
  

Simple Probabilistic Modeling
and PP Attachment



  

Ambiguity

● I saw the dog with the blue hat
● He talked to the girl in a harsh voice
● Graucho shot an elephant in his pajamas
● John gave Mary a sack of money
● He thought about filling the garden with flowers
● Collect the young children after school
● I saw a boy on the hill with a telescope
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These are all the same (how?)
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Ambiguity
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verb  NP(1)  preposition  NP(2)

ate     pizza          with             olivesate     pizza          with             olives

ate     pizza          with          my hands



  

The N-V PP attachment problem

● You get a 4-tuple: (verb, NP1, prep, NP2)
– talked the girl in a harsh voice

– shot an elephant in his pajamas

– found a sack of money

– filling the garden with flowers

● Need to decide: V or N
– V means a V-PREP relation   (ate with my hands)

– N means a N-PREP relation  (pizza with olives)

● A binary classification task



  

The N-V PP attachment problem

● You get a 4-tuple: (verb, NP1, prep, NP2)
– talked the girl in a harsh voice

– shot an elephant in his pajamas

– found a sack of money

– filling the garden with flowers

● Need to decide: V or N
– V means a V-PREP relation   (ate with my hands)

– N means a N-PREP relation  (pizza with olives)

● A binary classification task

Where do 
the tuples
come from???



  

One morning I shot an elephant in my pajamas. 
How he got into my pajamas I'll never know.

- Graucho Marx

Sometimes, must use discourse...
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Ambiguity

● I saw the dog with the blue hat
● He talked to the girl in a harsh voice
● Graucho shot an elephant in his pajamas
● John found a sack of money
● He thought about filling the garden with flowers
● Collect the young children after school
● I saw a boy on the hill with a telescope

verb  noun(1)  preposition  noun(2)

Modeling choice: 
consider only the head (“main”) words

Is this a reasonable thing to do?
why?

why not?
(what do we gain? what do we lose?)



  

The N-V PP attachment problem

● You get a 4-tuple: (verb, noun1, prep, noun2)
– talked girl in voice

– shot elephant in pajamas

– found sack of money

– filling garden with flowers

● Need to decide: V or N
– V means a V-PREP relation   (ate with hands)

– N means a N-PREP relation   (pizza with olives)

● A binary classification task



  

How do we solve it?

● Assume supervised classification:
– You get 4000 (or 40,000, or 400,000) tuples 

with their correct answer.
● talked girl in voice  → V
● shot elephant in pajamas → V
● found sack of money → N
● filling garden with flowers → V
● ...

– Someone hands new a new tuple. Need to decide 
based on previous observation.



  

Step 1 (always) → Look at the data



  

Step 1 (always) → Look at the data
Step 2 (always) → Define accuracy measure



  

Step 1 (always) → Look at the data
Step 2 (always) → Define accuracy measure

acc = correct / (correct + incorrect)



  

How do we solve it?

● Conditional probability:

if P(V | verb, noun1, prep, noun2) > 0.5

         say V
else:
         say N

for example, P(V | saw, boy, with, hat)



  

Maximum Likelihood Estimation

P( V | verb, noun1, prep, noun2) =

count(V,verb, noun1, prep, noun2)

count(*,verb, noun1, prep, noun2)

count(...)  is number of times we saw the event

in the training data

– This is called MLE estimation. (maximum likelihood)
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Maximum Likelihood Estimation

P( V | verb, noun1, prep, noun2) =

count(V,verb, noun1, prep, noun2)

count(*,verb, noun1, prep, noun2)

count(...)  is number of times we saw the event

in the training data

Is this reasonable? Why?Problem: data sparsity and overfitting



  

Another option (majority baseline)

P( V | verb, noun1, prep, noun2) ≈ P(V)

Is this reasonable?

What score would you expect?
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Another option

P( V | verb, noun1, prep, noun2) ≈ P(V|prep)

Is this reasonable?

What score what score would you expect?

This one is actually pretty good! (why?)

Can we do better?



  

P(V| verb, prep) ?

P(V| noun1, prep) ?

P(V| noun1, noun2) ?

P(V| verb, noun1, noun2) ?

P(V| verb, noun1, prep) ?



  

How do we combine the different 
probabilities?

● Remember, for a function to be a probability 
function, we must have:
– always positive

– sum to one

● (do we care if our scoring function is a 
probability function? why?)



  

How do we combine the different 
probabilities?

