
Feature-based Discriminative Models

More Sequence Models

Yoav Goldberg

Bar Ilan University

1 / 58

Reminder

PP-attachment
He saw a mouse with a telescope.

saw, mouse, with, telescope→ V

POS-tagging
Holly/NNP came/VBD from/IN Miami/NNP ,/, F.L.A/NNP ,/,
hitch-hiked/VBD her/PRP way/NN across/IN the/DT USA/NNP

Both were solved with a probabilistic model and MLE
estimates, based on counting and dividing.

2 / 58

Today

Discriminative Training

3 / 58

Sentence-boundary-detection revisited

Georg "Mr. George" Svendsen (19 March 1894 – 1966) was a Norwegian journalist and crime novelist.

He was born in Eidanger, and started his journalistic career in Bratsberg-Demokraten before moving on
to Demokraten where he was a subeditor. In 1921 he was hired in Fremtidenand replaced in
Demokraten by Evald O. Solbakken. In 1931 he was hired in Arbeiderbladet. Under the pen name "Mr.
George" he became known for his humorous articles in the newspaper. At his death he was also called
"the last of the three great criminal and police reporters in Oslo", together with Fridtjof Knutsen and
Axel Kielland. He was also known for practising journalism as a trade in itself, and not as a part of a
political career. He retired in 1964, and died in 1966.

He released the criminal novels Mannen med ljåen (1942), Ridderne av øksen (1945) and Den hvite
streken (1946), and translated the book S.S. Murder by Quentin Patrick as Mord ombord in 1945. He
released several historical books: Rørleggernes Fagforenings historie gjennem 50 år (1934),
Telefonmontørenes Forening Oslo, gjennem 50 år (1939), Norsk nærings- og
nydelsesmiddelarbeiderforbund: 25-års beretning (1948), De tause vitner: av rettskjemiker Ch. Bruffs
memoarer (1949, with Fridtjof Knudsen) and Elektriske montørers fagforening gjennom 50 år (1949).

4 / 58

Sentence-boundary-detection revisited

I P(boundary | subeditor . In)
I P(boundary | O . Solbakken)
I P(boundary | Solbakken . In)
I P(boundary | Arbeiderbladet . Under)
I P(boundary | Mr . George)
I P(boundary | 1945 . He)

Useful indicators
I Identity of L
I Identity of R
I Length of L
I Is R capitalized
I . . .

Highly correlated.
Do we need both?
How do we integrate information?

5 / 58

Sentence-boundary-detection revisited

I P(boundary | L=subeditor . R=In)
I P(boundary | L=O . R=Solbakken)
I P(boundary | L=Solbakken . R=In)
I P(boundary | L=Arbeiderbladet . R=Under)
I P(boundary | L=Mr . R=George)
I P(boundary | L=1945 . R=He)

Useful indicators
I Identity of L
I Identity of R
I Length of L
I Is R capitalized
I . . .

Highly correlated.
Do we need both?
How do we integrate information?

5 / 58

Sentence-boundary-detection revisited

I P(boundary | L=subeditor . R=In)
I P(boundary | L=O . R=Solbakken)
I P(boundary | L=Solbakken . R=In)
I P(boundary | L=Arbeiderbladet . R=Under)
I P(boundary | L=Mr . R=George)
I P(boundary | L=1945 . R=He)

Useful indicators
I Identity of L
I Identity of R
I Length of L
I Is R capitalized
I . . .

Highly correlated.
Do we need both?
How do we integrate information?

5 / 58

Sentence-boundary-detection revisited

I P(boundary | L=subeditor . R=In)
I P(boundary | L=O . R=Solbakken)
I P(boundary | L=Solbakken . R=In)
I P(boundary | L=Arbeiderbladet . R=Under)
I P(boundary | L=Mr . R=George)
I P(boundary | L=1945 . R=He)

Useful indicators
I Identity of L
I Identity of R
I Length of L
I Is R capitalized
I . . .

Highly correlated.
Do we need both?
How do we integrate information?

5 / 58

Sentence-boundary-detection revisited

P(boundary|L=subeditor, R=In, len(L)=9, isCap(R)=True,
isCap(L)=False, . . .)

I How do we compute the probability model?
I Do we really need a probability model here?

Probabilities→ Scores
I Instead of P(y|x), compute score(x, y)

I Return arg maxy score(x, y)
I Or, if we just have two classes, return class 1 iff score(x) > 0

I But how do we compute the score?

6 / 58

Feature Representation

Each indicator will be a feature.

Feature
I A feature is a function φi(x) looking at a particular property

of x and returning a value.
I Generally, the value can be any number, φi(x) ∈ R
I Often, the value is binary, φi(x) ∈ {0, 1}.

