
Distributional
Lexical Semantics

(and word2vec)
Yoav Goldberg

Bar Ilan University

yogo@cs.biu.ac.il

with some slides by
Ido Dagan, Omer Levy, Marco Baroni, Kathrin Erk

A lot of text.

Need to understand what’s being said.

this is where we come in.

text meaning

NLP

What does it mean to understand?

I focus on the building blocks

text meaning

NLP

What does it mean to understand?

I focus on the building blocks

Understanding the Structure

The soup , which I expected to be good , was bad

root

acompdet

subj

rcmod

rel

subj

xcomp

aux acomp

Understanding the Structure

The soup , which I expected to be good , was bad

root

acompdet

subj

rcmod

rel

subj

xcomp

aux acomp

Understanding the Structure

This is called Syntactic Parsing.

Understanding the Structure

The soup , which I expected to be good , was bad

root

acompdet

subj

rcmod

rel

subj

xcomp

aux acomp

Understanding the Structure

The soup , which I expected to be good , was bad

root

acompdet

subj

rcmod

rel

subj

xcomp

aux acomp

Understanding the Structure

The gromp , which I furpled to be drogby , was spujky

root

acompdet

subj

rcmod

rel

subj

xcomp

aux acomp

Understanding the Structure

The gromp , which I furpled to be drogby , was spujky

root

acompdet

subj

rcmod

rel

subj

xcomp

aux acomp

Understanding the Structure

Can understand structure without understanding words.

But the words are also important.

This is not a lecture about parsing.

Today we will focus on the words.

Understanding the Words

soup was bad

soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful

soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful
soup was lousy

soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal

soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty

pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible

cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad

hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor

atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy

hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

I To the computer, each
word is just a symbol, so
these are all the same.

I But to us, some are more
similar than others.

I We’d like a word
representation that can
capture that.

Representing Words

Use a dictionary?

Doesn’t scale.

Representing Words

Use a dictionary?

Doesn’t scale.

Representing Words
The distributional Hypothesis

Dr. Baroni saw a hairy little wampinuck sleeping behind a tree

The Distributional Hypothesis – Haris, 1954
Words in similar contexts tend to have similar meanings

Firth, 1957
“you should know a word by the company it keeps”

Representing Words
The distributional Hypothesis

Dr. Baroni saw a hairy little wampinuck sleeping behind a tree

The Distributional Hypothesis – Haris, 1954
Words in similar contexts tend to have similar meanings

Firth, 1957
“you should know a word by the company it keeps”

Distributional Representation of
Word Meaning and Similarity

10

12

What word can appear in the context of all
these words?

Word 1: drown, bathroom,
shower, fill, fall, lie,
electrocute, toilet,
whirlpool, iron, gin

Word 2: eat, fall, pick,
slice, peel, tree, throw, fruit,
pie, bite, crab, grate

Word 3: advocate,
overthrow, establish,
citizen, ideal,
representative, dictatorship,
campaign, bastion, freedom

Word 4: spend, enjoy,
remember, last, pass, end,
die, happen, brighten, relive

What word can appear in the context of all
these words?

Word 1: drown, bathroom,
shower, fill, fall, lie,
electrocute, toilet,
whirlpool, iron, gin

Word 2: eat, fall, pick,
slice, peel, tree, throw, fruit,
pie, bite, crab, grate

Word 3: advocate,
overthrow, establish,
citizen, ideal,
representative, dictatorship,
campaign, bastion, freedom

Word 4: spend, enjoy,
remember, last, pass, end,
die, happen, brighten, relive

bathtub apple

democracy
day

What can you say about word number 5?
Distributional Similarity (2nd-order)

Word 1: drown, bathroom,
shower, fill, fall, lie,
electrocute, toilet, whirlpool,
iron, gin

Word 2: eat, fall, ripe, slice,
peel, tree, throw, fruit, pie,
bite, crab, grate

Word 3: advocate, overthrow,
establish, citizen, ideal,
representative, dictatorship,
campaign, bastion, freedom

Word 4: spend, enjoy,
remember, last, pass, end, die,
happen, brighten, relive

bathtub apple

democracy

day

Word 5: eat, paint, peel,
apple, fruit, juice, lemon,
blue, grow

Word 1: drown, bathroom,
shower, fill, fall, lie,
electrocute, toilet, whirlpool,
iron, gin

Word 2: eat, fall, ripe, slice,
peel, tree, throw, fruit, pie,
bite, crab, grate

Word 3: advocate, overthrow,
establish, citizen, ideal,
representative, dictatorship,
campaign, bastion, freedom

