Distributional

| exical Semantics
(and word2vec)

Yoav Goldberg

vogo@dcs.bilu.ac.11l

s_‘:"(}(’,"(_’n(‘e
S
Bar [lan University _g'\\’)i |
with some slides by T

ldo Dagan, Omer Levy, Marco Baroni, Kathrin Erk

A lot of text.

Need to understand what's being said.

this Is where we come In.

text meaning

text meaning

What does it mean to understand?

Understanding the Structure

The soup , which | expected to be good , was bad

Understanding the Structure

- b \@

det [aux}&[aoomp] acomp |
v | »[\ / x« \4

The soup , which | expected to be good , was bad

Understanding the Structure

This is called Syntactic Parsing.

Understanding the Structure

- b \@

det [aux}&[aoomp] acomp |
v | »[\ / x« \4

The soup , which | expected to be good , was bad

Understanding the Structure

4 — ~T

=] || wEr R

The soup , which | expected to be good , was bad

Understanding the Structure

The gromp , which | furpled to be drogby , was spujky

Understanding the Structure

~ — ~T

re xcom
[.\ sub aux acomp
v

The gromp , which | furpled to be drogby was spujky

' rg u.cs.biu.ac.il/~yogo/; x

4 & [u.cs.biu.ac.il

Greedy parsing to Stanford Dependencies

ROOT

rcmod

D
rel XCOM
j nsubj / aux E acomp

-R-/RO0OT The gromp , which I furpled to be drogby ,

det

was

Understanding the Structure

Can understand structure without understanding words.

But the words are also important.

This Is not a lecture about parsing.

Today we will focus on the words.

Understanding the Words

soup was bad

Understanding the Words

soup was bad
soup was awful

Understanding the Words

soup was bad
soup was awful
soup was lousy

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

chowder was nasty
pudding was terrible
cake was bad
hamburger was lousy

service was poor
atmosphere was shoddy
hammer was heavy

» o the computer, each
word is just a symbol, so
these are all the same.

» But to us, some are more
similar than others.

» We'd like a word
representation that can
capture that.

Representing Words

Use a dictionary?

Representing Words

Use a dictionary?

Doesn’t scale.

Representing Words

The distributional Hypothesis

Dr. Baroni saw a hairy little wampinuck sleeping behind a tree

Representing Words

The distributional Hypothesis

Dr. Baroni saw a hairy little wampinuck sleeping behind a tree

The Distributional Hypothesis — Haris, 1954
Words in similar contexts tend to have similar meanings

Firth, 1957
“you should know a word by the company it keeps”

10

Distributional Representation of
Word Meaning and Similarity

The distributional hypothesis in real life
McDonald & Ramscar 2001

He filled the wampimuk, passed it
around and we all drunk some

We found a little, hairy wampimuk
sleeping behind the tree

12

What word can appear 1n the context of all
these words?

Word 1: drown, bathroom, Word 2: eat, fall, pick,
shower, fill, fall, lie, slice, peel, tree, throw, fruit,
elec.:trocutef toﬂet,. pie, bite, crab, grate
whirlpool, 1ron, gin

Word 3: advocate,

overthrow, establish,
citizen, 1deal,
representative, dictatorship,
campaign, bastion, freedom

Word 4: spend, enjoy,
remember, last, pass, end,
die, happen, brighten, relive

What word can appear 1n the context of all
these words?

Word 1: drown, ba....CC.w,
shower, fill, fall, lie,
electrocute, toilet,
whirlpool, 1ron, gin

bathtub |

Word 3: advocate,
overthrow, establish,
citizen, 1deal,
representative, dictatorship,
campaign, bastion, freedom

apple
Word 2: eat, fall, pick, %

slice, peel, tree, throw, fruit,
pie, bite, crab, grate

democracy

day

Word 4: spend, enjoy,
remember, last, pass, end,
die, happen, brighten, relive

What can you say about word number 5?
Distributional Similarity (2"-order)

. bathtub apple
Word 1: drown, b.athroom, Word 2: eat, fall, ripe, slice,
shower, fill, fall, lie, peel, tree, throw, fruit, pie,
electrocute, toilet, whirlpool, bite, crab, grate
iron, gin
day

Word 4: spend, enjoy,
remember, last, pass, end, die,
democracy happen, brighten, relive

Word 3: advocate, overthrow,
establish, citizen, ideal,
representative, dictatorship,
campaign, bastion, freedom

Word 5: eat, paint, peel,
apple, fruit, juice, lemon,
blue, grow

What can you say about word number 5?
Distributional Similarity (2"-order)

bathtub
Word 1: drown, bathroom,

shower, fill, fall, lie,
electrocute, toilet, whirlpool,
iron, gin

bite, crab, grate

Word 2: eat, fall, ripe, slice,
peel, tree, throw, fruit, pie,

apple

day

democracy

Word 4: spend, enjoy,
remember, last, pass, end, die,
happen, brighten, relive

Word 3: advocate, overthrow,
establish, citizen, ideal,
representative, dictatorship,
campaign, bastion, freedom

Word 5: eat, paint, peel,
apple, fruit, juice, lemon,
blue, grow

orange

Counting context words

Word count, 3-word

a |be leat | fall | have | healthy | pick |red |that lup _
2 1 2 1 1 1 2 2 1 1

Distributional semantics

* Comparing two words:
— Look at all context words for word |
— Look at all context words for word?2

— How similar are those two context collections
in their entirety?