Feature Extractor / Feature Vector
I A feature extractor is a collection of features
φ = φ1, . . . , φm

I A feature vector is the result of φ applied on a particular x
I φ(x) = φ1(x), . . . , φm(x)

I For binary features: φ(x) ∈ {0, 1}m

7 / 58

Feature Representation

Feature Examples

φ1(L.R) =

{
1 if L=’subeditor’

0 otherwise

φ2(L.R) =

{
1 if L=’O’

0 otherwise

φ57(L.R) =

{
1 if R=’George’

0 otherwise

φ1039(L.R) =

{
1 if len(L)=1

0 otherwise

φ1040(L.R) =

{
1 if len(L)=2

0 otherwise

φ1045(L.R) =

{
1 if len(L)>4

0 otherwise

φ1092(L.R) =

{
1 if isCap(R)

0 otherwise

φ1093(L.R) =

{
1 if isNumber(L)

0 otherwise

φ2045(L.R) =

{
1 if L=’US’ and isCap(R)

0 otherwise

φ3066(L.R) =

{
1 if len(L)=1 and isCap(R)

0 otherwise

φ5032(L.R) =

{
1 if L=’Ca’ and R=’The’

0 otherwise

φ5033(L.R) =

{
1 if L=’Ca’ and R=’snow’

0 otherwise

8 / 58

Feature Representation

Feature Vector
φ(L=subeditor . R=In) = 1, 0, 0, 0, 0, . . . , 1, 0, 0, 0, 1 . . .
φ(L=Mr . R=George) = 0, 0, 0, 1, 0, . . . , 0, 0, 1, 0, 1 . . .

I Each example is mapped to a very long vector of 0 and 1.
I Most values are 0.

Sparse Representation
We don’t need to write the zeros:

φ(L=subeditor . R=In) = 1:1 1045:1 1092:1 . . .

9 / 58

Machine Learning
We had a set of example:

I subeditor . In→ boundary
I O . Solbakken→ no-boundary
I Mr . George→ no-boundary
I . . .

We can map them to a list of vectors

I φ(L=subeditor . R=In) = 1:1 1045:1 1092:1 . . .
I φ(L=O . R=Solbakken) = 2:1 1039:1 1092:1 . . .
I φ(L=Mr . R=George) = 57:1 1040:1 1092:1 . . .
I . . .

And a list of answers:
I +1, −1, −1, . . .

10 / 58

Feature Representation

Why did we do this?

I We mapped each example x to a vector of numbers φ(x).
I We mapped each answer y to a number.
I Instead of P(y|x) we now have P(y|φ(x)) y ∈ {−1,+1}.

I x was a sequence of words.
I φ(x) is a vector of numbers.

I The field of Machine Learning is very good at learning to
classify vectors.

11 / 58

Machine Learning

Dataset
+1 1:1 1045:1 1092:1 . . .
−1 2:1 1039:1 1092:1 . . .
−1 57:1 1040:1 . . .
. . .

I We can feed this dataset to a machine-learning algorithm.
I Many machine learning algorithms exist:

I SVM, boosting, decision trees, knn, logistic regression,
random forests, perceptron, neural networks, . . .

I The important distinctions:
I output type:

I Binary, Multiclass, Numeric, Structured
I scoring type:

I Linear vs. Non Linear

12 / 58

https://www.kaggle.com/surveys/2017
13 / 58

https://www.kaggle.com/surveys/2017

Types of learning problems
Binary

I Answer is binary: y ∈ {−1,+1}
I boundary/no-boundary, verb-attach/noun-attach, yes/no

Multiclass
I Answer is one of k options: y ∈ {1, . . . , k}

I choose the part-of-speech of a word.
I identify the language of a document.

Numeric / Regression

I Answer is a number: y ∈ R
I Predict the height of a person.

Structured
I Answer is a complex object:

I Predict a sequence of tags for a sentence.

14 / 58

Generic NLP Solution

I Find an annotated corpus
I Split it into train and test parts
I Convert it to a vector representation

I Decide on output type
I Decide on features
I Convert each training example to feature vector

I Train a machine-learning model on training set
I Apply machine-learning model to test set
I Measure accuracy

15 / 58

Linear Models

16 / 58

Machine Learning

I Many learning algorithms exist.
I Some of them are based on a linear model:

I SVM, boosting, logistic-regression, perceptron
I Others are non-linear:

I Kernel-SVM, decision-trees, knn, random-forests,
neural-networks.

I We will work mostly with linear classifiers in this course.
I Neural networks are useful and popular. But there’s a

separate course for them.

17 / 58

Linear Models

I Some features are indicators for “boundary”
and others are good indicators for “no boundary”.

I We will assign a score (weight) to each feature.
I Features in favor of boundary will receive a positive score.
I Features in favor of no boundary will receive a negative

score.
I Use the sum of the scores to classify.

Binary Linear Classifier

score(x) =
∑

i∈1,...,m

wi × φi(x) = w · φ(x)

ŷ = predict(x) =

{
1 score(x) ≥ 0
−1 score(x) < 0

18 / 58

Linear Models

I Some features are indicators for “boundary”
and others are good indicators for “no boundary”.

I We will assign a score (weight) to each feature.
I Features in favor of boundary will receive a positive score.
I Features in favor of no boundary will receive a negative

score.
I Use the sum of the scores to classify.

