
	

Assignment	–	Distributional	Semantics	
Introductions	to	NLP		

The	goal	of	this	assignment	is	to	compute	distributional	similarities	for	words	based	on	
corpus	data	and	to	assess	and	evaluate	those	similarities.	The	first	parts	of	the	description	
below	explain	how	to	compute	word	similarity	using	vectors	in	the	original	feature	space,	
which	you	will	build	using	corpus	statistics.	Then,	you	are	also	asked	to	compute	similarities	
in	an	analogous	manner	using	pre-trained	word2vec	word	embeddings.	

Corpus	
Collect	your	statistics	from	a	sample	of	Wikipedia,	which	is	parsed	by	a	dependency	parser,	
available	at:	http://u.cs.biu.ac.il/~89-680/wikipedia.sample.trees.lemmatized.gz	

To	first	understand	the	corpus	format,	you	can	view	in	a	text	editor	a	smaller	sample:	
http://u.cs.biu.ac.il/~89-680/wikipedia.tinysample.trees.lemmatized	
See	explanation	of	the	corpus	format	at:	https://depparse.uvt.nl/DataFormat.html	
If	you	like	to	view	the	parse	tree	of	a	sentence	in	a	dependency	tree	format	use	this	viewer:	
http://homepages.inf.ed.ac.uk/fsangati/Viewers/DepTreeeViewer_17_06_10.jar	

Statistics	should	be	collected	at	the	level	of	the	word	lemma,	which	is	included	for	each	
word	in	the	corpus.		

FYI,	the	parse	trees	were	produced	by	the	EasyFirst	parser,	developed	by	Yoav	Goldberg,	and	
the	lemmas	were	produced	by	python	module	nltk.stem.wordnet.WordNetLemmatizer	(for	
info	about	the	lemmatizer	see:	http://nltk.org/api/nltk.stem.html).	

Similarity	Computation	
As	explained	in	the	next	section,	you	are	given	certain	target	words	and	need	to	compute	
the	similarity	values	between	each	target	word	and	all	other	words	in	the	corpus	(which	pass	
certain	threshold	criteria,	as	explained	below).		
	
General	guidelines:	

• Vector	similarity	measure:	cosine	
• Word-feature	association	measure:	PMI,	following	the	estimation	method	taught	in	

class.	
• Try	also	the	smoothed	version	of	PMI	(i.e.,	with	the	counts	of	the	context	words	

raised	to	the	power	of	0.75	before	computing	the	p(c)	probabilities),	which	was	
borrowed	from	word2vec.	Mention	in	the	report	which	version	(PMI	or	smoothed	
PMI)	worked	better.	

• Implement	the	efficient	algorithm	for	computing	simultaneously	the	similarity	
between	a	target	word	and	all	other	words,	as	discussed	in	class.	



Word-feature	co-occurrence	types	
You	should	experiment	with	three	types	of	distributional	vectors	for	representing	a	target	
word.	These	vector	types	are	based	on	the	following	three	types	of	co-occurrence	between	
the	target	word	and	its	features:	

1. Content	words	co-occurring	with	the	target	word	in	the	same	sentence.	The	feature	
is	the	co-occurring	word.	

2. Content	words	within	a	window	of	two	content	words	on	each	side	of	the	target	
word	(skipping	function	words).	The	feature	is	the	co-occurring	word.		

3. Content	words	which	are	connected	to	the	target	word	by	a	dependency	edge.	In	
addition	to	the	connected	word,	the	feature	will	include	the	label	and	direction	of	
the	dependency	between	the	target	word	and	the	feature.	In	addition:	

a. If	there	is	a	dependency	edge	that	connects	a	preposition	to	the	target	word	
then	generate	a	feature	in	the	following	way:	

i. If	the	preposition	modifies	the	target	word	(the	target	word	is	the	
parent)	then	create	a	feature	with	the	head	noun	that	modifies	(is	
daughter	of)	the	preposition.	

ii. If	the	preposition	is	modified	by	the	target	word	(the	target	word	is	
the	daughter)	then	create	a	feature	with	the	word	that	is	modified	
by	(is	parent	of)	the	preposition.	

iii. In	both	cases,	the	edge	label	should	include	the	label	of	the	edge	
which	connects	the	preposition	to	its	parent,	concatenated	with	the	
lemma	of	the	preposition	itself.	

iv. The	idea	of	this	specification	is	to	have	the	feature	word	being	the	
content	word	that	is	related	to	the	target	word	via	the	preposition	
(“skipping”	the	preposition).	In	addition,	the	preposition	itself	is	
collapsed	into	the	dependency	label,	which	makes	sense	since	
different	prepositions	usually	reflect	different	semantic	
relationships.	This	is	a	common	practice	when	using	dependency	
relations	for	semantic	purposes.	