* Compare distributional representations of
two words

How can we compare two context
collections 1n their entirety?

Count how often “apple” occurs close to other words
in a large text collection (corpus):

-mmm

794 221 208 160 156 109 104

Interpret counts as coordinates:

fall 4 Every context word
T e apple becomes a dimension.

-
f‘
-

How can we compare two context
collections 1n their entirety?

Count how often “apple” occurs close to other words
in a large text collection (corpus):

-mm

794 244 221 208 160 156 109 104

Do the same for “orange”:

-mm

265 220 111

How can we compare two context
collections 1n their entirety?

Then visualize both count tables as vectors 1n the same space:

-mm

794 221 208 160 156 109 104
-mm
265 111
fall 4 ool
_ye apple L
———————— - Similarity between
——————— orange two words as

—'F-ﬁ--—"f‘ """" 2 => eat ..
- proximity in space

Words as Vectors

We can arrange the words in a huge, sparse matrix, where
each row is a word, and each column is a context.

contexts

cake
terrific
jerusalem
table

)
]I O S S
O T wm wm

eat
ate

cat

now, each word
IS assoclated
with a (sparse)

dog
star
stars
cake
eat

words

terrific
ate
jerusalem

table

vector of counts.

Using distributional models

* Finding (near-)synonyms: automatically
building a thesaurus

» Related: use distributional similarity of
documents (containing similar words) 1n
Information Retrieval

Where can we find texts to use for
making a distributional model?

Text 1n electronic form!

Newspaper articles

Project Gutenberg: older books available for free
Wikipedia

Text collections prepared for language analysis:

— Balanced corpora

— WaC: Scrape all web pages 1n a particular domain
« uk, fr, it, de (http://wacky.sslmit.unibo.it/doku.php?id=corpora)
— ELRA, LDC hold corpus collections

* For example, large amounts of newswire reports
— Google n-grams, Google books

How much text do we need?

e At least:
British National Corpus, 100 million words
 Better: add

— UKWaC (2 billion words)
— Wikipedia (2 billion words)

How much text do we need?

» At least:
British National Corpus, 100 million words

e Better: add
— UKWaC (2 billion words)
— Wikipedia (2 billion words)
Or go even larger with common-crawl (terrabytes)

What do we mean by
“sitmilarity” of vectors?

Euclidean distance (a dissimilarity measure!):

dist(p, q) =

n

Z(pi —q;)°)
\ .

1 ’.x’apple

orange

V

Problem with Euclidean distance: very
sensitive to word frequency!

~ épple

V

Braeburn

What do we mean by
“sitmilarity” of vectors?

Cosine similarity:

n

Zz‘:1 Pi * 4

P, q) =
\/2?21 p@z ' \/Z?:l qz’2

apple

cos(

Use angle between vectors
instead of point distance
to get around word
frequency issues

orange

N
7

Some counts for “letter” in “Pride and
Prejudice”. What do you notice?

-MHMMEE

102 75 72 56 52 50

Lo 8 P 0 P P

28 28

mm
17 17 16 16 16 15 14 12

Some counts for “letter” in “Pride and
Prejudice”. What do you notice?

-MHMMEE

102 75 72 56 52 50

ll-mmmm

28 28

but— clzabet m
17 17 16 16 16 15 14 12

Some counts for “letter” in “Pride and
Prejudice”. What do you notice?

-MHMD

102 75 72 56 52 50 41

MI-EMME

28 28

m>
17 17 16 16 16 15 14 12

All the most frequent co-occurring words are function words.

Some words are more informative
than others

* Function words co-occur frequently with all
words

— That makes them less informative
* They have much higher co-occurrence
counts than content words

— They can “drown out” more informative
contexts

Using association rather than
co-occurrence counts

Degree of association between target and context:

— High association: high co-occurrence with “letter”, lower
with everything else

— Low association: lots of co-occurrence with all words
Many ways of implementing this

For example Pointwise Mutual Information between
target a and context b:

PMI(a,b) = log

matrix entry

#(w, ¢)
Zw,cED #(w7 C)

(L ¢)
wa,cED #(w7 C)

#(w, 0)

Zw,cED #(w7 C)

matrix entry

#(w, ¢)
Zw,cED #(w7 C)

(L ¢)
wa,cED #(w7 C)

#(w, 0)

Zw,cED #(w7 C)

_ _P(w,¢)
PMI(w,c) = (w)P(c)
matrix entry

#(w, ¢)
sum of matrix entries Plw,¢) = D weep #H(w,c)

sum of matrix column # (U, ¢)

P(c) =

O = S en #w.0)

plw) — — #0D

Zw,cED #(w7 C)

