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1 Introduction

This note describes log-linear models, which are very widely used in natural lan-
guage processing. A key advantage of log-linear models is their flexibility: as we
will see, they allow a very rich set of features to be used in a model, arguably much
richer representations than the simple estimation techniques we have seen earlier in
the course (e.g., the smoothing methods that we initially introduced for language
modeling, and which were later applied to other models such as HMMs for tag-
ging, and PCFGs for parsing). In this note we will give motivation for log-linear
models, give basic definitions, and describe how parameters can be estimated in
these models. In subsequent classes we will see how these models can be applied
to a number of natural language processing problems.

2 Motivation

As a motivating example, consider again the language modeling problem, where
the task is to derive an estimate of the conditional probability

P (Wi = wi|W1 = w1 . . .Wi−1 = wi−1) = p(wi|w1 . . . wi−1)

for any sequence of words w1 . . . wi, where i can be any positive integer. Here wi
is the i’th word in a document: our task is to model the distribution over the word
wi, conditioned on the previous sequence of words w1 . . . wi−1.

In trigram language models, we assumed that

p(wi|w1 . . . wi−1) = q(wi|wi−2, wi−1)

where q(w|u, v) for any trigram (u, v, w) is a parameter of the model. We studied
a variety of ways of estimating the q parameters; as one example, we studied linear
interpolation, where

q(w|u, v) = λ1qML(w|u, v) + λ2qML(w|v) + λ3qML(w) (1)
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Here each qML is a maximum-likelihood estimate, and λ1, λ2, λ3 are parameters
dictating the weight assigned to each estimate (recall that we had the constraints
that λ1 + λ2 + λ3 = 1, and λi ≥ 0 for all i).

Trigram language models are quite effective, but they make relatively narrow
use of the context w1 . . . wi−1. Consider, for example, the case where the context
w1 . . . wi−1 is the following sequence of words:

Third, the notion “grammatical in English” cannot be identified in any
way with the notion “high order of statistical approximation to En-
glish”. It is fair to assume that neither sentence (1) nor (2) (nor indeed
any part of these sentences) has ever occurred in an English discourse.
Hence, in any statistical

Assume in addition that we’d like to estimate the probability of the word model
appearing as word wi, i.e., we’d like to estimate

P (Wi = model|W1 = w1 . . .Wi−1 = wi−1)

In addition to the previous two words in the document (as used in trigram language
models), we could imagine conditioning on all kinds of features of the context,
which might be useful evidence in estimating the probability of seeing model as the
next word. For example, we might consider the probability of model conditioned
on word wi−2, ignoring wi−1 completely:

P (Wi = model|Wi−2 = any)

We might condition on the fact that the previous word is an adjective

P (Wi = model|pos(Wi−1) = adjective)

here pos is a function that maps a word to its part of speech. (For simplicity we
assume that this is a deterministic function, i.e., the mapping from a word to its
underlying part-of-speech is unambiguous.) We might condition on the fact that
the previous word’s suffix is “ical”:

P (Wi = model|suff4(Wi−1) = ical)

(here suff4 is a function that maps a word to its last four characters). We might
condition on the fact that the word model does not appear in the context:

P (Wi = model|Wj 6= model for j ∈ {1 . . . (i− 1)})
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or we might condition on the fact that the word grammatical does appear in the
context:

P (Wi = model|Wj = grammatical for some j ∈ {1 . . . (i− 1)})

In short, all kinds of information in the context might be useful in estimating the
probability of a particular word (e.g., model) in that context.

A naive way to use this information would be to simply extend the methods
that we saw for trigram language models. Rather than combining three estimates,
based on trigram, bigram, and unigram estimates, we would combine a much larger
set of estimates. We would again estimate λ parameters reflecting the importance
or weight of each estimate. The resulting estimator would take something like the
following form (this is intended as a sketch only):

p(model|w1, . . . wi−1) =

λ1 × qML(model|wi−2 = any, wi−1 = statistical) +

λ2 × qML(model|wi−1 = statistical) +

λ3 × qML(model) +

λ4 × qML(model|wi−2 = any) +

λ5 × qML(model|wi−1 is an adjective) +

λ6 × qML(model|wi−1 ends in “ical”) +

λ7 × qML(model|“model” does not occur somewhere in w1, . . . wi−1) +

λ8 × qML(model|“grammatical” occurs somewhere in w1, . . . wi−1) +

. . .

