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Reminder

PCFG Parsing

I Assume trees are generated by a (P)CFG.
I Extract grammar rules from treebank.
I Each rule in a derivation has a score.
I Parsing: find the tree with the overall best score.

I Using the CKY algorithm
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Extracting CFG from Trees
I The leafs of the trees define ⌃

I The internal nodes of the trees define N
I Add a special S symbol on top of all trees
I Each node an its children is a rule in R

Extracting Rules
S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana

S ! NP VP
NP ! Adj Noun
Adj ! fruit
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From CFG to PCFG
I English is NOT generated from CFG ) It’s generated by a

PCFG!

I PCFG: probabilistic context free grammar. Just like a CFG,
but each rule has an associated probability.

I All probabilities for the same LHS sum to 1.
I Multiplying all the rule probs in a derivation gives the

probability of the derivation.
I We want the tree with maximum probability.

More Formally

P(tree, sent) =
Y

l!r2deriv(tree)

q(l ! r)

tree = arg max
tree2trees(sent)

P(tree|sent) = arg max
tree2trees(sent)

P(tree, sent)
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PCFG Example

a simple PCFG
1.0 S ! NP VP
0.3 NP ! Adj Noun
0.7 NP ! Det Noun
1.0 VP ! Vb NP
-
0.2 Adj ! fruit
0.2 Noun ! flies
1.0 Vb ! like
1.0 Det ! a
0.4 Noun ! banana
0.4 Noun ! tomato
0.8 Adj ! angry

Example
S

NP

Adj

Fruit

Noun

Flies

VP

Vb

like

NP

Det

a

Noun

banana
1 ⇤ 0.3 ⇤ 0.2 ⇤ 0.7 ⇤ 1.0 ⇤ 0.2 ⇤ 1 ⇤ 1 ⇤ 0.4 =

0.0033
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Parsing with PCFG

I Parsing with a PCFG is finding the most probable
derivation for a given sentence.

I This can be done quite efficiently with dynamic
programming (the CKY algorithm)

Obtaining the probabilities

I We estimate them from the Treebank.
I q(LHS ! RHS) = count(LHS!RHS)

count(LHS!⌃)
I We can also add smoothing and backoff, as before.
I Dealing with unknown words - like in the HMM
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The big question

Does this work?
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Evaluation
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Parsing Evaluation

I Let’s assume we have a parser, how do we know how
good it is?

) Compare output trees to gold trees.

I But how do we compare trees?
I Credit of 1 if tree is correct and 0 otherwise, is too harsh.

I Represent each tree as a set of labeled spans.
I NP from word 1 to word 5.
I VP from word 3 to word 4.
I S from word 1 to word 23.
I . . .

I Measure Precision, Recall and F1 over these spans, as in
the segmentation case.
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Evaluation: Representing Trees as Constituents

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

Label Start Point End Point

NP 1 2
NP 4 5
VP 3 5
S 1 5



Precision and Recall
Label Start Point End Point

NP 1 2
NP 4 5
NP 4 8
PP 6 8
NP 7 8
VP 3 8
S 1 8

Label Start Point End Point

NP 1 2
NP 4 5
PP 6 8
NP 7 8
VP 3 8
S 1 8

I
G = number of constituents in gold standard = 7

I
P = number in parse output = 6

I
C = number correct = 6

Recall = 100%⇥ C

G
= 100%⇥ 6

7

Precision = 100%⇥ C

P
= 100%⇥ 6

6



Parsing Evaluation

I Is this a good measure?
I Why? Why not?
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Parsing Evaluation

How well does the PCFG parser we learned do?

