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Previously

Supervised Learning

» Get labeled training data
» Represent data as (features, label) pairs
» Train a classifier / model to predict labels based on features

Today

» What if we don’t have training data?
» Can we still do something useful?

Unsupervised Learning
Things we can do without labeled data



Unsupervised Methods

Option 1: “Naturally occurring” labels / bootstrap

» Be creative and find data which can be used as labels.
» e.g., we want to identify paragraphs. Maybe some
website indicate this via their HTML tags?
» Automatically create your own training set
» Write simple rule-based system to collect easy examples
> high precision, low recall
» Use the easy examples as training data

» Hope it will generalize well.
» Careful not to overlap your features with the rules too much!



Unsupervised Methods

Option 1: “Naturally occurring” labels / semi-supervised

» Be creative and find data which can be used as labels.

» Want to identify sentiment? Look at tweets with happy
and sad emojis.
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Unsupervised Methods

Option 1: “Naturally occurring” labels / semi-supervised

» Be creative and find data which can be used as labels.
» Want to identify sentiment? Look at tweets with happy
and sad emojis.
» what are the pros and cons here?
» Can also use the proxy naturally occurring data for
representation learning.
» The Felbo et al 2017 paper. (next slides)



Using millions of emoji occurrences to learn any-domain representations
for detecting sentiment, emotion and sarcasm

Bjarke Felbo', Alan Mislove?, Anders Sggaard?, Iyad Rahwan', Sune Lehmann*



Use Emoji Prediction
to learn good representations
for sentiment



Table 2: The number of tweets in the pretraining
dataset associated with each emoji in millions.
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Table 1: Example sentences scored by our model.
For each text the top five most likely emojis are
shown with the model’s probability estimates.

. -~ 23
I love mom's cooking 2 T 9 & O
49.1% 88% 31% 3.0% 2.9%
| love how you never reply back.. ® © © © ©
14.0% 83% 63% 54% 51%
. . . e \ s 100
I love cruising with my homies ~ - =

I love messing with yo mind!! v @

39.1% 11.0% 7.3% 53%

This is shit e . =2 =
7.0% 6.4% 6.0% 6.0%
This is the shit o 4 ==

53%

| love you and now you're just gone.. W e & =3 4';'0/
5.8%

10.8% 9‘.7% 6.5% 57% 4.8%



why is this useful?



Figure 7: Correlation matrix of the model’s predictions on the pretraining test set.
«O)» «F»
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Figure 6: Hierarchical clustering of the DeepMoji model’s predictions across categories on the test set.
The dendrogram shows how the model learns to group emojis into overall categorics and subcategorics
based on emotional content. The y-axis is the distance on the correlation matrix of the model’s predic-
tions measured using average linkage.
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Figure 6: Hierarchical clustering of the DeepMoji model’s predictions across categories on the test set.
The dendrogram shows how the model learns to group emojis into overall categorics and subcategorics
based on emotional content. The y-axis is the distance on the correlation matrix of the model’s predic-
tions measured using average linkage.

Predicting a large set can be
indicative of more coarse-grained trends.



model

(main idea. extra details in paper.)
* Train RNN (LSTM) to predict emojis based on a tweet.

e Result: encoder that takes a tweet and returns a
vector which is useful for predicting emojis.

* Take (smaller) sentiment dataset.
* Encode sentences to vectors using above encoder.

» Train to predict sentiment from vectors.



Unsupervised Methods

Option 2: Write and algorithm and hope it works

» Example: assignment 3.

» Represent words by their contexts

» Define the co-occurrence metric (PMI, word2vec)

» Define similarity measure (cosine)

» Use this to get a useful result — lists of similar words

» Can be very effective
» But no “learning” involved.
» What to do when this doesn’t work?



Unsupervised Methods

Option 3: Obtain Cheap / Easy Annotations

» Make easy annotation tasks for humans

» Pose annotation as natural questions that are easy to
answer.

» But how to come up with the right questions?



Unsupervised Methods

Option 3: Obtain Cheap / Easy Annotations

» Measure human behavior

» Eye-tracking when reading

» Mouse-movement when reading
» Keyboard clicks when writing

> 'Er

» How can these be leveraged to obtain useful data for
learning?



Unsupervised Methods

Option 5: Latent-variable generative modeling

» Define a “generative story” of how the data was generated
» This story doesn’t have to be very convincing or realistic
» The story can include “latent variables”, stuff that you
would like to see but you don’t
» For example: HMM POS-tagging, where we treat the tags
as latent.
» Search for an assignment of latent variables such that the
data has high probability under the model.

» Usually, this search is hard.
» Approximate!

» EM

» MCMC (Gibbs sampling)



Unsupervised Learning
Example: HMM

Example: HMM

» We want to train a POS-tagger, but don’t have labeled data.

» We do have a dictionary, associating some words with their
possible POS tags, and also a lot of text.

» We will use the dictionary and the text to train a bigram
HMM model.



Unsupervised Learning
Example: HMM

The Bigram-HMM generative story:

To generate a tagged sentence (w,t) = (Wi, ..., Wy, t1,...,1):

» Start with tag 71 = START.
» Foriinl,... n:
» Draw a random tag ¢ from the transition distribution
P(l‘,’|l‘,’_|)
» Draw a random word w; from the tag distribution P(w;|1;)

Recall the supervised case

» We observe both the words and the tags.

» We estimate ¢ = P(1;|t;—1) and e = P(w;|t;) based on our
observations.

» Done



Notation — Discrete Distributions

we say that X ~ Discrete(0, k)
iff:

v

X can get one of k values
6 is a vector with k entries
6; >0

Yibi=1

P(X =i) =06

v

v

v

v

Example

p(t]ti—1) is a discrete
distribution.

tj ~ Discrete(0,|T|)

Where:

» |T| is the size of the tagset
» We can get a uniform
distribution if we set:
» 0, =1/|T|
» We can also estimate 0
from data using MLE:

> 0, = co‘unr(tj,l,tj)
j count(ti_1)



Example HMM:

The UNsupervised case

>

>

v

v

v

v

We don’t get to see the tags. They are latent.
But, for a given tag assignment, we can:
» Estimate parameters
» Calculate corpus probability
Search for tag assignments such that if we estimate
parameters from them, and then use the parameters to

calculate the corpus probability, we will get high probability.

This search looks hard!