The problem is that the linear interpolation approach becomes extremely unwieldy
as we add more and more pieces of conditioning information. In practice, it is
very difficult to extend this approach beyond the case where we small number of
estimates that fall into a natural hierarchy (e.g., unigram, bigram, trigram esti-
mates). In contrast, we will see that log-linear models offer a much more satisfac-
tory method for incorporating multiple pieces of contextual information.

3 A Second Example: Part-of-speech Tagging

Our second example concerns part-of-speech tagging. Consider the problem where
the context is a sequence of words w1 . . . wn, together with a sequence of tags,
t1 . . . ti−1 (here i < n), and our task is to model the conditional distribution over
the i’th tag in the sequence. That is, we wish to model the conditional distribution

P (Ti = ti|T1 = t1 . . . Ti−1 = ti−1,W1 = w1 . . .Wn = wn)
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As an example, we might have the following context:

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base from
which Spain expanded its empire into the rest of the Western Hemi-
sphere .

Here w1 . . . wn is the sentence Hispaniola quickly . . . Hemisphere ., and the previ-
ous sequence of tags is t1 . . . t5 = NNP RB VB DT JJ. We have i = 6, and our
task is to model the distribution

P (T6 = t6 | W1 . . .Wn = Hispaniola quickly . . . Hemisphere .,

T1 . . . T5 = NNP RB VB DT JJ)

i.e., our task is to model the distribution over tags for the 6th word, base, in the
sentence.

In this case there are again many pieces of contextual information that might
be useful in estimating the distribution over values for ti. To be concrete, consider
estimating the probability that the tag for base is V (i.e., T6 = V). We might
consider the probability conditioned on the identity of the i’th word:

P (T6 = V|W6 = base)

and we might also consider the probability conditioned on the previous one or two
tags:

P (T6 = V|T5 = JJ)

P (T6 = V|T4 = DT, T5 = JJ)

We might consider the probability conditioned on the previous word in the sentence

P (T6 = V|W5 = important)

or the probability conditioned on the next word in the sentence

P (T6 = V|W7 = from)

We might also consider the probability based on spelling features of the word w6,
for example the last two letters of w6:

P (T6 = V|suff2(W6) = se)

(here suff2 is a function that maps a word to its last two letters).
In short, we again have a scenario where a whole variety of contextual features

might be useful in modeling the distribution over the random variable of interest
(in this case the identity of the i’th tag). Again, a naive approach based on an
extension of linear interpolation would unfortunately fail badly when faced with
this estimation problem.
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4 Log-Linear Models

We now describe how log-linear models can be applied to problems of the above
form.

4.1 Basic Definitions

The abstract problem is as follows. We have some set of possible inputs, X , and a
set of possible labels, Y . Our task is to model the conditional probability

p(y|x)

for any pair (x, y) such that x ∈ X and y ∈ Y .
For example, in the language modeling task we have some finite set of possible

words in the language, call this set V . The set Y is simply equal to V . The set
X is the set of possible sequences w1 . . . wi−1 such that i ≥ 1, and wj ∈ V for
j ∈ {1 . . . (i− 1)}.

In the part-of-speech tagging example, we have some set V of possible words,
and a set T of possible tags. The set Y is simply equal to T . The set X is the set
of contexts of the form

〈w1w2 . . . wn, t1t2 . . . ti−1〉

where n ≥ 1 is an integer specifying the length of the input sentence, wj ∈ V for
j ∈ {1 . . . n}, i ∈ {1 . . . (n− 1)}, and tj ∈ T for j ∈ {1 . . . (i− 1)}.