Binary Linear Classifier

score(x) =
∑

i∈1,...,m

wi × φi(x) = w · φ(x)

ŷ = predict(x) =

{
1 score(x) ≥ 0
−1 score(x) < 0

18 / 58

Setting the Weights

Feature Examples

φ1(L.R) =

{
1 if L=’subeditor’

0 otherwise

φ2(L.R) =

{
1 if L=’O’

0 otherwise

φ57(L.R) =

{
1 if R=’George’

0 otherwise

φ1039(L.R) =

{
1 if len(L)=1

0 otherwise

φ1040(L.R) =

{
1 if len(L)=2

0 otherwise

φ1045(L.R) =

{
1 if len(L)>4

0 otherwise

φ1092(L.R) =

{
1 if isCap(R)

0 otherwise

φ1093(L.R) =

{
1 if isNumber(L)

0 otherwise

φ2045(L.R) =

{
1 if L=’US’ and isCap(R)

0 otherwise

φ3066(L.R) =

{
1 if len(L)=1 and isCap(R)

0 otherwise

φ5032(L.R) =

{
1 if L=’Ca’ and R=’The’

0 otherwise

φ5033(L.R) =

{
1 if L=’Ca’ and R=’snow’

0 otherwise

19 / 58

Setting the Weights

Binary Linear Classifier

score(x) =
∑

i∈1,...,m

wi × φi(x) = w · φ(x)

ŷ = predict(x) =

{
1 score(x) ≥ 0
−1 score(x) < 0

Machine Learning
Provide algorithms for learning the values of w from examples.

I A supervised binary learning problem:
I Input: a set of (x, y) examples, features extractor φ.
I Output: weights w such that w · φ(x) classifies many of the

y’s correctly.

20 / 58

Setting weights: the perceptron algorithm

1: w← 0
2: for x, y in training examples do
3: ŷ← sign(w · φ(x))
4: if ŷ < 0 and y ≥ 0 then
5: w← w + φ(x)

6: if ŷ ≥ 0 and y < 0 then
7: w← w− φ(x)

8: return w

21 / 58

Setting the Weights

Multiclass Linear Classifier

score(x, y) =
∑

i∈1,...,m

w(y)
i × φi(x, y) = w · φ(x, y)

ŷ = predict(x) = arg max
y

score(x, y)

Alternative view

score(x, y) =
∑

i∈1,...,m

wi × φi(x) = w(y) · φ(x)

ŷ = predict(x) = arg max
y

score(x, y)

Here, each class receives its own weight vector.

22 / 58

Setting the Weights

Multiclass Linear Classifier

score(x, y) =
∑

i∈1,...,m

w(y)
i × φi(x, y) = w · φ(x, y)

ŷ = predict(x) = arg max
y

score(x, y)

Alternative view

score(x, y) =
∑

i∈1,...,m

wi × φi(x) = w(y) · φ(x)

ŷ = predict(x) = arg max
y

score(x, y)

Here, each class receives its own weight vector.

22 / 58

Setting weights: the multiclass perceptron algorithm

1: w← 0
2: for x, y in training examples do
3: ŷ← arg maxy′(w · φ(x, y′))
4: if ŷ 6= y then
5: w← w + φ(x, y)
6: w← w− φ(x, ŷ)

7: return w

23 / 58

Setting weights: the multiclass perceptron algorithm

1: w← 0
2: for x, y in training examples do
3: ŷ← arg maxy′(w · φ(x, y′))
4: if ŷ 6= y then
5: w← w + φ(x, y)− φ(x, ŷ)

6: return w

24 / 58

Perceptron→ Averaged Perceptron
1: w← 0
2: for x, y in training examples do
3: ŷ← arg maxy′(w · φ(x, y′))
4: if ŷ 6= y then
5: w← w + φ(x, y)− φ(x, ŷ)

6: return w

Averaged Perceptron

I The perceptron algorithm is not a very good learner
I But can be easily improved

I Instead of returning w, return avg(w)
I avg(w) is the average of all versions of w seen in training

I Require a bit more book-keeping for calculating the
average at the end

I The result is a very competitive algorithm

25 / 58

Perceptron→ Averaged Perceptron
1: w← 0
2: for x, y in training examples do
3: ŷ← arg maxy′(w · φ(x, y′))
4: if ŷ 6= y then
5: w← w + φ(x, y)− φ(x, ŷ)

6: return w

Averaged Perceptron

I The perceptron algorithm is not a very good learner
I But can be easily improved
I Instead of returning w, return avg(w)

I avg(w) is the average of all versions of w seen in training

I Require a bit more book-keeping for calculating the
average at the end

I The result is a very competitive algorithm

25 / 58

Perceptron→ Averaged Perceptron
1: w← 0
2: for x, y in training examples do
3: ŷ← arg maxy′(w · φ(x, y′))
4: if ŷ 6= y then
5: w← w + φ(x, y)− φ(x, ŷ)

6: return w

Averaged Perceptron

I The perceptron algorithm is not a very good learner
I But can be easily improved
I Instead of returning w, return avg(w)

I avg(w) is the average of all versions of w seen in training
I Require a bit more book-keeping for calculating the

average at the end
I The result is a very competitive algorithm

25 / 58

PP-attachment revisited

We calculated
P(V|v = saw, n1 = mouse, p = with, n2 = telescope)

Problems
I Was not trivial to come up with a formula.
I Hard to add more sources of information.