Not very well: about 73% F1 score.
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Problems with PCFGs
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Weaknesses of Probabilistic Context-Free Grammars

Michael Collins, Columbia University



Weaknesses of PCFGs

I Lack of sensitivity to lexical information

I Lack of sensitivity to structural frequencies



S

NP

NNP

IBM

VP

Vt

bought

NP

NNP

Lotus

p(t) = q(S ! NP VP) ⇥q(NNP ! IBM)
⇥q(VP ! V NP) ⇥q(Vt ! bought)
⇥q(NP ! NNP) ⇥q(NNP ! Lotus)
⇥q(NP ! NNP)



Another Case of PP Attachment Ambiguity
(a) S

NP

NNS

workers

VP

VP

VBD

dumped

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin

(b) S

NP

NNS

workers

VP

VBD

dumped

NP

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin



(a)

Rules
S ! NP VP
NP ! NNS
VP ! VP PP
VP ! VBD NP
NP ! NNS
PP ! IN NP
NP ! DT NN
NNS ! workers
VBD ! dumped
NNS ! sacks
IN ! into
DT ! a
NN ! bin

(b)

Rules
S ! NP VP
NP ! NNS
NP ! NP PP
VP ! VBD NP
NP ! NNS
PP ! IN NP
NP ! DT NN
NNS ! workers
VBD ! dumped
NNS ! sacks
IN ! into
DT ! a
NN ! bin

If q(NP ! NP PP) > q(VP ! VP PP) then (b) is more
probable, else (a) is more probable.
Attachment decision is completely independent of the
words



A Case of Coordination Ambiguity

(a) NP

NP

NP

NNS

dogs

PP

IN

in

NP

NNS

houses

CC

and

NP

NNS

cats

(b) NP

NP

NNS

dogs

PP

IN

in

NP

NP

NNS

houses

CC

and

NP

NNS

cats



(a)

Rules
NP ! NP CC NP
NP ! NP PP
NP ! NNS
PP ! IN NP
NP ! NNS
NP ! NNS
NNS ! dogs
IN ! in
NNS ! houses
CC ! and
NNS ! cats

(b)

Rules
NP ! NP CC NP
NP ! NP PP
NP ! NNS
PP ! IN NP
NP ! NNS
NP ! NNS
NNS ! dogs
IN ! in
NNS ! houses
CC ! and
NNS ! cats

Here the two parses have identical rules, and
therefore have identical probability under any
assignment of PCFG rule probabilities



Structural Preferences: Close Attachment

(a) NP

NP

NN

PP

IN NP

NP

NN

PP

IN NP

NN

(b) NP

NP

NP

NN

PP

IN NP

NN

PP

IN NP

NN

I Example: president of a company in Africa

I Both parses have the same rules, therefore receive same
probability under a PCFG

I “Close attachment” (structure (a)) is twice as likely in Wall
Street Journal text.



Lexicalized PCFGs

PCFG Problem 1
Lack of sensitivity to lexical information (words)

Solution
I Make PCFG aware of words (lexicalized PCFG)
I Main Idea: Head Words
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Head Words

Each constituent has one words which captures its “essence”.

I (S John saw the young boy with the large hat)
I (VP saw the young boy with the large hat)
I (NP the young boy with the large hat)
I (NP the large hat)
I (PP with the large hat)

I hat is the “semantic head”
I with is the “functional head”
I (it is common to choose the functional head)
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Heads in Context-Free Rules

Add annotations specifying the “head” of each rule:

S ) NP VP
VP ) Vi
VP ) Vt NP
VP ) VP PP
NP ) DT NN
NP ) NP PP
PP ) IN NP

Vi ) sleeps
Vt ) saw
NN ) man
NN ) woman
NN ) telescope
DT ) the
IN ) with
IN ) in



More about Heads

I Each context-free rule has one “special” child that is the
head of the rule. e.g.,

S ) NP VP (VP is the head)
VP ) Vt NP (Vt is the head)
NP ) DT NN NN (NN is the head)

I A core idea in syntax
(e.g., see X-bar Theory, Head-Driven Phrase Structure
Grammar)

I Some intuitions:

I The central sub-constituent of each rule.
I The semantic predicate in each rule.