Word 4: spend, enjoy,
remember, last, pass, end, die,
happen, brighten, relive

bathtub apple

democracy

day

Word 5: eat, paint, peel,
apple, fruit, juice, lemon,
blue, grow

orange

What can you say about word number 5?
Distributional Similarity (2nd-order)

Counting context words

• They picked up red
apples that had fallen
to the ground

• Eating apples is
healthy

Word count, 3-word
context window,
lemmatized

• She ate a red apple
• Pick an apple.

a be eat fall have healthy pick red that up
2 1 2 1 1 1 2 2 1 1

Distributional semantics

• Comparing two words:
– Look at all context words for word1
– Look at all context words for word2
– How similar are those two context collections

in their entirety?

• Compare distributional representations of
two words

How can we compare two context
collections in their entirety?

eat fall ripe slice peel tree throw fruit pie bite crab
794 244 47 221 208 160 145 156 109 104 88

Count how often “apple” occurs close to other words
in a large text collection (corpus):

Interpret counts as coordinates:
fall

eat

apple
Every context word
becomes a dimension.

How can we compare two context
collections in their entirety?

eat fall ripe slice peel tree throw fruit pie bite crab
794 244 47 221 208 160 145 156 109 104 88

Count how often “apple” occurs close to other words
in a large text collection (corpus):

Do the same for “orange”:

eat fall ripe slice peel tree throw fruit pie bite crab
265 22 25 62 220 64 74 111 4 4 8

How can we compare two context
collections in their entirety?

eat fall ripe slice peel tree throw fruit pie bite crab
794 244 47 221 208 160 145 156 109 104 88

Then visualize both count tables as vectors in the same space:

eat fall ripe slice peel tree throw fruit pie bite crab
265 22 25 62 220 64 74 111 4 4 8

fall

eat

apple

orange

Similarity between
two words as
proximity in space

Words as Vectors
We can arrange the words in a huge, sparse matrix, where
each row is a word, and each column is a context.

now, each word
is associated
with a (sparse)
vector of counts.

Using distributional models

• Finding (near-)synonyms: automatically
building a thesaurus

• Related: use distributional similarity of
documents (containing similar words) in
Information Retrieval

Where can we find texts to use for
making a distributional model?

• Text in electronic form!
• Newspaper articles
• Project Gutenberg: older books available for free
• Wikipedia
• Text collections prepared for language analysis:

– Balanced corpora
– WaC: Scrape all web pages in a particular domain

• uk, fr, it, de (http://wacky.sslmit.unibo.it/doku.php?id=corpora)
– ELRA, LDC hold corpus collections

• For example, large amounts of newswire reports
– Google n-grams, Google books

How much text do we need?

• At least:
British National Corpus, 100 million words

• Better: add
– UKWaC (2 billion words)
– Wikipedia (2 billion words)

How much text do we need?

• At least:
British National Corpus, 100 million words

• Better: add
– UKWaC (2 billion words)
– Wikipedia (2 billion words)
Or go even larger with common-crawl (terrabytes)

What do we mean by
“similarity” of vectors?

Euclidean distance (a dissimilarity measure!):

orange

apple

Problem with Euclidean distance: very
sensitive to word frequency!

Braeburn

apple

What do we mean by
“similarity” of vectors?

Cosine similarity:

orange

apple

Use angle between vectors
instead of point distance
to get around word
frequency issues

Some counts for “letter” in “Pride and
Prejudice”. What do you notice?

the to of and a her she his is was in that
102 75 72 56 52 50 41 36 35 34 34 33

had i from you as this mr for not on be he
32 28 28 25 23 23 22 21 21 20 18 17

but elizabeth with him which by when jane
17 17 16 16 16 15 14 12

Some counts for “letter” in “Pride and
Prejudice”. What do you notice?

the to of and a her she his is was in that
102 75 72 56 52 50 41 36 35 34 34 33

had i from you as this mr for not on be he
32 28 28 25 23 23 22 21 21 20 18 17

but elizabeth with him which by when jane
17 17 16 16 16 15 14 12

Some counts for “letter” in “Pride and
Prejudice”. What do you notice?

the to of and a her she his is was in that
102 75 72 56 52 50 41 36 35 34 34 33

had i from you as this mr for not on be he
32 28 28 25 23 23 22 21 21 20 18 17

but elizabeth with him which by when jane
17 17 16 16 16 15 14 12

All the most frequent co-occurring words are function words.