The	required	similarity	computations	should	be	performed	three	times,	once	for	each	co-
occurrence	type.	

Thresholds	and	Filters	
In	the	required	evaluations	you	need	to	compute	similarities	only	between	words	that	occur	
at	least	100	times	in	the	corpus	(in	the	lemma	form).	Thus,	you	need	to	build	distributional	
vectors	only	for	words	of	this	or	higher	frequency.	
	
In	addition,	to	fit	the	computation	into	your	computer	resources	you	can	apply	additional	
sensible	filters	on	features,	such	as:	

• Require	minimal	frequency	of	the	feature	in	the	corpus.	
• Require	minimal	co-occurrence	frequency	of	the	feature	with	the	target	word.	

	



Applying	the	filters	will	reduce	the	size	of	the	word-feature	co-occurrence	matrix.	You	need	
to	specify	the	filters	you	used	in	the	submission,	as	well	as	general	statistics	about	the	
number	of	words	and	features	that	you	obtained	(the	matrix	dimensions).	

Required	evaluation	
Compute	and	print	the	top	20	most	similar	words,	from	the	whole	corpus,	for	each	of	the	
following	target	words:	

car	bus	hospital	hotel	gun	bomb	horse	fox	table	bowl	guitar	piano		

In	the	submission,	attach	a	file	that	presents	for	each	of	these	target	words	three	lists	of	the	
top	20	most	similar	words,	one	list	for	each	of	the	three	co-occurrence	types.	For	each	target	
word	print	the	three	lists	in	three	columns	(like	in	a	table),	so	that	it	will	be	easy	to	view	and	
compare	them	side	by	side.		

Examine	the	lists	for	these	12	target	words	and	try	to	come	up	with	some	comparative	
characteristics	of	the	types	of	similarity	obtained	for	each	co-occurrence	type.	Report	your	
qualitative	conclusions	briefly	in	the	evaluation	report,	along	with	examples.	

In	addition,	take	the	first	and	last	target	words	above	(car,	piano)	and	annotate	their	
similarities	manually.	That	is,	for	each	candidate	word	in	the	similarity	lists,	make	two	
judgments:		

1. Whether	you	judge	the	candidate	word	to	be	topically	related	to	the	target	word.	
2. Whether	you	judge	the	candidate	word	to	be	in	the	same	semantic	class	as	the	

target	word.	

Notice	that	while	for	each	word	you	have	3	similarity	lists	of	20	candidates,	many	words	will	
appear	in	more	than	one	list,	so	you	need	to	perform	these	judgments	for	less	than	60	
candidates	per	target	word.	

Include	your	manual	judgments	in	the	submitted	report	and	compute	the	average	mean	
precision	obtained	for	the	similarities	produced	by	each	type	of	co-occurrence.	

Word2vec	evaluation	
Download		and	use	the	pre-trained	word2vec	vectors	from	the	following	website:	

https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/	

Use	two	of	the	different	versions	of	the	embeddings:	dependency-based	and	bag	of	words	
with	window	of	k=5.	

Repeat	the	evaluation	above	also	for	the	two	types	of	word2vec	vectors.	To	compute	
similarities,	consult	the	Python	implementation	slide	from	class,	which	relies	on	Numpy	
package,	for	which	you	can	find	a	useful	documentation	here:	

http://cs231n.github.io/python-numpy-tutorial/	

What	to	submit	

Code	
Follow	the	same	instructions	regarding	the	code	and	its	submission	as	in	the	previous	
assignments.	



Report	
Write	a	short	report	containing	the	following:	

1. Summarize	statistics	regarding	your	experiments:	
a. The	various	thresholds	you	employed.	
b. Number	of	words	considered	for	similarity:	the	number	of	words	which	

passed	the	100	frequency	threshold	(columns	in	the	word-feature	co-
occurrence	matrix).	

c. The	number	of	features	considered	in	your	computation	for	each	co-
occurrence	type	(rows	in	the	matrix).	