P(w, c)
PMI(w,c) =
€)= PPl
matrix entry
 #H#(w, o)
sum of matrix entries Plw,¢) = D w.ccpD Flw,c)
sum of matrix column # (0, ¢)
P(c) =
() wa,cED #(w7 C)
sum of matrix row

Zw,cED #(w7 C)

PMI

We often move from PMI to PPMI (Positive PMI)

PPMI(a,b) = max(PMI(a,b),0)

Weighting

Adjusting raw co-occurrence counts:

bright in
stars 385 10788 ... <« Counts

Weighting

Adjusting raw co-occurrence counts:

bright in
stars 385 10788 ... <« Counts

stars 43.6 5.3 ... <+ PPMI

Weighting

Adjusting raw co-occurrence counts:

bright in
stars 385 10788 ... <« Counts
stars 43.6 5.3 ... <+ PPMI

Other weighting schemes:
» TF-IDF
» Local Mutual Information
» Dice

See Ch4 of J.R. Curran’s thesis (2004) and S. Evert’s thesis
(2007) for surveys of weighting methods

Words as Vectors

We can arrange the words in a huge, sparse matrix, where
each row is a word, and each column is a context.

contexts

5

ER
L o4 9 e 3 =
SR I S - B S SR B e
S3E %388 8% QL g

cat

dog
star
stars
cake
eat
terrific

words

ate
jerusalem

table

Dimensionality reduction

» Vector spaces often range from tens of thousands to
millions of context dimensions

» Some of the methods to reduce dimensionality:

» Select context features based on various relevance criteria
» Random indexing

» Following claimed to also have a beneficial smoothing
effect:

» Singular Value Decomposition

» Non-negative matrix factorization

» Probabilistic Latent Semantic Analysis
» Latent Dirichlet Allocation

Words as Vectors

We often apply SVD or similar technique of dimensionality
reduction.

contexts

M

contexts

words

U S V

Words as Vectors — It works

Nearest neighbours to dog

» cat

» horse
> fox

> pet

» rabbit
> pig

» animal
» mongrel
» sheep
> pigeon

Words as Vectors — It works

Nearest neighbours to dog

2-word window

» cat

» horse
> fox

> pet

» rabbit
> pig

» animal
» mongrel
» sheep
> pigeon

Words as Vectors — It works

Nearest neighbours to dog

2-word window 30-word window
» cat » kennel
» horse > puppy
» fox > pet
> pet » bitch
» rabbit > terrier
> pIg » rottweiler
» animal » canine
» mongrel » cat
» sheep » to bark

> pigeon » Alastian

note that the choice of context has a very important effect.

so does the choice of underlying corpus.

word2vec

¢ » € [code.google.com

J
=

J Project Home Issues Source

word2vec

Tool for computing continuous distributed representations of words.

0~ 0 E =
yoav.goldberg@gmail.com v | My favorites ¥ | Profile | Sign out

‘Search projects

Summary People

Project Information

Starred by 694 users
Project feeds

Code license
Apache License 2.0

Labels

NeuralNetwork, MachinelLearning,
NaturalLanguageProcessing,
WordVectors, Google

4% Members
tmiko...@gmail.com
6 contributors

Links

Introduction

This tool provides an efficient implementation of the continuous bag-of-words and skip-gram
architectures for computing vector representations of words. These representations can be
subsequently used in many natural language processing applications and for further research.

Quick start

Download the code: svn checkout http://word2vec.googlecode.com/svn/trunk/

Run 'make' to compile word2vec tool

Run the demo scripts: ./demo-word.sh and ./demo-phrases.sh

For questions about the toolkit, see http://groups.google.com/group/word2vec-toolkit

How does it work

The word2vec tool takes a text corpus as input and produces the word vectors as output. It first

B B L s rEmmm Tt/ o, o J -~ —=="~""'r=-=-" =° W T T TN TIrET T |- T T T LE L —= -

Google

wordZvec

Web Images Videos News Maps More - Search tools

About 384 results (0.56 seconds)

MLMU.cz - Radim Reh(fek - Word2vec & friends (7.1.2015 ...
www.youtube.com/watch?v=wTp3P2UnT{Q

Jan 14, 2015 - Uploaded by Marek Modry

I'll go over a particular model published by Google, called

EEW¥ word2vec, its optimizations, applications and ...

Word2Vec convergence on Vimeo
https:/fvimeo.com/112168934
o Nov 18, 2014
i This is "Word2Vec convergence” by MaciejLyst on Vimeo, the home
for high quality videos and the people who ...

Statistical Semantic APJ~73h{RER A 5 word2vec & T #1 ...
www.ustream.tv/recorded/43497190 ~

— Statistical Semantic A P9~ {RiRH 5 word2vec £ T #1. February
| = 5, 2014 at 7:16pm ...

Statistical Semantic AP~ u{RER A 5 word2vec & T #2, PFI ...
www.ustream.tv/recorded/43497424

gt e Feb 5, 2014

FERCEREAA D UPTOTT | TY—2 27— 3 AP ETY—
TT4»TEA2—tPy7oiE5RELEN. EEot EECIEME
L¥®Th=1 ..

