sub>i</sub>, y<sub>i</sub> do
    y' ← sign(w · φ(x<sub>i</sub>))
    if y' ≠ y<sub>i</sub> then
    w ← w + y<sub>i</sub>φ(x<sub>i</sub>)
    return w
```

The Perceptron Algorithm (multiclass)

```
    Inputs: items x<sub>1</sub>,...,x<sub>n</sub>, classes y<sub>1</sub>,...,y<sub>n</sub>, feature function φ(x, y)
    w ← 0
    for k iterations do
    for x<sub>i</sub>, y<sub>i</sub> do
    y' ← argmax<sub>y</sub>(w ⋅ φ(x<sub>i</sub>, y))
    if y' ≠ y<sub>i</sub> then
    w ← w + φ(x<sub>i</sub>, y<sub>i</sub>) − φ(x<sub>i</sub>, y')
    return w
```

Predicting complex outputs

Sequence Tagging

The boy in the bright blue jeans jumped up on the stage

DT NN PREP DT ADJ ADJ NN VB PRT PREP DT NN

Sequence Segmentation - Chunking

The boy in the bright blue jeans jumped up on the stage

[The boy] in [the bright blue jeans] [jumped up] on [the stage]

Sequence Segmentation - Named Entities

Donald Trump will endorse Mitt Romney in Las Vegas this Thursday.

Donald Trump will endorse Mitt Romney in Las Vegas this Thursday

Sequence Segmentation - Named Entities

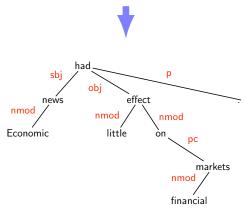
Donald Trump will endorse Mitt Romney in Las Vegas this Thursday.

Donald Trump will endorse Mitt Romney in Las Vegas this Thursday

(Sequence Segmentation is a special form of a tagging problem)

Syntactic Parsing

Economic news had little effect on financial markets.



Sentence Simplification

Economic news had little effect on financial markets

news had little effect on markets

Sentence Simplification

Economic news had little effect on financial markets

news had effect on markets

String Translation

RNA Folding

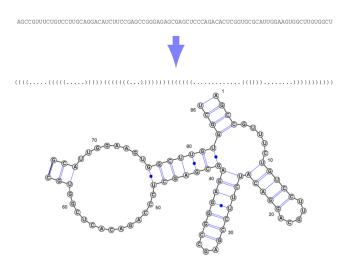
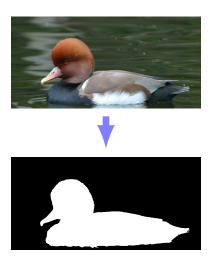


Image Segmentation



Predicting complex outputs

Predicting complex outputs
Predicting interesting outputs

Output space is large

 $(k^n \text{ possible sequences for sentence of length } n)$

Output space is constrained

("output must be a projective tree")

Many correlated decisions

(labels can depend on other labels)

How To Solve

Ignore Correlations?

- Treat as multiple independent classification problems.
- Solve each one individually.

Good

Very fast (linear time prediction)

Bad

- Ignores the structure of the output space.
- Hard to encode constraints (easy for sequences, hard for trees)
- Does not perform well.

How to Solve example/reminder – HMM and Viterbi probability of a tag sequence:

$$P(w_1,\ldots,w_n,t_1,\ldots,t_n) = \prod_{i=1}^{N} p(t_i|t_{i-1})p(w_i|t_i)$$

HMM has two sets of parameters:

$$t(t1, t2) = p(t2|t1)$$
 $e(t, w) = p(w|t)$

based on these, we define a score:

$$s(t1, t2, w) = t(t1, t2)e(t, w)$$

- 1: Initialize D(0,START) = 0
- 2: **for** *i* in 1 to *n* **do**
- 3: for $t \in tags$ do
- 4: $D(i,t_i) = \max_{t' \in tags} (D(i-1,t') \times s(t',t,w_i))$

- Can we do better than HMM for tagging?
- How do we generalize beyond sequence tagging?