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A brief review of discrete probability theory

• Ω is the set of all elementary events (c.f. interpretations in logic)

• If ω ∈ Ω, then P(ω) is the probability of event ω

◮ P(ω) ≥ 0
◮ ∑ω∈Ω P(ω) = 1

• A random variable X is a function from Ω to some set of values
X

◮ If X is countable then X is a discrete random variable
◮ If X is continuous then X is a continuous random variable

• If x is a possible value for X, then

P(X = x) = ∑
ω∈Ω

X(ω)=x

P(ω)
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Independence and conditional distributions
• Two RVs X and Y are independent iff P(X,Y) = P(X)P(Y)
• The conditional distribution of Y given X is:

P(Y|X) =
P(Y,X)

P(X)

so X and Y are independent iff P(Y|X) = P(Y) (here and
below I assume strictly positive distributions)

• We can decompose the joint distribution of a sequence of RVs
into a product of conditionals:

P(X1, . . . ,Xn)

= P(X1)P(X2|X1)P(X3|X2,X1) . . . P(Xn|Xn−1, . . . ,X1)

i.e., the probability of generating X1, . . . ,Xn “at once” is the
same as generating them one at a time if each Xi is
conditioned on the X1, . . . ,Xi−1 that preceded it
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Conditional distributions
• It’s always possible to factor any distribution over
X = (X1, . . . ,Xn) into a product of conditionals

P(X) =
n

∏
i=1

P(Xi |X1, . . . ,Xi−1)

• But in many interesting cases, Xi depends only on a subset of
X1, . . . ,Xi−1, i.e.,

P(X) = ∏
i

P(Xi |XPa(i))

where Pa(i) ⊆ {1, . . . , i− 1} and XS = {Xj : j ∈ S}
• X and Y are conditionally independent given Z iff
P(X,Y|Z) = P(X|Z) P(Y|Z) or equivalently,
P(X|Y,Z) = P(X|Z)

• Note: the “parents” Pa(i) of Xi depend on the order in which
the variables are enumerated!
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Bayes nets

• A Bayes net is a graphical depiction of a factorization of a
probability distribution into products of conditional
distributions

P(X) = ∏
i

P(Xi |XPa(i))

• A Bayes net has a node for each variable Xi and an arc from
Xj to Xi iff j ∈ Pa(i)
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Bayes rule
• Bayes theorem:

P(Y|X) =
P(X|Y) P(Y)

P(X)

• Bayes inversion: swap direction of arcs in Bayes net
• Interpreted as a recipe for “belief updating”:

P(Hypothesis|Data)︸ ︷︷ ︸
Posterior

∝ P(Data|Hypothesis)︸ ︷︷ ︸
Likelihood

P(Hypothesis)︸ ︷︷ ︸
Prior

• The normalizing constant (which you have to divide
Likelihood times Prior by) is:

P(Data) = ∑
Hypothesis′

P(Data|Hypothesis′) P(Hypothesis′)

which is the probability of generating the data under any
hypothesis
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Iterated Bayesian belief updating

• Suppose the data consists of 2 components D = (D1,D2), and
P(H) is our prior over hypotheses H

P(H|D1,D2) ∝ P(D1,D2|H) P(H)

∝ P(D2|H,D1) P(H|D1)

• This means the following are equivalent:
◮ update the prior P(H) treating (D1,D2) as a single
observation

◮ update the prior P(H) wrt the first observation D1

producing posterior P(H|D1) ∝ P(D1|H) P(H),
which serves as the prior for the second observation D2
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Incremental Bayesian belief updating
• Consider a “two-part” data set (d1, d2). We show posterior
obtained by Bayesian belief updating on (d1, d2) together is
same as posterior obtained by updating on d1 and then
updating on d2.

• Bayesian belief updating on both (d1, d2) using prior P(H)

P(H|d1, d2) ∝ P(d1, d2|H)P(H) = P(d1, d2,H)

• Incremental Bayesian belief updating
◮ Bayesian belief updating on d1 using prior P(H)

P(H|d1) ∝ P(d1|H)P(H) = P(d1,H)

◮ Bayesian belief updating on d2 using prior P(H|d1)

P(H|d1, d2) ∝ P(d2|H, d1)P(H|d1)

∝ P(d2|H, d1)P(H, d1)

= P(d2, d1,H)
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“Distributed according to” notation

• A probability distribution F is a non-negative function from
some set X whose values sum (integrate) to 1

• A random variable X is distributed according to a distribution
F, or more simply, X has distribution F, written X ∼ F, iff:

P(X = x) = F(x) for all x

(This is for discrete RVs).