We will assume throughout that Y is a finite set. The set X could be finite,
countably infinite, or even uncountably infinite.

Log-linear models are then defined as follows:

Definition 1 (Log-linear Models) A log-linear model consists of the following
components:

• A set X of possible inputs.

• A set Y of possible labels. The set Y is assumed to be finite.

• A positive integer d specifying the number of features and parameters in the
model.

• A function f : X × Y → Rd that maps any (x, y) pair to a feature-vector
f(x, y).

• A parameter vector v ∈ Rd.
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For any x ∈ X , y ∈ Y , the model defines a condtional probability

p(y|x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

Here exp(x) = ex, and v ·f(x, y) =
∑d
k=1 vkfk(x, y) is the inner product between

v and f(x, y). The term p(y|x; v) is intended to be read as “the probability of y
conditioned on x, under parameter values v”.

We now describe the components of the model in more detail, first focusing on
the feature-vector definitions f(x, y), then giving intuition behind the model form

p(y|x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

5 Features

As described in the previous section, for any pair (x, y), f(x, y) ∈ Rd is a feature
vector representing that pair. Each component fk(x, y) for k = 1 . . . d in this vector
is referred to as a feature. The features allows us to represent different properties
of the input x, in conjunction with the label y. Each feature has an associated
parameter, vk, whose value is estimated using a set of training examples. The
training set consists of a sequence of examples (x(i), y(i)) for i = 1 . . . n, where
each x(i) ∈ X , and each y(i) ∈ Y .

In this section we first give an example of how features can be constructed for
the language modeling problem, as introduced earlier in this note; we then describe
some practical issues in defining features.

5.1 Features for the Language Modeling Example

Consider again the language modeling problem, where the input x is a sequence of
words w1w2 . . . wi−1, and the label y is a word. Figure 1 shows a set of example
features for this problem. Each feature is an indicator function: that is, each feature
is a function that returns either 1 or 0. It is extremely common in NLP applications
to have indicator functions as features. Each feature returns the value of 1 if some
property of the input x conjoined with the label y is true, and 0 otherwise.

The first three features, f1, f2, and f3, are analogous to unigram, bigram, and
trigram features in a regular trigram language model. The first feature returns 1 if
the label y is equal to the word model, and 0 otherwise. The second feature returns
1 if the bigram 〈wi−1 y〉 is equal to 〈statistical model〉, and 0 otherwise. The third
feature returns 1 if the trigram 〈wi−2 wi−1 y〉 is equal to 〈any statistical model〉,
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f1(x, y) =

{
1 if y = model
0 otherwise

f2(x, y) =

{
1 if y = model and wi−1 = statistical
0 otherwise

f3(x, y) =

{
1 if y = model, wi−2 = any, wi−1 = statistical
0 otherwise

f4(x, y) =

{
1 if y = model, wi−2 = any
0 otherwise

f5(x, y) =

{
1 if y = model, wi−1 is an adjective
0 otherwise

f6(x, y) =

{
1 if y = model, wi−1 ends in “ical”
0 otherwise

f7(x, y) =

{
1 if y = model, “model” is not in w1, . . . wi−1

0 otherwise

f8(x, y) =

{
1 if y = model, “grammatical” is in w1, . . . wi−1

0 otherwise

Figure 1: Example features for the language modeling problem, where the input x
is a sequence of words w1w2 . . . wi−1, and the label y is a word.
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and 0 otherwise. Recall that each of these features will have a parameter, v1, v2, or
v3; these parameters will play a similar role to the parameters in a regular trigram
language model.

The features f4 . . . f8 in figure 1 consider properties that go beyond unigram,
bigram, and trigram features. The feature f4 considers word wi−2 in conjunction
with the label y, ignoring the word wi−1; this type of feature is often referred to as
a “skip bigram”. Feature f5 considers the part-of-speech of the previous word (as-
sume again that the part-of-speech for the previous word is available, for example
through a deterministic mapping from words to their part-of-speech, or perhaps
through a POS tagger’s output on words w1 . . . wi−1). Feature f6 considers the
suffix of the previous word, and features f7 and f8 consider various other features
of the input x = w1 . . . wi−1.