New solution
I Encode as a binary or multiclass classification.
I Decide on features.
I Apply learning algorithm.

26 / 58

PP-attachment

Multiclass classification problem

I Previously, we had a binary classification problem:
⇒ x = (v,n1,p,n2)
⇒ y ∈{V,N}

I Let’s do a multiclass problem:
⇒ y ∈{V,N,Other}

27 / 58

PP-attachment

Types of features
I Single items

I Identity of v
I Identity of p
I Identity of n1
I Identity of n2

I Pairs
I Identity of (v,p)
I Identity of (n1,p)
I Identity of (p,n1)

I Triplets
I Identity of (v,n1,p)
I Identity of (v,p,n2)
I Identity of (n1,p,n2)

I Quadruple
I Identity of (v,n1,p,n2)

28 / 58

PP-attachment

Types of features
I Single items

I Identity of v
I Identity of p
I Identity of n1
I Identity of n2

I Pairs
I Identity of (v,p)
I Identity of (n1,p)
I Identity of (p,n1)

I Triplets
I Identity of (v,n1,p)
I Identity of (v,p,n2)
I Identity of (n1,p,n2)

I Quadruple
I Identity of (v,n1,p,n2)

φ1039 =

{
1 if v=’ate’ and y=’N’

0 otherwise

φ1040 =

{
1 if v=’ate’ and y=’V’

0 otherwise

φ1041 =

{
1 if v=’ate’ and y=’O’

0 otherwise

φ1042 =

{
1 if v=’saw’ and y=’N’

0 otherwise
. . .

28 / 58

PP-attachment

Types of features
I Single items

I Identity of v
I Identity of p
I Identity of n1
I Identity of n2

I Pairs
I Identity of (v,p)
I Identity of (n1,p)
I Identity of (p,n1)

I Triplets
I Identity of (v,n1,p)
I Identity of (v,p,n2)
I Identity of (n1,p,n2)

I Quadruple
I Identity of (v,n1,p,n2)

φ2349 =

{
1 if v=’ate’ p=’with’ and y=’N’

0 otherwise

φ2350 =

{
1 if v=’ate’ p=’with’ and y=’V’

0 otherwise

φ2351 =

{
1 if v=’ate’ p=’with’ and y=’O’

0 otherwise
. . .

28 / 58

PP-attachment

Types of features
I Single items

I Identity of v
I Identity of p
I Identity of n1
I Identity of n2

I Pairs
I Identity of (v,p)
I Identity of (n1,p)
I Identity of (p,n1)

I Triplets
I Identity of (v,n1,p)
I Identity of (v,p,n2)
I Identity of (n1,p,n2)

I Quadruple
I Identity of (v,n1,p,n2)

φ2349 =

{
1 if v=’ate’ p=’with’ and y=’N’

0 otherwise

φ2350 =

{
1 if v=’ate’ p=’with’ and y=’V’

0 otherwise

φ2351 =

{
1 if v=’ate’ p=’with’ and y=’O’

0 otherwise
. . .

28 / 58

PP-attachment

More features?
I Corpus Level

I Did we see the (v,p) pair in a 5-word window in a big
corpus?

I Did we see the (n1,p) pair in a 5-word window in a big
corpus?

I Did we see the (n1,p,n2) triplet in a 5-word window in a big
corpus?

I We can also use counts, or binned counts.
I Distance

I Distance (in words) between v and p
I Distance (in words) between n1 and p
I . . .

29 / 58

PP-attachment

I Compute features for each example.
I Feed into a machine learning algorithm (for example SVM

or perceptron).
I Get a weight vector.
I Classify new examples.

30 / 58

POS-tagging revisited

31 / 58

POS-tagging

x = x1, . . . , xn = Holly came from Miami , FLA

y = y1, . . . , yn = NNP VBD IN NNP , NNP

I Our job is to predict y. We will score each yi in turn.
I Reminder: in the HMM case we had:

score(yi|x, yi−1, yi−2) = q(yi|yi−1, yi−2)e(xi|yi)

where e, q are MLE estimates.
I In the feature based approach:

predict(yi|x, y[0:i−1]) = arg max
yi∈tagset

w · φ(x, y[0:i−1], i, yi)

I We define φ to take position into account: φ(x, y[0:i−1], i, yi)

32 / 58

POS-tagging

x = x1, . . . , xn = Holly came from Miami , FLA

y = y1, . . . , yn = NNP VBD IN NNP , NNP

I Our job is to predict y. We will score each yi in turn.

