Part of Speech Tagging and HMMs

Yoav Goldberg

Bar llan University

/54



The tagging problem

Input
Holly came from Miami , FL.A |
hitch-hiked her way across the USA

Output
Holly/NNP came/VBD from/IN Miami/NNP ./, F.L.A/NNP ,/,
hitch-hiked/VBD her/PRP way/NN across/IN the/DT USA/NNP

Assign a tag from a given tagset to each word in a sentence.



Our goal

Training Set
1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, wil/MD join/VB

the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/,
the/DT Dutch/NNP publishing/VBG group/NN ./.

3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC former/JJ
chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/,
was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT
British/JJ industrial/JJ conglomerate/NN /.

38,219 That/DT could/MD cost/VB him/PRP the/DT chance/NN to/TO
influence/VB the/DT outcome/NN and/CC perhaps/RB join/VB the/DT
winning/VBG bidder/NN ./.

» From the training set, learn a function/algorithm that maps
new sentences to their tag sequences.

/54



Information Sources

With/IN such/PDT a/DT lopsided/JJ book/NN of/IN options/NNS
/, traders/NNS say/VBP ,/, Chemical/NNP was/VBD more/RBR
vulnerable/JJ to/IN erroneous/JJ valuation/NN
assumptions/NNS ./.

/54



Information Sources

With/IN such/PDT a/DT lopsided/JJ book/NN of/IN options/NNS
/, traders/NNS say/VBP ,/, Chemical/NNP was/VBD more/RBR
vulnerable/JJ to/IN erroneous/JJ valuation/NN
assumptions/NNS ./.

» Local:

» the word “book” is likely to be a noun.
» the word “lopsided” is likely to be an adjective.



Information Sources

With/IN such/PDT a/DT lopsided/JJ book/NN of/IN options/NNS
/, traders/NNS say/VBP ,/, Chemical/NNP was/VBD more/RBR
vulnerable/JJ to/IN erroneous/JJ valuation/NN
assumptions/NNS ./.

» Local:

» the word “book” is likely to be a noun.

» the word “lopsided” is likely to be an adjective.
» Contextual:

» Noun are likely to follow adjectives or determiners.
» Verbs are not likely to follow determiners.

/54



Information Sources

v

“| asked him to book a flight”
“The trash can take care of itself”
“The trash can is in the garage.”
“Fruit flies like a banana.”

v

v

v

54



The supervised tagging problem

Formally
» We have training examples x) y() fori=1,... m.
» each x\) is an input xj, ..., x, (a crazy dog barked)

» each y() is an output yi, ..., y, (DT JJ NN VBD)

/54



The supervised tagging problem

Formally
» We have training examples x) y() fori=1,... m.
» each x\) is an input xj, ..., x, (a crazy dog barked)
» each y( is an output yi, ..., y, (DT JJ NN VBD)

» Task: learn a function f mapping inputs x to labels f(x) =y

/54



The supervised tagging problem

Conditional Model

» Learn a distribution p(y|x) from training examples.
» Define f(x) = argmax,p(y|x)

/54



The supervised tagging problem

Conditional Model
» Learn a distribution p(y|x) from training examples.
» Define f(x) = argmax,p(y|x)
» How do we compute p(y|x)?

/54



How do we define p(y|x)?

> If we could compute p(x, y), then p(y|x) = 2L

» ...and p(x) is constant.
> ...S0 arg max, p(y|x) = arg max, p(x,y)
= Lets try to learn p(x,y) instead.

/54



How do we define p(y|x)?

> If we could compute p(x, y), then p(y|x) = 2L
» ...and p(x) is constant.
> ...S0 arg max, p(y|x) = arg max, p(x,y)

= Lets try to learn p(x,y) instead.

p(x,y)?
» Why not work with p(y|x) directly?

/54



How do we define p(y|x)?

> If we could compute p(x, y), then p(y|x) = 2L
» ...and p(x) is constant.
> ...S0 arg max, p(y|x) = arg max, p(x,y)

= Lets try to learn p(x,y) instead.

p(x.y)?

