
Parsing

What is Parsing?
S  NP VP
NP  Det N
NP  NP PP
VP  V NP
VP  VP PP
PP  P NP

NP  Papa
N  caviar
N  spoon
V  spoon
V  ate
P  with
Det  the
Det  a

Papa the caviar a spoonate with

S

NP VP

VP

V NP

Det N

NP

Det N

PP

P

What is Parsing?
S  NP VP
NP  Det N
NP  NP PP
VP  V NP
VP  VP PP
PP  P NP

NP  Papa
N  caviar
N  spoon
V  spoon
V  ate
P  with
Det  the
Det  a

S

Papa

NP VP

VP

V NP

Det N

the caviar

NP

Det N

a spoon

ate

PP

P

with

Programming languages
printf ("/charset [%s",

(re_opcode_t) *(p - 1) == charset_not ? "^" : "");

assert (p + *p < pend);

for (c = 0; c < 256; c++)
if (c / 8 < *p && (p[1 + (c/8)] & (1 << (c % 8)))) {

/* Are we starting a range? */
if (last + 1 == c && ! inrange) {

putchar ('-');
inrange = 1;

}
/* Have we broken a range? */
else if (last + 1 != c && inrange) {

putchar (last);
inrange = 0;

}

if (! inrange)
putchar (c);

last = c;
}

 Easy to parse.
 Designed that way!

Natural languages

 No {} () [] to indicate scope & precedence
 Lots of overloading (arity varies)

 Grammar isn’t known in advance!

 Context-free grammar not best formalism

printf "/charset %s", re_opcode_t *p - 1 == charset_not ? "^"
: ""; assert p + *p < pend; for c = 0; c < 256; c++ if c / 8 <
*p && p1 + c/8 & 1 << c % 8 Are we starting a range? if last +
1 == c && ! inrange putchar '-'; inrange = 1; Have we broken
a range? else if last + 1 != c && inrange putchar last;
inrange = 0; if ! inrange putchar c; last = c;

Ambiguity
S  NP VP
NP  Det N
NP  NP PP
VP  V NP
VP  VP PP
PP  P NP

NP  Papa
N  caviar
N  spoon
V  spoon
V  ate
P  with
Det  the
Det  a

S

Papa

NP VP

VP

V NP

Det N

the caviar

NP

Det N

a spoon

ate

PP

P

with

Ambiguity
S  NP VP
NP  Det N
NP  NP PP
VP  V NP
VP  VP PP
PP  P NP

NP  Papa
N  caviar
N  spoon
V  spoon
V  ate
P  with
Det  the
Det  a

S

Papa

NP VP

NPV

NP

Det N

the caviar

NP

Det N

a spoon

ate PP

P

with

The parsing problem

P
A
R
S
E
R

Grammar

s
c
o
r
e
r

correct test trees

test
sentences

accuracy

Recent parsers
quite accurate
… good enough
to help a range of
NLP tasks!

Applications of parsing (1/2)

 Machine translation (Alshawi 1996, Wu 1997, ...)

English Chinese
tree

operations

 Speech synthesis from parses (Prevost 1996)
The government plans to raise income tax.
The government plans to raise income tax the imagination.

 Speech recognition using parsing (Chelba et al 1998)

Put the file in the folder.
Put the file and the folder.

Warning: these slides are out of date

Applications of parsing (2/2)

 Grammar checking (Microsoft)

 Indexing for information retrieval (Woods 1997)
... washing a car with a hose ... vehicle maintenance

 Information extraction (Hobbs 1996)

NY Times
archive

Database

query

Warning: these slides are out of date

Parsing for Interpretation

 Most linguistic properties are defined over trees.
 One needs to parse to see subtle distinctions. E.g.:

Sara dislikes criticism of her. (her  Sara)

Sara dislikes criticism of her by anyone. (her  Sara)

Sara dislikes anyone’s criticism of her. (her = Sara or her  Sara)

600.465 - Intro to NLP - J. Eisner 12

Parsing  Compositional Semantics

 What is meaning of 3+5*6?
 First parse it into 3+(5*6)

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

Preview of the next topic!

600.465 - Intro to NLP - J. Eisner 13

 What is meaning of 3+5*6?
 First parse it into 3+(5*6)
 Now give a meaning to

each node in the tree
(bottom-up)

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

3

5 6

30

33

3

5 6

30

33

add
mult

Parsing  Compositional Semantics
Preview of the next topic!

600.465 - Intro to NLP - J. Eisner 14

NP
Laura

Vstem
love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem
want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

ROOT

Punc
.