I Reminder: in the HMM case we had:

score(yi|x, yi−1, yi−2) = q(yi|yi−1, yi−2)e(xi|yi)

where e, q are MLE estimates.
I In the feature based approach:

predict(yi|x, y[0:i−1]) = arg max
yi∈tagset

w · φ(x, y[0:i−1], i, yi)

I We define φ to take position into account: φ(x, y[0:i−1], i, yi)

32 / 58

POS-tagging

x = x1, . . . , xn = Holly came from Miami , FLA

y = y1, . . . , yn = NNP VBD IN NNP , NNP

I Our job is to predict y. We will score each yi in turn.
I Reminder: in the HMM case we had:

score(yi|x, yi−1, yi−2) = q(yi|yi−1, yi−2)e(xi|yi)

where e, q are MLE estimates.

I In the feature based approach:

predict(yi|x, y[0:i−1]) = arg max
yi∈tagset

w · φ(x, y[0:i−1], i, yi)

I We define φ to take position into account: φ(x, y[0:i−1], i, yi)

32 / 58

POS-tagging

x = x1, . . . , xn = Holly came from Miami , FLA

y = y1, . . . , yn = NNP VBD IN NNP , NNP

I Our job is to predict y. We will score each yi in turn.
I Reminder: in the HMM case we had:

score(yi|x, yi−1, yi−2) = q(yi|yi−1, yi−2)e(xi|yi)

where e, q are MLE estimates.
I In the feature based approach:

predict(yi|x, y[0:i−1]) = arg max
yi∈tagset

w · φ(x, y[0:i−1], i, yi)

I We define φ to take position into account: φ(x, y[0:i−1], i, yi)

32 / 58

POS-tagging

Feature Examples
Sequence:

φ349 =

{
1 if yi−1=’JJ’, ∧ yi−2=’DT’ ∧ yi=’NN’

0 otherwise

φ355 =

{
1 if ∧ yi−1=’JJ’ ∧ yi=’NN’

0 otherwise

φ392 =

{
1 if yi=’NN’

0 otherwise

Local:

φ231 =

{
1 if xi=’saw’ ∧ yi=’VBD’

0 otherwise

I These correspond to
q and e from the
HMM.

I Did we gain anything
yet?

33 / 58

POS-tagging

Feature Examples
Sequence:

φ349 =

{
1 if yi−1=’JJ’, ∧ yi−2=’DT’ ∧ yi=’NN’

0 otherwise

φ355 =

{
1 if ∧ yi−1=’JJ’ ∧ yi=’NN’

0 otherwise

φ392 =

{
1 if yi=’NN’

0 otherwise

Local:

φ231 =

{
1 if xi=’saw’ ∧ yi=’VBD’

0 otherwise

I These correspond to
q and e from the
HMM.

I Did we gain anything
yet?

33 / 58

POS-tagging
More Feature Examples

3 Suffix:

φ121 =

{
1 if xi endsWith ’ing’ ∧ yi=’VBD’

0 otherwise

φ122 =

{
1 if xi endsWith ’int’ ∧ yi=’VBD’

0 otherwise
. . .

2 Suffix:

φ222 =

{
1 if xi endsWith ’ed’ ∧ yi=’VBD’

0 otherwise

φ225 =

{
1 if xi endsWith ’ng’ ∧ yi=’VBD’

0 otherwise

φ228 =

{
1 if xi endsWith ’he’ ∧ yi=’VBD’

0 otherwise
. . .

34 / 58

POS-tagging

More Feature Examples

Word-features:

φ552 =

{
1 if hasHyphen(xi) ∧ yi=’JJ’

0 otherwise

φ553 =

{
1 if hasDigit(xi) ∧ yi=’JJ’

0 otherwise

φ554 =

{
1 if allDigits(xi) ∧ yi=’JJ’

0 otherwise

φ555 =

{
1 if isUpper(xi) ∧ yi=’JJ’

0 otherwise

φ556 =

{
1 if allUpper(xi) ∧ yi=’JJ’

0 otherwise
. . .

35 / 58

POS-tagging

More Feature Examples

Next word:

φ621 =

{
1 if xi+1 endsWith ’ing’ ∧ yi=’JJ’

0 otherwise

φ649 =

{
1 if xi+1=’yesterday’ ∧ yi=’JJ’

0 otherwise
. . .

Prev word:

φ721 =

{
1 if xi−1 endsWith ’ing’ ∧ yi=’JJ’

0 otherwise

φ749 =

{
1 if xi−1=’yesterday’ ∧ yi=’JJ’

0 otherwise
. . .

36 / 58

POS-tagging

I We gained much more flexibility in what information
sources we can use in the scoring.

I But how do we tag?
I Can we use viterbi?

37 / 58

POS-tagging

I We cannot use viterbi because the scores are
“meaningless”.

I But greedy tagging works quite well!

1: Input: sentence x, parameter-vector w, feature extractor φ
2: y← None
3: for i in 1, . . . , |x| do
4: yi ← arg maxyi∈tagset w · φ(x, y[0:i−1], i, yi)

5: return y

I This was a bad idea before. What changed?

38 / 58

POS-tagging

I We cannot use viterbi because the scores are
“meaningless”.

I But greedy tagging works quite well!

1: Input: sentence x, parameter-vector w, feature extractor φ
2: y← None
3: for i in 1, . . . , |x| do
4: yi ← arg maxyi∈tagset w · φ(x, y[0:i−1], i, yi)

5: return y

I This was a bad idea before. What changed?