Rules which Recover Heads: An Example for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,
NP ) DT NNP NN
NP ) DT NN NNP
NP ) NP PP
NP ) DT JJ
NP ) DT



Rules which Recover Heads: An Example for VPs

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

Else If the rule contains an VP: Choose the leftmost VP

Else Choose the leftmost child

e.g.,
VP ) Vt NP
VP ) VP PP



Adding Headwords to Trees

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

+

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness



Adding Headwords to Trees (Continued)
S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

I A constituent receives its headword from its head child.

S ) NP VP (S receives headword from VP)
VP ) Vt NP (VP receives headword from Vt)
NP ) DT NN (NP receives headword from NN)



Dependency Representation
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Dependency Representation

If we take the head-annotated trees and “forget” about the
constituents, we get a representation called “dependency
structure”.

Dependency structure capture the relation between words in a
sentence.

17 / 1



Dependency Representation

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

Dependency representation is very common.
We will return to it in the future.

18 / 1



Dependency Representation

questioned

lawyer

the

the

lawyer

lawyer

questioned

questioned

questioned

witness

the

the

witness

witness

Dependency representation is very common.
We will return to it in the future.

18 / 1



Dependency Representation

questioned

lawyer

the

the

lawyer

lawyer

questioned

questioned

questioned

witness

the

the

witness

witness

Dependency representation is very common.
We will return to it in the future.

18 / 1



Dependency Representation

questioned

lawyer

the

witness

the

Dependency representation is very common.
We will return to it in the future.

18 / 1



Dependency Representation

questioned

lawyer

the

witness

the

Dependency representation is very common.
We will return to it in the future.

18 / 1



Dependency Representation

Dependency representation is very common.
We will return to it in the future.

18 / 1



Dependency Representation

Dependency representation is very common.
We will return to it in the future.

18 / 1



Dependency Representations

There are many different dependency representations

I
Different choice of heads.

I
Different set of labels.

I
Each language usually has its own treebank, with own

choices

I
A common (and good) one for English:

Stanford Dependencies
I

Prefer relations between words as heads.

I
About 50 labels.

I
Recently, Trees in Stanford-Dependencies available for

different languages.

I
Google’s Universal Dependency Treebank

8 / 1



Universal Dependencies

I
A multi-national project aiming at producing a consistent

set of dependency annotations in many (all!) languages.

I
Abstract over linguistic differences.

I
Same set of parts-of-speech and morphology features.

I
Same dependency relations.

I
Same choice of heads.

I
Why is this good? why is this interesting?

I
Interesting project/research idea: are the annotations

really consistent across languages? do languages differ

only in word order?
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Let’s analyze!

John saw Mary .

a yellow garbage can



Let’s analyze!

John saw Mary .

a yellow garbage can



Let’s analyze!

He said that the boy who was wearing the blue shirt with

the white pockets has left the building .



Let’s analyze!

a large pile of carrots and peas was closely guarded by dogs .



Let’s analyze!

They wanted to buy cakes and eat them on the road .



Some tricky cases

I bought soda and pizza for John and Mary .



Some tricky cases

I bought soda and pizza for 4 and 57 cents.



Some tricky cases

I ordered five books but received four.



Some tricky cases

While Sue has many toys, Alice doesn’t have any.



Some tricky cases

Cut, chop and peel the tomatoes.



Some tricky cases

Cut the tomatoes. Put in a bowl.



I
Coordination is interesting and important.

I
Missing elements are interesting and important.

I
on the border of syntax and discourse.

I
Lots of work to do!



Dependency Parsing
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Evaluation Measures

I
UAS. Unlabeled Attachment Scores

(% of words with correct head)

I
LAS. Labeled Attachment Scores

(% of words with correct head and label)
I

Root

(% of sentences with correct root)

I
Exact

(% of sentences with exact correct structure)
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Evaluation Measures

I
UAS. Unlabeled Attachment Scores 90-94 (Eng, WSJ)

(% of words with correct head)

I
LAS. Labeled Attachment Scores 87-92 (Eng, WSJ)

(% of words with correct head and label)
I

Root ⇠90 (Eng, WSJ)

(% of sentences with correct root)

I
Exact 40-50 (Eng, WSJ)

(% of sentences with exact correct structure)
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Three main approaches to Dependency Parsing

Conversion

I
Parse to constituency structure.