Some words are more informative
than others

• Function words co-occur frequently with all
words
– That makes them less informative

• They have much higher co-occurrence
counts than content words
– They can “drown out” more informative

contexts

Using association rather than
co-occurrence counts

• Degree of association between target and context:
– High association: high co-occurrence with “letter”, lower

with everything else
– Low association: lots of co-occurrence with all words

• Many ways of implementing this
• For example Pointwise Mutual Information between

target a and context b:

PMI
PMI(w, c) =

P (w, c)

P (w)P (c)

P (w, c) =
#(w, c)P

w,c2D #(w, c)

P (w) =
#(w,⇤)P

w,c2D #(w, c)

P (c) =
#(⇤, c)P

w,c2D #(w, c)

PMI
PMI(w, c) =

P (w, c)

P (w)P (c)

P (w, c) =
#(w, c)P

w,c2D #(w, c)

P (w) =
#(w,⇤)P

w,c2D #(w, c)

P (c) =
#(⇤, c)P

w,c2D #(w, c)

matrix entry

PMI
PMI(w, c) =

P (w, c)

P (w)P (c)

P (w, c) =
#(w, c)P

w,c2D #(w, c)

P (w) =
#(w,⇤)P

w,c2D #(w, c)

P (c) =
#(⇤, c)P

w,c2D #(w, c)

matrix entry

sum of matrix entries

PMI
PMI(w, c) =

P (w, c)

P (w)P (c)

P (w, c) =
#(w, c)P

w,c2D #(w, c)

P (w) =
#(w,⇤)P

w,c2D #(w, c)

P (c) =
#(⇤, c)P

w,c2D #(w, c)

matrix entry

sum of matrix entries

sum of matrix column

PMI
PMI(w, c) =

P (w, c)

P (w)P (c)

P (w, c) =
#(w, c)P

w,c2D #(w, c)

P (w) =
#(w,⇤)P

w,c2D #(w, c)

P (c) =
#(⇤, c)P

w,c2D #(w, c)

matrix entry

sum of matrix entries

sum of matrix column

sum of matrix row

PMI

We often move from PMI to PPMI (Positive PMI)

PPMI(a, b) = max(PMI(a, b), 0)

Weighting

Adjusting raw co-occurrence counts:

bright in
stars 385 10788 ... Counts

stars 43.6 5.3 ... PPMI

Other weighting schemes:
I TF-IDF
I Local Mutual Information
I Dice

See Ch4 of J.R. Curran’s thesis (2004) and S. Evert’s thesis
(2007) for surveys of weighting methods

Weighting

Adjusting raw co-occurrence counts:

bright in
stars 385 10788 ... Counts

stars 43.6 5.3 ... PPMI

Other weighting schemes:
I TF-IDF
I Local Mutual Information
I Dice

See Ch4 of J.R. Curran’s thesis (2004) and S. Evert’s thesis
(2007) for surveys of weighting methods

Weighting

Adjusting raw co-occurrence counts:

bright in
stars 385 10788 ... Counts

stars 43.6 5.3 ... PPMI

Other weighting schemes:
I TF-IDF
I Local Mutual Information
I Dice

See Ch4 of J.R. Curran’s thesis (2004) and S. Evert’s thesis
(2007) for surveys of weighting methods

Words as Vectors
We can arrange the words in a huge, sparse matrix, where
each row is a word, and each column is a context.

Dimensionality reduction

I Vector spaces often range from tens of thousands to
millions of context dimensions

I Some of the methods to reduce dimensionality:
I Select context features based on various relevance criteria
I Random indexing
I Following claimed to also have a beneficial smoothing

effect:
I Singular Value Decomposition
I Non-negative matrix factorization
I Probabilistic Latent Semantic Analysis
I Latent Dirichlet Allocation

Words as Vectors
We often apply SVD or similar technique of dimensionality
reduction.