38 / 58

POS-tagging

Improving Greedy Tagging

Training Algorithm
1: w← 0
2: for x, y in examples do
3: for i in 1, . . . , |x| do
4: ŷi ← arg maxyi∈tagset w · φ(x, y[0:i−1], i, yi)
5: if ŷi 6= yi then
6: w← w + φ(x, y[0:i−1], i, yi)− φ(x, y[0:i−1], i, ŷi)

7: return w

39 / 58

POS-tagging

Improving Greedy Tagging
Better Training Algorithm

1: w← 0
2: for x, y in examples do
3: y′ ← y
4: for i in 1, . . . , |x| do
5: ŷi ← arg maxyi∈tagset w · φ(x, y′[0:i−1], i, yi)

6: if ŷi 6= yi then
7: w← w + φ(x, y′[0:i−1], i, yi)− φ(x, y′[0:i−1], i, ŷi)

8: y′i ← ŷi

9: return w

I Predict yi based on previous predictions,
can recover from errors.

40 / 58

POS-tagging

Improving Greedy Tagging
Better Training Algorithm

1: w← 0
2: for x, y in examples do
3: y′ ← y
4: for i in 1, . . . , |x| do
5: ŷi ← arg maxyi∈tagset w · φ(x, y′[0:i−1], i, yi)

6: if ŷi 6= yi then
7: w← w + φ(x, y′[0:i−1], i, yi)− φ(x, y′[0:i−1], i, ŷi)

8: y′i ← ŷi

9: return w

I Predict yi based on previous predictions,
can recover from errors.

40 / 58

POS-tagging

I Greedy tagging can be quite accurate (and very fast).

I But a global search is still preferable.
I What if we do want to have global search?
⇒ We need meaningful scores.

41 / 58

POS-tagging

I Greedy tagging can be quite accurate (and very fast).
I But a global search is still preferable.
I What if we do want to have global search?

⇒ We need meaningful scores.

41 / 58

POS-tagging

I Greedy tagging can be quite accurate (and very fast).
I But a global search is still preferable.
I What if we do want to have global search?
⇒ We need meaningful scores.

41 / 58

Log-linear Modeling

42 / 58

Log-linear Modeling

I Our linear classifiers give us a score:

score(x, y[0:i−1], i, yi) = w · φ(x, y[0:i−1], i, yi)

I This is great, if we are looking for the best y.
I But sometimes we do want a probability:

p(yi|x, y[0:i−1], i)

I In a log linear model, we define:

p(yi|x, y[0:i−1], i) =
ew·φ(x,y[0:i−1],i,yi)∑

y′i∈tagset ew·φ(x,y[0:i−1],i,y′i)

43 / 58

Log-linear Modeling

I Our linear classifiers give us a score:

score(x, y[0:i−1], i, yi) = w · φ(x, y[0:i−1], i, yi)

I This is great, if we are looking for the best y.
I But sometimes we do want a probability:

p(yi|x, y[0:i−1], i)

I In a log linear model, we define:

p(yi|x, y[0:i−1], i) =
ew·φ(x,y[0:i−1],i,yi)∑

y′i∈tagset ew·φ(x,y[0:i−1],i,y′i)

43 / 58

Log-linear Modeling
Name

I In a log linear model, we define:

p(yi|x, y[0:i−1], i) =
ew·φ(x,y[0:i−1],i,yi)∑

y′i∈tagset ew·φ(x,y[0:i−1],i,y′i)

I Why is it called log-linear?

log p(yi|x, y[0:i−1], i) = w·φ(x, y[0:i−1], i, yi)−log
∑

y′i∈tagset

ew·φ(x,y[0:i−1],i,y′i)

44 / 58

Log-linear Modeling
Training Objective

I In a log linear model, we define:

p(yi|x, y[0:i−1], i) =
ew·φ(x,y[0:i−1],i,yi)∑

y′i∈tagset ew·φ(x,y[0:i−1],i,y′i)

I The exponentiation makes everything positive.
I The denominator is normalizing everything to sum to 1.
⇒ The result is a formal probability.
⇒ But is it the “real” probability?

I The job of learning is to find w such to maximize:∑
x,y∈data

∑
i∈1,...,|x|

log p(yi|x, y[0:i−1], i)

(maximize the log likelihood of the data)

45 / 58

Log-linear Modeling
Training Objective

I In a log linear model, we define:

p(yi|x, y[0:i−1], i) =
ew·φ(x,y[0:i−1],i,yi)∑

y′i∈tagset ew·φ(x,y[0:i−1],i,y′i)

I The exponentiation makes everything positive.
I The denominator is normalizing everything to sum to 1.
⇒ The result is a formal probability.
⇒ But is it the “real” probability?