I
Extract dependencies from the trees.

Global Optimization (Graph based)

I Define a scoring function over <sentence,tree> pairs.

I Search for best-scoring structure.

I
Simpler scoring) easier search.

I
(Similar to how we do tagging, constituency parsing.)

Greedy decoding (Transition based)

I
Start with an unparsed sentence.

I
Apply locally-optimal actions until sentence is parsed.
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argmax over combinatorial space

while (!done) { do best thing }



Graph-based parsing (Global Search)

24 / 1
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Arcs

Dependency parsing is concerned with head-modifier relationships.

Definitions:

I head; the main word in a phrase

I modifier; an auxiliary word in a phrase

Meaning depends on underlying linguistic formalism.

Common to use head!modifier arc notation

* Millions on the coast face freak storm



Input Notation

Input:

I x = (w , t)

I w
1

. . .wn; the words of the sentence

I t
1

. . . tn; the tags of the sentence

I Special symbol w
0

= ⇤; the pseudo-root

Note: Unlike in CFG parsing, we assume tags are given.



Output Notation

Output:

I set of possible dependency arcs

A = {(h,m) : h 2 {0 . . . n},m 2 {1 . . . n}}

I Y ⇢ {0, 1}|A|; set of all valid dependency parses

I y 2 Y; a valid dependency parse



Example

* Millions/N on/P the/D coast/N face/V freak/A storm/N

I w
0

= ⇤, w
1

= Millions, w
2

= on, w
3

= the, . . .

I t
0

= ⇤, t
1

= N, t
2

= P, t
3

= D, . . .

I y(0, 5) = 1, y(5, 1) = 1, y(1, 2) = 1 . . .
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Example

* Millions/N on/P the/D coast/N face/V freak/A storm/N

I w
0

= ⇤, w
1

= Millions, w
2

= on, w
3

= the, . . .

I t
0

= ⇤, t
1

= N, t
2

= P, t
3

= D, . . .

I y(0, 5) = 1, y(5, 1) = 1, y(1, 2) = 1 . . .



Forbidden Structures

I Each (non-root) word must modify exactly one word.

* Millions on the coast face freak storm

I Arcs must form a tree.

* Millions on the coast face freak storm

I (Projective) Arcs may not cross each other.

* Millions on the coast face freak storm



Main Idea

I
Define a scoring function g(y; x, ✓)

I
This function will tell us, for every x (sentence) and y (tree)

pair, how good the pair is.

I ✓ are the parameters, or weights (we called them w before)

I
For example: g(y; x, ✓) =

P
i �i(x, y)✓i = �(x, y) · ✓

I
(a linear model)

I
Look for the best y for a given sentence arg maxy g(y; x, ✓)
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at is a good dependency parse?

y⇤ = argmax
y2Y

g(y ; x , ✓)

Method:

I Define features for this problem.

I Learn parameters ✓ from corpus data.

I Maximize objective to find best parse y⇤.



First-order Scoring Function

Scoring function g(y ; x , ✓) is the sum of first-order arc scores

* Millions on the coast face freak storm

g(y ; x , ✓) =

score(coast! the)

+ score(on! coast)

+ score(Millions! on)

+ score(face! millions)

+ score(face! storm)

+ score(storm! freak)

+ score(⇤ ! face)
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First-order Scoring Function

Scoring function g(y ; x , ✓) is the sum of first-order arc scores

* Millions on the coast face freak storm

g(y ; x , ✓) = score(coast! the)

+ score(on! coast)

+ score(Millions! on)
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Generative Model

One Possibility: score(wh ! wm) = p(wm|wh)

where:

I p; a multinomial distribution over words.