2. Print	the	20	most	similar	words	(2nd-order	similarity)	for	each	of	the	target	words	in	
the	qualitative	evaluation,	for	each	co-occurrence	type	(in	the	table	format	
instructed	above).	These	lists	may	appear	as	an	appendix	at	the	end	of	the	report,	or	
in	a	separate	file.	Write	in	the	report	your	conclusions	from	examining	these	lists,	as	
instructed	above,	along	with	examples.	

3. For	each	target	word,	print	in	a	convenient	table	format	the	20	top	context	
attributes	for	that	word,	for	each	of	the	3	co-occurrence	types	(those	attributes	with	
highest	PMI	values	in	the	target	word’s	vector,	considered	as	1st-order	similarities).	
Write	a	short	qualitative	comparison	between	the	lists	in	item	2	(2nd-order)	and	the	
lists	in	item	3	(1st-order).	

4. Report	your	manual	judgments	for	the	two	words	(possibly	in	appendix),	the	MAP	
results	for	the	3	co-occurrence	types	(AP	for	each	of	the	two	words	and	their	
average	as	MAP),	and	provide	some	insight	on	these	results.	

5. Write	a	brief	description	of	your	implementation	of:	
a. The	estimation	of	the	PMI	values	
b. The	efficient	algorithm	for	computing	all	similarities	for	a	target	word.	

In	the	description,	point	at	the	relevant	parts	in	your	code.		

6. Report	the	results	of	the	word2vec	experiment,	with	the	same	types	of	content	as	in	
items	2,	3	and	4	above,	for	the	two	vector	types	of	word2vec.	For	item	3,	report	the	
10	context	words	for	which	the	context	vector	has	highest	dot	product	similarity	
with	the	target	word.	Write	a	short	comparison	between	the	results	of	items	2-4	
above	and	the	corresponding	results	for	the	word2vec	experiment.	

Advice	for	the	implementation	of	corpus	statistics	collection	
In	your	implementation,	you	are	advised	to	use	the	following	data	structure:	
-	a	(main)	hash-table	(python	dict	or	java	HashMap)	mapping	words	to	
(secondary)	hash-tables.	
-	each	of	the	secondary	hash	table	will	map	a	context	to	a	number	
(which	is	the	count	or	the	score).	
	
When	going	over	the	text,	whenever	you	encounter	a	word-context	pair	you	access	the	main	
hash-table	and	retrieve	the	hash-table	for	that	word.	You	then	update	the	secondary	hash-
table	by	increasing	the	context	count.	
	
	



	

In	python,	it	will	look	something	like	this:	
"""	
from	collections	import	defaultdict,	Counter	
	
counts	=	defaultdict(Counter)	
	
for	word,	context	in	....:	
			context_counts_for_word	=	counts[word]	
			context_counts_for_word[context]	+=	1	
"""	
	
For	better	memory	efficiency,	you	may	want	to:	
-	store	each	word	and	context	as	a	number	and	not	a	string	(with	additional	hash-tables	
mapping	strings	to	numbers).	
-	keep	individual	word	and	context	counts,	and	skip	word/context	pairs	for	which	either	the	
word	or	the	context	have	low	counts.	

	
Educational	note:	in	a	more	realistic	scenario,	you	may	be	required	to	work	with	much	
larger	input	files.	In	this	case,	you	could	not	hold	the	entire	counts	for	all	the	words	in	
memory.	The	main	problem	will	be	the	1-count	pairs	--	if	you	could	filter	them	(and	maybe	
also	the	2-count	and	3-count	pairs)	you	will	likely	be	fine.	But	how	do	you	know	in	advance	
that	some	word-context	pair	will	have	a	low	count?	It	is	then	advisable	to	use	temporary	
disk	storage.	Your	initial	program	will	produce	a	file	where	each	line	is	a	single	word-context	
pair,	separated	by	space.	Then,	use	a	program	such	as	unix's	"sort"	utility,	that	can	sort	the	
lines	in	very	large	files	by	making	use	of	temporary	disk	storage.	Then,	you	could	go	over	the	
large	file	in	order,	and	read	each	word	individually,	throw	away	the	one-counts	for	that	
word,	and	proceed	to	the	next	one.	

	

	

	

	


