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CS498JH: Introduction to NLP 

What is grammar?

6(by Julia Hockenmaier)



Natural Language Parsing

I Sentences in natural language have structure.
I Linguists create Linguistic Theories for defining this

structure.
I The parsing problem is recovering that structure.

2 / 48



CS498JH: Introduction to NLP 

What is grammar?
Grammar formalisms
(= linguists’ programming languages)

A precise way to define and describe
the structure of sentences. 
(N.B.: There are many different formalisms out there, which each define their 
own data structures and operations)

Specific grammars
(= linguists’ programs)

Implementations (in a particular formalism) for a particular 
language (English, Chinese,....)
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CS498JH: Introduction to NLP 

Can we define a program that 
generates all English sentences? 

The number of sentences is infinite.
But we need our program to be finite.

8(by Julia Hockenmaier)



CS498JH: Introduction to NLP 

Overgeneration

Undergeneration

John saw Mary.

I ate sushi with tuna.

I ate the cake that John had 
made for me yesterday

I want you to go there.

John made some cake.

English

Did you go there? 

.....

John Mary saw.

 with tuna sushi ate I.

Did you went there? 

....

9(by Julia Hockenmaier)



CS498JH: Introduction to NLP 

Noun
(Subject) Verb

(Head)
Noun
(Object)

I   eat   sushi.

Basic sentence structure
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CS498JH: Introduction to NLP 

A finite-state-automaton (FSA)

Noun 
(Subject)

Noun 
(Object)Verb (Head)
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CS498JH: Introduction to NLP 

A Hidden Markov Model (HMM)

Noun 
(Subject)

Noun 
(Object)Verb (Head)

I, you, .... eat, drink sushi, ...
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CS498JH: Introduction to NLP 

Words take arguments
I eat sushi.     ✔
I eat sushi you. ???
I sleep sushi  ???
I give sushi   ???
I drink sushi   ? 

Subcategorization: 
Intransitive verbs (sleep)  take only a subject.
Transitive verbs (eat) take also one (direct) object. 
Ditransitive verbs (give) take also one (indirect) object.

Selectional preferences: 
The object of eat should be edible.

14(by Julia Hockenmaier)



CS498JH: Introduction to NLP 

A better FSA

Noun 
(Subject)

Noun 
(Object)

Transitive 
Verb (Head)

Intransitive 
Verb (Head)
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Natural Language Parsing

Previously

I Structure is a sequence.
I Each item can be tagged.
I We can mark some spans.

Today

I Hierarchical Structure.
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Hierarchical Structure?
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CS498JH: Introduction to NLP 

Language is recursive

the ball
the big ball

the big, red ball
the big, red, heavy ball

....

Adjectives can modify nouns.
The number of modifiers/adjuncts a word can have is (in theory) 
unlimited.  
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CS498JH: Introduction to NLP 

Another FSA

Determiner Noun 

Adjective
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CS498JH: Introduction to NLP 

Recursion can be 
more complex

the ball
the ball in the garden

the ball in the garden behind the house
the ball in the garden behind the house next to the school

....

18(by Julia Hockenmaier)



CS498JH: Introduction to NLP 

 [                                                   ]  

What is the structure
 of a sentence?

Sentence structure is hierarchical:
A sentence consists of words (I, eat, sushi, with, tuna)
..which form phrases or constituents: “sushi with tuna”

Sentence structure defines dependencies
between words or phrases:

22

 [                  ]    [                                           ]   [                                 ]  I   eat   sushi    with  tuna

(by Julia Hockenmaier)



CS498JH: Introduction to NLP 

Strong vs. weak 
generative capacity
Formal language theory:

– defines language as string sets
– is only concerned with generating these strings

(weak generative capacity)

Formal/Theoretical syntax (in linguistics):
– defines language as sets of strings with (hidden) structure
– is also concerned with generating the right structures

(strong generative capacity)

23(by Julia Hockenmaier)



Structure
Example 1: math

3*2+5*3

ADD

MUL

3 * 2

+ MUL

5 * 3

+

*

3 2

*

5 3
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Constituency (Phrase Structure) 
Trees

• Phrase structure organizes words into 
nested constituents

• Linguists can, and do, argue about details

we will talk more  
about constituents soon.



Programming Languages?