Intuition: A bigram-like model for arcs.

Note: Not often used (except unsupervised parsing)



Conditional Model (e.g. CRF)

Define:
score(wh ! wm) = �(x , hh,mi) · ✓

where:

I �(x , hh,mi) : X ⇥A! {0, 1}p; a feature function

I ✓ 2 Rp; a parameter vector (assume given)

I p; number of features



Features

I Features are critical for dependency parsing performance.

I Specified as a vector of indicators.

�NAME(ht,wi, hh,mi) =
⇢

1, if tm = u
0, o.w.

I Each feature has a corresponding real-value weight.

✓NAME = 9.23



Features: Tags

8u 2 T �TAG:M:u(ht,wi, hh,mi) =
⇢

1, if tm = u
0, o.w.

8u 2 T �TAG:H:u(ht,wi, hh,mi) =
⇢

1, if th = u
0, o.w.

8u, v 2 T �TAG:H:M:u:v (ht,wi, hh,mi) =
⇢

1, if th = u and tm = v
0, o.w.

* Millions/N on/P the/D coast/N face/V freak/A storm/N



Features: Words

8u 2W �WORD:M:u(ht,wi, hh,mi) =
⇢

1, if wm = u
0, o.w.

8u 2W �WORD:H:u(ht,wi, hh,mi) =
⇢

1, if wh = u
0, o.w.

8u, v 2W �WORD:H:M:u:v (ht,wi, hh,mi) =
⇢

1, if wh = u and wm = v
0, o.w.

* Millions/N on/P the/D coast/N face/V freak/A storm/N



Features: Context Tags

8u 2 T 4 �CON:�1:�1:u(ht,wi, hh,mi) =

8
<

:

1, if th�1

= u
1

and th = u
2

and tm�1

= u
3

and tm = u
4

0, o.w.

8u 2 T 4 �CON:1:�1:u(ht,wi, hh,mi) =

8
<

:

1, if th+1

= u
1

and th = u
2

and tm�1

= u
3

and tm = u
4

0, o.w.

* Millions/N on/P the/D coast/N face/V freak/A storm/N



Features: Between Tags

8u 2 T �BET:u(ht,wi, hh,mi) =
⇢

1, if ti = u for i between h and m
0, o.w.

* Millions/N on/P the/D coast/N face/V freak/A storm/N



Features: Direction

�RIGHT(ht,wi, hh,mi) =
⇢

1, if h > m
0, o.w.

�LEFT(ht,wi, hh,mi) =
⇢

1, if h < m
0, o.w.

* Millions/N on/P the/D coast/N face/V freak/A storm/N



Features: Length

�LEN:2

(ht,wi, hh,mi) =
⇢

1, if |h �m| > 2
0, o.w.

�LEN:5

(ht,wi, hh,mi) =
⇢

1, if |h �m| > 5
0, o.w.

�LEN:10

(ht,wi, hh,mi) =
⇢

1, if |h �m| > 10
0, o.w.

* Millions/N on/P the/D coast/N face/V freak/A storm/N



Features: Backo↵s and Combinations

I Additionally include backo↵.

8u 2 T 3 �CON:�1:u(ht,wi, hh,mi) =

8
<

:

1, if th�1

= u
1

and th = u
2

and tm = u
3

0, o.w.

I As well as combination features.

8u 2W �LEN:2:DIR:LEFT:TAG:M:u(ht,wi, hh,mi) =
⇢

1, if all on
0, o.w.



First-Order Results

Model Accuracy
NoPOSContextBetween 86.0
NoEdge 87.3
NoAttachmentOrDistance 88.1
NoBiLex 90.6
Full 90.7

From McDonald (2006)



What’s left

I Define features for this problem.

I Learn parameters ✓ from corpus data.

I Maximize objective to find best parse y⇤.

Downside: Higher-order models make inference more di�cult

y⇤ = argmax
y2Y

g(y ; x , ✓)
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I Maximize objective to find best parse y⇤.