Words as Vectors – It works
Nearest neighbours to dog

2-word window

I cat
I horse
I fox
I pet
I rabbit
I pig
I animal
I mongrel
I sheep
I pigeon

30-word window
I kennel
I puppy
I pet
I bitch
I terrier
I rottweiler
I canine
I cat
I to bark
I Alastian

Words as Vectors – It works
Nearest neighbours to dog

2-word window
I cat
I horse
I fox
I pet
I rabbit
I pig
I animal
I mongrel
I sheep
I pigeon

30-word window
I kennel
I puppy
I pet
I bitch
I terrier
I rottweiler
I canine
I cat
I to bark
I Alastian

Words as Vectors – It works
Nearest neighbours to dog

2-word window
I cat
I horse
I fox
I pet
I rabbit
I pig
I animal
I mongrel
I sheep
I pigeon

30-word window
I kennel
I puppy
I pet
I bitch
I terrier
I rottweiler
I canine
I cat
I to bark
I Alastian

note that the choice of context has a very important effect.

so does the choice of underlying corpus.

word2vec

From Distributional to Distributed Semantics

This part of the talk

I
word2vec as a black box

I a peek inside the black box
I relation between word-embeddings and the distributional

representation
I tailoring word embeddings to your needs using
word2vecf

word2vec

word2vec

word2vec

I dog
I cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler,

mixed-breed, doberman, pig
I sheep

I cattle, goats, cows, chickens, sheeps, hogs, donkeys,
herds, shorthorn, livestock

I november
I october, december, april, june, february, july, september,

january, august, march
I jerusalem

I tiberias, jaffa, haifa, israel, palestine, nablus, damascus
katamon, ramla, safed

I teva
I pfizer, schering-plough, novartis, astrazeneca,

glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme,
pharmacia

Working with Dense Vectors

Word Similarity

I Similarity is calculated using cosine similarity :

sim(~
dog, ~

cat) =
~

dog · ~
cat

|| ~
dog|| || ~cat ||

I For normalized vectors (||x || = 1), this is equivalent to a
dot product:

sim(~
dog, ~

cat) = ~
dog · ~

cat

I
Normalize the vectors when loading them.

Working with Dense Vectors
Finding the most similar words to ~

dog

I Compute the similarity from word ~
v to all other words.

I This is a single matrix-vector product: W · ~v>

I Result is a |V | sized vector of similarities.
I Take the indices of the k -highest values.
I

FAST! for 180k words, d=300: ⇠30ms

Working with Dense Vectors
Finding the most similar words to ~

dog

I Compute the similarity from word ~
v to all other words.

I This is a single matrix-vector product: W · ~v>

I Result is a |V | sized vector of similarities.
I Take the indices of the k -highest values.
I

FAST! for 180k words, d=300: ⇠30ms

Working with Dense Vectors
Finding the most similar words to ~

dog

I Compute the similarity from word ~
v to all other words.

I This is a single matrix-vector product: W · ~v>

I Result is a |V | sized vector of similarities.
I Take the indices of the k -highest values.

I
FAST! for 180k words, d=300: ⇠30ms

Working with Dense Vectors
Finding the most similar words to ~

dog

I Compute the similarity from word ~
v to all other words.

I This is a single matrix-vector product: W · ~v>

I Result is a |V | sized vector of similarities.
I Take the indices of the k -highest values.
I

FAST! for 180k words, d=300: ⇠30ms

Working with Dense Vectors

Most Similar Words, in python+numpy code
W,words = load_and_normalize_vectors("vecs.txt")

W and words are numpy arrays.

w2i = {w:i for i,w in enumerate(words)}

dog = W[w2i[’dog’]] # get the dog vector

sims = W.dot(dog) # compute similarities

most_similar_ids = sims.argsort()[-1:-10:-1]

sim_words = words[most_similar_ids]

Working with Dense Vectors

Similarity to a group of words

I “Find me words most similar to cat, dog and cow”.
I Calculate the pairwise similarities and sum them:

W · ~
cat + W · ~

dog + W · ~
cow

I Now find the indices of the highest values as before.

I Matrix-vector products are wasteful. Better option:

W · (~
cat + ~

dog + ~
cow)

Working with Dense Vectors

Similarity to a group of words

I “Find me words most similar to cat, dog and cow”.
I Calculate the pairwise similarities and sum them:

W · ~
cat + W · ~

dog + W · ~
cow

I Now find the indices of the highest values as before.

I Matrix-vector products are wasteful. Better option:

W · (~
cat + ~

dog + ~
cow)

Working with dense word vectors can be very efficient.

But where do these vectors come from?

Working with dense word vectors can be very efficient.

But where do these vectors come from?

How does word2vec work?

word2vec implements several different algorithms:

Two training methods

I Negative Sampling
I Hierarchical Softmax

Two context representations

I Continuous Bag of Words (CBOW)
I Skip-grams

We’ll focus on skip-grams with negative sampling.

intuitions apply for other models as well.

How does word2vec work?

word2vec implements several different algorithms:

Two training methods

I Negative Sampling
I Hierarchical Softmax

Two context representations

I Continuous Bag of Words (CBOW)
I Skip-grams

We’ll focus on skip-grams with negative sampling.

intuitions apply for other models as well.