GigaOM Show: Samsung watch secrets spilled! B&N's Nook ...

it amamer Frimee e mseerd T e AGeE s 7RO A% TR

22 OREILLY’

Home Community Books Ebook Safari Books Online Order About

Catalog New & Upcoming PDF Catalog

Book = SPONSOT:
« RS T
» Theme . -
s REGLST
word2veci k 5 B ERNLIE
EEFEH
20146F0s 8 BiT
T—&~N—23 [SENITE-4-87311-683-9
A —<F % I ePub mobi
Ebook Store TR FAE EH A
o % fli#&1.512M
1= e
wordZvec " n-riAns |
~ 0 — R AT AETE L& RENE
b Series wYA4—F 255 g+ 14| [FAE 150

TAIPvIIIFL>2 Tomas Mikolovs 2 L o TIEEZhEkt=Za2—F 03y F7—4 (CBOW, Skip-gram) OF — 72V — A3
: : word2vecl=2UWT. EEMAEVSERBRL. X5 FOHEHEFSERHTT.

EXfZEVENG. BAOFEZI—NA0FEYR. BlE0ER. 4. oCRCAMPESIZD
WTEIXNS FERY 2 —ATERTEET. (THIZBwvordvecDHNERE TR AR EE S TAR
LT ahmE-2LWTERLTWET.

Feature 3kl - . +
= [ZEbook 7 e .
ST i ooklfEMADETETUET
A32A7 (PDF) EEOERES AL 3 EBOREY > 5]

Makezine

VIEW CART E [+]

Catch O'Reilly

r_:lj Mew Release

r_._.d Ebook Store

B 5 ot

r_.-.lj Make: Japan

D ORT on Twitter

:_% Bookclub Mews
[oRrJ for Mobile

Feedback

ETAOCEREEMAaE L
T, CTHALWERELWEEEY
ASAU— - DGp~AnlHk
BRCER. CIEEGLTEM
L EEN. LYRBLWEETD
{YpH—EARRDEHOE
E-EHTIVEEEET.

[feedback~— L5]

CDITIPETE‘ Search terms

word2vec dependency parsing

Search term Search term - ﬁ"dd term
Interest over time - News h 2
Average 2 oo7T 2004 11 2013 201

e

From Distributional to Distributed Semantics

This part of the talk

» word2vec as a black box
» a peek inside the black box

» relation between word-embeddings and the distributional
representation

» tailoring word embeddings to your needs using
wordz2vect

word2vec

¢ » € [code.google.com

J
=

J Project Home Issues Source

word2vec

Tool for computing continuous distributed representations of words.

0~ 0 E =
yoav.goldberg@gmail.com v | My favorites ¥ | Profile | Sign out

‘Search projects

Summary People

Project Information

Starred by 694 users
Project feeds

Code license
Apache License 2.0

Labels

NeuralNetwork, MachinelLearning,
NaturalLanguageProcessing,
WordVectors, Google

4% Members
tmiko...@gmail.com
6 contributors

Links

Introduction

This tool provides an efficient implementation of the continuous bag-of-words and skip-gram
architectures for computing vector representations of words. These representations can be
subsequently used in many natural language processing applications and for further research.

Quick start

Download the code: svn checkout http://word2vec.googlecode.com/svn/trunk/

Run 'make' to compile word2vec tool

Run the demo scripts: ./demo-word.sh and ./demo-phrases.sh

For questions about the toolkit, see http://groups.google.com/group/word2vec-toolkit

How does it work

The word2vec tool takes a text corpus as input and produces the word vectors as output. It first

word2vec

dog = (0.12,-0.32,0.92,0.43,-0.3 ...)
cat = (0.15,-0.29,0.90,0.39,-0.32 ...)

chair = (0.8,0.9,-0.76,0.29,0.52 ...)

get a |V|xd matrix W where each
row is a vector for a word

word2vec

» dog

» cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler,
mixed-breed, doberman, pig

» sheep

» cattle, goats, cows, chickens, sheeps, hogs, donkeys,
herds, shorthorn, livestock

» november

» october, december, april, june, february, july, september,
january, august, march

» |jerusalem

» tiberias, jaffa, haifa, israel, palestine, nablus, damascus
katamon, ramla, safed

» feva

» pfizer, schering-plough, novartis, astrazeneca,
glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme,
pharmacia

Working with Dense Vectors

Word Similarity

» Similarity is calculated using cosine similarity:
dog - cat

sim(dog, cat) = —— -
|dog]| ||cat|]

» For normalized vectors (|| x|| = 1), this is equivalent to a
dot product:

sim(dog, cat) = dog - cat

» Normalize the vectors when loading them.

Working with Dense Vectors

Finding the most similar words to dog

» Compute the similarity from word v to all other words.

Working with Dense Vectors

Finding the most similar words to dog

» Compute the similarity from word v to all other words.

» This is a single matrix-vector product: W - v'
d

I
o
to
=)
o
S

a |-

]
=
to
o
o
o
bo

QO 0O v o)
QIS5 SO Q)
— Q) D 5 - —
=" A
T . . e .
A% \'4 = similarities

IVIXd dx1 1X1VI

Working with Dense Vectors

Finding the most similar words to dog

» Compute the similarity from word v to all other words.

