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A brief review of discrete probability theory

() is the set of all elementary events (c.f. interpretations in logic)
If w € Q, then P(w) is the probability of event w

» P(w) >0

> YweaP(w) =1
A random variable X is a function from () to some set of values
X

» If X is countable then X is a discrete random variable
» If X is continuous then X is a continuous random variable

If x is a possible value for X, then

PX=x) = ) Pw)

we)
X(w)=x



Independence and conditional distributions

e Two RVs X and Y are independent iff P(X,Y) = P(X)P(Y)
e The conditional distribution of Y given X is:

P(Y, X)
P(X)
so X and Y are independent iff P(Y|X) = P(Y) (here and

below I assume strictly positive distributions)
e We can decompose the joint distribution of a sequence of RVs

into a product of conditionals:
P(Xq,...,Xn)
= P(X1)P(X2|X1)P(X3|Xo, X1) ... P(Xy| X1, ..., X1)

P(Y|X)

i.e., the probability of generating Xj, ..., X, “at once” is the
same as generating them one at a time if each X; is
conditioned on the Xj, ..., X;_; that preceded it



Conditional distributions

e It’s always possible to factor any distribution over
X = (Xy,..., Xy) into a product of conditionals

n
P(X) = J[P(X|Xy,...,Xiz1)
i=1

e But in many interesting cases, X; depends only on a subset of
Xl, cen ,Xifl, i.e.,

P(X) = HP(Xi 1 Xpai))

where Pa(i) C {1,...,i—1} and X5 = {X; : j € S}
e X and Y are conditionally independent given Z iff
P(X,Y|Z) = P(X|Z) P(Y|Z) or equivalently,
P(X|Y,Z) = P(X|Z)
 Note: the “parents” Pa(i) of X; depend on the order in which

the variables are enumerated!
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Bayes nets

e A Bayes net is a graphical depiction of a factorization of a
probability distribution into products of conditional
distributions

P(X) = HP(Xz‘ [ Xpa(i))

e A Bayes net has a node for each variable X; and an arc from
X] to X; lff] € Pa(z)



Bayes rule
e Bayes theorem:
P(X]Y) P(Y)
P(X)
e Bayes inversion: swap direction of arcs in Bayes net
e Interpreted as a recipe for “belief updating”:

P(Y|X)

P(Hypothesis|Data) o P(Data|Hypothesis) P(Hypothesis)

Posterior Likelihood Prior
e The normalizing constant (which you have to divide
Likelihood times Prior by) is:
P(Data) = Y P(Data|Hypothesis) P(Hypothesis')
Hypothesis’

which is the probability of generating the data under any
hypothesis



Iterated Bayesian belief updating

e Suppose the data consists of 2 components D = (D1, D;), and
P(H) is our prior over hypotheses H

P(H|Dy,Dz) o P(Dy,D:|H) P(H)
« P(D;|H,D;) P(H|Dy)

e This means the following are equivalent:
» update the prior P(H) treating (D1, D) as a single
observation
» update the prior P(H) wrt the first observation D
producing posterior P(H|D1) « P(D1|H) P(H),
which serves as the prior for the second observation D,



Incremental Bayesian belief updating
e Consider a “two-part” data set (dy,d;). We show posterior
obtained by Bayesian belief updating on (d1, d») together is
same as posterior obtained by updating on d; and then
updating on dj.
e Bayesian belief updating on both (d;, dy) using prior P(H)
P(H|d1,d2) X P(dl,d2|H) P(H) = P(dl,dz, H)
e Incremental Bayesian belief updating
» Bayesian belief updating on d; using prior P(H)
P(H|dy) « P(di|H)P(H) = P(d;, H)
» Bayesian belief updating on d, using prior P(H|d;)
P(H‘dl,dz) X P(dz’H, dl) P(H‘dl)
« P(dy|H,d1)P(H,dq)
= P(dy,di, H)



“Distributed according to” notation

e A probability distribution F is a non-negative function from
some set X whose values sum (integrate) to 1

e A random variable X is distributed according to a distribution
F, or more simply, X has distribution F, written X ~ F, iff:

P(X =x) = F(x) forall x

(This is for discrete RVs).
e You'll sometimes see the notion

X|Y ~ F

which means “X is generated conditional on Y with
distribution F” (where F usually depends on Y)



Outline

Dirichlet priors for categorical and multinomial distributions
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Continuous hypothesis spaces

¢ Bayes rule is the same when H ranges over a continuous space
except that P(H) and P(H|D) are continuous functions of H

P(H|D) « P(D|H) P(H)
N—_——r —— N~
Posterior Likelihood Prior

e The normalizing constant is:
P(D) — /P(D|H’) P(H') dH’

e Some of the approaches you can take:
» Monte Carlo sampling procedures (which we’ll talk
about later)
» Choose P(H) so that P(H|D) is easy to calculate
= use a prior conjugate to the likelihood



Categorical distributions

A categorical distribution has a finite set of outcomes 1, ..., m

A categorical distribution is parameterized by a vector
0 = (01,...,0m), where P(X = j|0) = 0; (so Z}-”:l 0, =1)
» Example: An m-sided die, where 6; = prob. of face j

Suppose X = (Xj,...,X,) and each
X;|0 ~ CATEGORICAL(0). Then:

P(X|6) H CATEGORICAL (X;; 6) H o
i=1

where Nj is the number of times j occurs in X.