How does word2vec work?

I Represent each word as a d dimensional vector.
I Represent each context as a d dimensional vector.
I Initalize all vectors to random weights.
I Arrange vectors in two matrices, W and C.

How does word2vec work?
While more text:

I Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

I
w is the focus word vector (row in W).

I
c

i

are the context word vectors (rows in C).

I Try setting the vector values such that:

�(w · c1)+�(w · c2)+�(w · c3)+�(w · c4)+�(w · c5)+�(w · c6)

is high

I Create a corrupt example by choosing a random word w

0

[a cow or comet close to calving]
c1 c2 c3 w

0
c4 c5 c6

I Try setting the vector values such that:

�(w 0· c1)+�(w 0· c2)+�(w 0· c3)+�(w 0· c4)+�(w 0· c5)+�(w 0· c6)

is low

How does word2vec work?
While more text:

I Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

I Try setting the vector values such that:

�(w · c1)+�(w · c2)+�(w · c3)+�(w · c4)+�(w · c5)+�(w · c6)

is high

I Create a corrupt example by choosing a random word w

0

[a cow or comet close to calving]
c1 c2 c3 w

0
c4 c5 c6

I Try setting the vector values such that:

�(w 0· c1)+�(w 0· c2)+�(w 0· c3)+�(w 0· c4)+�(w 0· c5)+�(w 0· c6)

is low

How does word2vec work?
While more text:

I Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

I Try setting the vector values such that:

�(w · c1)+�(w · c2)+�(w · c3)+�(w · c4)+�(w · c5)+�(w · c6)

is high

I Create a corrupt example by choosing a random word w

0

[a cow or comet close to calving]
c1 c2 c3 w

0
c4 c5 c6

I Try setting the vector values such that:

�(w 0· c1)+�(w 0· c2)+�(w 0· c3)+�(w 0· c4)+�(w 0· c5)+�(w 0· c6)

is low

How does word2vec work?

The training procedure results in:
I

w · c for good word-context pairs is high.
I

w · c for bad word-context pairs is low.
I

w · c for ok-ish word-context pairs is neither high nor low.

As a result:
I Words that share many contexts get close to each other.
I Contexts that share many words get close to each other.

At the end, word2vec throws away C and returns W .

Reinterpretation
Imagine we didn’t throw away C. Consider the product WC

>

The result is a matrix M in which:
I Each row corresponds to a word.
I Each column corresponds to a context.
I Each cell correspond to w · c, an association measure

between a word and a context.

Reinterpretation
Imagine we didn’t throw away C. Consider the product WC

>

The result is a matrix M in which:
I Each row corresponds to a word.
I Each column corresponds to a context.
I Each cell correspond to w · c, an association measure

between a word and a context.

Reinterpretation

Does this remind you of something?

Very similar to SVD over distributional representation:

Reinterpretation

Does this remind you of something?
Very similar to SVD over distributional representation:

What is SGNS learning?

• A 𝑉𝑊 × 𝑉𝐶 matrix
• Each cell describes the relation between a specific word-context pair

𝑤 ⋅ 𝑐 = ?

𝑊

𝑑

𝑉 𝑊 𝐶
𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

?= 𝑉 𝑊

𝑉𝐶

What is SGNS learning?

• We prove that for large enough 𝑑 and enough iterations

𝑊

𝑑

𝑉 𝑊 𝐶
𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

?= 𝑉 𝑊

𝑉𝐶

What is SGNS learning?

• We prove that for large enough 𝑑 and enough iterations
• We get the word-context PMI matrix

𝑊

𝑑

𝑉 𝑊 𝐶
𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

𝑀𝑃𝑀𝐼= 𝑉 𝑊

𝑉𝐶

What is SGNS learning?

• We prove that for large enough 𝑑 and enough iterations
• We get the word-context PMI matrix, shifted by a global constant

𝑂𝑝𝑡 𝑤 ⋅ 𝑐 = 𝑃𝑀𝐼 𝑤, 𝑐 − log 𝑘

𝑊

𝑑

𝑉 𝑊 𝐶
𝑉𝐶

𝑑

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

𝑀𝑃𝑀𝐼= 𝑉 𝑊

𝑉𝐶

− log 𝑘

What is SGNS learning?

• SGNS is doing something very similar to the older approaches

• SGNS is factorizing the traditional word-context PMI matrix

• So does SVD!

• Do they capture the same similarity function?