From this example we can see that it is possible to incorporate a broad set of
contextual information into the language modeling problem, using features which
are indicator functions.

5.2 Feature Templates

We now discuss some practical issues in defining features. In practice, a key idea in
defining features is that of feature templates. We introduce this idea in this section.

Recall that our first three features in the previous example were as follows:

f1(x, y) =

{
1 if y = model
0 otherwise

f2(x, y) =

{
1 if y = model and wi−1 = statistical
0 otherwise

f3(x, y) =

{
1 if y = model, wi−2 = any, wi−1 = statistical
0 otherwise

These features track the unigram 〈model〉, the bigram 〈statistical model〉, and the
trigram 〈any statistical model〉.

Each of these features is specific to a particular unigram, bigram or trigram. In
practice, we would like to define a much larger class of features, which consider
all possible unigrams, bigrams or trigrams seen in the training data. To do this, we
use feature templates to generate large sets of features.

As one example, here is a feature template for trigrams:

Definition 2 (Trigram feature template) For any trigram (u, v, w) seen in train-
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ing data, create a feature

fN(u,v,w)(x, y) =

{
1 if y = w, wi−2 = u, wi−1 = v
0 otherwise

where N(u, v, w) is a function that maps each trigram in the training data to a
unique integer.

A couple of notes on this definition:

• Note that the template only generates trigram features for those trigrams
seen in training data. There are two reasons for this restriction. First, it is
not feasible to generate a feature for every possible trigram, even those not
seen in training data: this would lead to V 3 features, where V is the number
of words in the vocabulary, which is a very large set of features. Second, for
any trigram (u, v, w) not seen in training data, we do not have evidence to
estimate the associated parameter value, so there is no point including it in
any case.1

• The function N(u, v, w) maps each trigram to a unique integer: that is, it
is a function such that for any trigrams (u, v, w) and (u′, v′, w′) such that
u 6= u′, v 6= v′, or w 6= w′, we have

N(u, v, w) 6= N(u′, v′, w′)

In practice, in implementations of feature templates, the functionN is imple-
mented through a hash function. For example, we could use a hash table to
hash strings such as trigram=any statistical model to integers.
Each distinct string is hashed to a different integer.

Continuing with the example, we can also define bigram and unigram feature
templates:

Definition 3 (Bigram feature template) For any bigram (v, w) seen in training
data, create a feature

fN(v,w)(x, y) =

{
1 if y = w, wi−1 = v
0 otherwise

where N(v, w) maps each bigram to a unique integer.
1This isn’t quite accurate: there may in fact be reasons for including features for trigrams

(u, v, w) where the bigram (u, v) is observed in the training data, but the trigram (u, v, w) is not
observed in the training data. We defer discussion of this until later.
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Definition 4 (Unigram feature template) For any unigram (w) seen in training
data, create a feature

fN(w)(x, y) =

{
1 if y = w
0 otherwise

where N(w) maps each unigram to a unique integer.

We actually need to be slightly more careful with these definitions, to avoid
overlap between trigram, bigram, and unigram features. Define T , B and U to be
the set of trigrams, bigrams, and unigrams seen in the training data. Define

Nt = {i : ∃(u, v, w) ∈ T such that N(u, v, w) = i}

Nb = {i : ∃(v, w) ∈ B such that N(v, w) = i}

Nu = {i : ∃(w) ∈ U such that N(w) = i}

Then we need to make sure that there is no overlap between these sets—otherwise,
two different n-grams would be mapped to the same feature. More formally, we
need

Nt ∩Nb = Nt ∩Nu = Nb ∩Nu = ∅ (2)

In practice, it is easy to ensure this when implementing log-linear models, using a
single hash table to hash strings such as trigram=any statistical model,
bigram=statistical model, unigram=model, to distinct integers.