Goal of next few slides: compute P(6|X)



Multinomial distributions

e Suppose X; ~ CATEGORICAL(0) fori =1,...,n, and
N; is the number of times j occurs in X

e Then N|n,0 ~ MULTI(6,n), and

n! N
= j=

where n!/ [TiZ; N;! is the number of sequences of values with
occurence counts N

e The vector N is known as a sufficient statistic for 6 because it
supplies as much information about 0 as the original
sequence X does.



Dirichlet distributions

e Dirichlet distributions are probability distributions over
multinomial parameter vectors
» called Beta distributions when m = 2
e Parameterized by a vector &« = (&1, ...,a,;) where aj > 0 that
determines the shape of the distribution

DIR(6;&) = C(la) l—mIQ;‘j_l
j=1
Cla) = [T]o% "do = ="
@ = /11 [y o)

e I'is a generalization of the factorial function
e I'(k) = (k — 1)! for positive integer k
e I'(x) =(x—1)T'(x—1) forall x



Plots of the Dirichlet distribution




Plots of the Dirichlet distribution (2)
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Plots of the Dirichlet distribution (3)
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Dirichlet distributions as priors for 6
e Generative model:

6 | « ~ DIR(x)
X; | 8 ~ CATEGORICAL(H), i=1,...,n

e We can depict this as a Bayes net using plates, which indicate
replication

EH(—)




Inference for 6 with Dirichlet priors

e Data X = (Xj,..., Xn) generated i.i.d. from CATEGORICAL ()
e Prior is DIR(«). By Bayes Rule, posterior is:

P(0|X) o« P(X|6)P

“( )(ﬁ@f’)

N+ocj71

||
H:lﬁ

P(8|X) = DIR(N + )

e So if prior is Dirichlet with parameters «,
posterior is Dirichlet with parameters N + «
= can regard Dirichlet parameters & as “pseudo-counts” from
“pseudo-data”



Point estimates from Bayesian posteriors

o A “true” Bayesian prefers to use the full P(H|D), but
sometimes we have to choose a “best” hypothesis

e The Maximum a posteriori (MAP) or posterior mode is

-~

H = argmaxP(H|D) = argmaxP(D|H)P(H)
H H
e The expected value Ep[X] of X under distribution P is:

Ep[X] = /xP(X:x)dx

The expected value is a kind of average, weighted by P(X).

The expected value E[6] of 6 is an estimate of 6.



The posterior mode of a Dirichlet

e The Maximum a posteriori (MAP) or posterior mode is

-~

H = argmaxP(H|D) = argmaxP(D|H)P(H)
H H

e FPor Dirichlets with parameters &, the MAP estimate is:
N oj— 1
b = i
Ej’zl ((X]'/ — 1)
so if the posterior is DIR(N + a), the MAP estimate for 0 is:
A Nji+aj—1

b =
] n—+ 2;7:1(06]'/ — 1)

e If x =1 then 9]- = N;/n, which is also the maximum likelihood
estimate (MLE) for 0



The expected value of 0 for a Dirichlet
o The expected value Ep[X] of X under distribution P is:

Ep[X] = /xP(X:x)dx

o For Dirichlets with parameters «, the expected value of 6; is:
&
m
E]/:l “]l

EDIR(oc) [Gj] =

o Thus if the posterior is DIR(N + «), the expected value of 6; is:

Nj + K
n -+ 27/1:1 (X]'/

EDIR(N+a) [Qj]

e E[6] smooths or regularizes the MLE by
adding pseudo-counts & to N



Sampling from a Dirichlet

. 1 m Dé]'fl .
0|la ~ Dir(a) iff P(Ola) = C(a)gej , where:
Ca) [T T(a)

I'( ;‘11"%)

¢ There are several algorithms for producing samples from
DIR(«). A simple one relies on the following result:
o If Vi ~ GAMMA () and 0, = Vi/ (L)' Vi), then 8 ~ DIR(«)
e This leads to the following algorithm for producing a sample
6 from DIR («)
» Sample vy from GAMMA (ay) fork=1,...,m
-+ Set 6 = v/ (T 0p)



Conjugate priors

e If prior is DIR (&) and likelihood is i.i.d. CATEGORICAL(#),
then posterior is DIR(N + «)
= prior parameters a specify “pseudo-observations”

e A class C of prior distributions P(H) is conjugate to a class of
likelihood functions P(D|H) iff the posterior P(H|D) is also a
member of C

e In general, conjugate priors encode “pseudo-observations”