» This is a single matrix-vector product: W - v'
d

I
o
o
=)
o
S

a |-

]
=)
to
o
o
o
bo

QO o wnwo)
BgS558° 8
= @ 7 =
\%Y Vi = similarities
IVIiXxd dx1 1XI1VI

» Resultis a |V/| sized vector of similarities.
» Take the indices of the k-highest values.

Working with Dense Vectors

Finding the most similar words to dog

» Compute the similarity from word v to all other words.
» This is a single matrix-vector product: W - v'

d
cat
chair
june
|Vlsun H = [09 -03 -01-0.9 0.3 0.2 |
oark| 04 53SE8 S
= @ ~
eat
\\ 'a = similarities
IVIXd dx1 1X 1V

» Resultis a |V/| sized vector of similarities.
» Take the indices of the k-highest values.
» FAST! for 180k words, d=300: ~30ms

Working with Dense Vectors

Most Similar Words, in python+numpy code

W, words = load and normalize vectors ("vecs.txt™)
W and words are numpy arrays.
w21 = {w:1 for i1,w in enumerate (words) }

dog = W[w2i['dog’]] # get the dog vector
sims = W.dot (dog) # compute similarities

most_similar_ids = sims.argsort () [-1:-10:-1]
sim words = words[most similar ids]

Working with Dense Vectors

Similarity to a group of words

» “Find me words most similar to cat, dog and cow”.
» Calculate the pairwise similarities and sum them:

W . cat+ W - dog+ W - cow

» Now find the indices of the highest values as before.

Working with Dense Vectors

Similarity to a group of words

» “Find me words most similar to cat, dog and cow”.
» Calculate the pairwise similarities and sum them:

W . cat+ W - dog+ W - cow
» Now find the indices of the highest values as before.
» Matrix-vector products are wasteful. Better option:

W - (cat + dog + cow)

Working with dense word vectors can be very efficient.

Working with dense word vectors can be very efficient.

But where do these vectors come from?

How does word2vec work?

word2vec implements several different algorithms:

Two training methods
» Negative Sampling
» Hierarchical Softmax

Two context representations

» Continuous Bag of Words (CBOW)
» Skip-grams

How does word2vec work?

word2vec implements several different algorithms:

Two training methods

» Negative Sampling
» Hierarchical Softmax

Two context representations

» Continuous Bag of Words (CBOW)
» Skip-grams

We'll focus on skip-grams with negative sampling.

intuitions apply for other models as well.

How does word2vec work?

» Represent each word as a d dimensional vector.

» Represent each context as a d dimensional vector.
» |nitalize all vectors to random weights.

» Arrange vectors in two matrices, W and C.

d

A

contexts

How does word2vec work?
While more text:
» Extract a word window:

A springer is|[a cow or heifer close to calving].
Cq Co C3 w Cy Cs Ce

» W is the focus word vector (row in W).
» C; are the context word vectors (rows in C).

How does word2vec work?
While more text:

» Extract a word window:

A springer is|[a <cow or heifer close to calving].
C1 Co C3 w Cy Cs Ce

» Try setting the vector values such that:

o(wW-c1)+o(W- c)+o(w- c3)+o(W-: c4)+o(w- C5)+o(W- Cp)

IS high

How does word2vec work?
While more text:

» Extract a word window:

A springer is|[a <cow or heifer close to calving].
C1 Co C3 w Cy Cs Ce

» Try setting the vector values such that:
o(w- C1)+o(w- G)+o(W- C3)+0(W- Cs)+0(W- C5)+0(W- Cg)
IS high

» Create a corrupt example by choosing a random word w’

| a cow or comet close to calving]
cf ©C C3 w'’ Cy4 Cs Cs

» Try setting the vector values such that:
o(W'-c1)+o (W co)+o(w'- c3)+o(W'- cy)+o(wW' c5)+o(w'- cs)

IS low

Word2vec Formulation

D : a set of original (correct) word-context pairs

D : a set of corrupt (incorrect) word-context pairs

* knegative samples are generated for each correct sample

The model needs to estimate:
P(D=1|w,c) : the probability that (w,c) 1s from D
— Should be high for pairs from D, low 1f
P(D=0|w,c)=1-P(D=1|w,c): D
the probability that (w,c) 1s from

Word2vec Formulation (cont.)

Modeling probability as sigmoid of dot product score
s(w,c): P(D = 1|lw,e) = 1

1+ E—.s-l::w,c{]

Learning goal: find vectors w,c for all words and
contexts that maximize log-likelihood of data pu b:

L£(©:D,D) = Z log P(D = 1|w, e) + Z log P(D = 0|w, ¢)

(h'_.‘,C‘:] el (w e D
Negative samples generated by original frequency, or
smoothed - deemphasizing frequent words, better in practice:

_#w) Or #(w)" 75 N
3 .E-l' u-r #I: ulll :I Eu-f #_{l-llll:“..l i ok

Word2vec Formulation (cont.)

The Skip-gram model assumes independence
between the context elements.