And it is.
Two possible approximations:

» EM algorithm
» Gibbs sampling



Gibbs sampling

W=Wi, ..., Wy,
t=1t1,..., 1,

» We are interested in the tag assignment that will maximize
P(w, 1)
» For a fixed w, arg max, P(w, t) = arg max, P(t|w)



Gibbs sampling

W=Wi,...,Wy
t=1t,...,ly
» We are interested in the tag assignment that will maximize
P(w, 1)
» For a fixed w, arg max, P(w, t) = arg max, P(t|w)
» If we could sample from P(7|w), we will, with high
probability, get ¢ such that P(¢|w) is high.



Gibbs sampling

W=Wi,...,Wy
t=1t,...,ly
» We are interested in the tag assignment that will maximize
P(w, 1)
» For a fixed w, arg max, P(w, t) = arg max, P(t|w)
» If we could sample from P(7|w), we will, with high
probability, get ¢ such that P(¢|w) is high.

» OK...but how do we sample from P(#|w)?



Gibbs sampling

W=Wi,...,Wy
t=1t1,..., 1,
» We are interested in the tag assignment that will maximize
P(w, 1)
For a fixed w, arg max, P(w, ) = argmax, P(t|w)
If we could sample from P(z|w), we will, with high
probability, get ¢ such that P(¢|w) is high.
OK.. . but how do we sample from P(t|w)?
Gibbs sampling is a “magical” way of doing that
» To uncover the magic, see Graphical Models class

v

v

v

v



Gibbs sampling

Main idea

» In order to sample P(7f|w) = P(t1,ta, . .., ty|w):

» Start with a random assignment of ¢, ..., ,. Then:
» sample t; basedon n,, ... 6, w

> P(l‘1|lz7 13,..., tn,w)

» sample 1, based on 1,13, .., t,,w
> ...
» sample ¢, basedonty, ... ti_1,tipty .-y bn, W
» ...and soon

» After many iterations, we will get samples from P(z|w)



Gibbs sampling

Calculating P(t|t1, .- ti—1, tisty - - s tyy W)

» Notation: ™ =1,.... 66 1, tks1,- .-, by
We can estimate g and e as previously, based on w and the
assignments to k.

Now we get:

v

v

P(te]t™) oc g(telti—1)e(w|te)q(tis1 |te)

» (why? and what does « means?)
Calculate this for every possible value of .

v

Normalize

v



Draws from distributions

X ~ Discrete(0, k)

p = Math.random /()
sum = 0.0

for i in O0...k-1 {
sum += thetal[i];
if(sum >= p) return i

}



The Gibbs sampling algorithm

Sampling from P(t|w) fort =1,,... 1,

Initialize ¢ with random values
Calculate parameters (collect counts) based on 7,w.
for many iterations do
foricl,...,ndo
“forget” value of ¢; (decrease counts)
Calculate P(z;|t~1) based on modified counts
Sample new value for ¢; from P(z;|t 1)



Putting it all together

Training HMM from text and dictionary using Gibbs
sampling

For each word, assign a random tag from the set allowed by
the dictionary
Calculate ¢, e based on this tag assignment
for many iterations do
for every sentence do
foriel,..., lengthdo
“forget” value of ¢; (decrease counts)
Calculate P(z;|t~1) based on modified counts
(Set prob of tags not in dictionary to 0. Normalize.)
Sample new value for ¢; from P(¢;|t ™)



Putting it all together

Training HMM from text and dictionary using Gibbs
sampling

For each word, assign a random tag from the set allowed by
the dictionary
Calculate ¢, e based on this tag assignment
for many iterations do
for every sentence do
foriel,..., lengthdo
“forget” value of ¢; (decrease counts)
Calculate P(z;|t~1) based on modified counts
(Set prob of tags not in dictionary to 0. Normalize.)
Sample new value for ¢; from P(¢;|t ™)

Calculate final ¢ and e based on the final state
(can also average several states)



HMM - discussion

Why do you expect this to work?

Why do we need the tag dictionary?



Topic Modeling / LDA



The problem with information

As more information becomes
available, it becomes more difficult
to access what we are looking for.

We need new tools to help us
organize, search, and understand
these vast amounts of information.

D. Blei Topic Models



Topic modeling

[ l'mﬁ' iﬁ”"’ 3

4l 5:3" {;

Topic modeling provides methods for automatically organizing,
understanding, searching, and summarizing large electronic archives.

i N |
Candida Hofer

@ Uncover the hidden topical patterns that pervade the collection.
® Annotate the documents according to those topics.

©® Use the annotations to organize, summarize, and search the texts.

D. Blei Topic Models



Discover topics from a corpus

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

D. Blei

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

Topic Models

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new

simulations



Model the evolution of topics

"Theoretical Physics™

over time

"Neuroscience™

1880 1900 1920 1940 1960 1980 2000

OXYGEN

1880 1900 1920 1940 1960

1980 2000

D. Blei

Topic Models




Model connections between topics

activated
tyrosine phosphorylation

activation P
phosphorylation gl \u(ama_te
kinase. synaptic

a neurons

na polymerase

cleavage
site

mutant . stars
{nited states mutations reaction astronomers
mutants reactions universe
women i molecule galaxies
universities expression megnete molecules
i magnei fi
students pone o i
. superconductivity
education superconducting
mante
onust
upper mantle ‘solar wind
meteorites. earth

ratios. planets

planet

drosophila

genes
expression earthquake co2

carthquakes carbon
" fault carbon dioxide
" ancient images methane
genetic found
s population impact data water ozone
roteins populations ‘million years ago i
almospheric
researchers differences afrca measurements
variation clmate
protein ocean stratosphere
oo concentrations,

found

changes
glimate change,

D. Blei Topic Models



Annotate images

SKY WATER TREE SCOTLAND WATER SKY WATER BUILDING
MOUNTAIN PEOPLE FLOWER HILLS TREE PEOPLE WATER

FISH WATER OCEAN PEOPLE MARKET PATTERN BIRDS NEST TREE
TREE CORAL TEXTILE DISPLAY BRANCH LEAVES

D. Blei Topic Models



Discover influential articles

Derek E. Wildman et al., Implications of Natural Selection in Shaping 99.4% Nonsynonymous
DNA Identity between Humans and Chimpanzees: Enlarging Genus Homo, PNAS (2003)