• You’ll sometimes see the notion

X |Y ∼ F

which means “X is generated conditional on Y with
distribution F” (where F usually depends on Y)
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Outline

Dirichlet priors for categorical and multinomial distributions

Comparing discrete and continuous hypotheses
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Continuous hypothesis spaces
• Bayes rule is the same when H ranges over a continuous space
except that P(H) and P(H|D) are continuous functions of H

P(H|D)︸ ︷︷ ︸
Posterior

∝ P(D|H)︸ ︷︷ ︸
Likelihood

P(H)︸ ︷︷ ︸
Prior

• The normalizing constant is:

P(D) =
∫

P(D|H′) P(H′) dH′

• Some of the approaches you can take:
◮ Monte Carlo sampling procedures (which we’ll talk
about later)

◮ Choose P(H) so that P(H|D) is easy to calculate
⇒ use a prior conjugate to the likelihood
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Categorical distributions

• A categorical distribution has a finite set of outcomes 1, . . . ,m

• A categorical distribution is parameterized by a vector
θ = (θ1, . . . , θm), where P(X = j|θ) = θj (so ∑

m
j=1 θj = 1)

◮ Example: An m-sided die, where θj = prob. of face j

• Suppose X = (X1, . . . ,Xn) and each
Xi|θ ∼ CATEGORICAL(θ). Then:

P(X |θ) =
n

∏
i=1

CATEGORICAL(Xi; θ) =
m

∏
j=1

θ
Nj

j

where Nj is the number of times j occurs in X .

• Goal of next few slides: compute P(θ|X)
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Multinomial distributions

• Suppose Xi ∼ CATEGORICAL(θ) for i = 1, . . . , n, and
Nj is the number of times j occurs in X

• Then N|n, θ ∼ MULTI(θ, n), and

P(N |n, θ) =
n!

∏
m
j=1 Nj!

m

∏
j=1

θ
Nj

j

where n!/∏
m
j=1 Nj! is the number of sequences of values with

occurence counts N

• The vector N is known as a sufficient statistic for θ because it
supplies as much information about θ as the original
sequence X does.
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Dirichlet distributions
• Dirichlet distributions are probability distributions over
multinomial parameter vectors

◮ called Beta distributions when m = 2

• Parameterized by a vector α = (α1, . . . , αm) where αj > 0 that
determines the shape of the distribution

DIR(θ; α) =
1

C(α)

m

∏
j=1

θ
αj−1

j

C(α) =
∫ m

∏
j=1

θ
αj−1

j dθ =
∏

m
j=1 Γ(αj)

Γ(∑
m
j=1 αj)

• Γ is a generalization of the factorial function

• Γ(k) = (k− 1)! for positive integer k

• Γ(x) = (x− 1)Γ(x − 1) for all x
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Plots of the Dirichlet distribution
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Plots of the Dirichlet distribution (2)
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Plots of the Dirichlet distribution (3)
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Dirichlet distributions as priors for θ

• Generative model:

θ | α ∼ DIR(α)
Xi | θ ∼ CATEGORICAL(θ), i = 1, . . . , n

• We can depict this as a Bayes net using plates, which indicate
replication

α

n
Xi

θ
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Inference for θ with Dirichlet priors
• Data X = (X1, . . . ,Xn) generated i.i.d. from CATEGORICAL(θ)

• Prior is DIR(α). By Bayes Rule, posterior is:

P(θ|X) ∝ P(X |θ) P(θ)

∝

(
m

∏
j=1

θ
Nj

j

) (
m

∏
j=1

θ
αj−1

j

)

=
m

∏
j=1

θ
Nj+αj−1

j , so

P(θ|X) = DIR(N + α)

• So if prior is Dirichlet with parameters α,
posterior is Dirichlet with parameters N + α

⇒ can regard Dirichlet parameters α as “pseudo-counts” from
“pseudo-data”
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Point estimates from Bayesian posteriors

• A “true” Bayesian prefers to use the full P(H|D), but
sometimes we have to choose a “best” hypothesis