SGNS vs SVD

Target Word SGNS SVD
dog dog
rabbit rabbit

cat cats pet
poodle monkey
pig pig

SGNS vs SVD

Target Word SGNS SVD
wines wines
grape grape

wine grapes grapes
winemaking varietal

tasting vintages

SGNS vs SVD

Target Word SGNS SVD
October October
December December

November April April
January June
July March

But word2vec is still better, isn’t it?

• Plenty of evidence that word2vec outperforms traditional methods
• In particular: “Don’t count, predict!” (Baroni et al., 2014)

• How does this fit with our story?

The Big Impact of “Small” Hyperparameters

Hyperparameters

• word2vec is more than just an algorithm…

• Introduces many engineering tweaks and hyperpararameter settings
• May seem minor, but make a big difference in practice
• Their impact is often more significant than the embedding algorithm’s

• These modifications can be ported to distributional methods!

Levy, Goldberg, Dagan (In submission)

Hyperparameters

• Preprocessing
• Association Metric
• Postprocessing

Levy, Goldberg, Dagan (In submission)

Hyperparameters

• Preprocessing
• Association Metric
• Postprocessing

Levy, Goldberg, Dagan (In submission)

Association Metric Hyperparameters

• Since SGNS and PMI are strongly related,
we can import 2 of SGNS’s hyperparameters to traditional PMI:

1. Shifted PMI
2. Negative Sampling Smoothing

• Both stem from the negative sampling procedure

Levy, Goldberg, Dagan (In submission)

Negative Sampling Smoothing

• Recall that SGNS picks 𝑤′~𝑃 to form negative (𝑤′, 𝑐) examples

• Our analysis assumes 𝑃 is the unigram distribution

𝑃 𝑤 =
#𝑤

 𝑤′∈𝑉𝑊 #𝑤
′

Levy, Goldberg, Dagan (In submission)

Negative Sampling Smoothing

• Recall that SGNS picks 𝑤′~𝑃 to form negative (𝑤′, 𝑐) examples

• Our analysis assumes 𝑃 is the unigram distribution

• In practice, it’s a smoothed unigram distribution

𝑃0.75 𝑤 =
#𝑤 0.75

 𝑤′∈𝑉𝑊 #𝑤′ 0.75

• This little change makes a big difference Levy, Goldberg, Dagan (In submission)

Negative Sampling Smoothing

• This smoothing has an analogue in PMI

• Replace 𝑃(𝑤) with 𝑃0.75(𝑤):

𝑃𝑀𝐼0.75 𝑤, 𝑐 = log
𝑃(𝑤, 𝑐)

𝑃0.75 𝑤 𝑃(𝑐)

• Yields a dramatic improvement with every method on every task

Levy, Goldberg, Dagan (In submission)

Experiments & Results

• We compared several methods, while controlling for hyperparameters
• PPMI, SVD(PPMI), SGNS, GloVe

• Methods perform on-par in most tasks
• Slight advantage to SVD in word similarity
• SGNS is better at syntactic analogies
• SGNS is robust in general

• Negative sampling smoothing accounts for much of the differences
observed in “Don’t count, predict!”

Levy, Goldberg, Dagan (In submission)

Other Hyperparameters

• There are many other hyperparameters that can be investigated

• Perhaps the most interesting one is the type of context

What’s in a Context?

What’s in a Context?

• Importing ideas from embeddings improves distributional methods

• Can distributional ideas also improve embeddings?

• Idea: change SGNS’s default BoW contexts into dependency contexts

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Example

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Target Word

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Syntactic Dependency Context

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Syntactic Dependency Context

prep_withnsubj

dobj

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Australian scientist discovers star with telescope

Syntactic Dependency Context

prep_withnsubj

dobj

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies
Dumbledore Sunnydale

hallows Collinwood
Hogwarts half-blood Calarts

(Harry Potter’s school) Malfoy Greendale
Snape Millfield

Related to
Harry Potter Schools

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies
nondeterministic Pauling
non-deterministic Hotelling

Turing computability Heting
(computer scientist) deterministic Lessing

finite-state Hamming
Related to

computability Scientists

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies
singing singing
dance rapping

dancing dances breakdancing
(dance gerund) dancers miming

tap-dancing busking
Related to

dance Gerunds

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

What is the effect of different context types?

• Thoroughly studied in distributional methods
• Lin (1998), Padó and Lapata (2007), and many others…

General Conclusion:
• Bag-of-words contexts induce topical similarities
• Dependency contexts induce functional similarities

• Share the same semantic type
• Cohyponyms

• Holds for embeddings as well

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

• Same algorithm, different inputs -- very different
kinds of similarity.