6 / 48

They also have structure. 
How does it differ from human's language structure?



Structure
Example 2: Language Data

Fruit flies like a banana

Constituency Structure Dependency Structure

S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana

like

flies

Fruit

banana

a

7 / 48



Structure
Example 2: Language Data

Fruit flies like a banana
Constituency Structure Dependency Structure

S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana

like

flies

Fruit

banana

a

7 / 48



Dependency Representation

questioned

lawyer

the

witness

the

Dependency representation is very common.
We will return to it in the future.
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Dependency Representation

Dependency representation is very common.
We will return to it in the future.
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Structure

Constituency Structure

I In this class we concentrate on Constituency Parsing:
mapping from sentences to trees with labeled nodes and
the sentence words at the leaves.

8 / 48



Why is Parsing Interesting?

I It’s a first step towards understanding a text.
I Many other language tasks use sentence structure as their

input.

9 / 48



Some things that are done with parse trees

I Grammar Checking
I Word Clustering
I Information Extraction
I Question Answering
I Sentence Simplification
I Machine Translation
I . . . and more
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Some things that are done with parse trees

I Grammar Checking
I Word Clustering
I Information Extraction
I Question Answering
I Sentence Simplification
I Machine Translation
I . . . and more

Words in similar grammatical
relations share meanings.
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Some things that are done with parse trees

I Grammar Checking
I Word Clustering
I Information Extraction
I Question Answering
I Sentence Simplification
I Machine Translation
I . . . and more

Extract factual relations from text

Answer questions
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Some things that are done with parse trees

I Grammar Checking
I Word Clustering
I Information Extraction
I Question Answering
I Sentence Simplification
I Machine Translation
I . . . and more

The first new product , ATF
Protype , is a line of digital
postscript typefaces that will be
sold in packages of up to six fonts .

ATF Protype is a line of digital
postscript typefaces will be sold in
packages of up to six fonts.
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Some things that are done with parse trees

I Grammar Checking
I Word Clustering
I Information Extraction
I Question Answering
I Sentence Simplification
I Machine Translation
I . . . and more

Reorder

Insert

Translate
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Constituency (Phrase Structure) 
Trees

• Phrase structure organizes words into 
nested constituents

• Linguists can, and do, argue about detailsWhat is a constituent?
How do we know they exist?



CS498JH: Introduction to NLP 

Context-free grammars (CFGs) 
capture recursion

Language has complex constituents
(“the garden behind the house”) 

Syntactically, these constituents behave 
just like simple ones.

(“behind the house” can always be omitted)

CFGs define nonterminal categories
to capture equivalent constituents. 

24(by Julia Hockenmaier)



The black dog sat

is "dog" a constituent? 

is "The black dog" a constituent? 

is "the black" a constituent? 

is "dog sat" a constituent? 

why?



(based on book chapter by Beatrice Santorini)

Substitution Test

Every word is a constituent. 

If we can substitute a sequence of words by a single word, 
it is likely to be a constituent.

In particular, pronouns.



(based on book chapter by Beatrice Santorini)
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Substitution Test



(based on book chapter by Beatrice Santorini)

Substitution Test
adverbs (here/there) can also be used.



(based on book chapter by Beatrice Santorini)

Substitution Test
"so", 

In a comparison.



(based on book chapter by Beatrice Santorini)

Substitution Test
'so', 'it', instead of a subordinate clause.



(based on book chapter by Beatrice Santorini)

Substitution Test
Substitution tests are a good indicator of constituency. 

But they may fail, also for real constituents. 

There are other tests: movement, short answers, it clefts 

We will briefly cover movement.  
See more in the Santorini's chapter.



(based on book chapter by Beatrice Santorini)

Movement Test

Can we move the sequence  
to a different position in the sentence?



(based on book chapter by Beatrice Santorini)

Movement Test
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Movement Test
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Movement Test



(based on book chapter by Beatrice Santorini)

Movement Test



See more tests in the notes. 

I hope that you are convinced  
that constituents are "real". 

You need to know how to identify them.



Parsing: recovering the constituents of a sentence.



Why is parsing hard?
Ambiguity

Fat people eat candy

S

NP

Adj

Fat

Nn

people

VP

Vb

eat

NP

Nn

candy

Fat people eat accumulates

S

NP

Nn

Fat

AdjP

Nn

people

Vb

eat

VP

Vb

accumulates
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Why is parsing hard?
Real Sentences are long. . .