» Why not work with p(y|x) directly?
» We are working with probabilities.
» We'll see shortly that we can compute p(x, y) using basic
probability rules.
» It is not so easy for p(y|x).

54



How do we define p(y|x)?

> If we could compute p(x, y), then p(y|x) = 2L
» ...and p(x) is constant.
> ...S0 arg max, p(y|x) = arg max, p(x,y)

= Lets try to learn p(x,y) instead.

p(x.y)?

» Why not work with p(y|x) directly?
» We are working with probabilities.
» We'll see shortly that we can compute p(x, y) using basic
probability rules.
» It is not so easy for p(y|x).

» What do we gain/loose from working with p(x,y)?

54



Question 1: score computation

Assume someone gave us a x, y pair.
How do we compute p(x,y)?

/54



P( Holly/NNP came/VBD from/IN Miami/NNP ,/, F.L.A/NNP /,

hitch-hiked/VBD her/PRP way/NN across/IN the/DT USA/NNP )
?

P( Holly/NNP came/VBZ from/IN Miami/JJ ,/, FL.A/NNP ,/,

hitch-hiked/IN her/PRP way/VBZ across/IN the/CD USA/NNP )
?

P( Holly/NN came/NN from/NN Miami/NN ,/NN F.L.A/NN ,/NN

hitch-hiked/NN her/NN way/NN across/NN the/NN USA/NN )
?

P( Holly/NNP came/VBZ from/IN Miami/NNP ,/, F.L.A/NNP ,/,

hitch-hiked/VBD her/PRP way/JJ across/IN the/DT USA/NNP )
?

10/54



P(X,y)

Generative model
» Working with the joint probability p(x, y) suggests the use of
a generative model.
» Define a generative story of how the data was created.

» The story doesn’t have to be true. It has to be reasonable.
» Reasonable?? In terms of the independence assumptions.

11/54



P(X,y)

Our generative story
How does a sentence come to life?
» First, a sequence of tags is created.

12/54



P(X,y)

Our generative story
How does a sentence come to life?

» First, a sequence of tags is created.
» Then, each tag is replaced with a word.

12/54



P(X,y)

Our generative story
How does a sentence come to life?
» First, a sequence of tags is created.

» Then, each tag is replaced with a word.
» All we see are the words. We need to guess the tags.

» Noisy channel interpretation: our pure message was y.

But something changed our message to x instead.

12/54



P(X,y)

Our generative story
How does a sentence come to life?
» First, a sequence of tags is created.

» Then, each tag is replaced with a word.

» All we see are the words. We need to guess the tags.
» Noisy channel interpretation: our pure message was y.
But something changed our message to x instead.

» Rewrite p(x,y) = p(y)p(x|y)

12/54



p(x,y) = p(y)p(x]y)

» No assumptions so far.

» But breaking into p(y) and p(x|y) makes our life easier.
> Why?
» (and why not break things into p(x) and p(y|x)?)

13/54



» First attempt — Maximum Likelihood Estimation (MLE)

count(y1,¥2, -, Yn)
num of training examples

() =pO1,y2, -, ¥n) =

14/54



» First attempt — Maximum Likelihood Estimation (MLE)

count(y1,¥2, -, Yn)
num of training examples

p(Y) =P, Y2, ¥n) =

Problem?

14/54



p(x,y) = p(y)p(x]y)

» Second attempt — use chain rule

P») =pO1,y2, - yn) =P
y3lyi,y2)

(
X
X
X ‘)’17)’27)’3)

)
p(y2ly1)
p(
p(y

X p(yn‘yla)’2,y3, o

7yn—1)

15/54



p(x,y) = p(y)p(x]y)

» Second attempt — use chain rule

P») =pO1,y2, - yn) =P
y3lyi,y2)

(
X
X
X ‘)’17)’27)’3)

)
p(y2ly1)
p(
p(y

X p(yn‘yla)’2,y3, o

» |s this any better?