● One way of combining probabilities to obtain a 
probability is linear interpolation

P interpolate=λ1P1+λ2 P2+λ3P3 ...+λk P k

λ1+λ2+λ3+...+λk=1



  

● Interpolate

P(V|v,n1,p), P(V|v,p,n2), P(V|n1,p,n2) into Ptriplet

● Interpolate

P(V|v,p), P(V|n1,p), P(V|p,n2) into Ppair

Collins and Brooks' estimation
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● Interpolate
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Collins and Brooks' estimation

Notice we always include p (the preposition). 

We do not have P(V|n1,n2) for example. 

Why?
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How do we combine the different 
probabilities?

● One way of combining probabilities to obtain a 
probability is linear interpolation

P interpolate=λ1P1+λ2P 2+λ3P3 ...+λk P k

λ1+λ2+λ3+...+λk=1



  

Collins and Brooks' interpolation

λv , n1, p=
count (v , n1, p)

count (v ,n1, p)+count (v , p ,n2)+count (n1, p ,n2)

λn1, p ,n 2=
count (n1, p , n2)

count (v , n1, p)+count (v , p , n2)+count (n1, p ,n2)

λv , p ,n 2=
count (v , p , n2)

count (v , n1, p)+count (v , p ,n 2)+count (n1, p ,n2)



  

Collins and Brooks' interpolation

λv , n1, p=
count (v , n1, p)

count (v ,n1, p)+count (v , p ,n2)+count (n1, p ,n2)

λn1 , p , n2=
count (n1 , p ,n2)

count (v ,n1 , p)+count (v , p , n2)+count (n1 , p ,n2)

λv , p ,n2=
count (v , p , n2)

count (v , n1 , p)+count (v , p ,n2)+count (n1 , p ,n2)

Give more weight to events that occurred 
more times in the training data.



  

Collins and Brooks' estimation

P3(V|v,n1,p,n2) =
 count(V,v,n1,p) + count(V,v,p,n2) + count(V,n1,p,n2) 
 count(*,v,n1,p)  + count(*,v,p,n2 )+ count(*,n1,p,n2) 



  

Collins and Brooks' estimation

P3(V|v,n1,p,n2) =
 count(V,v,n1,p) + count(V,v,p,n2) + count(V,n1,p,n2) 
 count(*,v,n1,p)  + count(*,v,p,n2)+ count(*,n1,p,n2) 

This follows from

P3(V∣v ,n1, p ,n2)=λv ,n1, p P (V∣v ,n1, p)

+λn1, p ,n 2P (V∣n1, p , n2)

+λv , p ,n 2P (V∣v , p ,n2)

Pmle(V∣v , n1, p)=
count (V ,v , n1, p)
count (∗, v , n1, p)



  

Collins and Brooks' estimation

P3(V|v,n1,p,n2) =
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Collins and Brooks' estimation

P1(V|v,n1,p,n2) = count(V,p) / count(*,p)

P3(V|v,n1,p,n2) =
 count(V,v,n1,p) + count(V,v,p,n2) + count(V,n1,p,n2) 
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Collins and Brooks' estimation

Combine using Backoff

P1(V|v,n1,p,n2) = count(V,p) / count(*,p)

P3(V|v,n1,p,n2) =
 count(V,v,n1,p) + count(V,v,p,n2) + count(V,n1,p,n2) 
 count(*,v,n1,p)  + count(*,v,p,n2)+ count(*,n1,p,n2) 

P2(V|v,n1,p,n2) =
 count(V,v,p) + count(V,n1,p) + count(V,p,n2) 
 count(*,v,p) + count(*,n1,p)+  count(*,p,n2) 



  

Collins and Brooks' estimation -
Back-off

P(V|v,n1,p,n2) =
if count(v,n1,p,n2) > 0

use P4

else if   count(v,n1,p)  + count(v,p,n2)+ count(n1,p,n2) > 0
use P3 

else if   count(v,p)  + count(n1,p)+ count(p,n2, *) > 0
use P2

else if   count(p) > 0
use P1

else
use P0 = count(V) / count(V+N)



  

● Combination of probabilistic model and a 
heuristic

● Returns a well behaved probability score
– but not really well motivated by probability theory

● Works well

● → heuristics can be good, if designed well

Collins and Brooks' estimation -
Back-off



  

● Combination of probabilistic model and a heuristic
● Returns a well behaved probability score

– but not really well motivated by probability theory

● Works well

● → heuristics can be good, if designed well

● Will be nice to have a method that allows to easily 
integrate many clues without resorting to heuristics.

Collins and Brooks' estimation -
Back-off



  

● we've seen
– (saw,John,with,dog)

● But not
– (saw,Jack,with,dog)

Can we still say something about the second 
case?

Further improvements
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