I The job of learning is to find w such to maximize:∑
x,y∈data

∑
i∈1,...,|x|

log p(yi|x, y[0:i−1], i)

(maximize the log likelihood of the data)

45 / 58

Log-linear Modeling
Smoothing

I In a log linear model, we define:

p(yi|x, y[0:i−1], i) =
ew·φ(x,y[0:i−1],i,yi)∑

y′i∈tagset ew·φ(x,y[0:i−1],i,y′i)

I The job of learning is to find w such to maximize:∑
x,y∈data

∑
i∈1,...,|x|

log p(yi|x, y[0:i−1], i)

I We can make it better by adding a regularization term:∑
x,y∈data

∑
i∈1,...,|x|

log p(yi|x, y[0:i−1], i)−
λ

2

∑
w2

i

I This prefers that most weights are small→ avoid overfitting

46 / 58

Log-linear Modeling
Smoothing

I In a log linear model, we define:

p(yi|x, y[0:i−1], i) =
ew·φ(x,y[0:i−1],i,yi)∑

y′i∈tagset ew·φ(x,y[0:i−1],i,y′i)

I The job of learning is to find w such to maximize:∑
x,y∈data

∑
i∈1,...,|x|

log p(yi|x, y[0:i−1], i)

I We can make it better by adding a regularization term:∑
x,y∈data

∑
i∈1,...,|x|

log p(yi|x, y[0:i−1], i)−
λ

2

∑
w2

i

I This prefers that most weights are small→ avoid overfitting
46 / 58

Log-linear Modeling
Note

I This form of the model and objective is specialized to our
tagging setup:

p(yi|x, y, i) =
ew·φ(x,y[0:i−1],i,yi)∑

y′i∈tagset ew·φ(x,y[0:i−1],i,y′i)

arg max
w∈Rm

∑
x,y∈data

∑
i∈1,...,|x|

log p(yi|x, y[0:i−1], i)−
λ

2

∑
w2

i

I The general form is:

p(y|x) =
ew·φ(x,y)∑
y′ ew·φ(x,y′)

arg max
w∈Rm

∑
x,y∈data

log p(y|x)− λ

2

∑
w2

i

47 / 58

Log-linear Modeling
Summary

I We defined p(y|x) = ew·φ(x,y)∑
y′i∈tagset ew·φ(x,y)

I And train the model to optimize the data log-likelihood.
I We also added a regularization term.

I This is a very common approach, and goes by two names:
I Multinomail Logistic Regression
I Maximum Entropy Model (Maxent)

I There are many tools for training such models:
I MegaM
I Weka
I Liblinear (when you pass the correct options)
I VW (when you pass in the correct options)
I scikit-learn (when you pass in the correct options)
I Many others
I (some of you implemented it in the deep-learning course...)

48 / 58

Log-linear Modeling
Summary

I We defined p(y|x) = ew·φ(x,y)∑
y′i∈tagset ew·φ(x,y)

I And train the model to optimize the data log-likelihood.
I We also added a regularization term.

I This is a very common approach, and goes by two names:
I Multinomail Logistic Regression
I Maximum Entropy Model (Maxent)

I There are many tools for training such models:
I MegaM
I Weka
I Liblinear (when you pass the correct options)
I VW (when you pass in the correct options)
I scikit-learn (when you pass in the correct options)
I Many others
I (some of you implemented it in the deep-learning course...)

48 / 58

Log-linear Modeling
Summary

I We defined p(y|x) = ew·φ(x,y)∑
y′i∈tagset ew·φ(x,y)

I And train the model to optimize the data log-likelihood.
I We also added a regularization term.

I This is a very common approach, and goes by two names:
I Multinomail Logistic Regression
I Maximum Entropy Model (Maxent)

I There are many tools for training such models:
I MegaM
I Weka
I Liblinear (when you pass the correct options)
I VW (when you pass in the correct options)
I scikit-learn (when you pass in the correct options)
I Many others
I (some of you implemented it in the deep-learning course...)

48 / 58

Back to tagging

MEMM – Maximum Entropy Markov Model

49 / 58

MEMM – MaxEnt Markov Models

I In a trigram HMM, we had:

p(x, y) =
∏

i∈1,...,|x|

q(yi|yi−1, yi−2)e(xi|yi)

ŷ = arg max
t

p(x, y)

I In a trigram MEMM we have:

p(y|x) =
∏

i∈1,...,|x|

p(yi|x, yi−1, yi−2)

=
∏

i∈1,...,|x|

ew·φ(x,y[0:i−1],i,yi)∑
y′i

ew·φ(x,y[0:i−1],i,y′i)

ŷ = arg max
y

p(y|x)

50 / 58

MEMM – MaxEnt Markov Models

I In a trigram HMM, we had:

p(x, y) =
∏

i∈1,...,|x|

q(yi|yi−1, yi−2)e(xi|yi)

ŷ = arg max
t

p(x, y)

I In a trigram MEMM we have:

p(y|x) =
∏

i∈1,...,|x|

p(yi|x, yi−1, yi−2)

=
∏

i∈1,...,|x|

ew·φ(x,y[0:i−1],i,yi)∑
y′i

ew·φ(x,y[0:i−1],i,y′i)

ŷ = arg max
y

p(y|x)

50 / 58

MEMM – MaxEnt Markov Models

I In a trigram HMM, we had:

p(x, y) =
∏

i∈1,...,|x|

q(yi|yi−1, yi−2)e(xi|yi)