7yn—1)

15/54



p(x,y) = p(y)p(x]y)

p(y) — Markov assumption

» Does the tag of the first word really influences the tag of
the seventh word?

16/54



p(x,y) = p(y)p(x]y)

p(y) — Markov assumption

» Does the tag of the first word really influences the tag of
the seventh word?

» And the does it influence the tag of the 4th word?

16/54



p(x,y) = p(y)p(x]y)

p(y) — Markov assumption

» Does the tag of the first word really influences the tag of
the seventh word?
» And the does it influence the tag of the 4th word?

» Let assume only the previous tag matters:

16/54



p(x,y) = p(y)p(x]y)

p(y) — Markov assumption

» Does the tag of the first word really influences the tag of
the seventh word?

» And the does it influence the tag of the 4th word?
» Let assume only the previous tag matters:

pWilyi,y2, - Yie2, vie1) = q(yilyi-1)

16/54



p(x,y) = p(y)p(x]y)

p(y)

» chain rule + markov assumption

pPOilyy2, - Yie2, yie1) = q(yilyi-1)

() =pO1,y2,---,y0) =q(y1|start)
x q(y2[y1)
x q(y3]y2)
X q(yaly3)

X q(Vnlyn—1)

17/54



p(x,y) = p(y)p(x]y)

p(y) — 2nd-order Markov assumption

» Let assume only the two previous tag matter:

pOily1,y2, -, yic2,vic1) = q(yilyi-2, vio1)

18/54



p(x,y) = p(y)p(x]y)

» chain rule + 2nd-order markov assumption

pPily,y2, - yie2, yie1) = q(ilyi-1, yi—2)

p») =p(1,y2---,y) =q(1|start, start)
X q(y2|start,y;)
x q(y3ly1,2)
X q(yaly2,y3)

X Q(yn|yn—27yn—l)

19/54



Estimating ¢(vi|yi—2,vi-1)

» Here it is quite safe to use MLE estimates (why?)
count(a, b, c)

b) =
a(cla,b) count(a, b)

20/54



Estimating ¢(vi|yi—2,vi-1)

» Here it is quite safe to use MLE estimates (why?)
count(a, b, c)

b) =
a(cla,b) count(a, b)

» We could still get zero probabilities.
» is this a bad thing?

20/54



Estimating ¢(vi|yi—2,vi-1)

» Here it is quite safe to use MLE estimates (why?)
count(a, b, c)

b) =
a(cla,b) count(a, b)

» We could still get zero probabilities.
» is this a bad thing?

» To be on the safe side, we could use interpolation:

count(a, b, c) count(b, c) count(c)
count(a, b) 2 count(b) > num words

q(cla,b) =\

20/54



Estimating ¢(vi|yi—2,vi-1)

» Here it is quite safe to use MLE estimates (why?)
count(a, b, c)

b) =
a(cla,b) count(a, b)

» We could still get zero probabilities.
» is this a bad thing?

» To be on the safe side, we could use interpolation:

count(a, b, c) count(b, c) count(c)
count(a, b) 2 count(b) > num words

q(cla,b) =\

Mt +M=1 X\>0

20/54



Estimating ¢(vi|yi—2,vi-1)

» Here it is quite safe to use MLE estimates (why?)
count(a, b, c)

b) =
a(cla,b) count(a, b)

» We could still get zero probabilities.
» is this a bad thing?

» To be on the safe side, we could use interpolation:

count(a, b, c) count(b, c) count(c)
count(a, b) 2 count(b) > num words

q(cla,b) =\

Mt +M=1 X\>0

» How would you set the A values?