[178 citations]

0.030

0025

0020

0015

Weightedinfluence

0010

0.005

0.000

Jared M. Diamond, Distributional Ecology of New Guinea Birds. Science (1973)
[296 citations]

William K. Gregory, The New Anthropogeny: Twenty-Five Stages of
Vertebrate Evolution, from Silurian Chordate to Man, Science (1933)
3 citations]

' !
1940 1960
Year

W. B. Scott, The Isthmus of Panama in Its Relation to the Animal Life of North and South America, Science (1916)

[3 citations]

i

Il
1980

]
2000




Organize and browse large corpora

e ikipediaiTopicxig {film, series, show}

The X-Files
Orson Welles
Stanley Kubrick.
» Bmovie
Mystery Science Theater 3000
Monty Python
Doctor Who
Sam Peckinpsh
Married... with Children
History of fim
The ATeam
Pulp Ficton (fim)
Mad (magazine)

v

Stanley Kubrick

{theory, work, human}

Staniay Kubeek iy 2, 178 M2, 99 e

an American film director, Meme.
ze?ﬂwﬂherwh@ i Eng\and mu mn -11 et Incelligent dosign

Immanuel Kant

Philosophy of mathemtics

fims and personal e, He worked far beyond the History of sience

contnes v Holpood sy, i s et
onvelwd g o
s own whims and e rare Truth

e ot teanc sogporeio s s

endesvors. Paychoaralyss
Charies Perce

Kubriel's films are characterized by a formal visual style

and medeulous atzention o decllhisate fims ofen Exisandlism
Deconstruction

repeatadly described s slow and meshodicl, and sre Socil scences

oftenperceived 13 reflecion of his obsessve and oo

perecionistraure Arocuing dam n s s
manity to man. While ofen viewed zs




Latent Dirichlet Allocation

D. Blei Topic Models



Latent Dirichlet allocation (LDA)

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does anjorganism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed for life.
One research team, using comy analy

ses to compare known genomes, concluded

uter

that today'slorganisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 venes. The
other researcher mapped genes
in a simple parasite and esti-
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn't be enough.
Although the numbers don't
match precisely, those predictions

Heemmahiiy

1705 genes

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE e VOL. 272 24 MAY 1996

Simple intuition: Documents exhibit multiple topics.

/ N

Mycoplasma
‘genome
469 genes

Stripping down. Computer analy:
mate of the minimum modern and ancient genomes.

“are not all that far apart,” especially in
comparison to the 7 senes in the hu
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
800 number. But coming up with a consen-
sus answer may be more than just a

numbers game, particularly

1etic

as more and
more genomes are completely mapped and
sequenced. “Tt may be a way of organizing
any newly sequenced
Arcady Mushegian, a compt
lecular biologist at the National Center
for Biotechnology Information (NCBI)
| in Bethesda, Maryland.

genon

" explains
ional mo-

Comparing an

Redundant and

Related and

Genes parasite-speciic
Een needed genes removed
Bones - Jocnem 4 gon
/lff'sﬂ:%niﬂ for becremcal 4genes

A \ s —
i Minimal | Yo
| oy (20 ( gonoser | (=)
/ \ 250 genes | \genes/
\\,/ Ancestral

S

5 yields an esti-

ADAPTED FROM NCBI



Generative model for LDA

Topic proportions and

Topics Documents .
assignments

gene 0.04
e O Seeking Life’s Bare (Genetic) Necessntles

\—/-

life 0.02
evolve 0.01
organism 0.01

/

1l

brain 0.04
neuron  0.02
nerve 0.01

E—— * Genome Mapping and Sequenc- ——
ing, Cold Spring Harbor, New York. Stripping down. Cor 5 yields an esti-
May 810 12. mate of the minimum modern and ancient genomes.
data 0.02 ENCE » VoL 27 ey p
number  0.02 o o
computer 0.01
Y
aoo N

/

» Each topic is a distribution over words
e Each document is a mixture of corpus-wide topics
o Each word is drawn from one of those topics



The posterior distribution

Topic proportions and
Topi Documents ;
opics 0c assignments
Seeking Life’s Bare (Genetic) Necessities
COLD SPRING HARBOR, NEW YORK— are
H
L \
&
/
l /
/ * Genome Mapping and Sequenc- —
ing. Cold Spring Haroor, Now York,  Stripplng down. Compuler analyss 18ids an e
Way 810 15 mato o the minimum modern and andient genomes
SCIENCE + VOL. 272 + 24 MAY 199
b |
b !
/

« In reality, we only observe the documents
e The other structure are hidden variables



The posterior distribution

. Topic proportions and
Topics Documents piC prop
assignments
Seeking Life’s Bare (Genetic) Necessities
C ally in
he h
/ 1
/
Stripping down. C s an
mato o the minimum modern and andient genomes
Exce !
4
-
/

e Qur goal is to infer the hidden variables
¢ |.e., compute their distribution conditioned on the documents
p(topics, proportions, assignments | documents)




Graphical models (Aside)

Nodes are random variables

Edges denote possible dependence

Observed variables are shaded

Plates denote replicated structure

D. Blei Topic Models



Graphical models (Aside)

e Structure of the graph defines the pattern of conditional dependence
between the ensemble of random variables

e E.g., this graph corresponds to
p(y7X]_,...,XN) :p(y)Hp(X”’y)

D. Blei Topic Models



LDA as a graphical model

Per-word

Proportions . X
topic assignment

parameter
Per-document Observed i Topic
topic proportions word Topics  parameter

R
O+OFO-@—0—+0

a 0o | Zan Win N Bk n
D K

e Nodes are random variables; edges indicate dependence.
e Shaded nodes are observed; unshaded nodes are hidden.

e Plates indicate replicated variables.



LDA Generative Story

We have K topics, and a vocabulary V of |V| words.
Each topic ¥ is a distribution over words.

A document d is created by

» Sample length n,; from a Poisson distribution
» (alternatively, assume n, is given)
» Sample topic proportions ¢ from a Dirichlet distribution
with parameter .
» For each positioni € 1,...,n:

» Sample topic z; from 64
» Sample word w; from the distribution 3%

20
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We have K topics, and a vocabulary V of |V| words.
Each topic ¥ is a distribution over words.