“Former Beatle Paul McCartney today was ordered to pay
nearly $50M to his estranged wife as their bitter divorce battle
came to an end . ”

“Welcome to our Columbus hotels guide, where you’ll find
honest, concise hotel reviews, all discounts, a lowest rate
guarantee, and no booking fees.”

12 / 48



Let’s learn how to parse



Let’s learn how to parse . . . but first lets review some stuff we

learned at Automata and Formal Languages.



Context Free Grammars

A context free grammar G = (N,⌃,R,S) where:
I N is a set of non-terminal symbols
I ⌃ is a set of terminal symbols
I R is a set of rules of the form X ! Y1Y2 · · ·Yn

for n � 0, X 2 N, Yi 2 (N [ ⌃)

I S 2 N is a special start symbol

14 / 48



Context Free Grammars

a simple grammar
N = {S,NP,VP,Adj ,Det ,Vb,Noun}
⌃ = {fruit , flies, like, a, banana, tomato, angry}
S =‘S’
R =

S ! NP VP
NP ! Adj Noun
NP ! Det Noun
VP ! Vb NP
Adj ! fruit
Noun ! flies
Vb ! like
Det ! a
Noun ! banana
Noun ! tomato
Adj ! angry

15 / 48



Left-most derivations

Left-most derivation is a sequence of strings s1, · · · , sn where
I s1 = S the start symbol
I sn 2 ⌃⇤, meaning sn is only terminal symbols
I Each si for i = 2 · · · n is derived from si�1 by picking the

left-most non-terminal X in si�1 and replacing it by some �
where X ! � is a rule in R.

For example: [S],[NP VP],[Adj Noun VP], [fruit Noun VP], [fruit
flies VP],[fruit flies Vb NP],[fruit flies like NP], [fruit flies like Det
Noun], [fruit flies like a], [fruit flies like a banana]
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Left-most derivation example

S

NP VP
Adj Noun VP
fruit Noun VP
fruit flies VP
fruit flies Vb NP
fruit flies like NP
fruit flies like Det Noun
fruit flies like a Noun
fruit flies like a banana

S ! NP VP
NP ! Adj Noun
Adj ! fruit
Noun ! flies
VP ! Vb NP
Vb ! like
NP ! Det Noun
Det ! a
Noun ! banana

I The resulting derivation can be written as a tree.
I Many trees can be generated.
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Context Free Grammars

a simple grammar
S ! NP VP
NP ! Adj Noun
NP ! Det Noun
VP ! Vb NP
-
Adj ! fruit
Noun ! flies
Vb ! like
Det ! a
Noun ! banana
Noun ! tomato
Adj ! angry
. . .

Example
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A Brief Introduction to English Syntax
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Product Details (from Amazon)
Hardcover: 1779 pages
Publisher: Longman; 2nd Revised edition
Language: English
ISBN-10: 0582517346
ISBN-13: 978-0582517349
Product Dimensions: 8.4 x 2.4 x 10 inches
Shipping Weight: 4.6 pounds

(by Mike Collins)



A Brief Overview of English Syntax

Parts of Speech (tags from the Brown corpus):

� Nouns
NN = singular noun e.g., man, dog, park
NNS = plural noun e.g., telescopes, houses, buildings
NNP = proper noun e.g., Smith, Gates, IBM

� Determiners
DT = determiner e.g., the, a, some, every

� Adjectives
JJ = adjective e.g., red, green, large, idealistic

(by Mike Collins)



A Fragment of a Noun Phrase Grammar

N̄ � NN

N̄ � NN N̄

N̄ � JJ N̄

N̄ � N̄ N̄

NP � DT N̄

NN � box

NN � car

NN � mechanic

NN � pigeon

DT � the

DT � a

JJ � fast

JJ � metal

JJ � idealistic

JJ � clay

the box 
a car 

the pigeon car 
the fast metal pigeon

(by Mike Collins)



Prepositions, and Prepositional Phrases

� Prepositions
IN = preposition e.g., of, in, out, beside, as

(by Mike Collins)