20/54



p(x,y) =p(y)p(x]y)
We can compute p(y)

p») =pi,y2,...,¥n) =q(y1|start, start)
X q(y2|start,y)
X q(y3ly1,y2)
X q(valy2,y3)

X q(Yn|Yn—2, Yn—1)

21/54



p(x,y) = p(y)p(x]y)

We can compute p(y)

p(y) =p(1,y2:---,yn) =q(y1|start, start)
X q(y2|start,y;)
x q(y3ly1,y2)
X q(yaly2,y3)

X Q(yn|yn—27yn—1)

n

= H q(ilyi—2, yi—i)

i=1

21/54



p(x,y) = p(y)p(x]y)

We can compute p(y)

p(y) =p(1,y2:---,yn) =q(y1|start, start)
X q(y2|start,y;)
x q(y3ly1,y2)
X q(yaly2,y3)

X Q(yn|yn—27yn—1)

n

= H q(ilyi—2, yi—i)

i=1

Moving on to p(x|y)

21/54



p(x‘y) :p(-xlvxZu"‘ 7xn|J’1,y2,~ . ayn) -

22/54



p(x‘y) :p(-xlvxZu"' 7xn|J’1,y2,~ . '7yn) -
pxalyrs ..o m)

22/54



p(x‘y) :p(-xlvxZu"' 7xn|J’1,y2,- . '7yn) -
pxalyrs ..o m)
Xp(lexlvyla‘” 7yn)

22/54



p(xly)

p(xly) =p(x1,x2, ..., Xaly1,¥2, -, V0) =
pxilyi, - vn)
X p(x2|x1,y1,- -, Yn)
X p(X3]X1,X2, Y15 -+, Yn)

X p(Xalx1,%2,X3, Y1, ., Yn)

XP(Xn|x17x27--- yXny Y1y« - 7yn)

22/54



p(xly)

p(x‘y) ZP(XI,XQ,... 7xn|J’1,)’2>- . '7yn) -
P(x1|y17~ . '7yn)
Xp(le'xlvylv“- 7yn)

XP(X3!X1,X27)’1,~--7yn)
XP(X4’X17)C27X37)’1a-- . 7yl’l)
X P(Xn|X1, X2, -y Xy V1s v o3 V)

» What's a reasonable assumption to make here?

22/54



p(xly)

p(x|]y) — independence assumption

» We’ll assume that a word depends only on its tag.

P(xi|x17~ '7-xi—17y17"‘7yn) ~ e(xi’yi)

23/54



p(xly)

p(x|]y) — independence assumption
» We’ll assume that a word depends only on its tag.

P(xi|x17~ . 7-xi—17y17"‘7yn) ~ e(xi’yi)

» A terrible assumption if we were generating sentences!

23/54



p(xly)

p(x|]y) — independence assumption

» We’ll assume that a word depends only on its tag.

P(xi|x17~ . 7-xi—17y17"‘7yn) ~ e(-xi’yi)

» A terrible assumption if we were generating sentences!

» ...but we don’t use this model to generate sentences.
» The sentence is given. We are looking for a tag sequence.

23/54



Estimating e(x;]y;)

» MLE again:

count(book, NN )

book|NN) =
e(book|NN) count(NN)

24/54



Estimating e(x;]y;)

» MLE again:

count(book, NN)

book|NN) =
¢(bookiNN) count(NN)

» Do you see any problem here?

24/54



Estimating e(x;]y;)

» MLE again:

count(book, NN)

book =
¢(bookiNN) count(NN)

» Do you see any problem here?
» (we'll get to this later)

24/54



p(x[y) =p(x1,%2, ..., X0y Y1, Y2, - -, V) =
e(x1[y1)
x e(xa|y2)
x e(x3y3)
x e(xsys)

X e(Xn|yn)

= H e(xilyi)

25/54



p(x,y) = p(y)p(x[y)
A Bigram Tagging Model (first order HMM)

n n

p(x,y) = p)p(xly) = H a(vilyi-1) H e(xilyi)

q(yilyi—1) : transition probabilities
e(x;]y;) : emission probabilities

26/54



p(x,y) = p(y)p(x[y)
A Bigram Tagging Model (first order HMM)

px,y) =pOply) = [T aGilvio) [ e(xly)
i=1 i=1

q(yilyi—1) : transition probabilities
e(x;]y;) : emission probabilities

)’1 @ y3 @ @

j/

® 66 &6

26/54



p(x,y) = p(y)p(xly)
A Trigram Tagging Model (second order HMM)