A document d is created by
» Sample length n,; from a Poisson distribution
» (alternatively, assume n, is given)

» Sample topic proportions ¢ from a Dirichlet distribution
with parameter .

» For each positioni € 1,...,n:

» Sample topic z; from 64
» Sample word w; from the distribution 3%

Assumptions

» We do not care about the word-order (“bag of words”)
» Each word is independent of the other words given its topic
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LDA Generative Story

We have K topics, and a vocabulary V of |V| words.
Each topic ¥ is a distribution over words.

A document d is created by
» Sample length n,; from a Poisson distribution
» (alternatively, assume n, is given)

» Sample topic proportions ¢ from a Dirichlet distribution
with parameter a.

» For each positioni € 1,...,n:

» Sample topic z; from 64
» Sample word w; from the distribution 3%

Assumptions

» We do not care about the word-order (“bag of words”)
» Each word is independent of the other words given its topic

20

1



The Dirichlet Distribution

» The Dirichlet distribution is a “distribution over distributions”
» When you sample 6 ~ DIRICHLET(«, K):

» 0 is a K-dim vector
» 0; >0
> >0i=1

21



The Dirichlet Distribution

» The Dirichlet distribution is a “distribution over distributions”
» When you sample 6 ~ DIRICHLET(«, K):

» 0 is a K-dim vector
» 0; >0
> >0i=1

The probability of seeing a particular vector 8 is:

K a;i—1

PD|R|CHLET(a,K)(9) = Hi;l(ii)
B(a) = HzK:I ['(ov)
D3y o)

- T" is the gamma function, generalization of factorial.

- Generally, « is a k-dim vector, but we will assume “symmetric” dirichlet, in
which « is a single scalar (and a; = «for all i € {1,...,K})

21



The Dirichlet Distribution

The Dirichlet distribution is a “distribution over distributions”

K i—1
Hi:l et'at

Py(0lar) = B(a)

» « controls the shape, mean and sparsity of ¢

22

1



1.04
0.8
0.6
0.4+
0.2+
0.04
1.04
0.8

@ 0.6
=1

g

0.2+

00"

1.04

0.8

0.6

0.4+

0.2+

0.01

> 0.4+

.|I..1“.

]1].]1]]].

IIII..IHI

ll|]]-|]l]

1]|I].1||

]n]]lhll

ESEEEENER

Illl.l...l

IR,

1|.|]I|..I

.I.:llll]

||||||||||||||||||||||||||||||||||||||||||||||||||
12345678910 12345678910 12345678910 12345678910 12345678910

item



F Il

item

lnlllnllll|nl||11l|Ilnllnllnll.lllll

1.04
0.8

ll]ll]]]lllll]l]lll]”]l1]]]11]]]1|1|Il]]|]|

it e toa e bl a1
8

1.04

0.84

0.64

0.4

0.2

NSIRERREEN
© 0.6
50.4-

0.24

sodl 11

1.04

0.84

0.64

0.4

0.24

ooft 1]

1




1.04

0.8

0.6

0.4+

0.2+

N R R R R R AR R AR IR R RRIIRERERER R

1.04

0.8

@ 0.6

=
E 0.4+

0.2+

NSRRI R R IR ERRRERIARRERRRR R

1.04

0.8

0.6

0.4+

0.2+

SRR RN RN IR RRRERERIIRRRE R

item



1.04
0.8
0.6
0.4+
0.2+
0.04
1.04
0.8

@ 0.6
=1

g

0.2+

00"

1.04

0.8

0.6

0.4+

0.2+

0.01

> 0.4+

.|I..1“.

]1].]1]]].

IIII..IHI

ll|]]-|]l]

1]|I].1||

]n]]lhll

ESEEEENER

Illl.l...l

IR,

1|.|]I|..I

.I.:llll]

||||||||||||||||||||||||||||||||||||||||||||||||||
12345678910 12345678910 12345678910 12345678910 12345678910

item



i

l]l”ll

ll‘

L B e

123456780910
item

RRHREAEIE

08
06
0.4
02
0.0
1.0
08

g 061

S 0.4

2
0.0
1.0
08
06
0.4
02
00




item

o

4
2

004+ » o

1.0

08

06

0.4

02

00

1.0
08
06
0.4
02
0.0
1.0
08




e
7

T
89
[

s
3

item

4

2

0.0 =

.04

8-

6

44

24
0.0-e o o o o o o o




The Dirichlet Distribution

For draws ¢ from a symmetric dirichlet distribution:

a =1 All 6 are equally likely
a > 1 Uniform 6 are more likely
a < 1 Spikey 6 are more likely

23/1



LDA Generative Story

We have K topics, and a vocabulary V of |V| words.
Each topic * is a distribution over words. 8% ~ Dirichlet(n, |V|)

A document d is created by

» Sample length n,; from a Poisson distribution
» (alternatively, assume n, is given)
» Sample topic proportions ¢ from a Dirichlet distribution
with parameter a.
» For each positionie 1,...,n:

» Sample topic z; from 64
» Sample word w; from the distribution 5%

24/1



LDA Generative Story

We have K topics, and a vocabulary V of |V| words.
Each topic * is a distribution over words. 8% ~ Dirichlet(n, |V|)

A document d is created by

» Sample length n,; from a Poisson distribution
» (alternatively, assume n, is given)
» Sample topic proportions ¢ from a Dirichlet distribution
with parameter a.
» For each positionie 1,...,n:

» Sample topic z; from 64
» Sample word w; from the distribution 5%

« controls how many topics we expect to see in our
documents

24
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Latent Dirichlet allocation (LDA)

. Topic proportions and
Topics Documents pic prop
assignments
Seeking Life’s Bare (Genetlc) Necessutles
COLD SPRING HARBOR, NEW YORK—
Ho {
/
/
/
ing. Cold Strgping down. Conputer s T4
Way 810 15 mato o te M modern and andient genomes.
SCIENCE » VOL. 272 24 MAY 199
b |
=
/

e QOur goal is to infer the hidden variables
l.e., compute their distribution conditioned on the documents

p(topics, proportions, assignments|documents)



LDA as a graphical model

Per-word

Proportions . X
topic assignment

parameter
Per-document Observed i Topic
topic proportions word Topics  parameter

R
O+OFO-@—0—+0

a 0o | Zan Win N Bk n
D K

e Nodes are random variables; edges indicate dependence.
e Shaded nodes are observed; unshaded nodes are hidden.

e Plates indicate replicated variables.