An Extended Grammar

N̄ � NN

N̄ � NN N̄

N̄ � JJ N̄

N̄ � N̄ N̄

NP � DT N̄

PP � IN NP

N̄ � N̄ PP

(by Mike Collins)



An Extended Grammar

N̄ � NN

N̄ � NN N̄

N̄ � JJ N̄

N̄ � N̄ N̄

NP � DT N̄

PP � IN NP

N̄ � N̄ PP

NN � box

NN � car

NN � mechanic

NN � pigeon

DT � the

DT � a

JJ � fast

JJ � metal

JJ � idealistic

JJ � clay

IN � in

IN � under

IN � of

IN � on

IN � with

IN � as

Generates:

in a box, under the box, the fast car mechanic under the pigeon in
the box, . . .

(by Mike Collins)



Verbs, Verb Phrases, and Sentences

�
Basic Verb Types

Vi = Intransitive verb e.g., sleeps, walks, laughs

Vt = Transitive verb e.g., sees, saw, likes

Vd = Ditransitive verb e.g., gave

�
Basic VP Rules

VP ⇥ Vi

VP ⇥ Vt NP

VP ⇥ Vd NP NP

�
Basic S Rule

S ⇥ NP VP

Examples of VP:

sleeps, walks, likes the mechanic, gave the mechanic the fast car

Examples of S:

the man sleeps, the dog walks, the dog gave the mechanic the fast car

(by Mike Collins)



PPs Modifying Verb Phrases

A new rule:

VP ⇥ VP PP

New examples of VP:

sleeps in the car, walks like the mechanic, gave the mechanic the
fast car on Tuesday, . . .

(by Mike Collins)



Complementizers, and SBARs

� Complementizers
COMP = complementizer e.g., that

� SBAR
SBAR ⇥ COMP S

Examples:

that the man sleeps, that the mechanic saw the dog . . .

(by Mike Collins)



More Verbs

� New Verb Types
V[5] e.g., said, reported
V[6] e.g., told, informed
V[7] e.g., bet

� New VP Rules
VP ⇥ V[5] SBAR
VP ⇥ V[6] NP SBAR
VP ⇥ V[7] NP NP SBAR

Examples of New VPs:

said that the man sleeps
told the dog that the mechanic likes the pigeon
bet the pigeon $50 that the mechanic owns a fast car

(by Mike Collins)



Coordination

� A New Part-of-Speech:
CC = Coordinator e.g., and, or, but

� New Rules
NP ⇥ NP CC NP
N̄ ⇥ N̄ CC N̄
VP ⇥ VP CC VP
S ⇥ S CC S
SBAR ⇥ SBAR CC SBAR

(by Mike Collins)



We’ve Only Scratched the Surface...

� Agreement

The dogs laugh vs. The dog laughs

� Wh-movement
The dog that the cat liked

� Active vs. passive

The dog saw the cat vs.
The cat was seen by the dog

� If you’re interested in reading more:

Syntactic Theory: A Formal Introduction, 2nd

Edition. Ivan A. Sag, Thomas Wasow, and Emily

M. Bender.

(by Mike Collins)



CS498JH: Introduction to NLP 

CFGs and center embedding
The mouse ate the corn.

The mouse that the snake ate ate the corn.
The mouse that the snake that the hawk ate ate ate the corn.

....

These sentences are all grammatical.
They can be generated by a CFG:

S               →  NP    VP
NP             →  NP   RelClause
RelClause  → that  NP ate

Linguists distinguish between a speaker’s 
- competence (grammatical knowledge) and 
- performance (processing and memory limitations) 

28(by Julia Hockenmaier)



Parsing with (P)CFGs
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Obtaining a Grammar

Let a genius linguist write it

I Hard. Many rules, many complex interactions.
I Genius linguists don’t grow on trees !

An easier way - ask a linguist to grow trees

I Ask a linguist to annotate sentences with tree structure.
I (This need not be a genius – Smart is enough.)
I Then extract the rules from the annotated trees.

