Parsing

What is Parsing?

S > NP VP
NP > Det N S
NP > NP PP /\
VP > V NP
VP > VP PP NP VP
PP > P NP /\
VP PP
V. NP P NP

NP - Papa
N - caviar
N - spoon
V = spoon
V - ate
P - with
Det - the
Det 2 a

What is Parsing?

S > NP VP
NP = Det N S
NP > NP PP /\
VP > V NP
VP > VP PP NP VP
PP > P NP | /\
VP PP
RN N

NP - Papa
N - caviar
N - spoon
V = spoon
V - ate
P - with
Det - the
Det 2 a

Programming languages

printf (*'/charset [%s",
(re_opcode_t) *(p - 1) == charset_not ? "A" : "");

assert (p + *p < pend);

for (c = 0; c < 256 c++)
it SC / 8 < *p & p[l + (C/82] (1 << (c % 8)))) {
* Are we startlng range’
if (last + 1 == c && ! |nrange) {
putchar ("-7);
inrange = 1;

/* Have we broken a range?_ */

else 1T (last + 1 = c && inrange) {
putchar (last);
inrange = 0;

it (! 1Inran eg
putchar (c);

Easy to parse.
Designed that way!

last = c;

Natural languages

printf "/charset %s'", re opcode t *p - 1 == charset not ? "/"
- "'; assert p + *p < pend; for c = 0; c. < 256; ct++ 1f c / 8 <
*p & pl + c/8 & 1 << c % 8 Are we _starting a range? 1f last +

1 == c && ! i1nrange putchar "-"; 1Inrange = 1; Have we broken
a range? else if last + 1 '= c && i1nrange putchar last;
inrange = O; 1f ! 1nrange putchar c; last = c;

No {} () [] to indicate scope & precedence
Lots of overloading (arity varies)

Grammar isn’'t known In advance!

Context-free grammar not best formalism

Ambiguity

S > NP VP S
NP = Det N /\
NP > NP PP
VP > V NP NP VP
VP > VP PP | /\
PP > P NP
VP PP
PN N

NP - Papa
N - caviar
N - spoon
V = spoon
V - ate
P - with
Det - the
Det 2 a

Ambiguity

S > NP VP S
NP = Det N /\
NP > NP PP
VP > V NP NP VP
VP > VP PP | /\
PP > P NP
\V/ NP
| /\
NP PP
N N

NP - Papa
N - caviar
N - spoon
V = spoon
V - ate
P - with
Det - the
Det 2 a

The parsing problem

FEEEE—

AEEEE —

feSf =mmmm —

sentences

ODMwAOP>T

|

correct test trees
m\‘ 2
C
0
— —+ | r — accuracy
;

Grammar

Recent parsers
quite accurate

... good enough
to help a range of
NLP tasks!

Warning. these slides are out of date

Applications of parsing (1/2)

Machine translation (Alshawi 1996, Wu 1997, ...)

_ tree) _
English g é operations é é Chinese

Speech synthesis from parses (Prevost 1996)

The government plans to raise income tax.
The government plans to raise income tax the imagination.

Speech recognition using parsing (chelba et al 1998)
Put the file in the folder.
Put the file and the folder.

Warning. these slides are out of date

Applications of parsing (2/2)

Grammar checking (Microsoft)

Indexing for information retrieval (woods 1997)
... washing a car with a hose ... ——— vehicle maintenance

Information extraction (Hobbs 1996)

«NY Times 42 L 7 >|—|*Database

. L2
marchive |- & .AQ\: in
. .

=query

Parsing for Interpretation

Most linguistic properties are defined over trees.
One needs to parse to see subtle distinctions. E.g.:

Sara dislikes criticism of her. (her = Sara)
Sara dislikes criticism of her by anyone. (her =Sara)
Sara dislikes anyone’s criticism of her. (her = Sara or her =Sara)

Preview of the next topic!

Parsing - Compositional Semantics

What is meaning of 3+5*67? /+\

3 x
First parse it into 3+(5*6)

600.465 - Intro to NLP - J. Eisner 12

Preview of the next topic!

Parsing - Compositional Semantics

. . +33
What is meaning of 3+5*67? . /\
. . 3 *30
First parse it into 3+(5*6) /\
Now give a meaning to 05 68
each node In the tree E 33
(bottom-up) E/|F\E 30
| N
3N + E F E
| add | |]
3 5||\| mult | 6

600.465 - Intro to NLP - J. Eisner 13

Preview of the next topic!