LDA as a graphical model

Per-word

Proportions . X
topic assignment

parameter
Per-document Observed i Topic
topic proportions word Topics  parameter

R
O+OFO-@—0—+0

« 04 Zin Wan N Bk n
D K

p(B,0,2,w) = ]_[ ﬂ,|n)) (]_[p(ed|a)]_[p 2401 09)P(Wain| B K,zdn))



LDA as a graphical model

OHOFO-@—-H0-+0

« 04 Zan Win N O i

* This joint defines a posterior, p(8, z, B | w).

e From a collection of documents, infer
e Per-word topic assignment z4
e Per-document topic proportions 6y
o Per-corpus topic distributions

e Then use posterior expectations to perform the task at hand:
information retrieval, document similarity, exploration, and others.



Example inference

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an organism need to
survive! Last week at the genome meeting
here,
different approaches presented complemen
tary views of the
One research team, using computer analy

two genome researchers with radically

ic genes needed for life.

ses to compare known genomes, concluded
that today’s organisms can he sustained with
just 250 wenes, and that the earliest life forms
required a mere 128

ather rescarcher mapped wenes

ina simple parasite and esti
mated that for this oraanism,

800 genesare plenty todothe | 0

job—butthat anyhing shore e o

of 100 wouldn't be enough. R A
Although the numbers don't ARSI\ FT00

match precisely, those predictions

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE » VOL. 272

o 24 MAY 1996

“are not all that far apart.” especially in
comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
500 number. But coming up with a consen-
sus answer may be more than just a genetic
numbers we, particularly as more and
snomes are completely mapped and
sequenced. “It may be a way of organizing

more

any newly sequenced genome.” explains
Arcady Mushegian, a computational mo

\ lecular biologist at the National Center

\ for Biotechnology Information (NCBI)
in Bethesda, Maryland. Comparing an

Ancesval

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes

D. Blei

—>

Topic

Probability

Models

0.4

0.3

0.0

LI

1 8 16 26 36 46 56 66 76 86 96

Topics



Example inference

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

D. Blei

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

Topic Models

computer
models
information
data
computers
System
network
systems
model
parallel
methods
networks
software
new

simulations



Example inference (Il

Chaotic Beetles

Charles Godfray and Michael Hassell

Ecologists have known since the pioneering
work of May in the mid-1970s (1) that the
population dynamics of animals and plants
can be exceedingly complex. This complex-
ity arises from two sources: The tangled web
of interactions that constitute any natural
community provide a myriad of different
pathways for species to interact, both di-
rectly and indirectly. And even in isolated
populations the nonlinear feedback pro-
cesses present in all natural populations can
result in complex dynamic behavior. Natural
populations can show persistent oscillatory
dynamics and chaos, the latter characterized
by extreme sensitivity to initial conditions. If
such chaotic dynamics were common in na-
ture, then this would have important ramifi

cations for the management and conserva-
tion of natural resources. On page 389 of this
issue, Costantino et al. (2) provide the most

The authors are in the Department of Biology. Imperial
College at Silwood Park, Ascot. Berks, SL5 7PZ UK. E-
mail: m hassell@ic ac.uk

convincing evidence to date of

move over the surface of the attractor, sets of
adjacent trajectories are pulled apart, then
stretched and folded, so that it becomes im-
possible to predict exact population densities
into the future. The strength of the mixing
that gives risc to the extreme sensitivity to
initial conditions can be measured math-
ematically estimating the Liapunov expo-
nent, which is positive for cha-

complex dynamics and chaos
in a biological population—of
the flour beetle, Tribolism
castanewm (sec figure).

It has proven extremely dif-
ficult to demonstrate complex
dynamics in populations in the
field. By its very nature, a cha
otically fluctuating population
will superficially resemble a
stable or cyclic population buf-
feted by the normal random per-
turbations experienced by all
species. Given a long enough
time  serics, diagnostic tools
from nonlinear mathematics

otic dynamics and nonposi-
tive otherwise. There have been
many attempts to estimate at-
tractor dimension and Liap
unov exponents from time se-
ries data, and some candidare
chaoic population have been
identified (some insects, ro-
dents, and most convinc-
ingly, human childhood di
cases), but the statistical diffi-
culties preclude any  broa
generalization (3).

n alternative approach s
to parameterize population
models with data from natural

can be used to \dcnuf\ the rell-

fchaos. In phase
space, chaotic trajectories come
to lic on “strange attractors,”
curious geometric objects with
fracal structure and_hence

The flour beetle, Tribo-
lium castaneum, exhibits
chaotic  population  dy-
namics when the amount
of cannibalism is altered

and then compare
their predictions with the dy-
namics in the field. This tech-
nique has been gaining popu-
larity in recent years, helped by
statistical advances in pa-
del.  rameter estimation. Good ex-

ind chaos.

d sthey ina

SCIENCE * VOL. 275 * 17 JANUARY 1997

D. Blei
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Example inference (II)

problem model
problems rate
mathematical constant
number distribution
new time
mathematics number
university size
two values
first value
numbers average
work rates
time data
mathematicians density
chaos measured
chaotic models

D. Blei

selection
male
males
females
sex
species
female
evolution
populations
population
sexual
behavior
evolutionary
genetic
reproductive

Topic Models

species
forest
ecology
fish
ecological
conservation
diversity
population
natural
ecosystems
populations
endangered
tropical
forests
ecosystem



Why does LDA work?
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Why does LDA “work”?

e LDA trades off two goals.
@ For each document, allocate its words to as few topics as possible.
@ For each topic, assign high probability to as few terms as possible.

e These goals are at odds.

e Putting a document in a single topic makes #2 hard:
All of its words must have probability under that topic.

e Putting very few words in each topic makes #1 hard:
To cover a document’s words, it must assign many topics to it.

e Trading off these goals finds groups of tightly co-occurring words.



What do we get out of LDA?

» Topic assignments z
» Topic proportions (how strong is topic k in document ;?)
» Topics distributions (how strong is word i in topic k7?)

» Also: which topics are related to word i?

26
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What do we get out of LDA?

» Topic assignments z
» Topic proportions (how strong is topic k in document ;?)
» Topics distributions (how strong is word i in topic k7?)

» Also: which topics are related to word i?

