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The tagging problem

Input
Holly came from Miami , F.L.A ,
hitch-hiked her way across the USA

Output
Holly/NNP came/VBD from/IN Miami/NNP ,/, F.L.A/NNP ,/,
hitch-hiked/VBD her/PRP way/NN across/IN the/DT USA/NNP

Assign a tag from a given tagset to each word in a sentence.
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Our goal

Training Set
1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB
the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/,
the/DT Dutch/NNP publishing/VBG group/NN ./.

3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC former/JJ
chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/,
was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT
British/JJ industrial/JJ conglomerate/NN ./.

. . .

. . .

38,219 That/DT could/MD cost/VB him/PRP the/DT chance/NN to/TO
influence/VB the/DT outcome/NN and/CC perhaps/RB join/VB the/DT
winning/VBG bidder/NN ./.

I From the training set, learn a function/algorithm that maps
new sentences to their tag sequences.
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Information Sources

With/IN such/PDT a/DT lopsided/JJ book/NN of/IN options/NNS
,/, traders/NNS say/VBP ,/, Chemical/NNP was/VBD more/RBR
vulnerable/JJ to/IN erroneous/JJ valuation/NN
assumptions/NNS ./.

I Local:
I the word “book” is likely to be a noun.
I the word “lopsided” is likely to be an adjective.

I Contextual:
I Noun are likely to follow adjectives or determiners.
I Verbs are not likely to follow determiners.
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Information Sources

I “I asked him to book a flight”
I “The trash can take care of itself”
I “The trash can is in the garage.”
I “Fruit flies like a banana.”
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The supervised tagging problem

Formally

I We have training examples x(i), y(i) for i = 1, . . . ,m.
I each x(i) is an input x1, . . . , xn (a crazy dog barked)
I each y(i) is an output y1, . . . , yn (DT JJ NN VBD)

I Task: learn a function f mapping inputs x to labels f (x) = y
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The supervised tagging problem

Conditional Model
I Learn a distribution p(y|x) from training examples.
I Define f (x) = argmaxyp(y|x)

I How do we compute p(y|x)?

7 / 54



The supervised tagging problem

Conditional Model
I Learn a distribution p(y|x) from training examples.
I Define f (x) = argmaxyp(y|x)
I How do we compute p(y|x)?

7 / 54



How do we define p(y|x)?

I If we could compute p(x, y), then p(y|x) = p(x,y)
p(x)

I . . . and p(x) is constant.
I . . . so arg maxy p(y|x) = arg maxy p(x, y)

⇒ Lets try to learn p(x, y) instead.

p(x,y)?

I Why not work with p(y|x) directly?
I We are working with probabilities.
I We’ll see shortly that we can compute p(x, y) using basic

probability rules.
I It is not so easy for p(y|x).

I What do we gain/loose from working with p(x, y)?
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Question 1: score computation
Assume someone gave us a x, y pair.
How do we compute p(x, y)?
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P( Holly/NNP came/VBD from/IN Miami/NNP ,/, F.L.A/NNP ,/,
hitch-hiked/VBD her/PRP way/NN across/IN the/DT USA/NNP )
?

P( Holly/NNP came/VBZ from/IN Miami/JJ ,/, F.L.A/NNP ,/,
hitch-hiked/IN her/PRP way/VBZ across/IN the/CD USA/NNP )
?

P( Holly/NN came/NN from/NN Miami/NN ,/NN F.L.A/NN ,/NN
hitch-hiked/NN her/NN way/NN across/NN the/NN USA/NN )
?

P( Holly/NNP came/VBZ from/IN Miami/NNP ,/, F.L.A/NNP ,/,
hitch-hiked/VBD her/PRP way/JJ across/IN the/DT USA/NNP )
?
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p(x,y)

Generative model
I Working with the joint probability p(x, y) suggests the use of

a generative model.
I Define a generative story of how the data was created.
I The story doesn’t have to be true. It has to be reasonable.

I Reasonable?? In terms of the independence assumptions.
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p(x,y)

Our generative story
How does a sentence come to life?

I First, a sequence of tags is created.

I Then, each tag is replaced with a word.
I All we see are the words. We need to guess the tags.
I Noisy channel interpretation: our pure message was y.