Downside: Higher-order models make inference more di�cult

y⇤ = argmax
y2Y

g(y ; x , ✓)



Parsing

Goal: Finding the best parse.

y⇤ = argmax
y2Y

g(y ; x , ✓)



Graph Algorithms

Algorithm 2: Use graph algorithms for parsing.

Find the maximum directed spanning tree.

I Chou-Liu-Edmonds Algorithm O(n3)

I Tarjan’s Extension O(n2)



Graph Algorithms

Algorithm 2: Use graph algorithms for parsing.

Find the maximum directed spanning tree.

I Chou-Liu-Edmonds Algorithm O(n3)

I Tarjan’s Extension O(n2)



Maximum Directed Spanning Tree Algorithm



Issues with MST Algorithm

I Allows non-projective parses.

* Millions on the coast face freak storm

I Good for some languages.

I Cannot incorporate higher-order parts.
I Problem becomes NP-Hard.



Dynamic Programming for Parsing

Algorithm 3: Use a specialized dynamic programming algorithm.

I The Eisner algorithm (1996) for bilexical parsing.

I Use split-head trick. Handle left and right dependencies
separately.



Dependency Parsing New Example

* As McGwire neared , fans went wild



Base Case

* As McGwire neared , fans went wild
;



Dependency Parsing Algorithm - First-order Model

h m

 

h r

+

mr + 1

h e

 

h m

+

m e



Parsing
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Parsing

* As McGwire neared , fans went wild





Algorithm Key

I L; left-facing item

I R; right-facing item

I C; completed item (triangle)

I I; incomplete item (trapezoid)



Algorithm
Initialize:
for i in 0 . . . n do

⇡[C,L, i , i ] = 0
⇡[C,R, i , i ] = 0
⇡[I,L, i , i ] = 0
⇡[I,R, i , i ] = 0

Inner Loop:
for k in 1 . . . n do

for s in 0 . . . n do
t  k + s
if t � n then break

⇡[I,L, s, t] = maxr2s...t�1

⇡[C,R, s, r ] + ⇡[C,L, r + 1, t]
⇡[I,R, s, t] = maxr2s...t�1

⇡[C,R, s, r ] + ⇡[C ,L, r + 1, t]
⇡[C,L, s, t] = maxr2s...t�1

⇡[C,L, s, r ] + ⇡[I,L, r , t]
⇡[C,R, s, t] = maxr2s+1...t ⇡[I,R, s, r ] + ⇡[C,R, r , t]

return ⇡[C,R, 0, n]



Graph-based parsing algorithm

I
Begin with a tagged sentence (can use a POS-tagger)

I
Extract a set of “parts”

I
For a first-order model, each part is a (h,m) pair

(O(n2

) parts)

I
For a second-order model, each part is a (h,m1,m2) tuple

(O(n3

) parts)

I
Calculate a score for each part (using feature-extractor �
and parameters ✓)

I
Find a valid parse tree that is composed of the best parts.

I
using Chu-Liu-Edmunds (for first-order non-projective)

(O(n2

))

I
using a dynamic-programming algorithm (for first- and

second-order projective)

(O(n3

))

Does this remind you of anything?
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Inference

I Full algorithms O(n3).

I Much faster than standard lexicalized parsing.

I Other ways to further improve speed.



Training - setting values for ✓

27 / 1



Note: we need values such that g(y; x, ✓) of gold tree y is larger

than g(y0; x, ✓) for all other trees y0.

28 / 1



Perceptron Sketch: Part 1

I (x
1

, y
1

) . . . (xn, yn); training data

I Gold features X

a2A:y(a)=1

�(xi , a)

Idea: Increase value (in ✓) of gold features.