So?

v

Which topics are in our corpus?
Find similar docs (by comparing “topic vectors” of docs)
Find related words (by comparing “topic vectors” of words)

Query expansion: find documents related to words X,Y,Z,
even if all or some of these words did not appear in the
document

v

v

v
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“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL  YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research. education
and the social services”” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200.000 for its new building. which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $4 0 each. The Juilliard School. where music and
the performing arts are taught. will get $250. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make its usual annual $100.000
donation. too.




Topic Model

* P(tlk) for all t and k, is a term by topic matrix
(gives which terms make up a topic)

* P(kldoc) for all k and doc, is a topic by document
matrix (gives which topics are in a document)

documents topics
TOPIC " 3 % documents
el < .S )
MoDEL B C | =5 D5 O
2 = =
normalized mixture mixture

co-occurrence matrix components weights



EXAMPLE



Analysis of TASA Corpus

* Given a text collection written by first grade to
college students

* Data has following characteristics
— 26,000+ word types (stop words removed)
— 37,000+ documents
— 6,000,000+ word tokens

* Find topics in the data



Topics in the Educational Corpus (TASA)

e 37K docs, 26K words
e 1700 topics, e.g.:

PRINTING
PAPER
PRINT

PLAY
PLAYS
STAGE
AUDIENCE
THEATER
ACTORS
DRAMA

SHAK ARE

ACTOR
THEATRE
PLAYWRIGHT

PERFORMANCE

COPIES DR \\I.\]I(‘

FORM

GRAPHIC
SURFACE
PRODUCED
CHARACTERS

OPERA
PERFOR

TEAM
GAME
BASKETBALL
PLAYERS

PLAYING

SOCCER
PLAYED

FOOTBALL
SCORE
COURT
GAMES

TRY
COACH
GYM
SHOT

JUDGE
TRIAL
COURT
CASE
JURY

CHARGE
CRIMINAL

HYPOTHESIS

SCIENTIFIC
OBS ATIONS
SCIENTISTS

PERIMENTS

PLANATION

STUDYING

DECIDE
IMPORTANT
NOTEBOOK

REVIEW




PRINTING
PAPER
PRINT

PRINTED

GRAPHIC
SURFACE
PRODUCED

PERFORMED

Polysemy

TEAM
GAME

BASKETBALL

FOOTBAL
SCORE

GAMES
TRY
COACH
GYM
SHOT

JUDGE
TRIAL

HYPOTHE

CASE
JURY

HEARING

CHARGE

CRIMINAL IXPLANATION

NE
CL.
MATH

IMPORTANT
NOTEBOOK
REVIEW




Three Documents with the word “play”

(numbers & colors - topic assignments)

A BN is written® to be performed® on a stage®®? before a
audience®® or before or

later®™* by audiences®®?), A [EIENEE is written®?
because playwrights®? have something

(for

He was listening”” to music”” c from a passing®*®® riverboat. The
music”’ had already captured®® his as well as his . It was

jazz"’, Bix beiderbecke had already had music®”” lessons’”’. He
to HIENEl the cornet. And he to '

the . G the forone. The
book®>* . 80 into the . Don®
and read”* the book®*, The boys’? see a for
two. The two boys"’ FIENEE the




LDA Inference

How do we fit an LDA model to the data?

27
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Fitting an LDA model to our data

Use an existing tool!

» Mallet (java)
» gensym (python)
» Many other tools available
» (see David Blei’s website)

28
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Fitting an LDA model to our data

But how are the tools implemented?
And what if we want a slightly different story?

29
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Fitting an LDA model to our data

But how are the tools implemented?
And what if we want a slightly different story?

» Exact inference is intractable.
» Use an approximate algorithm.

29/1



Fitting an LDA model to our data

But how are the tools implemented?
And what if we want a slightly different story?

» Exact inference is intractable.
» Use an approximate algorithm.

» Current tools use modern complex algorithms:

» Fast
» Scale well to huge number of topics and documents
» Beyond the scope of this course

29/1



Fitting an LDA model to our data

But how are the tools implemented?
And what if we want a slightly different story?

Exact inference is intractable.

Use an approximate algorithm.
Current tools use modern complex algorithms:

» Fast
» Scale well to huge number of topics and documents
» Beyond the scope of this course

but for fitting a small to medium data, we can use Gibbs
sampling.
» (Gibbs is also our best bet for implementing modifications
of LDA)

v

v

v

v
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LDA Gibbs Sampler

Recall:
» Inputs: a, n, K
» Obeserved variables: words, W = wy ,
» Unobserved: ¢ =6',....0°, 3=p",..., 85, Z =z,

We need to sample from
p(Z,0,B8|W,a,n)
In Gibbs:

Initialize random z
Then, repeatedly:

Foreach k € {1,--- ,K}, sample 5" based on Z, W, n
Sample 6¢ based on Z, W, o

Sample z,; based on Z=41, ¢, 3, W

Sample z,, based on Z=92, ¢4, 3, W

v

v

v

v
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LDA Gibbs Sampler

Foreachk € {1,--- ,K}, sample " based on Z, W, n
Sample 6¢ based on Z, W, o

Sample z,; based on Z=41, ¢4, 3, W

Sample z,, based on Z=42, ¢4, 3, W

v

v

v

v

31



LDA Gibbs Sampler

v

Foreachk € {1,--- ,K}, sample " based on Z, W, n
Sample 6¢ based on Z, W, o

Sample z,; based on Z~ %1, ¢4, 3, W

Sample z,, based on Z=%2, 9%, 3, W

v

v

v

These lines are easy:
plzai = k| 27404 8,W) = 0] - By,

¢¢ probability of generating topic & in doc d
A4, probability of generating word W,; from topic k

31



LDA Gibbs Sampler

Foreach k € {1,--- ,K}, sample 3* based on Z, W, 1
Sample ¢’ based on Z, W, o

Sample z,; based on Z~41, ¢4, 3, W

Sample z,, based on Z=92, ¢4, 3, W

vV vyYyywy

> ..

What does this line mean?

32
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LDA Gibbs Sampler

Foreach k € {1,--- ,K}, sample 3* based on Z, W, 1
Sample ¢’ based on Z, W, o

Sample z,; based on Z~41, ¢4, 3, W

Sample z,, based on Z=92, ¢4, 3, W

| I

vV vyYyywy

What does this line mean?
We need to sample 69 from p(0|Z, o).