But something changed our message to x instead.
I Rewrite p(x, y) = p(y)p(x|y)
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p(x, y) = p(y)p(x|y)

I No assumptions so far.
I But breaking into p(y) and p(x|y) makes our life easier.

I Why?
I (and why not break things into p(x) and p(y|x)?)
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p(x, y) = p(y)p(x|y)

p(y)

I First attempt – Maximum Likelihood Estimation (MLE)

p(y) = p(y1, y2, . . . , yn) =
count(y1, y2, . . . , yn)

num of training examples

Problem?
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p(x, y) = p(y)p(x|y)

p(y)

I Second attempt – use chain rule

p(y) = p(y1, y2, . . . , yn) =p(y1)

× p(y2|y1)

× p(y3|y1, y2)

× p(y4|y1, y2, y3)

. . .

× p(yn|y1, y2, y3, . . . , yn−1)

I Is this any better?
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p(x, y) = p(y)p(x|y)

p(y) – Markov assumption

I Does the tag of the first word really influences the tag of
the seventh word?

I And the does it influence the tag of the 4th word?
I Let assume only the previous tag matters:

p(yi|y1, y2, . . . , yi−2, yi−1) ≈ q(yi|yi−1)
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p(x, y) = p(y)p(x|y)

p(y)

I chain rule + markov assumption

p(yi|y1, y2, . . . , yi−2, yi−1) ≈ q(yi|yi−1)

p(y) = p(y1, y2, . . . , yn) =q(y1|start)
× q(y2|y1)

× q(y3|y2)

× q(y4|y3)

. . .

× q(yn|yn−1)
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p(x, y) = p(y)p(x|y)

p(y) – 2nd-order Markov assumption

I Let assume only the two previous tag matter:

p(yi|y1, y2, . . . , yi−2, yi−1) ≈ q(yi|yi−2, yi−1)
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p(x, y) = p(y)p(x|y)

p(y)

I chain rule + 2nd-order markov assumption

p(yi|y1, y2, . . . , yi−2, yi−1) ≈ q(yi|yi−1, yi−2)

p(y) = p(y1, y2, . . . , yn) =q(y1|start,start)
× q(y2|start, y1)

× q(y3|y1, y2)

× q(y4|y2, y3)

. . .

× q(yn|yn−2, yn−1)
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Estimating q(yi|yi−2, yi−1)

I Here it is quite safe to use MLE estimates (why?)

q(c|a, b) = count(a, b, c)
count(a, b)

I We could still get zero probabilities.
I is this a bad thing?

I To be on the safe side, we could use interpolation:

q(c|a, b) = λ1
count(a, b, c)
count(a, b)

+ λ2
count(b, c)
count(b)

+ λ3
count(c)

num words

λ1 + λ2 + λ3 = 1 λi > 0

I How would you set the λ values?
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p(x, y) = p(y)p(x|y)
We can compute p(y)

p(y) = p(y1, y2, . . . , yn) =q(y1|start,start)
× q(y2|start, y1)

× q(y3|y1, y2)

× q(y4|y2, y3)

. . .

× q(yn|yn−2, yn−1)

=
n∏

i=1

q(yi|yi−2, yi−i)

Moving on to p(x|y)
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p(x|y)

p(x|y) =p(x1, x2, . . . , xn|y1, y2, . . . , yn) =

p(x1|y1, . . . , yn)

× p(x2|x1, y1, . . . , yn)

× p(x3|x1, x2, y1, . . . , yn)

× p(x4|x1, x2, x3, y1, . . . , yn)

. . .

× p(xn|x1, x2, . . . , xn, y1, . . . , yn)

I What’s a reasonable assumption to make here?
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p(x|y)

p(x|y) – independence assumption

I We’ll assume that a word depends only on its tag.

p(xi|x1, . . . , xi−1, y1, . . . , yn) ≈ e(xi|yi)

I A terrible assumption if we were generating sentences!
I . . . but we don’t use this model to generate sentences.
I The sentence is given. We are looking for a tag sequence.
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Estimating e(xi|yi)

I MLE again:

e(book|NN) =
count(book,NN)

count(NN)

I Do you see any problem here?
I (we’ll get to this later)
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p(x|y)

p(x|y) =p(x1, x2, . . . , xn, y1, y2, . . . , yn) =

e(x1|y1)

× e(x2|y2)

× e(x3|y3)

× e(x4|y4)

. . .