Perceptron Sketch: Part 2

I Best-scoring structure

zi = argmax
z2Y

g(z ; x , ✓)

I Best-scoring structure features

X

a2A:z(a)=1

�(xi , a)

Idea: Decrease value (in ✓) of wrong best-scoring features



Perceptron Algorithm

✓  0
for t = 1 . . . T, i = 1 . . . n do

zi = argmax
y2Y

g(y ; xi , ✓)

gold  
X

a2A:yi (a)=1

�(xi , a)

best  
X

a2A:zi (a)=1

�(xi , a)

✓  ✓ + gold � best

return ✓



Theory

I If possible, perceptron will separate the correct structure from
the incorrect structure.

I That is, it will find a ✓ that assigns yi a higher score than
other y 2 Y for each example.



Practical Training Considerations

I Training requires solving inference many times.

I Often times computing feature values is time consuming.

I In practice, averaged perceptron variant preferred (Collins,
2002).



Conclusion

Method:

I Define features for this problem.

I Learn parameters ✓ from corpus data.

I Maximize objective to find best parse y⇤.

Structured prediction framework, applicable to many problems.



Transition-based parsing
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Transition-based (greedy) parsing

1. Start with an unparsed sentence.

2. Apply locally-optimal actions until sentence is parsed.

3. Use whatever features you want.

4. Surprisingly accurate.

5. Can be extremely fast.

30 / 1
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Intro to Transition-based Dependency Parsing

An abstract machine composed of a stack and a buffer.

Machine is initialized with the words of a sentence.

A set of actions process the words by moving them from buffer

to stack, removing them from the stack, or adding links between

them.

A specific set of actions define a transition system.

31 / 1



The Arc-Eager Transition System

I SHIFT move first word from buffer

to stack.

(pre: Buffer not empty.)

I LEFTARClabel make first word in

buffer head of top of stack, pop

the stack.

(pre: Stack not empty. Top of stack does

not have a parent.)

I RIGHTARClabel make top of stack

head of first in buffer, move first

in buffer to stack.

(pre: Buffer not empty.)

I REDUCE pop the stack

(pre: Stack not empty. Top of stack has a

parent.)

A A B C D

A A B C D

A A B C D

A A B C D

A A B C D

A A B C D

A A B C D

A A B C D
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Parsing Example

A

She ate pizza with pleasure

A She

ate pizza with pleasure

A She

ate pizza with pleasure

A She ate

pizza with pleasure

A She ate pizza

with pleasure

A She ate pizza

with pleasure

A She ate pizza with

pleasure

A She ate pizza with pleasureA She ate pizza with pleasureA She ate pizza with pleasureA She ate pizza with pleasure
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What do we know about the arc-eager transition

system?

I
Every sequence of actions result in a valid projective

structure.

I
Every projective tree is derivable by (at least one)

sequence of actions.

I
Given a tree, finding a sequence of actions for deriving it.

("oracle")

we know these things also for the

arc-standard, arc-hybrid and other transition systems
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This knowledge is quite powerful

Parsing with an oracle sequence

placeholder
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This knowledge is quite powerful

Parsing without an oracle

placeholder

for sentence,tree pair in corpus do

sequence oracle(sentence, tree)

configuration initialize(sentence)

while not configuration.IsFinal() do
action sequence.next()

configuration configuration.apply(action)

return configuration.tree
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action predict(w, �(configuration))
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summarize the configuration

as a feature vector

predict the action based on the features

need to learn the correct weights



This knowledge is quite powerful

Parsing with an oracle sequence

placeholder

for sentence,tree pair in corpus do

sequence oracle(sentence, tree)

configuration initialize(sentence)

while not configuration.IsFinal() do
action sequence.next()

configuration configuration.apply(action)
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This knowledge is quite powerful

Learning a parser (batch)

placeholder

for sentence,tree pair in corpus do

sequence oracle(sentence, tree)

configuration initialize(sentence)

while not configuration.IsFinal() do
action sequence.next()

features �(configuration)

training_set.add(features, action)

configuration configuration.apply(action)
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Learning a parser (online)

training_set []

for sentence,tree pair in corpus do
sequence oracle(sentence, tree)
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This knowledge is quite powerful