Parsing - Compositional Semantics

assert(every(nation, Ax Je present(e), ROOT

act(e,wanting), wanter(e,x), T~

wantee(e, Ae’ act(e’,loving),

lover(e’,G), lovee(e, L))))/”“\ Punc

N VP, As assert(s)

/\ PN
Det — N T — VPgenm
Every nation -S

every nation /‘ Ve — St

want /K

AV Ax de present(e),v(x)(e) / NP «— VP

inf

George .~ .
Ay AX Ae act(e,wanting), G T — VP
wanter(e,x), wantee(e,y) 4 a to /ste{
V... — NP

stem

Ay Ax he act(e,loving), love Laura |

lover(e,x), lovee(e,y)
600.465 - Intro to NLP - J. Eisner 14

Now let’s develop some parsing algorithms!

What substrings of this sentence are NPs?

0 1 2 3 4 S 6 /7 8 9
The government plans to raise income tax are unpopular

Which substrings cou/d be NPs in the right context?
Which substrings cou/d be other types of phrases?
How would you defend a substring on your list?

0 1 2 3 4 5 6 7
“Papa ate the caviar with a spoon”

S->NPVP NP - Papa
NP = Det N N = caviar
NP = NP PP N - spoon
VP =2 V NP V = spoon
VP - VP PP V = ate
PP 2> P NP P -2 with
Det =2 the

Det =2 a

First try ... does it work?

for each constituent on the LIST (Y | Mid)
scan the LIST for an adjacent constituent (Z Mid J)
If grammar has a rule to combine them (X = Y 2)
then add the result to the LIST (X | J)

Second try ...

Initialize the list with parts-of-speech (T J-1 J)
where T is a preterminal tag (like Noun) for the J% word
for each constituent on the LIST (Y | Mid)
scan the LIST for an adjacent constituent (Z Mid J)
If grammar has a rule to combine them (X = Y 2)

then add the result to the LIST (X | J)

If the above loop added anything, do it again!

(so that X | J gets a chance to combine or be combined with)

Third try ...

Initialize the list with parts-of-speech (T J-1 J)

where T is a preterminal tag (like Noun) for the J% word

for each constituent on the LIST (Y | Mid)
for each adjacent constituent on the Iist@l\/lid@
for each rule to combine them @9 Y 7)
add the result to the LIST (X | J)
If It's not already there

If the above loop added anything, do it again!

(so that X | J gets a chance to combine or be combined with)

Third try ...

Initialize 1st pass 2nd pass 3rd pass
NP O 1 NP24 = VP14

V12 NP57 = NP2%4
Det 2 3 PP 47
N 34 NP5+
P 45
Det 5 6
N 6 7

V67

Follow backpointers to get the parse

N Lourt 74t
1’3 S < S P ass
7 ////

VP 17 oot w175

T\.Jo d '-f/(-"(/f‘f

Ay wil
Woc fo burld

the 3mbiowoug

VP | 7 ?491"'

f_) . ;J ..m \: -/-— (aQa\ﬂ} wi 4” dw /‘C&/Q vecavg
1) e (fQ&uﬂAaﬂt) Jlso redundartly "o et
k |/ 7 ?E\;ul P QUQ/UU’";& 6ac/‘;,§° fe”
.-’f / C f | O™ oL 7,
/N L A soitvs dp VET o7 froMm p e.\(0 PU« g Y
\/ 6 / Note: No 2 | il ki passe.Q Note: Fourth P J
Thejre va'd phrases ress_of depl
SO L{ ;) ! Uﬂ b""{' Ca ' wm‘o'ne ", P
(o) | C\‘I e’ Ow x5 LL‘ g L C"kﬂce, /I-;;, 77\

with adjacent phrases

. s L h dd— [j\\l)
\ : : S

ﬂ Y Prrp /)

I/ Y, & ~ i S Y
Td A9 Sy LI\/ > _,, ;
2 . e
, ssed SoRC 351 .ﬂ 0/} Se 0 V) i
Ss®Rc / mu,\auvm <sPc km._.u& Y/ > _,mf.l:\
Y date

Turn sideways
See the trees?

Correct but still inefficient ...

We kept checking the same pairs that we’d
checked before (both bad and good pairs)

Can't we manage the process in a way that avoids
duplicate work?

Right phrase
old new

QO . .

@ old old pair new pair
S

=

S . .

L new new pair new pair

Correct but still inefficient ...

We kept checking the same pairs that we’d
checked before (both bad and good pairs)

Can't we manage the process in a way that avoids
duplicate work?