× e(xn|yn)

=

n∏
i=1

e(xi|yi)
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p(x, y) = p(y)p(x|y)
A Bigram Tagging Model (first order HMM)

p(x, y) = p(y)p(x|y) =
n∏

i=1

q(yi|yi−1)

n∏
i=1

e(xi|yi)

q(yi|yi−1) : transition probabilities
e(xi|yi) : emission probabilities

S y1 y2 y3 y4 y5 E

x1 x2 x3 x4 x5
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p(x, y) = p(y)p(x|y)
A Trigram Tagging Model (second order HMM)

p(x, y) = p(y)p(x|y) =
n∏

i=1

q(yi|yi−2, yi−1)

n∏
i=1

e(xi|yi)

q(yi|yi−2, yi−1) : transition probabilities
e(xi|yi) : emission probabilities

S y1 y2 y3 y4 y5 E

x1 x2 x3 x4 x5
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Second-order HMM Example

p( Holly/NNP came/VBD from/IN Miami/NNP ,/, F.L.A/NNP )

=

n∏
i=1

q(yi|yi−2, yi−1)

n∏
i=1

e(xi|yi) =

q(NNP|start, start)× q(VBD|start,NNP)× q(IN|NNP,VBD)

× q(NNP|VBD, IN)× q(, |IN,NNP)× q(NNP|NNP, )

× e(Holly|NNP)× e(came|VBD)× e(from|IN)

× e(Miami|NNP)× e(, |, )× e(F.L.A|NNP)
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Second-order HMM Example
p( Holly/NNP came/VBD from/IN Miami/NNP ,/, F.L.A/NNP )

=

n∏
i=1

q(yi|yi−2, yi−1)

n∏
i=1

e(xi|yi) =

q(NNP|start, start) ×e(Holly|NNP)

× q(VBD|start,NNP) ×e(came|VBD)

× q(IN|NNP,VBD) ×e(from|IN)

× q(NNP|VBD, IN) ×e(Miam|NNP)

× q(, |IN,NNP) ×e(, |, )
× q(NNP|NNP, ) ×e(F.L.A|NNP)

Problem
I We are multiplying many small numbers
I End-result will by tiny
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Solution:
∏
→

∑
argmaxyp(x, y) = argmaxy log p(x, y)

argmaxy

n∏
i=1

q(yi|yi−2, yi−1)×
n∏

i=1

e(xi|yi)

= argmaxy log(
n∏

i=1

q(yi|yi−2, yi−1)×
n∏

i=1

e(xi|yi))

= argmaxy

n∑
i=1

log q(yi|yi−2, yi−1) +
n∑

i=1

log e(xi|yi)
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Second Order HMM – log space

log p( Holly/NNP came/VBD from/IN Miami/NNP ,/, F.L.A/NNP )

=

n∑
i=1

log q(yi|yi−2, yi−1) +

n∑
i=1

log e(xi|yi) =

log q(NNP|start, start) + log e(Holly|NNP)

+ log q(VBD|start,NNP) + log e(came|VBD)

+ log q(IN|NNP,VBD) + log e(from|IN)

+ log q(NNP|VBD, IN) + log e(Miam|NNP)

+ log q(, |IN,NNP) + log e(, |, )
+ log q(NNP|NNP, ) + log e(F.L.A|NNP)
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Decoding
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Decoding

argmaxy ?
Remember, we want to tag sentences.

I We can compute p(x, y)
I We are given words x = x1, . . . , xn

I We are looking for a sequence y = y1, . . . , yn

s.t. p(x, y) is maximized.

How do we search for y?
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argmaxyp(x, y)

Solution 1
I Go over all possible sequences y.
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fruit flies like flowers

start end

DET

NOUN

ADJ

VERB

PREP

DET

NOUN

ADJ

VERB

PREP

DET

NOUN

ADJ

VERB

PREP

DET

NOUN

ADJ

VERB

PREP
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argmaxyp(x, y)

Solution 1
I Go over all possible sequences y.

Problem
I There are very many such sequences. (how many?)
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argmaxyp(x, y)

Solution 2
I Choose the highest scoring tag t1 for e(x1|y1)q(y1|start)
I Choose the highest scoring tag t2 for e(x2|y2)q(y2|start, t1)
I Choose the highest scoring tag t3 for e(x3|y3)q(y3|t1, t2)
I . . .

complexity: O(kn) where k is tagset size.