We could of course define additional templates. For example, the following is
a template which tracks the length-4 suffix of the previous word, in conjunction
with the label y:

Definition 5 (Length-4 Suffix Template) For any pair (v, w) seen in training data,
where v = suff4(wi−1), and w = y, create a feature

fN(suff4=v,w)(x, y) =

{
1 if y = w and suff4(x) = v
0 otherwise

where N(suff4 = v, w) maps each pair (v, w) to a unique integer, with no over-
lap with the other feature templates used in the model (where overlap is defined
analogously to Eq. 2 above).
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5.3 Feature Sparsity

A very important property of the features we have defined above is feature sparsity.
The number of features, d, in many NLP applications can be extremely large. For
example, with just the trigram template defined above, we would have one feature
for each trigram seen in training data. It is not untypical to see models with 100s
of thousands or even millions of features.

This raises obvious concerns with efficiency of the resulting models. However,
we describe in this section how feature sparsity can lead to efficient models.

The key observation is the following: for any given pair (x, y), the number of
values for k in {1 . . . d} such that

fk(x, y) = 1

is often very small, and is typically much smaller than the total number of features,
d. Thus all but a very small subset of the features are 0: the feature vector f(x, y)
is a very sparse bit-string, where almost all features fk(x, y) are equal to 0, and
only a few features are equal to 1.

As one example, consider the language modeling example where we use only
the trigram, bigram and unigram templates, as described above. The number of
features in this model is large (it is equal to the number of distinct trigrams, bigrams
and unigrams seen in training data). However, it can be seen immediately that for
any pair (x, y), at most three features are non-zero (in the worst case, the pair (x, y)
contains trigram, bigram and unigram features which are all seen in the training
data, giving three non-zero features in total).

When implementing log-linear models, models with sparse features can be
quite efficient, because there is no need to explicitly represent and manipulate d-
dimensional feature vectors f(x, y). Instead, it is generally much more efficient to
implement a function (typically through hash tables) that for any pair (x, y) com-
putes the indices of the non-zero features: i.e., a function that computes the set

Z(x, y) = {k : fk(x, y) = 1}

This set is small in sparse feature spaces—for example with unigram/bigram/trigram
features alone, it would be of size at most 3. In general, it is straightforward
to implement a function that computes Z(x, y) in O(|Z(x, y)|) time, using hash
functions. Note that |Z(x, y)| � d, so this is much more efficient than explicitly
computing all d features, which would take O(d) time.

As one example of how efficient computation of Z(x, y) can be very helpful,
consider computation of the inner product

v · f(x, y) =
d∑

k=1

vkfk(x, y)
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This computation is central in log-linear models. A naive method would iterate
over each of the d features in turn, and would take O(d) time. In contrast, if we
make use of the identity

d∑
k=1

vkfk(x, y) =
∑

k∈Z(x,y)
vk

hence looking at only non-zero features, we can compute the inner product in
O(|Z(x, y)|) time.

6 The Model form for Log-Linear Models

We now describe the model form for log-linear models in more detail. Recall that
for any pair (x, y) such that x ∈ X , and y ∈ Y , the conditional probability under
the model is

p(y | x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

The inner products
v · f(x, y)

play a key role in this expression. Again, for illustration consider our languge-
modeling example where the input x = w1 . . . wi−1 is the following sequence of
words:

Third, the notion “grammatical in English” cannot be identified in any
way with the notion “high order of statistical approximation to En-
glish”. It is fair to assume that neither sentence (1) nor (2) (nor indeed
any part of these sentences) has ever occurred in an English discourse.
Hence, in any statistical

The first step in calculating the probability distribution over the next word in
the document, conditioned on x, is to calculate the inner product v · f(x, y) for
each possible label y (i.e., for each possible word in the vocabulary). We might,
for example, find the following values (we show the values for just a few possible
words—in reality we would compute an inner product for each possible word):

v · f(x,model) = 5.6 v · f(x, the) = −3.2
v · f(x, is) = 1.5 v · f(x, of) = 1.3

v · f(x,models) = 4.5 . . .
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Note that the inner products can take any value in the reals, positive or negative.
Intuitively, if the inner product v · f(x, y) for a given word y is high, this indicates
that the word has high probability given the context x. Conversely, if v · f(x, y) is
low, it indicates that y has low probability in this context.