n n

p(x,y) = pp(xly) = [ ] aGilyi-2,yim1) [ ] e(xilyi)

i=1 i=1

q(yilyi—2,vi—1) : transition probabilities
e(x;]y;) : emission probabilities

27/54



p(x,y) = p(y)p(xly)
A Trigram Tagging Model (second order HMM)

n n

p(x,y) = pp(xly) = [ ] aGilyi-2,yim1) [ ] e(xilyi)

i=1 i=1

q(yilyi—2,vi—1) : transition probabilities
e(x;]y;) : emission probabilities

27/54



Second-order HMM Example

p( Holly/NNP came/VBD from/IN Miami/NNP ,/, FL.A/NNP )

n n
=T aGilyi2,yi) [ ] exilyi) =
i=1 i=1

q(NNP|start, start) x q(VBD|start, NNP) x q(IN|NNP, VBD)
x q(NNP|VBD, IN) x q(, |IN, NNP) x q(NNP|NNP,)

x e(Holly|NNP) x e(came|VBD) X e(from|IN)

x e(Miami|NNP) x e(,|,) x e(F.L.A[NNP)

28/54



Second-order HMM Example

p( Holly/NNP came/VBD from/IN Miami/NNP ,/, FL.A/NNP )

n

n
= a0ilyi2,yi-1) [ ety =
i=1

i=1

q(NNP|start, start) x e(Holly|NNP)
x q(VBDl|start, NNP) x e(came|VBD)
x q(IN|NNP, VBD) xe(from|IN)
« q(NNP|VBD, IN) x e(Miam|NNP)
x q(,|IN, NNP) xe(,],)
X q( )

NNP|NNP,) xe(F.L.A|NNP

28/54



Second-order HMM Example
p( Holly/NNP came/VBD from/IN Miami/NNP ,/, F.L.A/NNP )

n

n
=[] a0ilyi-2,yi-1) [T etxily) =
i=1

i=1

q(NNP|start, start) x e(Holly|NNP)
x q(VBD|start, NNP) xe(came|VBD)
X q(IN|NNP, VBD) xe(from|IN)
x q(NNP|VBD, IN) (MzamyNNP)
x q(, |IN,NNP) e(,],)
x g(NNP|NNP,) xe(F.LA ]NNP)
Problem

» We are multiplying many small numbers
» End-result will by tiny

29/54



Solution: [ — >

argmaxyp(x,y) = argmaxylogp(x,y)

30/54



Solution: [ — >
argmaxyp(x,y) = argmaxylogp(x,y)

n n
argmax, H q(ilyi—2,yi-1) X H e(xi|yi)
i=1 i=1

n n
= argmaxylog(] [ q(ilyi—2,yi-1) x [ [ e(xilyi))

i=1 i=1

30/54



Solution: [ — >
argmaxyp(x,y) = argmaxylogp(x,y)

n n
argmax, H q(ilyi—2,yi-1) X H e(xi|yi)
i=1 i=1

n n
= argmaxylog(] [ q(ilyi—2,yi-1) x [ [ e(xilyi))

i=1 i=1

n n
= argmax, » logq(yilyi—2,yi-1) + Y _ loge(xi[y;)
i=1 i=1

30/54



Second Order HMM — log space

log p( Holly/NNP came/VBD from/IN Miami/NNP ,/, F.L.A/NNP )

n
= "logq(yilyi—2,yi-1)

i=1

log g(NNP|start, start)

+ log g(VBD|start, NNP)

+logg
+logg
+ logg
+ logg

~~

IN|NNP, VBD)
NNP|VBD, IN)
,|IN, NNP)
NNP|NNP,)

n
+ Z log e(xi|y;) =
i=1

+ log e(Holly|NNP
+ log e(came|VBD
-+ log e(from|IN

+ log e(Miam|NNP
Tloge(,l,

+log e(F.L.AINNP

— — — — — —

31/54



Decoding

32/54



Decoding

argmax, ?