Treebanks
I English Treebank: 40k sentences, manually annotated

with tree structure.
I Hebrew Treebank: about 5k sentences
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Treebank Sentence Example

( (S

(NP-SBJ

(NP (NNP Pierre) (NNP Vinken) )

(, ,)

(ADJP

(NP (CD 61) (NNS years) )

(JJ old) )

(, ,) )

(VP (MD will)

(VP (VB join)

(NP (DT the) (NN board) )

(PP-CLR (IN as)

(NP (DT a) (JJ nonexecutive) (NN director) ))

(NP-TMP (NNP Nov.) (CD 29) )))

(. .) ))

23 / 48



Supervised Learning from a Treebank

((fruit/ADJ flies/NN) (like/VB
(a/DET banana/NN)))(time/NN (flies/VB (like/IN

(an/DET (arrow/NN))))). . . . . . . . .
. . . . . . . . .

24 / 48



Extracting CFG from Trees
I The leafs of the trees define ⌃
I The internal nodes of the trees define N
I Add a special S symbol on top of all trees
I Each node an its children is a rule in R

Extracting Rules
S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana

S ! NP VP
NP ! Adj Noun
Adj ! fruit

25 / 48



Extracting CFG from Trees
I The leafs of the trees define ⌃
I The internal nodes of the trees define N
I Add a special S symbol on top of all trees
I Each node an its children is a rule in R

Extracting Rules
S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana

S ! NP VP
NP ! Adj Noun
Adj ! fruit

25 / 48



Extracting CFG from Trees
I The leafs of the trees define ⌃
I The internal nodes of the trees define N
I Add a special S symbol on top of all trees
I Each node an its children is a rule in R

Extracting Rules
S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana
S ! NP VP

NP ! Adj Noun
Adj ! fruit

25 / 48



Extracting CFG from Trees
I The leafs of the trees define ⌃
I The internal nodes of the trees define N
I Add a special S symbol on top of all trees
I Each node an its children is a rule in R

Extracting Rules
S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana
S ! NP VP
NP ! Adj Noun

Adj ! fruit

25 / 48



Extracting CFG from Trees
I The leafs of the trees define ⌃
I The internal nodes of the trees define N
I Add a special S symbol on top of all trees
I Each node an its children is a rule in R

Extracting Rules
S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana
S ! NP VP
NP ! Adj Noun
Adj ! fruit

25 / 48



From CFG to PCFG
I English is NOT generated from CFG ) It’s generated by a

PCFG!

I PCFG: probabilistic context free grammar. Just like a CFG,
but each rule has an associated probability.

I All probabilities for the same LHS sum to 1.
I Multiplying all the rule probs in a derivation gives the

probability of the derivation.
I We want the tree with maximum probability.

More Formally

P(tree, sent) =
Y

l!r2deriv(tree)

p(l ! r)

tree = arg max
tree2trees(sent)

P(tree|sent) = arg max
tree2trees(sent)

P(tree, sent)
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PCFG Example

a simple PCFG
1.0 S ! NP VP
0.3 NP ! Adj Noun
0.7 NP ! Det Noun
1.0 VP ! Vb NP
-
0.2 Adj ! fruit
0.2 Noun ! flies
1.0 Vb ! like
1.0 Det ! a
0.4 Noun ! banana
0.4 Noun ! tomato
0.8 Adj ! angry

Example
S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana
1⇤0.3⇤0.2⇤0.7⇤1.0⇤0.2⇤1⇤1⇤0.4 =
0.0033
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Parsing with PCFG

I Parsing with a PCFG is finding the most probable
derivation for a given sentence.

I This can be done quite efficiently with dynamic
programming (the CKY algorithm)

Obtaining the probabilities

I We estimate them from the Treebank.
I P(LHS ! RHS) = count(LHS!RHS)

count(LHS!⌃)
I We can also add smoothing and backoff, as before.
I Dealing with unknown words - like in the HMM
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The CKY algorithm

29 / 48



The Problem
Input

I Sentence (a list of words)
I n – sentence length

I CFG Grammar (with weights on rules)
I g – number of non-terminal symbols

Output

I A parse tree / the best parse tree

But. . .
I Exponentially many possible parse trees!

Solution
I Dynamic Programming!

30 / 48



CKY

Cocke Kasami Younger
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CKY

Cocke Kasami Younger
196? 1965 1967
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3 Interesting Problems

I Recognition

I Can this string be generated by the grammar?

I Parsing

I Show me a possible derivation. . .