Denote ¢, ; a context of k elements:

| . 1
P.D:].'h H =
i. lw, ¢;) _——
k i {
P(D = 1jw,erx) = [[P(D = 1w,c) = [[-5
i=1 1—3 "=
- 1
log P(D = 1|w, e1.4) = log
Og | w,e1) = lo Z =

i—1

Very effective in practice, commonly used.

How does word2vec work?

The training procedure results in:
» W - ¢ for good word-context pairs is high.
» w - ¢ for bad word-context pairs is low.
» W - ¢ for ok-ish word-context pairs is neither high nor low.

As a result:
» Words that share many contexts get close to each other.
» Contexts that share many words get close to each other.

At the end, word2vec throws away C and returns W.

Reinterpretation

Imagine we didn’t throw away C. Consider the product WC'

Reinterpretation

Imagine we didn’t throw away C. Consider the product WC'

contexts

contexts

words

W oF M

The result is a matrix M in which:
» Each row corresponds to a word.
» Each column corresponds to a context.

» Each cell correspond to w - ¢, an association measure
between a word and a context.

Reinterpretation

contexts

contexts

words

W o M

Does this remind you of something?

Reinterpretation

contexts

contexts

words

W o M

Does this remind you of something?
Very similar to SVD over distributional representation:

I contexts

U S V

contexts

M

words

What is SGNS learning?

* Ay, X Ve matrix
* Each cell describes the relation between a specific word-context pair

W-C=7?

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

What is SGNS learning?

* We prove that for large enough d and enough iterations

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

What is SGNS learning?

* We prove that for large enough d and enough iterations
* We get the word-context PMI matrix

SW s = 3 MM

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

What is SGNS learning?

* We prove that for large enough d and enough iterations
* We get the word-context PMI matrix, shifted by a global constant

Opt(w - ¢) = PMI(w,c) —logk

d Ve

S S C = = MPME T —logk

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

What is SGNS learning?

* SGNS is doing something very similar to the older approaches
* SGNS is factorizing the traditional word-context PMI| matrix

* So does SVD!

* Do they capture the same similarity function?

SGNS vs SVD

Target Word

Cat

dog
rabbit

cats
poodle

pig

dog
rabbit
pet
monkey

pig

SGNS vs SVD

Target Word

wine

wines

grape

grapes
winemaking

tasting

wines

grape
grapes
varietal

vintages

SGNS vs SVD

Target Word

November

October
December
April
January

July

October
December
April
June
March

But word2wvec is still better, isn't it?

* Plenty of evidence that word2vec outperforms traditional methods
* |In particular: “Don’t count, predict!” (Baroni et al., 2014)

* How does this fit with our story?

|Il

The Big Impact of “Small” Hyperparameters

Hyperparameters

e word2vec is more than just an algorithm...

* Introduces many engineering tweaks and hyperpararameter settings
* May seem minor, but make a big difference in practice
* Their impact is often more significant than the embedding algorithm’s

* These modifications can be ported to distributional methods!

Levy, Goldberg, Dagan (In submission)

Hyperparameters

* Preprocessing
* Association Metric
* Postprocessing

Levy, Goldberg, Dagan (In submission)

Hyperparameters

* Preprocessing
* Association Metric
* Postprocessing

Levy, Goldberg, Dagan (In submission)

Assoclation Metric Hyperparameters

* Since SGNS and PMI are strongly related,
we can import 2 of SGNS’s hyperparameters to traditional PMI:

1. Shifted PMI
2. Negative Sampling Smoothing

* Both stem from the negative sampling procedure

Levy, Goldberg, Dagan (In submission)

Negative Sampling Smoothing

* Recall that SGNS picks w'~P to form negative (W', ¢) examples

e Our analysis assumes P is the unigram distribution

ZW’EVW Hw'

Levy, Goldberg, Dagan (In submission)

Negative Sampling Smoothing

* Recall that SGNS picks w'~P to form negative (W', ¢) examples
e Our analysis assumes P is the unigram distribution

* In practice, it’s a smoothed unigram distribution

(#W)O'75

z:W’EVW(E":FJLW,)0'75

PO'75(W) —

* This little change makes a big difference Levy, Goldberg, Dagan (In submission)

Negative Sampling Smoothing

* This smoothing has an analogue in PMI

e Replace P(w) with P%7>(w):

P(w,c)
PO75(w)P(c)

PMI®7>(w,c) = log

* Yields a dramatic improvement with every method on every task

Levy, Goldberg, Dagan (In submission)

Experiments & Results

* We compared several methods, while controlling for hyperparameters
« PPMI, SVD(PPMI), SGNS, GloVe

* Methods perform on-par in most tasks
* Slight advantage to SVD in word similarity
* SGNS is better at syntactic analogies
* SGNS is robust in general

* Negative sampling smoothing accounts for much of the differences
observed in “Don’t count, predict!”

Levy, Goldberg, Dagan (In submission)

Other Hyperparameters

* There are many other hyperparameters that can be investigated

* Perhaps the most interesting one is the type of context

What’s in @ Context?

What’s in a Context?

* Importing ideas from embeddings improves distributional methods
* Can distributional ideas also improve embeddings?