The inner products v ·f(x, y) can take any value in the reals; our goal, however,
is to define a conditional distribution p(y|x). If we take

exp (v · f(x, y))

for any label y, we now have a value that is greater than 0. If v · f(x, y) is high,
this value will be high; if v · f(x, y) is low, for example if it is strongly negative,
this value will be low (close to zero).

Next, if we divide the above quantity by∑
y′∈Y

exp
(
v · f(x, y′)

)
giving

p(y|x; v) = exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

(3)

then it is easy to verify that we have a well-formed distribution: that is,∑
y∈Y

p(y|x; v) = 1

Thus the denominator in Eq. 3 is a normalization term, which ensures that we have
a distribution that sums to one. In summary, the function

exp (v · f(x, y))∑
y′∈Y exp (v · f(x, y′))

performs a transformation which takes as input a set of values {v ·f(x, y) : y ∈ Y},
where each v · f(x, y) can take any value in the reals, and as output produces a
probability distribution over the labels y ∈ Y .

Finally, we consider where the name log-linear models originates from. It
follows from the above definitions that

log p(y|x; v) = v · f(x, y)− log
∑
y′∈Y

exp
(
v · f(x, y′)

)
= v · f(x, y)− g(x)

where
g(x) = log

∑
y′∈Y

exp
(
v · f(x, y′)

)
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The first term, v · f(x, y), is linear in the features f(x, y). The second term, g(x),
depends only on x, and does not depend on the label y. Hence the log probability
log p(y|x; v) is a linear function in the features f(x, y), as long as we hold x fixed;
this justifies the term “log-linear”.

7 Parameter Estimation in Log-Linear Models

7.1 The Log-Likelihood Function, and Regularization

We now consider the problem of parameter estimation in log-linear models. We
assume that we have a training set, consisting of examples (x(i), y(i)) for i ∈
{1 . . . n}, where each x(i) ∈ X , and each y(i) ∈ Y .

Given parameter values v, for any example i, we can calculate the log condi-
tional probability

log p(y(i)|x(i); v)

under the model. Intuitively, the higher this value, the better the model fits this
particular example. The log-likelihood considers the sum of log probabilities of
examples in the training data:

L(v) =
n∑
i=1

log p(y(i)|x(i); v) (4)

This is a function of the parameters v. For any parameter vector v, the value of
L(v) can be interpreted of a measure of how well the parameter vector fits the
training examples.

The first estimation method we will consider is maximum-likelihood estima-
tion, where we choose our parameters as

vML = arg max
v∈Rd

L(v)

In the next section we describe how the parameters vML can be found efficiently.
Intuitively, this estimation method finds the parameters which fit the data as well
as possible.

The maximum-likelihood estimates can run into problems, in particular in
cases where the number of features in the model is very large. To illustrate, con-
sider the language-modeling problem again, and assume that we have trigram, bi-
gram and unigram features. Now assume that we have some trigram (u, v, w)
which is seen only once in the training data; to be concrete, assume that the tri-
gram is any statistical model, and assume that this trigram is seen on the 100’th
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training example alone. More precisely, we assume that

fN(any,statistical,model)(x
(100), y(100)) = 1

In addition, assume that this is the only trigram (u, v, w) in training data with
u = any, and v = statistical. In this case, it can be shown that the maximum-
likelihood parameter estimate for v100 is +∞,2, which gives

p(y(100)|x(100); v) = 1

In fact, we have a very similar situation to the case in maximum-likelihood
estimates for regular trigram models, where we would have

qML(model|any, statistical) = 1

for this trigram. As discussed earlier in the class, this model is clearly under-
smoothed, and it will generalize badly to new test examples. It is unreasonable to
assign

P (Wi = model|Wi−1,Wi−2 = any, statistical) = 1

based on the evidence that the bigram any statistical is seen once, and on that one
instance the bigram is followed by the word model.