I Disambiguation

I Show me THE BEST derivation

CKY can do all of these in polynomial time

I For any CNF grammar
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CNF
Chomsky Normal Form

Definition
A CFG is in CNF form if it only has rules like:

I A ! B C
I A ! ↵

A,B,C are non terminal symbols
↵ is a terminal symbol (a word. . . )

I All terminal symbols are RHS of unary rules
I All non terminal symbols are RHS of binary rules

CKY can be easily extended to handle also unary rules: A ! B

33 / 48



Binarization

Fact
I Any CFG grammar can be converted to CNF form

Speficifally for Natural Language grammars
I We already have A ! ↵

I (A ! ↵ � is also easy to handle)
I Unary rules (A ! B) are OK
I Only problem:S ! NP PP VP PP

Binarization
S ! NP NP|PP.VP.PP
NP|PP.VP.PP ! PP NP.PP|VP.PP
NP.PP|VP.PP ! VP NP.PP.VP|PP
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Finally, CKY

Recognition
I Main idea:

I Build parse tree from bottom up
I Combine built trees to form bigger trees using grammar

rules
I When left with a single tree, verify root is S

I Exponentially many possible trees. . .
I Search over all of them in polynomial time using DP
I Shared structure – smaller trees

35 / 48



Main Idea

If we know:

I wi . . .wj is an NP
I wj+1 . . .wk is a VP

and grammar has rule:
I S ! NP VP

Then we know:
I S can derive wi . . .wk

36 / 48



Data Structure
(Half a) two dimensional array (n x n)

37 / 48



Data Structure
On its side
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Data Structure
Each cell: all nonterminals than can derive word i to word j

Sue saw her girl with a telescope
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Data Structure
Each cell: all nonterminals than can derive word i to word j
imagine each cell as a g dimensional array

Sue saw her girl with a telescope
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Filling the table

Sue saw her girl with a telescope

39 / 48



Handling Unary rules?

Sue saw her girl with a telescope

40 / 48



Which Order?

Sue saw her boy with a telescope

41 / 48



Complexity?

I n2g cells to fill
I g2n ways to fill each one

O(g3n3)

42 / 48



Complexity?

I n2g cells to fill

I g2n ways to fill each one

O(g3n3)

42 / 48



Complexity?

I n2g cells to fill
I g2n ways to fill each one

O(g3n3)

42 / 48



Complexity?

I n2g cells to fill
I g2n ways to fill each one

O(g3n3)

42 / 48



A Note on Implementation

Smart implementation can reduce the runtime:
I Worst case is still O(g3n3), but it helps in practice

I No need to check all grammar rules A ! BC at each
location:

I only those compatible with B or C of current split
I prune binarized symbols which are too long for current

position
I once you found 1 way to derive A can break out of loop
I order grammar rules from frequent to infrequent

I Need both efficient random access and iteration over
possible symbols

I Keep both hash and list, implemented as arrays

43 / 48



Finding a parse
Parsing – we want to actually find a parse tree

Easy: also keep a possible split point for each NT

44 / 48



PCFG Parsing and Disambiguation
Disambiguation – we want THE BEST parse tree

Easy: for each NT, keep best split point, and score.

45 / 48



Implementation Tricks
#1: sum instead of product

As in the HMM - Multiplying probabilities is evil
I keeping the product of many floating point numbers is

dangerous, because product get really small
I either grow in runtime
I or loose precision (overflowing to 0)
I either way, multiplying floats is expensive

Solution: use sum of logs instead

I remember: log(p1 ⇤ p2) = log(p1) + log(p2)
) Use log probabilities instead of probabilities
) add instead of multiply
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Implementation Tricks
#2: Two passes

Some recognition speedup tricks are no longer possible
I need the best way to derive a symbol, not just one way

) can’t abort of loops early. . .

Solution: two passes

I pass 1: just recognition
I pass 2: disambiguation, with many pruned symbols at

each cell
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Summary

I Hierarchical Structure
I Constituent / Phrase-based Parsing
I CFGs, Derivations
I (Some) English Syntax
I PCFG
I CKY
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Parsing with PCFG

I Parsing with a PCFG is finding the most probable
derivation for a given sentence.