Remember, we want to tag sentences.
» We can compute p(x,y)
» We are given words x = xj,...,x,

» We are looking for a sequence y = yy, . ..

s.t. p(x,y) is maximized.

How do we search for y?

33/54



argmax,p(x, )

Solution 1

» Go over all possible sequences y.

34/54



PREP\PREP PREP PREP

VERB VERB VERB VERB
start ADJ ADJ \ADJ ADJ end
NOUN NOUN NOUN\ NOUN/
DET DET DET DET

fruit flies like flowers

35/54



PREP——PREP—PREP——PREP
VERB VERB VERB VERB

start ADJ ADJ ADJ ADJ end
NOUN NOUN NOUN NOUN

DET DET DET DET

fruit flies like flowers

36/54



PREP PREP/PREP PREP
VERB VERB VERB VERB

/

start — ADJ ADJ ADJ ADJ end
NOUN NOUN NOUN NOUN/

DET DET DET DET

fruit flies like flowers

37/54



PREP PREP PREP PREP

VERB VERB/VERB VERB
start ADJ ADJ ADJ ADJ end
\NOUN NOUN NOUN NOUN/
DET DET DET DET

fruit flies like flowers

38/54



PREP PREP PREP PREP

VERB VERB VERB VERB
start ADJ ADJ ADJ ADJ end
\NOUN_’ NOUN NOUN NOUN/
DET DET DET DET

fruit flies like flowers

39/54



argmax,p(x, )

Solution 1

» Go over all possible sequences y.

Problem

» There are very many such sequences. (how many?)

40/54



argmax,p(x, )

Solution 2

v

Choose the highest scoring tag #; for e(x;|y1)q(y:|start)
Choose the highest scoring tag 1, for e(xz|y2)q(y2|start, t1)
Choose the highest scoring tag 7; for e(x3|y3)q(y3|ti, )

v

v

41/54



argmax,p(x, )

Solution 2

v

Choose the highest scoring tag #; for e(x;|y1)q(y:|start)
Choose the highest scoring tag 1, for e(xz|y2)q(y2|start, t1)
Choose the highest scoring tag 7; for e(x3|y3)q(y3|ti, )

v

v

complexity: O(kn) where k is tagset size.

41/54



argmax,p(x, )

Solution 2

v

Choose the highest scoring tag #; for e(x;|y1)q(y:|start)
Choose the highest scoring tag 1, for e(xz|y2)q(y2|start, t1)
Choose the highest scoring tag 7; for e(x3|y3)q(y3|ti, )

| S

v

v

complexity: O(kn) where k is tagset size.

Problem

» Will not produce optimal solution. (why?)

41/54



argmax,p(x, y)

Solution: Dynamic Programming

» The viterbi algorithm.

42/54



Bigram Viterbi

V(i.1)
maximum probability of a tag sequence ending
intag ¢ at time i.

43/54



Bigram Viterbi

V(i.1)
maximum probability of a tag sequence ending
intag ¢ at time i.

Recursive Definition

V(0,start) =1

43/54



Bigram Viterbi

V(i.1)
maximum probability of a tag sequence ending
intag ¢ at time i.

Recursive Definition

V(0,start) =1
V(i 1)

43/54



Bigram Viterbi

V(i.1)
maximum probability of a tag sequence ending
intag ¢ at time i.

Recursive Definition

V(0,start) =1
V(i,1) = max V(i — 1,7)q(t|t')e(wil7)

t

43/54



Trigram Viterbi

V(i t,r)
maximum probability of a tag sequence ending
in tags ¢,r at time i.

44/54



Trigram Viterbi

V(i t,r)
maximum probability of a tag sequence ending
in tags ¢,r at time i.