» the difference between prior P(H) and posterior P(H|D)
are the observations in D
» but P(H|D) belongs to same family as P(H), and can
serve as prior for inferences about more data D’
= must be possible to encode observations D using
parameters of prior

e In general, the likelihood functions that have conjugate priors

belong to the exponential family



Outline

Comparing discrete and continuous hypotheses
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Categorical and continuous hypotheses
about coin flips

Data: A sequence of coin flips X = (X3,...,X,)

Hypothesis h: X is generated from a fair coin, i.e., 0y = 0.5
Hypothesis h;: X is generated from a biased coin with
unknown bias, i.e., 0y ~ DIR(«)

P(H|X) = P(X|H)P(H)
Assume P(h1) = P(hy) = 0.5
P(X|h1) = 27", but what is P(X |hy)?
P(X|hy) is the probability of generating 6 from DIR(«) and

then generating X from CATEGORICAL(0). But we don’t care
about the value of 6, so we marginalize or integrate out 0

P(X|a, hi) /Pxe\



Posterior with Dirichlet priors

0 | « ~ DIR(x)
X; | 6 ~ CATEGORICAL(O), i=1,...,n

e Integrate out 0 to calculate posterior probability of X
P(X|a) = /P (X,6]a)d0 = /P X|6) P(8]«) d6

- ({1 (o)
Al

Nj—l-tx/—l

de

C(N +«a) ;-”:1 T(a;)
= —————, where C(&) = —=7——
Cla) @ = RO
e Collapsed Gibbs samplers and the Chinese Restaurant Process rely
on this result



Posteriors under h; and h,
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Understanding the posterior

P(X|a) = % where C(a) = %F()Mand“. — i"‘j
. =

- " T(Nj + ) I'(a)
P(X|a) = ( ]F(n—i—tx.) ) (H?l“"‘ﬂ)
B " F(Nj+0éj) I'(a)
= (g T (a;) ) (F(n+oc.)>
wooatl kN1

Xe Ke+1 T ag+N;j—1
w2l X ... X a2+ Np — 1
D‘Q+Nl “0+N1+1 0‘.+N1+N2_1
X ...

Oy 0+ 1 o ><zxm—kNm—l

X X
fe+n—Ny,—1 «ae+n— Ny Ne +1n—1



Exchangability
e The individual X; in a Dirichlet-multinomial distribution
P(X|a) = C(N + «)/C(w) are not independent
» the probability of X; depends on Xj, ..., X;_1

P(X1,..., Xp|e)

P(Xl, .. .,Xn,1|tx)
g+ Nk(Xl,. . -/Xn—l)

P(Xn = k‘Xl,. . .,Xn_l,a) =

Ne +1—1

e but X3, ..., X, are exchangable
» P(X|a) depends only on N
= doesn’t depend on the order in which the X occur
¢ A distribution over a sequence of random variables is

exchangable iff the probability of all permutations of the random
variables are equal
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Summary so far

¢ Bayesian inference can compare models of differing complexity
(assuming we can calculate posterior probability)
» Hypothesis /1 has no free parameters
» Hypothesis h; has one free parameter 0y

e Bayesian Occam’s Razor: A more complex hypothesis is only
prefered if its greater complexity consistently provides a
better account of the data”

e But: 1; makes every sequence equally likely.
hy seems to dislike 0y = 0.5
What'’s going on here?



Posteriors with n = 10, & = 10
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Posteriors with n = 20, = 1
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Dirichlet-Multinomial distributions

¢ Only one sequence of 10 heads out of 10 coin flips

e but 252 different sequences of 5 heads out of 10 coin flips

e Each particular sequence of 5 heads out of 10 flips is unlikely,
but there are so many of them that the group is very likely

e The number of ways of picking N outcomes out of # trials is:

n!
iz K
=1 N].

e The probability of observing N given 6 is:
n N
P(N|0) = —i——]]96;’
;'n:l N;! =1 J

e The probability of observing N given « is:
n C(N +«a)
[T N Cla)

P(N|a) =



Dirichlet-multinomial posteriors with
n=10,a =1
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Dirichlet-multinomial posteriors with
n = 10, varying «
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Dirichlet-multinomial posteriors with
n = 20, varying «

P(Ny, Nt =20 — Ng)

1

0.1F

0.01

0.001

(==}
e

S
BN

=
2 |

R R

(=]

AN

i

/|

o
Q1
o

15 20
H

37/39



Dirichlet-multinomial posteriors with
n = 50, varying «
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Entropy vs. “rich get richer”

=

Notation: If X = (X3,...,X,), then
X =Xy, X1, Xji1, e Xn)

Nk(X—n) +le
e +1—1

The probability of generating an outcome is proportional to
the number of times it has been seen before (including prior)
Next outcome is most likely to be most frequently generated
previous outcome =- sparse outcomes

But there are far fewer sparse outcomes than non-sparse
outcomes = entropy “prefers” non-sparse outcomes

If « > 1 then most likely outcomes are not sparse

i.e., entropy is stronger than prior

If « < 1 then most likely outcomes are sparse

i.e., prior is stronger than entropy
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