A very common solution for log-linear models is to modify the objective func-
tion in Eq. 4 to include a regularization term, which prevents parameter values from
becoming too large (and in particular, prevents parameter values from diverging to
infinity). A common regularization term is the 2-norm of the parameter values, that
is,

||v||2 =
∑
k

v2k

(here ||v|| is simply the length, or Euclidean norm, of a vector v; i.e., ||v|| =√∑
k v

2
k). The modified objective function is

L′(v) =
n∑
i=1

log p(y(i)|x(i); v)− λ

2

∑
k

v2k (5)

2It is relatively easy to prove that v100 can diverge to ∞. To give a sketch: under the above
assumptions, the feature fN(any,statistical,model)(x, y) is equal to 1 on only a single pair x(i), y

where i ∈ {1 . . . n}, and y ∈ Y , namely the pair (x(100), y(100)). Because of this, as v100 → ∞,
we will have p(y(100)|x(100); v) tending closer and closer to a value of 1, with all other values
p(y(i)|x(i); v) remaining unchanged. Thus we can use this one parameter to maximize the value for
log p(y(100)|x(100); v), independently of the probability of all other examples in the training set.
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where λ > 0 is a parameter, which is typically chosen by validation on some
held-out dataset. We again choose the parameter values to maximize the objective
function: that is, our optimal parameter values are

v∗ = argmax
v
L′(v)

The key idea behind the modified objective in Eq. 5 is that we now balance two
separate terms. The first term is the log-likelihood on the training data, and can be
interpreted as a measure of how well the parameters v fit the training examples. The
second term is a penalty on large parameter values: it encourages parameter values
to be as close to zero as possible. The parameter λ defines the relative weighting of
the two terms. In practice, the final parameters v∗ will be a compromise between
fitting the data as well as is possible, and keeping their values as small as possible.

In practice, this use of regularization is very effective in smoothing of log-linear
models.

7.2 Finding the Optimal Parameters

First, consider finding the maximum-likelihood parameter estimates: that is, the
problem of finding

vML = arg max
v∈Rd

L(v)

where

L(v) =
n∑
i=1

log p(y(i)|x(i); v)

The bad news is that in the general case, there is no closed-form solution for the
maximum-likelihood parameters vML. The good news is that finding argmaxv L(v)
is a relatively easy problem, because L(v) can be shown to be a convex function.
This means that simple gradient-ascent-style methods will find the optimal param-
eters vML relatively quickly.

Figure 2 gives a sketch of a gradient-based algorithm for optimization of L(v).
The parameter vector is initialized to the vector of all zeros. At each iteration we
first calculate the gradients δk for k = 1 . . . d. We then move in the direction
of the gradient: more precisely, we set v ← v + β∗ × δ where β∗ is chosen to
give the optimal improvement in the objective function. This is a “hill-climbing”
technique where at each point we compute the steepest direction to move in (i.e.,
the direction of the gradient); we then move the distance in that direction which
gives the greatest value for L(v).

Simple gradient ascent, as shown in figure 2, can be rather slow to converge.
Fortunately there are many standard packages for gradient-based optimization,
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Initialization: v = 0

Iterate until convergence:

• Calculate δk =
dL(v)
dvk

for k = 1 . . . d

• Calculate β∗ = argmaxβ∈R L(v + βδ) where δ is the vector with
components δk for k = 1 . . . d (this step is performed using some type
of line search)

• Set v ← v + β∗δ

Figure 2: A gradient ascent algorithm for optimization of L(v).

which use more sophisticated algorithms, and which give considerably faster con-
vergence. As one example, a commonly used method for parameter estimation in
log-linear models is LBFGs. LBFGs is again a gradient method, but it makes a
more intelligent choice of search direction at each step. It does however rely on the
computation of L(v) and dL(v)

dvk
for k = 1 at each step—in fact this is the only infor-

mation it requires about the function being optimized. In summary, if we can com-
pute L(v) and dL(v)

dvk
efficiently, then it is simple to use an existing gradient-based

optimization package (e.g., based on LBFGs) to find the maximum-likelihood es-
timates.