• The Maximum a posteriori (MAP) or posterior mode is

Ĥ = argmax
H

P(H|D) = argmax
H

P(D|H)P(H)

• The expected value EP[X] of X under distribution P is:

EP[X] =
∫

x P(X = x) dx

The expected value is a kind of average, weighted by P(X).
The expected value E[θ] of θ is an estimate of θ.
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The posterior mode of a Dirichlet
• The Maximum a posteriori (MAP) or posterior mode is

Ĥ = argmax
H

P(H|D) = argmax
H

P(D|H)P(H)

• For Dirichlets with parameters α, the MAP estimate is:

θ̂j =
αj − 1

∑
m
j′=1(αj′ − 1)

so if the posterior is DIR(N + α), the MAP estimate for θ is:

θ̂j =
Nj + αj − 1

n + ∑
m
j′=1(αj′ − 1)

• If α = 1 then θ̂j = Nj/n, which is also the maximum likelihood
estimate (MLE) for θ
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The expected value of θ for a Dirichlet
• The expected value EP[X] of X under distribution P is:

EP[X] =
∫

x P(X = x) dx

• For Dirichlets with parameters α, the expected value of θj is:

EDIR(α)[θj] =
αj

∑
m
j′=1 αj′

• Thus if the posterior is DIR(N + α), the expected value of θj is:

EDIR(N+α)[θj] =
Nj + αj

n + ∑
m
j′=1 αj′

• E[θ] smooths or regularizes the MLE by
adding pseudo-counts α to N
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Sampling from a Dirichlet

θ | α ∼ DIR(α) iff P(θ|α) =
1

C(α)

m

∏
j=1

θ
αj−1

j , where:

C(α) =
∏

m
j=1 Γ(αj)

Γ(∑
m
j=1 αj)

• There are several algorithms for producing samples from
DIR(α). A simple one relies on the following result:

• If Vk ∼ GAMMA(αk) and θk = Vk/(∑
m
k′=1Vk′), then θ ∼ DIR(α)

• This leads to the following algorithm for producing a sample
θ from DIR(α)

◮ Sample vk from GAMMA(αk) for k = 1, . . . ,m
◮ Set θk = vk/(∑

m
k′=1 vk′)
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Conjugate priors
• If prior is DIR(α) and likelihood is i.i.d. CATEGORICAL(θ),
then posterior is DIR(N + α)
⇒ prior parameters α specify “pseudo-observations”

• A class C of prior distributions P(H) is conjugate to a class of
likelihood functions P(D|H) iff the posterior P(H|D) is also a
member of C

• In general, conjugate priors encode “pseudo-observations”
◮ the difference between prior P(H) and posterior P(H|D)
are the observations in D

◮ but P(H|D) belongs to same family as P(H), and can
serve as prior for inferences about more data D′

⇒ must be possible to encode observations D using
parameters of prior

• In general, the likelihood functions that have conjugate priors
belong to the exponential family
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Outline

Dirichlet priors for categorical and multinomial distributions

Comparing discrete and continuous hypotheses
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Categorical and continuous hypotheses

about coin flips
• Data: A sequence of coin flips X = (X1, . . . ,Xn)
• Hypothesis h1: X is generated from a fair coin, i.e., θH = 0.5

• Hypothesis h2: X is generated from a biased coin with
unknown bias, i.e., θH ∼ DIR(α)

P(H|X) = P(X |H) P(H)

• Assume P(h1) = P(h2) = 0.5

• P(X |h1) = 2−n, but what is P(X |h2)?
• P(X |h2) is the probability of generating θ from DIR(α) and
then generating X from CATEGORICAL(θ). But we don’t care
about the value of θ, so we marginalize or integrate out θ

P(X |α, h2) =
∫

P(X , θ|α) dθ
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Posterior with Dirichlet priors

θ | α ∼ DIR(α)
Xi | θ ∼ CATEGORICAL(θ), i = 1, . . . , n

• Integrate out θ to calculate posterior probability of X

P(X |α) =
∫

P(X , θ|α) dθ =
∫

P(X |θ)P(θ|α) dθ

=
∫ ( m

∏
j=1

θ
Nj

j

)(
1

C(α)

m

∏
j=1

θ
αj−1

j

)

dθ

=
1

C(α)

∫ m

∏
j=1

θ
Nj+αj−1

j dθ

=
C(N + α)