I This can be done quite efficiently with dynamic
programming (the CKY algorithm)

Obtaining the probabilities

I We estimate them from the Treebank.
I q(LHS ! RHS) = count(LHS!RHS)

count(LHS!⌃)
I We can also add smoothing and backoff, as before.
I Dealing with unknown words - like in the HMM
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The big question

Does this work?

8 / 1



Evaluation
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Parsing Evaluation

I Let’s assume we have a parser, how do we know how
good it is?

) Compare output trees to gold trees.

I But how do we compare trees?
I Credit of 1 if tree is correct and 0 otherwise, is too harsh.

I Represent each tree as a set of labeled spans.
I NP from word 1 to word 5.
I VP from word 3 to word 4.
I S from word 1 to word 23.
I . . .

I Measure Precision, Recall and F1 over these spans, as in
the segmentation case.
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Evaluation: Representing Trees as Constituents

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

Label Start Point End Point

NP 1 2
NP 4 5
VP 3 5
S 1 5

(by Mike Collins)



Precision and Recall
Label Start Point End Point

NP 1 2
NP 4 5
NP 4 8
PP 6 8
NP 7 8
VP 3 8
S 1 8

Label Start Point End Point

NP 1 2
NP 4 5
PP 6 8
NP 7 8
VP 3 8
S 1 8

I
G = number of constituents in gold standard = 7

I
P = number in parse output = 6

I
C = number correct = 6

Recall = 100%⇥ C

G
= 100%⇥ 6

7

Precision = 100%⇥ C

P
= 100%⇥ 6

6

(by Mike Collins)



Parsing Evaluation

I Is this a good measure?
I Why? Why not?

11 / 1

(by Mike Collins)



Parsing Evaluation

How well does the PCFG parser we learned do?

Not very well: about 73% F1 score.

12 / 1

(by Mike Collins)



Problems with PCFGs

13 / 1
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Weaknesses of Probabilistic Context-Free Grammars

Michael Collins, Columbia University
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Weaknesses of PCFGs

I Lack of sensitivity to lexical information

I Lack of sensitivity to structural frequencies

(by Mike Collins)



S

NP

NNP

IBM

VP

Vt

bought

NP

NNP

Lotus

p(t) = q(S ! NP VP) ⇥q(NNP ! IBM)
⇥q(VP ! V NP) ⇥q(Vt ! bought)
⇥q(NP ! NNP) ⇥q(NNP ! Lotus)
⇥q(NP ! NNP)

(by Mike Collins)



Another Case of PP Attachment Ambiguity
(a) S

NP

NNS

workers

VP

VP

VBD

dumped

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin

(b) S

NP

NNS

workers

VP

VBD

dumped

NP

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin

(by Mike Collins)



(a)

Rules
S ! NP VP
NP ! NNS
VP ! VP PP
VP ! VBD NP
NP ! NNS
PP ! IN NP
NP ! DT NN
NNS ! workers
VBD ! dumped
NNS ! sacks
IN ! into
DT ! a
NN ! bin

(b)

Rules
S ! NP VP
NP ! NNS
NP ! NP PP
VP ! VBD NP
NP ! NNS
PP ! IN NP
NP ! DT NN
NNS ! workers
VBD ! dumped
NNS ! sacks
IN ! into
DT ! a
NN ! bin

If q(NP ! NP PP) > q(VP ! VP PP) then (b) is more
probable, else (a) is more probable.
Attachment decision is completely independent of the
words

(by Mike Collins)



A Case of Coordination Ambiguity

(a) NP

NP

NP

NNS

dogs

PP

IN

in

NP

NNS

houses

CC

and

NP

NNS

cats

(b) NP

NP

NNS

dogs

PP

IN

in

NP

NP

NNS

houses

CC

and

NP

NNS

cats

(by Mike Collins)



(a)

Rules
NP ! NP CC NP
NP ! NP PP
NP ! NNS
PP ! IN NP
NP ! NNS
NP ! NNS
NNS ! dogs
IN ! in
NNS ! houses
CC ! and
NNS ! cats

(b)

Rules
NP ! NP CC NP
NP ! NP PP
NP ! NNS
PP ! IN NP
NP ! NNS
NP ! NNS
NNS ! dogs
IN ! in
NNS ! houses
CC ! and
NNS ! cats

Here the two parses have identical rules, and
therefore have identical probability under any
assignment of PCFG rule probabilities

(by Mike Collins)