Optimization of the regularized objective function,

L′(v) =
n∑
i=1

log p(y(i)|x(i); v)− λ

2

∑
k

v2k

can be performed in a very similar manner, using gradient-based methods. L′(v)
is also a convex function, so a gradient-based method will find the global optimum
of the parameter estimates.

The one remaining step is to describe how the gradients

dL(v)

dvk

and
dL′(v)

dvk

can be calculated. This is the topic of the next section.

17



7.3 Gradients

We first consider the derivatives
dL(v)

dvk

where

L(v) =
n∑
i=1

log p(y(i)|x(i); v)

It is relatively easy to show (see the appendix of this note), that for any k ∈
{1 . . . d},

dL(v)

dvk
=

n∑
i=1

fk(x
(i), y(i))−

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y) (6)

where as before

p(y|x(i); v) =
exp

(
v · f(x(i), y)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
The expression in Eq. 6 has a quite intuitive form. The first part of the expression,

n∑
i=1

fk(x
(i), y(i))

is simply the number of times that the feature fk is equal to 1 on the training ex-
amples (assuming that fk is an indicator function; i.e., assuming that fk(x(i), y(i))
is either 1 or 0). The second part of the expression,

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y)

can be interpreted as the expected number of times the feature is equal to 1, where
the expectation is taken with respect to the distribution

p(y|x(i); v) =
exp

(
v · f(x(i), y)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
specified by the current parameters. The gradient is then the difference of these
terms. It can be seen that the gradient is easily calculated.

The gradients
dL′(v)

dvk
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where

L′(v) =
n∑
i=1

log p(y(i)|x(i); v)− λ

2

∑
k

v2k

are derived in a very similar way. We have

d

dvk

(∑
k

v2k

)
= 2vk

hence

dL′(v)

dvk
=

n∑
i=1

fk(x
(i), y(i))−

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y)− λvk (7)

Thus the only difference from the gradient in Eq. 6 is the additional term −λvk in
this expression.

A Calculation of the Derivatives

In this appendix we show how to derive the expression for the derivatives, as given
in Eq. 6. Our goal is to find an expression for

dL(v)

dvk

where

L(v) =
n∑
i=1

log p(y(i)|x(i); v)

First, consider a single term log p(y(i)|x(i); v). Because

p(y(i)|x(i); v) =
exp

(
v · f(x(i), y(i))

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
we have

log p(y(i)|x(i); v) = v · f(x(i), y(i))− log
∑
y′∈Y

exp
(
v · f(x(i), y′)

)
The derivative of the first term in this expression is simple:

d

dvk

(
v · f(x(i), y(i))

)
=

d

dvk

(∑
k

vkfk(x
(i), y(i))

)
= fk(x

(i), y(i)) (8)
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Now consider the second term. This takes the form

log g(v)

where
g(v) =

∑
y′∈Y

exp
(
v · f(x(i), y′)

)
By the usual rules of differentiation,

d

dvk
log g(v) =

d
dvk

(g(v))

g(v)

In addition, it can be verified that

d

dvk
g(v) =

∑
y′∈Y

fk(x
(i), y′) exp

(
v · f(x(i), y′)

)
hence

d

dvk
log g(v) =

d
dvk

(g(v))

g(v)
(9)

=

∑
y′∈Y fk(x

(i), y′) exp
(
v · f(x(i), y′)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

) (10)

=
∑
y′∈Y

fk(x(i), y′)× exp
(
v · f(x(i), y′)

)
∑
y′∈Y exp

(
v · f(x(i), y′)

)
 (11)

=
∑
y′∈Y

fk(x
(i), y′)p(y′|x; v) (12)

Combining Eqs 8 and 12 gives

dL(v)

dvk
=

n∑
i=1

fk(x
(i), y(i))−

n∑
i=1

∑
y∈Y

p(y|x(i); v)fk(x(i), y)
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