Problem
I Will not produce optimal solution. (why?)
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argmaxyp(x, y)

Solution: Dynamic Programming

I The viterbi algorithm.
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Bigram Viterbi

V(i, t)
maximum probability of a tag sequence ending
in tag t at time i.

Recursive Definition

V(0,start) = 1

V(i, t) = max
t′

V(i− 1, t′)q(t|t′)e(wi|t)
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Trigram Viterbi

V(i, t, r)
maximum probability of a tag sequence ending
in tags t,r at time i.

Recursive Definition

V(0,start,start) = 1

V(i, t, r) = max
t′

V(i− 1, t′, t)q(r|t′, t)e(wi|r)
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Trigram Viterbi

V(i, t, r)
maximum probability of a tag sequence ending
in tags t,r at time i.

Recursive Definition

V(0,start,start) = 1

V(i, t, r) = max
t′

V(i− 1, t′, t)q(r|t′, t)e(wi|r)
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Trigram Viterbi – Algorithm

Input:
sentence: w1, . . . ,wn

parameters: e(w|t), q(t|u, v)
tagset: T

Output:
probability of best tag sequence y1, . . . , yn

Algorithm:

I For i = 1, . . . , n
I For t ∈ T, r ∈ T

V(i, t, r) = maxt′ V(i− 1, t′, t)q(r|t′, t)e(wi|r)

return: maxt∈T,r∈T V(n, t, r)
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Trigram Viterbi with Back-pointers – Algorithm
Input:
sentence: w1, . . . ,wn

parameters: e(w|t), q(t|u, v)
tagset: T

Output:
probability of best tag sequence y1, . . . , yn

Algorithm:

I For i = 1, . . . , n
I For t ∈ T, r ∈ T

V(i, t, r) = maxt′ V(i− 1, t′, t)q(r|t′, t)e(wi|r)
bp(i, t, r) = arg maxt′ V(i− 1, t′, t)q(r|t′, t)e(wi|r)

I set yn−1, yn = arg maxt,r V(n, t, r)
I for i = n− 2 . . . 1 set yi = bp(i + 2, yi+1, yi+2)

return: y1, . . . , yn
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Runtime

O(n ∗ |T|3)

why?

47 / 54



Supervised Second-order HMM Tagger
(trigram tagger)

Training

I Using corpus of tagged sentences, compute:
I count(tag1,tag2,tag3), count(tag1,tag2), count(tag),

count(tag,word)
I calculate e, q based on counts

Tagging

I When given a sentence x = x1, . . . , xn
I Use the viterbi algorithm to find

argmaxyp(y|x) = argmaxyp(x, y)
I using the e and q quantities from training.
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Order considerations

I First order markov: p(yi|y1, . . . , yi−1) = q(yi|yi−1)

I Second order markov: p(yi|y1, . . . , yi−1) = q(yi|yi−2, yi−1)

Is there any reason to prefer the first- over the second-order?

Why not do third-order?
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HMMs – dealing with rare or unseen words

Our training set is of limited size

I Some words will not be seen in the corpus.

I so?
I Some words will only be seen once.

I so?
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HMMs – dealing with rare or unseen words

How do we calculate
e(word|tag)

for unseen or infrequent words?

I UNK

e(UNK|tag)

I “Signatures”
_ing

X_ed

Aa

How do we estimate these?
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HMM – Sumary

S y1 y2 y3 y4 y5 E

x1 x2 x3 x4 x5

S y1 y2 y3 y4 y5 E

x1 x2 x3 x4 x5
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HMM – Summary

The HMM tagging algorithm

I f (x) = argmaxyp(y|x) = argmaxyp(x, y)
I model p(x, y) = p(y)p(x|y) =

∏
q(yi|yi−1)× e(xi|yi)

I Learn tables for transitions q and emissions e by counting.
I Find best y for a given x using viterbi.
I Hardest part: good e(word|tag) for rare/unseen words.
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HMM – Summary

I For a long time, the best tagging algorithm available.
I Nowadays, more accurate models exist (we’ll see some of

them).
I HMM still useful for unsupervised learning.

I You a lot of text (without labels)
I And a dictionary mapping words to possible tags.
⇒ Can learn q and e using the EM algorithm.
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