ŷ = arg max
t

p(x, y)

I In a trigram MEMM we have:

p(y|x) =
∏

i∈1,...,|x|

p(yi|x, yi−1, yi−2) =
∏

i∈1,...,|x|

ew·φ(x,y[0:i−1],i,yi)∑
y′i

ew·φ(x,y[0:i−1],i,y′i)

ŷ = arg max
y

p(y|x)

50 / 58

MEMM – MaxEnt Markov Models

I In a trigram MEMM we have:

p(y|x) =
∏

i∈1,...,|x|

p(yi|x, yi−1, yi−2) =
∏

i∈1,...,|x|

ew·φ(x,y[0:i−1],i,yi)∑
y′i

ew·φ(x,y[0:i−1],i,y′i)

ŷ = arg max
y

p(y|x)

⇒ Train w using a Maxent learner (new)
⇒ Decode (solve the argmax) using viterbi (like before)

51 / 58

POS-tagging

Summary

I MEMM combine the flexibility of the feature-based
approach with the global search and probability score of
HMM

I But greedy decoding is very fast and very competitive.
I MEMM still a “locally-trained” model.

52 / 58

Structured Perceptron

53 / 58

POS-tagging

I MEMM combine the flexibility of the feature-based
approach with the global search and probability score of
HMM

I But greedy decoding is very fast and very competitive.
I MEMM still a “locally-trained” model.
⇒ Can we have a globally trained model?

I Assume for now that we do not care about probability.

54 / 58

POS-tagging

I MEMM combine the flexibility of the feature-based
approach with the global search and probability score of
HMM

I But greedy decoding is very fast and very competitive.
I MEMM still a “locally-trained” model.
⇒ Can we have a globally trained model?
I Assume for now that we do not care about probability.

54 / 58

POS-tagging

⇒ Can we have a globally trained model?
I Assume for now that we do not care about probability.

I Define score(x, y, i, yi) = w · φ(x, y, i, yi)

I Then the sequence score is score(x, y) =
∑

i w · φ(x, y, i, yi)

I We can find arg maxy score(x, y) using viterbi.
I (assuming φ is “well behaved” – not looking at yi−3 or yi+1)

I Let’s write:
Φ(x, y) =

∑
i

φ(x, y, i, yi)

I and now: score(x, y) = w · Φ(x, y)

I we need w · Φ(x, y) > w · Φ(x, y′) for all incorrect y′.

55 / 58

Structured Perceptron

Φ(x, y) =
∑

i

φ(x, y, i, yi)

score(x, y) = w · Φ(x, y)

we need w · Φ(x, y) > w · Φ(x, y′) for all incorrect y′

Training – structured perceptron
1: w← 0
2: for x, y in examples do
3: ŷ← arg maxy′ w · Φ(x, y′) . Using viterbi
4: if ŷ 6= y then
5: w← w + Φ(x, y)− Φ(x, ŷ)

6: return w

56 / 58

Structured Perceptron

Φ(x, y) =
∑

i

φ(x, y, i, yi)

score(x, y) = w · Φ(x, y)

we need w · Φ(x, y) > w · Φ(x, y′) for all incorrect y′

Training – structured perceptron
1: w← 0
2: for x, y in examples do
3: ŷ← arg maxy′ w · Φ(x, y′) . Using viterbi
4: if ŷ 6= y then
5: w← w + Φ(x, y)− Φ(x, ŷ)

6: return w

56 / 58

Structured Perceptron

Φ(x, y) =
∑

i

φ(x, y, i, yi)

score(x, y) = w · Φ(x, y)

we need w · Φ(x, y) > w · Φ(x, y′) for all incorrect y′

Training – structured perceptron
1: w← 0
2: for x, y in examples do
3: ŷ← arg maxy′ w · Φ(x, y′) . Using viterbi
4: if ŷ 6= y then
5: w← w + Φ(x, y)− Φ(x, ŷ)

6: return w

56 / 58

Structured Perceptron Tagger

I Globally optimized – optimizing directly what we care about
I Does not provide probabilities

I There are global model that do provide probabilities – CRFs
I CRFs are the log-linear version of the structured-percepton.

57 / 58

Structured Perceptron Tagger

I Globally optimized – optimizing directly what we care about
I Does not provide probabilities

I There are global model that do provide probabilities – CRFs
I CRFs are the log-linear version of the structured-percepton.

57 / 58

Summary

Discriminative Learning

I Feature representation, feature vectors
I Linear models (binary, multiclass)

I The perceptron algorithm
I Log-linear models

I Regularization

Sequence Tagging

I HMM (last time)
I Greedy, classifier based
I Greedy, classifier based – improved
I MEMM
I Structured Perceptron

58 / 58

Summary

Discriminative Learning

I Feature representation, feature vectors
I Linear models (binary, multiclass)

I The perceptron algorithm
I Log-linear models

I Regularization

Sequence Tagging

I HMM (last time)
I Greedy, classifier based
I Greedy, classifier based – improved
I MEMM
I Structured Perceptron

58 / 58