• Inputs matter much more than algorithm.

• Think about your inputs.

Peeking into Skip-Gram’s Black Box

• In explicit representations, we can look at the features and analyze

• But embeddings are a black box!
• Dimensions are latent and don’t necessarily have any meaning

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Peeking into Skip-Gram’s Black Box

• Skip-Gram allows a peek…

• Contexts are embedded in the same space!

• Given a word 𝑤, find the contexts 𝑐 it “activates” most:

argmax
𝑐

𝑤 ⋅ 𝑐

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Associated Contexts

Target Word Dependencies
students/prep_at-1

educated/prep_at-1

Hogwarts student/prep_at-1

stay/prep_at-1

learned/prep_at-1

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Associated Contexts

Target Word Dependencies
machine/nn-1

test/nn-1

Turing theorem/poss-1

machines/nn-1

tests/nn-1

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Associated Contexts

Target Word Dependencies
dancing/conj

dancing/conj-1

dancing singing/conj-1

singing/conj
ballroom/nn

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

let's take a step back
• We don't really care about the vectors.

• We care about the similarity function they induce.

• (or, maybe we want to use them in an external task)

• We want similar words to have similar vectors.

• So evaluating on word-similarity tasks is great.

• But what does similar mean?

many faces of similarity

• dog -- cat

• dog -- poodle

• dog -- animal

• dog -- bark

• dog -- leash

many faces of similarity

• dog -- cat

• dog -- poodle

• dog -- animal

• dog -- bark

• dog -- leash

• dog -- chair

• dog -- dig

• dog -- god

• dog -- fog

• dog -- 6op

many faces of similarity
• dog -- cat

• dog -- poodle

• dog -- animal

• dog -- bark

• dog -- leash

• dog -- chair

• dog -- dig

• dog -- god

• dog -- fog

• dog -- 6op

same POS

edit distance

same letters

rhyme

shape

some forms of similarity look
more useful than they really are
• Almost every algorithm you come up with will be

good at capturing:

• countries

• cities

• months

• person names

some forms of similarity look
more useful than they really are
• Almost every algorithm you come up with will be

good at capturing:

• countries

• cities

• months

• person names

useful for tagging/parsing/NER

some forms of similarity look
more useful than they really are
• Almost every algorithm you come up with will be

good at capturing:

• countries

• cities

• months

• person names

but do we really want
"John went to China in June"

to be similar to
"Carl went to Italy in February"

??

useful for tagging/parsing/NER

there is no single
downstream task

• Different tasks require different kinds of similarity.

• Different vector-inducing algorithms produce
different similarity functions.

• No single representation for all tasks.

• If your vectors do great on task X, I don't care that
they suck on task Y.

Context matters

Choose the correct contexts for your application

I larger window sizes – more topical
I dependency relations – more functional

I only noun-adjective relations
I only verb-subject relations
I context: time of the current message
I context: user who wrote the message
I . . .
I the sky is the limit

Context matters

Choose the correct contexts for your application

I larger window sizes – more topical
I dependency relations – more functional
I only noun-adjective relations
I only verb-subject relations

I context: time of the current message
I context: user who wrote the message
I . . .
I the sky is the limit

Context matters

Choose the correct contexts for your application

I larger window sizes – more topical
I dependency relations – more functional
I only noun-adjective relations
I only verb-subject relations
I context: time of the current message
I context: user who wrote the message

I . . .
I the sky is the limit

Context matters

Choose the correct contexts for your application

I larger window sizes – more topical
I dependency relations – more functional
I only noun-adjective relations
I only verb-subject relations
I context: time of the current message
I context: user who wrote the message
I . . .
I the sky is the limit

what happens
in Hebrew?

(based on my work with Oded Avraham)

what happens when we look
outside of English?

• Things don't work nearly as well.

• Known problems from English become more extreme.

• We get some new problems as well.

a quick look at Hebrew

word senses
ספר

book(N). barber(N). counted(V). tell!(V). told(V).