Recursive Definition

V(0,start,start) =1
V(it,r) =max V(i — 1,7, 6)q(r|t', t)e(wi|r)
t/

44/54



Trigram Viterbi — Algorithm

Input:

sentence: wy, ..., w,
parameters: e(w|t), q(t|u,v)
tagset: T

Output:

probability of best tag sequence yy, ..., y,

Algorithm:

» Fori=1,...,n
» ForteT,reT
V(i,t,r) = max, V(i — 1, ,1)q(r|t', t)e(w;|r)

return: maxer 7 V(n,t,r)

45/54



Trigram Viterbi with Back-pointers — Algorithm

Input:

sentence: wi,...,w,
parameters: e(w|t), g(t|u,v)
tagset: T

Output:

probability of best tag sequence yi, ..., y,

Algorithm:

» Fori=1,...,n
» ForreT,reT
V(i,t,r) = max, V(i — 1,7,8)q(r|t’, t)e(w;|r)
bp(i,t,r) = argmax, V(i — 1,7,6)q(r|t, 1)e(w;|r)

> sety,—1,y, = argmax, , V(n,1,r)
» fori=n—2 ... 1sety; =bp(i+2,yit1,Vi+2)
return: yi,...,y,

46/54



Runtime

O(n = |TP)

why?

47/54



Supervised Second-order HMM Tagger
(trigram tagger)

Training

» Using corpus of tagged sentences, compute:
» count(tag1,tag2,tag3), count(tag1,tag2), count(tag),
count(tag,word)
» calculate e, g based on counts

48/54



Supervised Second-order HMM Tagger
(trigram tagger)

Training

» Using corpus of tagged sentences, compute:
» count(tag1,tag2,tag3), count(tag1,tag2), count(tag),
count(tag,word)
» calculate e, g based on counts

Tagging

» When given a sentence x = xp, ..., x,
» Use the viterbi algorithm to find

argmaxyp(y|x) = argmax,p(x,y)
» using the ¢ and ¢ quantities from training.

48/54



Order considerations

» First order markov: p(yily1, ..., yi—1) = q(yilyi-1)
» Second order markov: p(yi|y1, ..., yi-1) = q(yilyi-2,yi-1)

Is there any reason to prefer the first- over the second-order?

Why not do third-order?

49/54



HMMs — dealing with rare or unseen words

Our training set is of limited size

» Some words will not be seen in the corpus.

50/54



HMMs — dealing with rare or unseen words

Our training set is of limited size

» Some words will not be seen in the corpus.
> s0?

50/54



HMMs — dealing with rare or unseen words

Our training set is of limited size

» Some words will not be seen in the corpus.
> s0?
» Some words will only be seen once.

50/54



HMMs — dealing with rare or unseen words

Our training set is of limited size
» Some words will not be seen in the corpus.
> s0?
» Some words will only be seen once.
» s0?

50/54



HMMs — dealing with rare or unseen words
How do we calculate

e(word|tag)

for unseen or infrequent words?

51/54



HMMs — dealing with rare or unseen words

How do we calculate
e(word|tag)

for unseen or infrequent words?

» UNK
e(UNK|rag)

51/54



HMMs — dealing with rare or unseen words

How do we calculate
e(word|tag)

for unseen or infrequent words?

» UNK
e(UNK|rag)
» “Signatures”
_ing
X ed

Aa

51/54



HMMs — dealing with rare or unseen words

How do we calculate
e(word|tag)

for unseen or infrequent words?

» UNK
e(UNK|rag)
» “Signatures”
_ing
X ed
Aa

How do we estimate these?

51/54



HMM — Sumary

(H—®
—&
&—®
(—®
H—®




HMM — Summary

The HMM tagging algorithm

> f(x) = argmaxyp(y|x) = argmax,p(x, y)

model p(x,y) = p(y)p(xly) = [T q(vilyi-1) x e(xily:)

Learn tables for transitions ¢ and emissions e by counting.
Find best y for a given x using viterbi.

Hardest part: good e(word|tag) for rare/unseen words.

v

v

v

v

53/54



HMM — Summary

» For a long time, the best tagging algorithm available.

» Nowadays, more accurate models exist (we’ll see some of
them).

» HMM still useful for unsupervised learning.

» You a lot of text (without labels)
» And a dictionary mapping words to possible tags.
= Can learn ¢ and e using the EM algorithm.

54/54