And even finding new pairs was expensive

because we had to scan the whole list

Can't we have some kind of index that will help us
find adjacent pairs?

start position

Indexing: Store S O 4 in chart|[0,4]

0 1 2 3 4 5 6 r{
Papa ate the caviar with a spoon

end position

1 2 3 4 5 6 7
<./-~f/—*ﬁ‘”“"”’*'- e] — e
0 NY ¢ S @ S
1 Vel # NPl VP
2 Ve P &
3 A @ o
4 }_, ‘ P j)
'_/(_
2 Detel
6. \V4
.\/‘/

start position

Avoid duplicate work:
Build width-1, then width-2, etc.

end position

start position

How do we build a width-6 phrase?
(after building and indexing all shorter phrases)

r,,i

end position

i @ 3 4 5 6 7
0| Nl s - S
1 \Q’f __ \)\&?/P 17 =
3 | | ' 12+27 ©
n ’ N ; B 13+37
4 Pl g PP 14+47 ©

5 Det 15+57
6 O 16+67

start position

Avoid duplicate work:
Build width-1, then width-2, etc.

0 1 2 3 4 5 6 r{
Papa ate the caviar with a spoon

end position
1 2 3 4 5 6 T

T ——— ook of. parse:
O J\l 7) < e (,«”Sfaf't (n.\”k)vghﬁ&
N v M @{S ¢ 6 }DDCKPU”H‘\,fS. beve.
| | - “ - ' ' choice O'F which
1 \/K s\/P & \"\/P L”,-bad(r)omfe/‘ Pal/‘
‘ - \,/ \ (aMb'auous vP)
z UuC P Jrs
3 j] ?) J7%)
this PP ("u:t‘ﬂ d 5,)034“)
i) ,//’|S bwlt onla oNce
4 }—)'_’—/Pj < bul ’3_&3,45 ub_(’;cl {wice, bg
\ two a}t(g/ngtuc, AJIJ«)O“"GSCS
2 " R (VP and both poitt
ke to k)
6. A\

CKY algorithm, recognizer version

Input: string of n words
Output: yes/no (since it's only a recognizer)

Data structure: n x n table
rows labeled O to n-1
columns labeled 1 to n
cell [i,j] lists constituents found between | and |

Basic idea: fill in width-1 cells, then width-2, ...

CKY algorithm, recognizer version

forJ:=1ton
Add to [J-1,J] all categories for the J" word
for width := 2 to n

for start := 0 to n-width // this is |
Define end := start + width // this is J
for mid := start+1 to end-1 // find all 1-to-J phrases

for every nonterminal Y in [start,mid]
for every nonterminal Z in [mid,end]
for all nonterminals X
If X =2 Y Zis in the grammar
then add X to [start,end]

Loose ends to tie up (no slides)

What's the space?
o Duplicate entries?

o How many parses could there be?
o Can we fix this?

What's the runtime?

CKY algorithm, recognizer version

forJ:=1ton
Add to [J-1,J] all categories for the J" word
for width := 2 to n

for start := 0 to n-width // this is |
Define end := start + width // this is J
for mid := start+1 to end-1 // find all 1-to-J phrases

for every nonterminal Y in [start,mid]
for every nonterminal Z in [mid,end]
for all nonterminals X
If X =2 Y Zis in the grammar
then add X to [start,end]

Alternative version of inner loops

forJ:=1ton
Add to [J-1,J] all categories for the J" word
for width := 2 to n

for start := 0 to n-width // this is |
Define end := start + width // this is J
for mid := start+1 to end-1 // find all 1-to-J phrases

for every rule X 2 Y Z In the grammar
If Y In [start,mid] and Z in [mid,end]
then add X to [start,end]

Extensions to discuss (no slides)

In Chinese, no spaces between the words!?
Incremental (left-to-right) parsing?

We assumed rules like X 2 Y Z or X = word.
o Grammar in “Chomsky Normal Form.” What if it's not?

How do we choose among parses?

Chart Parsing in Dyna

phrase(X,1,J) - rewrite(X,W), word(W,I,J).
phrase(X,1,J) :- rewrite(X,Y,Z), phrase(Y,l,Mid), phrase(Z,Mid,J).

goal .- phrase(start_symbol, O, sentence_length).

35

‘ Understanding the Key Rule

Substring from
I to J could
be a phrase

of category X

phrase(X,l,d) - rewrite(X,Y,Z) , phrase(Y,l,Mid), phrase(Z,Mid,J).

e.g., phrase(“VP",1,7) rewrite(“VP”,“V" “NP”) e.g., phrase(*v”,1,2), phrase(“NP”,2,7)

it breaks up into adjacent substrings
(from I to Mid and Mid to J)
that could be phrases
of categories ¥ and Z

the

grammar
has a rule
X>YZ

("an X can be made of a Y next to a Z") 5

Chart Parsing in Dyna

phrase(X,1,J) - rewrite(X,W), word(W,I,J).