G
a a

y x e act(e,loving),
lover(e,x), lovee(e,y)

L

y x e act(e,wanting),
wanter(e,x), wantee(e,y)

v x e present(e),v(x)(e)

every nation

s assert(s)

assert(every(nation, x e present(e),
act(e,wanting), wanter(e,x),
wantee(e, e’ act(e’,loving),

lover(e’,G), lovee(e’,L))))

Parsing  Compositional Semantics
Preview of the next topic!

 Now let’s develop some parsing algorithms!

 What substrings of this sentence are NPs?

 Which substrings could be NPs in the right context?
 Which substrings could be other types of phrases?
 How would you defend a substring on your list?

are unpopular
0 1 2 3 4 5 6 7 8 9
The government plans to raise income tax

“Papa ate the caviar with a spoon”

 S  NP VP
 NP  Det N
 NP  NP PP
 VP  V NP
 VP  VP PP
 PP  P NP

 NP  Papa
 N  caviar
 N  spoon
 V  spoon
 V  ate
 P  with
 Det  the
 Det  a

0 1 2 3 4 5 6 7

First try … does it work?

 for each constituent on the LIST (Y I Mid)
 scan the LIST for an adjacent constituent (Z Mid J)
 if grammar has a rule to combine them (X  Y Z)
 then add the result to the LIST (X I J)

“Papa ate the caviar with a spoon”
0 1 2 3 4 5 6 7

Second try …

 initialize the list with parts-of-speech (T J-1 J)
where T is a preterminal tag (like Noun) for the Jth word

 for each constituent on the LIST (Y I Mid)
 scan the LIST for an adjacent constituent (Z Mid J)
 if grammar has a rule to combine them (X  Y Z)
 then add the result to the LIST (X I J)

 if the above loop added anything, do it again!
(so that X I J gets a chance to combine or be combined with)

“Papa ate the caviar with a spoon”
0 1 2 3 4 5 6 7

Third try …

 initialize the list with parts-of-speech (T J-1 J)
where T is a preterminal tag (like Noun) for the Jth word

 for each constituent on the LIST (Y I Mid)
 for each adjacent constituent on the list (Z Mid J)
 for each rule to combine them (X  Y Z)
 add the result to the LIST (X I J)

if it’s not already there

 if the above loop added anything, do it again!
(so that X I J gets a chance to combine or be combined with)

“Papa ate the caviar with a spoon”
0 1 2 3 4 5 6 7

Third try …

Initialize
 NP 0 1
 V 1 2
 Det 2 3
 N 3 4
 P 4 5
 Det 5 6
 N 6 7
 V 6 7

“Papa ate the caviar with a spoon”
0 1 2 3 4 5 6 7

1st pass
 NP 2 4
 NP 5 7

2nd pass
 VP 1 4
 NP 2 4
 PP 4 7
 NP 5 7

3rd pass
 …

Follow backpointers to get the parse
“Papa ate the caviar with a spoon”
0 1 2 3 4 5 6 7

“Papa ate the caviar with a spoon”

Turn sideways:
See the trees?

Correct but still inefficient …

We kept checking the same pairs that we’d
checked before (both bad and good pairs)

Can’t we manage the process in a way that avoids
duplicate work?

old new

old old pair new pair

new new pair new pairLe
ft

ph
ra

se

Right phrase

Correct but still inefficient …

We kept checking the same pairs that we’d
checked before (both bad and good pairs)

Can’t we manage the process in a way that avoids
duplicate work?

And even finding new pairs was expensive
because we had to scan the whole list

Can’t we have some kind of index that will help us
find adjacent pairs?

Indexing: Store S 0 4 in chart[0,4]

Avoid duplicate work:
Build width-1, then width-2, etc.

How do we build a width-6 phrase?
(after building and indexing all shorter phrases)

? 1 7 =

1 2 + 2 7 

1 3 + 3 7

1 4 + 4 7 

1 5 + 5 7

1 6 + 6 7

Avoid duplicate work:
Build width-1, then width-2, etc.

CKY algorithm, recognizer version

 Input: string of n words
 Output: yes/no (since it’s only a recognizer)
 Data structure: n  n table
 rows labeled 0 to n-1
 columns labeled 1 to n
 cell [i,j] lists constituents found between i and j

 Basic idea: fill in width-1 cells, then width-2, …

CKY algorithm, recognizer version

 for J := 1 to n
 Add to [J-1,J] all categories for the Jth word

 for width := 2 to n
 for start := 0 to n-width // this is I

 Define end := start + width // this is J

 for mid := start+1 to end-1 // find all I-to-J phrases

 for every nonterminal Y in [start,mid]
 for every nonterminal Z in [mid,end]
 for all nonterminals X
 if X  Y Z is in the grammar
 then add X to [start,end]

Loose ends to tie up (no slides)

 What’s the space?
 Duplicate entries?
 How many parses could there be?
 Can we fix this?

 What’s the runtime?