» Given Z, we can derive an MLE estimate of #:
count(zq; = k)

d _
0 =
nq



LDA Gibbs Sampler

Foreach k € {1,--- ,K}, sample 3* based on Z, W, 1
Sample ¢’ based on Z, W, o

Sample z,; based on Z~41, ¢4, 3, W

Sample z,, based on Z=92, ¢4, 3, W

| I

vV vyYyywy

What does this line mean?
We need to sample 69 from p(0|Z, o).

» Given Z, we can derive an MLE estimate of #:
count(zq; = k)

d __
0y =
ny

» But no. We need to sample. What does it mean to sample
07?

32/1



LDA Gibbs Sampler

Foreach k € {1,--- ,K}, sample 3* based on Z, W, 1
Sample ¢’ based on Z, W, o

Sample z,; based on Z~41, ¢4, 3, W

Sample z,, based on Z=92, ¢4, 3, W

| I

vV vyYyywy

What does this line mean?
We need to sample 64 from p(0|Z, «).

» Given Z, we can derive an MLE estimate of §:

g count(zg; = k)
Qk -
nq

» But no. We need to sample. What does it mean to sample
0?

» Under the Bayesian philosophy, we do not commit to a
single estimate of 4. Instead, we have a distribution
p(641Z, o) of possible #¢, based on our prior belief o and
the data we saw Z.

32
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LDA Gibbs Sampler

Foreachk € {1,--- ,K}, sample " based on Z, W, n
Sample ¢’ based on Z, W, o

Sample z,; based on Z=41, ¢4, 3, W

Sample z,, based on Z=42, ¢4, 3, W

> ...

v

v

v

v

What does this line mean?
We need to sample 64 from p(0|Z, o).

33
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LDA Gibbs Sampler

Foreachk € {1,--- ,K}, sample " based on Z, W, n
Sample ¢’ based on Z, W, o

Sample z,; based on Z=41, ¢4, 3, W

Sample z,, based on Z=42, ¢4, 3, W

> ...

v

v

v

v

What does this line mean?
We need to sample 64 from p(0|Z, o).

Because ¢ ~ DIRICHLET(«, K), and because dirichlet is
conjugate to multinomial, we have:

69|Z, a ~ DIRICHLET(a + ¢“)

where ¢ is s K-dim vector based on counts from Z, with ¢¢ is
the number of items in document d with topic k.
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LDA Gibbs Sampler

v

Foreachk € {1,--- ,K}, sample " based on Z, W, n
Sample ¢’ based on Z, W, o

Sample z,; based on Z=41, ¢4, 3, W

Sample z,, based on Z=42, ¢4, 3, W

> ...

v

v

v

We need to sample #¢ from p(0|Z, o).

0%Z, o ~ DIRICHLET (v + ¢%)

» There are algorithms for sampling from Dirichlet, but we
don’t need to actualy used them.

» Instead, we will use the the collapsed Gibbs sampler.

34
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Collapsed Gibbs sampler

Recall:
» Inputs: a, n, K
» Obeserved variables: words, W = wy ,
» Unobserved: ¢ =6',....0°, 3=p",..., 85, Z =z,

We need to sample from
p(Za 07 B‘Wu 01,77)
But actually, we are ok with just Z. Can we get rid of 6, 57?

» If 0, 5 were discrete, we could marginalize over them.

35
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Collapsed Gibbs sampler

Recall:
» Inputs: «, n, K
» Obeserved variables: words, W = wy,,
» Unobserved: 0 =0',...,0°, 3=p38... 65, Z =24,
We need to sample from
p(Z,0,BIW,a,n)
But actually, we are ok with just Z. Can we get rid of 6, 57?
» If 0, 5 were discrete, we could marginalize over them.
» But they are continuous, so instead we need to integrate

P(ZIW, am) = / / p(Z,0, BIW, o, n)d6d5
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Collapsed Gibbs sampler

Recall:
» Inputs: «, n, K
» Obeserved variables: words, W = wy,,
» Unobserved: 0 =0',...,0°, 3=p38... 65, Z =24,
We need to sample from
p(Z,0,BIW,a,n)
But actually, we are ok with just Z. Can we get rid of 6, 57?
» If 0, 5 were discrete, we could marginalize over them.
» But they are continuous, so instead we need to integrate

P(ZIW, am) = / / p(Z,0, BIW, o, n)d6d5

35/1



Collapsed Gibbs sampler

p(za; = kW, 27 a,n) = / / p(za; =k, 0,8| W, 2% o, n)dods

= /P(Zd,i = kfe)P(mOé)dH/p(Wd,i =W 24 =k, Z7% B)p(B|n)dn

You don't really need to know how to integrate!
Just remember that for Dirichlet:

Cy +

data,0)p(0la)dd = ———
| ptsdata. 0yp(0jea0 = Lo

Where ¢, is the count of event x in the data, and |data| =}, ¢/,
is the number of samples in the data.
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Collapsed Gibbs Sampler
Just remember that for Dirichlet:

Cy +

data,0)p(0la)dd = ————
| sdata. 0p(0jea0 = Lo

Where ¢, is the count of event x in the data, and |data| =}, ¢/,
is the number of samples in the data.
Use this rule twice (once for each [), and get:

d k +n
. ¢+ o VW'
Zd'*kz d717a7”’W. . K E t + !
p( st ‘ l) E K CZ/ (6% i’ v]v(vi/ ’ ’77

¢ number of words in doc d with topic k in Z~=91
vk, number of times word w; is assigned to topic & in
Z—d,i
K number of topics

|V| vocabulary size

37
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Collapsed Gibbs Sampler

Rule of Thumb
In MLE land:

count(k)
n—1

p(xn = k|x17x2? s 7xn71) =
In Dirichlet-prior « land:

( K ) count(k) + o
= X1, Q) = ——
P\Xn X1, X2, yAn—1, n—1+Ka

Derivation in MacKay and Peto (1994)
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Collapsed Gibbs Sampler

» Initialize random topics Z

» For many iterations, for each document d, for each word i:

» forget z,; getting Z—41
» sample new assignment for z, ; based on equation below.

d k
Yy ¢+« Vivi n
zai = kZ7% a,n,w; > . Sk 1|V
p( N | n l) k,cz,—i—KCk i/V]y(V’., | ’n

¢ number of words in doc d with topic k in Z~44

v{j,i number of times word w; is assigned to topic k in
Z_d’i

K number of topics
|V| vocabulary size
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LDA Evaluation

We have topics, are they good?