Learning a parser (online)

w 0

for sentence,tree pair in corpus do
sequence oracle(sentence, tree)

configuration initialize(sentence)

while not configuration.IsFinal() do
action sequence.next()

features �(configuration)

predicted predict(w, �(configuration))

if predicted 6= action then
w.update(�(configuration), action, predicted)

configuration configuration.apply(action)

return w
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This knowledge is quite powerful

Parsing time

configuration initialize(sentence)

while not configuration.isFinal() do
action predict(w, �(configuration))

configuration configuration.apply(action)

return configuration.tree
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In short

I
Summarize configuration by a set of features.

I
Learn the best action to take at each configuration.

I
Hope this generalizes well.
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Transition Based Parsing

I
A different approach.

I
Very common.

I
Can be as accurate as first-order graph-based parsing.

I
Higher-order graph-based are still better.

I
Easy to implement.

I
Very fast. (O(n))

I
Can be improved further:

I
Easy-first

I
Dynamic oracle

I
Beam Search
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Neural Networks
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Neural-network (deep learning) based approaches

I
Both graph based and transition-based models benefit

from the move to neural networks.

I
Same over-all approach and algorithm as before, but:

I
Replace classifier from linear to MLP.

I
Use pre-trained word embeddings.

I
Replace feature-extractor with Bi-LSTM.

I
Now exploring;

I
Semi-supervised learning.

I
Multi-task learning objectives.

I Out of domain parsing.
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Hybrid Approaches
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Hybrid-approaches

I
Different parsers have different strengths.

) Combine several parsers.

Stacking

I
Run parser A.

I
Use tree from parser A to add features to parser B.

Voting

I
Parse the sentence with k different parsers.

I
Each parser “votes” on its dependency arcs.

I
Run first-order graph-parser to find tree with best arcs

according to votes.

45 / 1



Hybrid-approaches

I
Different parsers have different strengths.

) Combine several parsers.

Stacking

I
Run parser A.

I
Use tree from parser A to add features to parser B.

Voting

I
Parse the sentence with k different parsers.

I
Each parser “votes” on its dependency arcs.

I
Run first-order graph-parser to find tree with best arcs

according to votes.

45 / 1



Hybrid-approaches

I
Different parsers have different strengths.

) Combine several parsers.

Stacking

I
Run parser A.

I
Use tree from parser A to add features to parser B.

Voting

I
Parse the sentence with k different parsers.

I
Each parser “votes” on its dependency arcs.

I
Run first-order graph-parser to find tree with best arcs

according to votes.

45 / 1



Semi-supervised-approaches

I
We only see very few words (and word-pairs) in training

data.

I
If we know (eat, carrot) is a good pair, what do we know

about (eat, tomato)?

I
Nothing, if the pair is not in our training data!

) Use unlabeled data.

Cluster Features

I
Represent words as context vectors.

I
Define a similarity measure between vectors.

I
Use a clustering algorithm to cluster the words.

I
We hope that:

I
(eat, drink, devour,. . . ) are in the same cluster.

I
(tomato, carrot, pizza, . . . ) are in the same cluster.

I
Use clusters as additional features to the parser.

I
This works well (better?) also for POS-tagging, NER.
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Available Software

There are many parsers available for download, including:

Constituency (PCFG)

I
Stanford Parser (can produce also dependencies)

I
Berkeley Parser

I
Charniak Parser

I
Collins Parser

Dependency

I
RBGParser, TurboParser (graph based)

I
ZPar (transition+beam)

I
ClearNLP (many variants)

I
EasyFirst (my own)

I
Bist Parser (from BGU lab, biLSTM, graph + transition)

I SpaCy (nice API, super fast!!)
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Summary

Dependency Parsers

I
Conversion from Constituency

I
Graph-based

I
Transition-based

I
Hybrid / Ensemble

I
Semi-supervised (cluster features)
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