CKY algorithm, recognizer version

 for J := 1 to n
 Add to [J-1,J] all categories for the Jth word

 for width := 2 to n
 for start := 0 to n-width // this is I

 Define end := start + width // this is J

 for mid := start+1 to end-1 // find all I-to-J phrases

 for every nonterminal Y in [start,mid]
 for every nonterminal Z in [mid,end]
 for all nonterminals X
 if X  Y Z is in the grammar
 then add X to [start,end]

Alternative version of inner loops

 for J := 1 to n
 Add to [J-1,J] all categories for the Jth word

 for width := 2 to n
 for start := 0 to n-width // this is I

 Define end := start + width // this is J

 for mid := start+1 to end-1 // find all I-to-J phrases

 for every rule X  Y Z in the grammar
if Y in [start,mid] and Z in [mid,end]

then add X to [start,end]

Extensions to discuss (no slides)

 In Chinese, no spaces between the words!?

 Incremental (left-to-right) parsing?

 We assumed rules like X  Y Z or X  word.
 Grammar in “Chomsky Normal Form.” What if it’s not?

 How do we choose among parses?

35

Chart Parsing in Dyna

phrase(X,I,J) :- rewrite(X,W), word(W,I,J).
phrase(X,I,J) :- rewrite(X,Y,Z), phrase(Y,I,Mid), phrase(Z,Mid,J).
goal :- phrase(start_symbol, 0, sentence_length).

36

Understanding the Key Rule

phrase(X,I,J) :- rewrite(X,Y,Z) , phrase(Y,I,Mid), phrase(Z,Mid,J).

e.g., phrase(“VP”,1,7)

Substring from
I to J could
be a phrase

of category X if

e.g., phrase(“V”,1,2), phrase(“NP”,2,7)

it breaks up into adjacent substrings
(from I to Mid and Mid to J)

that could be phrases
of categories Y and Z

rewrite(“VP”,“V”,“NP”)

the
grammar
has a rule
X  Y Z

(“an X can be made of a Y next to a Z”)

 “A word is a phrase” (if grammar allows)

start_symbol := “S”.
sentence_length := 7.

 “Two adjacent phrases are a phrase” (if grammar allows)

37

Chart Parsing in Dyna
phrase(X,I,J) :- rewrite(X,W), word(W,I,J).

phrase(X,I,J) :- rewrite(X,Y,Z), phrase(Y,I,Mid), phrase(Z,Mid,J).

goal :- phrase(start_symbol, 0, sentence_length).

 “A phrase that covers the whole sentence is a parse”
(achieves our goal by showing that the sentence is grammatical)

Alternatively:
sentence_length max= J for word(_,_,J).

38

Chart Parsing in Dyna

 We also need a sentence:  We also need a grammar:

phrase(X,I,J) :- rewrite(X,W), word(W,I,J).
phrase(X,I,J) :- rewrite(X,Y,Z), phrase(Y,I,Mid), phrase(Z,Mid,J).
goal :- phrase(start_symbol, 0, sentence_length).

word(“Papa”,0,1).
word(“ate”,1,2).
word(“the”,2,3).
word(“caviar”,3,4).
word(“with”,4,5).
word(“a”,5,6).
word(“spoon”,6,7).

rewrite(“NP”,“Papa”).
rewrite(“N”,“caviar”).

…

rewrite(“S”,“NP”,“VP”).
rewrite(“NP”,“Det”,“N”).
rewrite(“NP”,“NP”,“PP”).

…

Procedural Algorithms

 The Dyna program runs fine.
 It nicely displays the abstract structure of the algorithm.

 But Dyna is a declarative programming language that
hides the details of the actual execution from you.

 If you had to find the possible phrases by hand (or with a
procedural programming language), what steps would
you go through?

40

shared substructure
(dynamic programming)

ambiguity

Discovered phrases & their relationships (“parse forest”)
when parsing the ambiguous sentence “Time flies like an arrow”

dead end

desired theorem

axioms

This picture assumes a slightly different version of the Dyna program, sorry

41

shared substructure
(dynamic programming)

ambiguity

dead end

This picture assumes a slightly different version of the Dyna program, sorry

Discovered phrases & their relationships (“parse forest”)
when parsing the ambiguous sentence “Time flies like an arrow”

42

Procedural algorithms like CKY are just strategies for
running this declarative program

 And we’ll look at further such strategies later, e.g.
 magic sets / Earley’s algorithm / left-to-right parsing,
 agenda-based forward chaining,
 backward chaining with memoization,
 coarse-to-fine search,
 probability-guided search and pruning, …

phrase(X,I,J) :- rewrite(X,W), word(W,I,J).
phrase(X,I,J) :- rewrite(X,Y,Z), phrase(Y,I,Mid), phrase(Z,Mid,J).
goal :- phrase(start_symbol, 0, sentence_length).