C(α)
, where C(α) =

∏
m
j=1 Γ(αj)

Γ(∑
m
j=1 αj)

• Collapsed Gibbs samplers and the Chinese Restaurant Process rely
on this result
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Posteriors under h1 and h2
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Understanding the posterior

P(X |α) =
C(N + α)

C(α)
where C(α) =

∏
m
j=1 Γ(αj)

Γ(α•)
and α• =

m

∑
j=1

αj

P(X |α) =

(
∏

m
j=1 Γ(Nj + αj)

Γ(n + α•)

)(
Γ(α•)

∏
m
j=1 Γ(αj)

)

=

(
m

∏
j=1

Γ(Nj + αj)

Γ(αj)

)(
Γ(α•)

Γ(n + α•)

)

=
α1

α•
×

α1 + 1

α• + 1
× . . .×

α1 + N1 − 1

α• + N1 − 1

×
α2

α• + N1
×

α2 + 1

α• + N1 + 1
× . . .×

α2 + N2 − 1

α• + N1 + N2 − 1

× . . .

×
αm

α• + n− Nm − 1
×

αm + 1

α• + n− Nm
× . . .×

αm + Nm − 1

α• + n− 1
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Exchangability
• The individual Xi in a Dirichlet-multinomial distribution
P(X |α) = C(N + α)/C(α) are not independent

◮ the probability of Xi depends on X1, . . . ,Xi−1

P(Xn = k|X1, . . . ,Xn−1, α) =
P(X1, . . . ,Xn|α)

P(X1, . . . ,Xn−1|α)

=
αk + Nk(X1, . . . ,Xn−1)

α• + n− 1

• but X1, . . . ,Xn are exchangable
◮ P(X |α) depends only on N

⇒ doesn’t depend on the order in which the X occur

• A distribution over a sequence of random variables is
exchangable iff the probability of all permutations of the random
variables are equal
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Summary so far

• Bayesian inference can compare models of differing complexity
(assuming we can calculate posterior probability)

◮ Hypothesis h1 has no free parameters
◮ Hypothesis h2 has one free parameter θH

• Bayesian Occam’s Razor: “A more complex hypothesis is only
prefered if its greater complexity consistently provides a
better account of the data”

• But: h1 makes every sequence equally likely.
h2 seems to dislike θH ≅ 0.5
What’s going on here?
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Posteriors with n = 10, α = 10
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Posteriors with n = 20, α = 1
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Dirichlet-Multinomial distributions
• Only one sequence of 10 heads out of 10 coin flips
• but 252 different sequences of 5 heads out of 10 coin flips
• Each particular sequence of 5 heads out of 10 flips is unlikely,
but there are so many of them that the group is very likely

• The number of ways of picking N outcomes out of n trials is:

n!

∏
m
j=1 Nj!

• The probability of observing N given θ is:

P(N |θ) =
n

∏
m
j=1 Nj!

m

∏
j=1

θ
Nj

j

• The probability of observing N given α is:

P(N |α) =
n

∏
m
j=1 Nj!

C(N + α)

C(α)
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Dirichlet-multinomial posteriors with

n = 10, α = 1
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Dirichlet-multinomial posteriors with

n = 10, varying α

α = 0.1
α = 0.2

α = (8, 2)
α = 5
α = 1

θ = 0.5

NH

P
(N

H
,N

T
=

1
0
−

N
H
)

1086420

1

0.1

0.01

0.001

36 /39



Dirichlet-multinomial posteriors with

n = 20, varying α
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Dirichlet-multinomial posteriors with

n = 50, varying α
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Entropy vs. “rich get richer”
• Notation: If X = (X1, . . . ,Xn), then
X−j = (X1, . . . ,Xj−1,Xj+1, . . . ,Xn)

P(Xn = k|α,X−n) =
Nk(X−n) + αk

α• + n− 1

• The probability of generating an outcome is proportional to
the number of times it has been seen before (including prior)

⇒ Next outcome is most likely to be most frequently generated
previous outcome ⇒ sparse outcomes

• But there are far fewer sparse outcomes than non-sparse
outcomes ⇒ entropy “prefers” non-sparse outcomes

• If α > 1 then most likely outcomes are not sparse
i.e., entropy is stronger than prior

• If α < 1 then most likely outcomes are sparse
i.e., prior is stronger than entropy
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