* ldea: change SGNS’s default BoW contexts into dependency contexts

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Example

Australian scientist discovers star with telescope

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Target Word

Australian scientist discovers star with telescope

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Bag of Words (BoW) Context

discovers telescope

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Bag of Words (BoW) Context

discovers

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Syntactic Dependency Context

Australian scientist discovers star with telescope

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Syntactic Dependency Context

nsubj prep_with
/WJ\
Australian scientist discovers star telescope

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Syntactic Dependency Context

nsubj prep_with
/W\
scientist discovers star telescope

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies
Dumbledore Sunnydale
hallows Collinwood
Hogwarts half-blood Calarts
(Harry Potter’s school) Malfoy Greendale
Snape Millfield
Related to schools

Harry Potter

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies
nondeterministic Pauling
non-deterministic Hotelling

Turing computability Heting
(computer scientist) deterministic Lessing
finite-state Hamming
felated to Scientists

computability

“Dependency-Based Word Embeddings”

Levy & Goldberg, ACL 2014

Embedding Similarity with Different Contexts

Target Word Bag of Words (k=5) Dependencies
singing singing
dance rapping

dancing dances breakdancing
(dance gerund) dancers miming
tap-dancing busking
Re(:lzt:cdeto Gerunds

“Dependency-Based Word Embeddings”

Levy & Goldberg, ACL 2014

What is the effect of different context types?

* Thoroughly studied in distributional methods
e Lin (1998), Padd and Lapata (2007), and many others...

General Conclusion:
e Bag-of-words contexts induce

* Dependency contexts induce
e Share the same semantic type
* Cohyponyms

* Holds for embeddings as well

similarities
similarities

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

 Same algorithm, different inputs -- very different
kKinds of similarity.

* |nputs matter much more than algorithm.

 Think about your inputs.

Peeking into Skip-Gram’s Black Box

* In explicit representations, we can look at the features and analyze

* But embeddings are a black box!
 Dimensions are latent and don’t necessarily have any meaning

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Peeking into Skip-Gram’s Black Box

* Skip-Gram allows a peek...

* Contexts are embedded in the same space!

e Given a word w, find the contexts c it “activates” most:

arg max(w - ¢)
C

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Associated Contexts

Target Word Dependencies

students/prep_at™
educated/prep_at™
Hogwarts student/prep_at™

stay/prep_at

learned/prep_at

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Associated Contexts

Target Word Dependencies

machine/nn-
test/nn-1
Turing theorem/poss

machines/nn1

tests/nnt

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

Associated Contexts

Target Word Dependencies

dancing/conj
dancing/conj*
dancing singing/conj
singing/conj

ballroom/nn

“Dependency-Based Word Embeddings”
Levy & Goldberg, ACL 2014

let's take a step back

We don't really care about the vectors.
We care about the similarity function they induce.
e (or, maybe we want to use them in an external task)
We want similar words to have similar vectors.
SO evaluating on word-similarity tasks is great.

But what does similar mean?

many faces of similarity

 dog -- cat

e dog -- poodle
* dog -- animal
* dog -- bark

* dog -- leash

many faces of similarity

* dog -- cat * dog -- chair
* dog -- poodle * dog -- dig

* dog -- animal * dog -- god
* dog -- bark e dog -- fog

* dog -- leash * dog -- 6op

many faces of similarity

 dog -- cat

e dog -- poodle
* dog -- animal
* dog -- bark

* dog -- leash

- same POS

dog -- chair
dog -- dig
dog -- god
dog -- fog

dog -- 6op

edit distance

same letters

rhyme

shape

some forms of similarity look
more useful than they really are

* Almost every algorithm you come up with will be
good at capturing:

e countries
e Cltles
e Mmonths

* PErson names

some forms of similarity look
more useful than they really are

* Almost every algorithm you come up with will be
good at capturing:

e countries useful for tagging/parsing/NER
e Cities
* months

* PErson names

some forms of similarity look
more useful than they really are

* Almost every algorithm you come up with will be
good at capturing:

e countries useful for tagging/parsing/NER
* cities but do we really want

‘John went to China in June'
* months to be similar to

‘Carl went to ltaly in February”
* PErson names fol

there 1S no single
downstream task

Different tasks require different kinds of similarity.

Different vector-inducing algorithms produce
different similarity functions.

No single representation for all tasks.

If your vectors do great on task X, | don't care that
they suck on task Y.

Context matters

Choose the correct contexts for your application

» larger window sizes — more topical
» dependency relations — more functional

Context matters

Choose the correct contexts for your application

» larger window sizes — more topical

» dependency relations — more functional
» only noun-adjective relations

» only verb-subject relations

Context matters

Choose the correct contexts for your application

» larger window sizes — more topical

» dependency relations — more functional
» only noun-adjective relations

» only verb-subject relations

» context: time of the current message

» context: user who wrote the message

Context matters

Choose the correct contexts for your application

» larger window sizes — more topical

» dependency relations — more functional
» only noun-adjective relations

» only verb-subject relations

» context: time of the current message

» context: user who wrote the message

» the sky is the limit

what happens
N Hebrew?