40
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LDA Evaluation

Internal Evaluation
If we want to compare two different LDA models on the same
data:

» Compare the Probability that is assigned to the data by
each model.

» Higher probability — better model

41



LDA Evaluation

Internal Evaluation
If we want to compare two different LDA models on the same
data:

» Compare the Probability that is assigned to the data by
each model.

» Higher probability — better model

» But this does not tell us much about how useful the topics
are. ..

41



LDA Evaluation

Internal Evaluation

If we want to compare two different LDA models on the same
data:

» Compare the Probability that is assigned to the data by
each model.

» Higher probability — better model

» But this does not tell us much about how useful the topics
are. ..

External (task-based) Evaluation

» Use the LDA topics as features in another task
» Measure the accuracy of the other task

41



LDA Evaluation

Internal Evaluation

If we want to compare two different LDA models on the same
data:

» Compare the Probability that is assigned to the data by
each model.

» Higher probability — better model

» But this does not tell us much about how useful the topics
are. ..

External (task-based) Evaluation

» Use the LDA topics as features in another task
» Measure the accuracy of the other task

» Good! But we need to have a task that we can
automatically measure.

41



LDA Evaluation

Human Evaluation
If we just want to know if our topics are “good” we can ask
people.

» But what is a good topic?

42

1



LDA Evaluation

Human Evaluation
If we just want to know if our topics are “good” we can ask
people.

» But what is a good topic?

» “Intruder Detection”

» Take top words from a topic.

Insert a random word which is high in another topic.
Can a human identify the random word?

Yes — good topic

vV vy

42
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Other Applications of LDA
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Change the definition of Document

Selectional Preferences
Take parsed corpus:

Documents each Verb is a document
Words each subject of a verb is a “word” in the document
Topics each topic is one “kind” of arguments

44/1



Topic £

Argl

Relations which assign
highest probability to ¢

Arg?

18

The residue - The mixture - The reaction
mixture - The solution - the mixture - the re-
action mixture - the residue - The reaction -
the solution - The filtrate - the reaction - The
product - The crude product - The pellet -
The organic layer - Thereto - This solution
- The resulting solution - Next - The organic
phase - The resulting mixture - C. )

was treated with, is
treated  with,  was
poured into, was
extracted with, was
purified by, was di-
luted with, was filtered
through, is disolved in,
is washed with

EtOAc - CH2CI2 - H20 - CH.5ub 2ClLsub2
- H.sub.20 - water - McOH - NaHCO3 -
E(20 - NHCI - CHCLsub.3 - NHCI - drop-
wise - CH2Clsub.2 - Celite - Etsub.20 -
Clsub.2 - NaOH - AcOEt - CH2CI12 - the
mixture - saturated NaHCO3 - Si02 - H20
ic acid - NHCI - preparati

HPLC - 100 C

151

the Court - The Court - the Supreme Court
- The Supreme Court - this Court - Court
- The US Supreme Court - the court - This
Court - the US Supreme Court - The court
- Supreme Court - Judge - the Court of Ap-
peals - A federal judge

will hear, ruled in, de-
cides, upholds, struck
down, overturned,
sided with, affirms

the case - the appeal - arguments - a case -

evidence - this case - the decision - the law

- testimony - the State - an interview - an

appeal es - the Court - that decision -

Congress - a decision - the complaint - oral
- a law - the statute

President Bush - Bush - The President -
Clinton - the President - President Clinton
- President George W. Bush - Mr. Bush -
The Governor - the Governor - Romney -
McCain - The White House - President -
Schwarzenegger - Obama

hailed, vetoed, pro-
moted,  will deliver,
favors,  denounced,
defended

the bill - a bill - the decision - the war - the
idea - the plan - the move - the legislation -
legislation - the measure - the proposal - the
deal - this bill - a measure - the program -
the law - the resolution - efforts - the agree-
ment - gay marriage - the report - abortion

224

Google - Software - the CPU - Clicking -
Excel - the user - Firefox - System - The
CPU - Internet Explorer - the ability - Pro-
gram - users - Option - SQL Server - Code
- the OS - the BIOS

will display, to store, to
load, processes, cannot
find, invokes, to search
for, to delete

data - files - the data - the file - the URL -
information - the files - images - a URL - the
information - the IP address - the user - text
- the code - a file - the page - TP addresse:
PDF files - messages - pages - an IP address

Table 1:

Example argument li

from the inferred topic:

For each topic number ¢ we list the most

45/1



[R|

Model is slightly different - topic generates two groups of things.

(how would you change the Gibbs sampler?)
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Change the definition of Document

Beyond NLP
Dataset of users who watched movies

Documents each user is a document
Words each movie is a word
Topics each topic is a “taste” or “genre”

» High topic-word prob: movie belong to genre
» High topic-doc prob: user likes genre

Can recommend new movies to users
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Extending LDA

®-O16

Parse trees
grouped into M

@ di;:menls
@.@ Y © d 9

o M

e LDA can be embedded in more complicated models, embodying further
intuitions about the structure of the texts.

e E.g., it can be used in models that account for syntax, authorship, word
sense, dynamics, correlation, hierarchies, and other structure.




Summary
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Unsupervised Learning

v

Define generative story

Include hidden (“latent”) variables

Find probable assignments to latent variables
Can use Gibbs sampling

v

v

v
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Unsupervised Learning

v

Define generative story

Include hidden (“latent”) variables

Find probable assignments to latent variables
Can use Gibbs sampling

v

v

v

Topic Modeling / LDA

» A very powerful and useful model. Use it

» Generative story for LDA

» Dirichlet distributions — can encourage sparsity
» Examples of LDA usage

» Gibbs sampler for LDA (briefly)
» relevant for every model with dirichlet

» Evaluation: quantify human judgement (“intruder
detection”)

» Creative definition of documents
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Next Time

LOOK UP IN ITS A
THE SKY! IT'S PLANE!
A BIRD!

©/ O
/A

OH No!

MAXIMUMBLE. COM
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Next Time

B3] onedct e

WHAT DO WE WANT?

Natural language processing!
WHEN DO WE WANT [T7?
Sorry, when do we want what?
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