= “Aword is a phrase” (if grammar allows)

phrase(X,1,J) :- rewrite(X,Y,Z), phrase(Y,l,Mid), phrase(Z,Mid,J).

= “Two adjacent phrases are a phrase” (if grammar allows)

.- phrase(start_symbol, O, sentence_length).

= “A phrase that covers the whole sentence is a parse”
(achieves our goal by showing that the sentence is grammatical)

start_symbol :=“S”.

sentence length ;= 7.

Alternatively:
sentence _length max= J for word(_, ,J).

37

Chart Parsing in Dyna

phrase(X,1,Jd) - rewrite(X,W), word(W,I,J).
phrase(X,1,J) - rewrite(X,Y,Z), phrase(Y,l,Mid), phrase(Z,Mid,J).

goal .- phrase(start_symbol, O, sentence length).

= We also need a sentence: = We also need a grammatr:

word(“Papa”,0,1). rewrite(“NP”,“Papa”).
word(“ate”,1,2). rewrite(“N”,“caviar”).
word(“the”,2,3).

word(“caviar”,3,4).

word(“with”,4,5). rewrite(“S”,“NP”",“VP").
word(“a”,5,6). rewrite(“NP”,“Det”,“N”).

word(“spoon”,6,7). rewrite(“NP”,“NP”“PP").

Procedural Algorithms

The Dyna program runs fine.
It nicely displays the abstract structure of the algorithm.

But Dyna is a declarative programming language that
hides the detalls of the actual execution from you.

If you had to find the possible phrases by hand (or with a
procedural programming language), what steps would
you go through?

This picture assumes a slightly different version of the Dyna program, sorry

| _Discovered phrases & their relationships (“parse forest”)

=wWhen parsing the ambiguous sentence “Time flies like an arrow”
= |- [45 nodesvisible

desired theorem

symaoal(s startsymis

ambiguity ——> — dead end

constitive.2.5) canstitive.1.5) constit(s /v 3.5) constitisfvp.0.2) constit(sdve.0.1)
shared substructure
(dynamic programming)
constitivp/np,2,2) constitivp/np,1,2) constit(vp/advp,2,:) constit(vp/advp,1,:) constit(advp, 2,51 constit(np,0,2 wSnrites(s, ,

ewrites(vp,v,advp constit(advp/np,2,3) constit(np,3,51 constit(n,1,2,

e

[& v\:&@ é;;o&liuﬁtﬁgg constit(n, 4,5 constit(np/n,3,4) r{ﬁﬁrﬁlﬁ;ﬁdﬁtﬁ constit(adj,0,1 canstit(np, 0,1

rmﬂ?a;ﬁmmpa constitiv,2,3 constit(v,1,2 constit{np,/n,0,1)

rewteiy canstnqie23

it i

constitidet, 3,4 rewrites(np.det.n’ rewrites(aditime)

lconstit@n,3,4 rewrites(det,an] & aXI oms

AITOWS move - Alt stops on edges Ctrl changes Mouse-left pans Mouse-right zooms R rotates [searches

40

This picture assumes a slightly different version of the Dyna program, sorry

- Discovered phrases & their relationships (“parse forest”)
([tmefiies graph | . i ==C

e WhEN pafsing the ambiguous sentence - Iime flies like an arfow”

.—J— L__d 45 nhodes visible

ambiguity —> ength

\ dead end

g __
constit(vp,2,5) constit(vp,1,5) constit(s/vp,3,5) constit(s/vp,0,2) constit(s/vg

tit(vp/advp,2,3) constit(vp/advp,1,2) constit(advp,2,5) constit(np,0,2) rewrites(s,ng

shared substructure

/(dyna ic programming)
rewrites(vp,v,advp) constit(advp/np,2,3; constit(np,3,5) constit(n,1,2) constit(np
/

AITOWS move - Alt stops on edges Ctrl changes Mouse-left pans Mouse-right zooms R rotates [searches

41

Procedural algorithms like CKY are just strategies for
running this declarative program

phrase(X,1,J) - rewrite(X,W), word(W,I,J).
phrase(X,1,J) - rewrite(X,Y,Z), phrase(Y,l,Mid), phrase(Z,Mid,J).

goal .- phrase(start_symbol, O, sentence length).

= And we’ll look at further such strategies later, e.qg.
o magic sets / Earley’s algorithm / left-to-right parsing,
o agenda-based forward chaining,
o backward chaining with memoization,
o coarse-to-fine search,
o probability-guided search and pruning, ...

42