(based on my work with Oded Avraham)

what happens when we ook
outside of English”

* Things don't work nearly as well.
 Known problems from English become more extreme.

 We get some new problems as well.

a quick look at Hebrew

WOrd senses

190
book(N). barber(N). counted(V). tell!(V). told(V).

11N

brown (feminine, singular)
wall (noun)
her fever (possessed noun)

Multi-word units

T e

10 N'2 e

UK NIY e

UK QYL e

VMY UK e

Jn'y N'a e

WOrads vs. tokens

N' AN

and when from the house

WOrads vs. tokens

N' AN

and when from the house

ZAa
IN shadow

ZAA
onion

and of course: Inflections

* NOuNns, pronouns and adjectives
--> are inflected for number and gender

* verbs
--> are inflected for number, gender, tense, person

* syntax requires agreement between
- nouns and adjectives
- verpbs and subjects

and of course: Inflections

she saw a brown fox

he saw a brown fence

and of course

[fem] [masc]
she saw a brown fox

he saw a brown fence
[masc] [fem]

" Inflections

and of course

[fem] [masc]
she saw a brown fox

NN

N'D NN VIV DIN

XN AN 1 T4 anin

/

he saw a brown fence
[masc] [fem]

" Inflections

INflections and dist-sim

 More word forms -- more sparsity

 But more importantly: agreement patterns affect the
resulting similarities.

adjectives

green[m,sg] green [f,sg] green [m,pl]
21 AL D'

21MD NMaN D 19N
blue [m,sg] gray [f,sg] gray [m,pl]
""""""""""" omy . nmma 0 DM
orange [m,sg] | orange [f,;sg] blue [m,pl]

...

21N mEA DNV
yellow [m,sg] : vyellow[f,sg] { black[m,pl]
""""""""""" x| nmop . Dmme
red [m,sg] ~magical [f,g] = heavenly [m,pl]

verps

(he) walked (she) thought (they) ate
akh nawn 17OX

120N navin 120K
(they) walked = (she)is thinking | (they) will eat
"""""""""""" M qawaan - DYaw
(he) is walking (she) felt (they) are eating

...

129 nyinwn DIN
(he) turned (she) is convinved | (he) ate
"""""""""" “Monn 0 nwpymad . nnw

(he) came closer . (she) insisted (they) drank

NOouns

Doctor [m,sg] Doctor [f, sqg]
N9IN NN9IN
IVNDDAY N'"LITILD
psychiatrist [m,sg] student [f, sg]
""""""""""""""""""""""" »io>a . amo
psychologist [m, sg] nun [f, sg]
am. . mwm
neurologist [m, sg] waitress [f, sg]
"""""""""""""""" I -

engineer [m, sg] photographer [f, sg]

Blas

* The word vectors capture language use.
* Language use may contain biases.

* We need to be aware of it when using the vectors.

NOouns

sweater shirt
IO nx7in
bp’y Jacket =997 sult
P1oNn down | ") robe
"""""""" o oversl | momw cress

..

IN2MD turban NP helmet

NOouns

sweater shirt

IO nx71n

bp’y Jacket =997 sult

P1oNn down | 'Yy robe
"""""""" o oversl | momw cress

IN2AMD turban nTop helmet

masculine | feminine

NOouns

sweater shirt

2TIO nx7In

LD’ jacket =997 Sult
PN down) robe
51121 overall nony dress
IN2INMD turban nTop helmet
masculine | feminine

completely arbitrary

When arbitrary gender
does matter

o) 59)

When arbitrary gender
does matter

o) 59)

1Y) A1)

INflections and dist-sim

Inflections and agreement really influence the results.
We get a mix of syntax and semantics.

Which aspect of the similarity we care about? what
does it mean to be similar?

Need better control of the different aspects.

INflections and dist-sim

Work with lemmas instead of words!!
Sure, but where do you get the lemmas?
...Tor unknown words”?

And what should you lemmatize” everything”
somethings” context-dependent?

Ongoing work in my lab -- but still much to do.

Software

wordZvect
https://bitbucket.org/yoavgo/word2vect

» Extension of word2vec.

» Allows saving the context matrix.

» Allows using arbitraty contexts.
» Input is a (large) file of word context pairs.

Software

hyperwords
https://bitbucket.org/omerlevy/hyperwords/

» Python library for working with either sparse or dense word
vectors (similarity, analogies).

» Scripts for creating dense representations using word2vect
or SVD.

» Scripts for creating sparse distributional representations.

Software

dissect
http://clic.cimec.unitn.it/composes/toolkit/

» Qiven vector representation of words. ..
» ...derive vector representation of phrases/sentences
» Implements various composition methods

Summary

Distributional Semantics

» Words in similar contexts have similar meanings.
» Represent a word by the contexts it appears in.
» But what is a context?

Neural Models (word2vec)

» Represent each word as dense, low-dimensional vector.
» Same intuitions as in distributional vector-space models.
» Efficient to run, scales well, modest memory requirement.
» Dense vectors are convenient to work with.
» Still helpful to think of the context types.

Software

» Build your own word representations.