חומה
brown (feminine, singular)

wall (noun)
her fever (possessed noun)

multi-word units
עורך דין •

בית ספר •

שומר ראש •

יושב ראש •

ראש עיר •

בית שימוש•

words vs. tokens

and when from the house
וכשמהבית

words vs. tokens

and when from the house
וכשמהבית

בצל

בצל

in shadow

onion

and of course: inflections

• nouns, pronouns and adjectives
--> are inflected for number and gender

• verbs
--> are inflected for number, gender, tense, person

• syntax requires agreement between
 - nouns and adjectives
 - verbs and subjects

and of course: inflections

she saw a brown fox

he saw a brown fence

and of course: inflections

she saw a brown fox

he saw a brown fence
[masc]

[masc]

[fem]

[fem]

and of course: inflections

חום שועל ראתה היא

חומה גדר ראה הוא

she saw a brown fox

he saw a brown fence
[masc]

[masc]

[fem]

[fem]

inflections and dist-sim

• More word forms -- more sparsity

• But more importantly: agreement patterns affect the
resulting similarities.

adjectives
green [m,sg]

ירוק
green [f,sg]

ירוקה
green [m,pl]

ירוקים

blue [m,sg] gray [f,sg] gray [m,pl]

orange [m,sg] orange [f,sg] blue [m,pl]

yellow [m,sg] yellow [f,sg] black [m,pl]

red [m,sg] magical [f,g] heavenly [m,pl]

כחול

כתום

צהוב

אדום

אפורה

כתומה

צהובה

קסומה

אפורים

כחולים

שחורים

שמימיים

verbs
(he) walked

הלך
(she) thought

חשבה
(they) ate
אכלו

(they) walked (she) is thinking (they) will eat

(he) is walking (she) felt (they) are eating

(he) turned (she) is convinved (he) ate

(he) came closer (she) insisted (they) drank

הלכו

הולך

פנה

התקרב

חושבת

הרגישה

משוכנעת

התעקשה

יאכלו

אוכלים

אכל

שתה

nouns
Doctor [m,sg]

רופא
Doctor [f, sg]

רופאה

psychiatrist [m,sg] student [f, sg]

psychologist [m, sg] nun [f, sg]

neurologist [m, sg] waitress [f, sg]

engineer [m, sg] photographer [f, sg]

פסיכיאטר

פסיכולוג

נוירולוג

מהנדס

סטודנטית

נזירה

מלצרית

צלמת

Bias

• The word vectors capture language use.

• Language use may contain biases.

• We need to be aware of it when using the vectors.

nouns
sweater
סוודר

shirt
חולצה

jacket suit

down robe

overall dress

turban helmet

ג׳קט

חלוק

אוברול

טורבאן

חליפה

גלימה

שמלה

קסדה

nouns
sweater
סוודר

shirt
חולצה

jacket suit

down robe

overall dress

turban helmet

masculine feminine

ג׳קט

חלוק

אוברול

טורבאן

חליפה

גלימה

שמלה

קסדה

nouns
sweater
סוודר

shirt
חולצה

jacket suit

down robe

overall dress

turban helmet

masculine feminine
completely arbitrary

ג׳קט

חלוק

אוברול

טורבאן

חליפה

גלימה

שמלה

קסדה

When arbitrary gender
 does matter

נפלהנפל

When arbitrary gender
 does matter

נפלהנפל

נכבשהנהרג

inflections and dist-sim

• Inflections and agreement really influence the results.

• We get a mix of syntax and semantics.

• Which aspect of the similarity we care about? what
does it mean to be similar?

• Need better control of the different aspects.

inflections and dist-sim
• Work with lemmas instead of words!!

• Sure, but where do you get the lemmas?

• ...for unknown words?

• And what should you lemmatize? everything?
somethings? context-dependent?

• Ongoing work in my lab -- but still much to do.

Software

word2vecf

https://bitbucket.org/yoavgo/word2vecf

I Extension of word2vec.
I Allows saving the context matrix.
I Allows using arbitraty contexts.

I Input is a (large) file of word context pairs.

Software

hyperwords

https://bitbucket.org/omerlevy/hyperwords/

I Python library for working with either sparse or dense word
vectors (similarity, analogies).

I Scripts for creating dense representations using word2vecf
or SVD.

I Scripts for creating sparse distributional representations.

Software

dissect

http://clic.cimec.unitn.it/composes/toolkit/

I Given vector representation of words. . .
I . . . derive vector representation of phrases/sentences
I Implements various composition methods

Summary
Distributional Semantics

I Words in similar contexts have similar meanings.
I Represent a word by the contexts it appears in.
I But what is a context?

Neural Models (word2vec)

I Represent each word as dense, low-dimensional vector.
I Same intuitions as in distributional vector-space models.
I Efficient to run, scales well, modest memory requirement.
I Dense vectors are convenient to work with.
I Still helpful to think of the context types.

Software
I Build your own word representations.

