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Goal: assign a probability 
distribution over sentences

p("he saw her duck")



We would like..

p(אכלתי את התפוח) > p(את אכלתי התפוח) 

p(שני סוסים גדולים) > p(שני סוסים גדול) 

p(שני סוסים חומים) > p(שני סוסים ירוקים) 

p(הלכתי הביתה) > p(הלכתי בית) 

p(הוא רוצה מילקי) > p(הוא חושק במילקי)



The Language Modeling Problem

I We have some (finite) vocabulary,
say V = {the, a, man, telescope, Beckham, two, . . .}

I We have an (infinite) set of strings, V†

the STOP
a STOP
the fan STOP
the fan saw Beckham STOP
the fan saw saw STOP
the fan saw Beckham play for Real Madrid STOP

Michael Collins



The Language Modeling Problem (Continued)

I We have a training sample of example sentences in
English

I We need to “learn” a probability distribution p

i.e., p is a function that satisfies

X

x2V†

p(x) = 1, p(x) � 0 for all x 2 V†

p(the STOP) = 10�12

p(the fan STOP) = 10�8

p(the fan saw Beckham STOP) = 2⇥ 10�8

p(the fan saw saw STOP) = 10�15

. . .

p(the fan saw Beckham play for Real Madrid STOP) = 2⇥ 10�9

. . .

Michael Collins



The Language Modeling Problem (Continued)

I We have a training sample of example sentences in
English

I We need to “learn” a probability distribution p

i.e., p is a function that satisfies

X

x2V†

p(x) = 1, p(x) � 0 for all x 2 V†

p(the STOP) = 10�12

p(the fan STOP) = 10�8

p(the fan saw Beckham STOP) = 2⇥ 10�8

p(the fan saw saw STOP) = 10�15

. . .

p(the fan saw Beckham play for Real Madrid STOP) = 2⇥ 10�9

. . .

Michael Collins



The Language Modeling Problem (Continued)

I We have a training sample of example sentences in
English

I We need to “learn” a probability distribution p

i.e., p is a function that satisfies

X

x2V†

p(x) = 1, p(x) � 0 for all x 2 V†

p(the STOP) = 10�12

p(the fan STOP) = 10�8

p(the fan saw Beckham STOP) = 2⇥ 10�8

p(the fan saw saw STOP) = 10�15

. . .

p(the fan saw Beckham play for Real Madrid STOP) = 2⇥ 10�9

. . .

Michael Collins



Why would we  
like to do this?

• Central in many NLP applications 

• Speech Recognition. 

• Machine Translation. 

• Spelling Correction. 

• OCR. 

• Summarization. 

• ... whenever we "generate" text.
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Why would we  
like to do this?

• Central in many NLP applications 

• Speech Recognition. 

• Machine Translation. 

• Spelling Correction. 

• OCR. 

• Summarization. 

• ... whenever we "generate" text.

recognize speech / wreck a nice beach

he went home -> הוא הלך הביתה / הוא הלך בית

the office is fifteen minuets from here



Motivation: Noisy Channel Models
A pattern for modeling a pair of random variables, X and Y :

source �! Y �! channel �! X

I
Y is the plaintext, the true message, the missing information,
the output

I
X is the ciphertext, the garbled message, the observable
evidence, the input

I Decoding: select y given X = x.

y

⇤
= argmax

y

p(y | x)

= argmax

y

p(x | y) · p(y)
p(x)

= argmax

y

p(x | y)| {z }
channel model

· p(y)|{z}
source model
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text in French"
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good text in English text with spelling errors



Noisy Channel Example: Speech Recognition

source �! sequence in V† �! channel �! acoustics

I Acoustic model defines p(sounds | x) (channel)
I Language model defines p(x) (source)

17 / 67Noah Smith



Noisy Channel Example: Speech Recognition
Credit: Luke Zettlemoyer

word sequence log p(acoustics | word sequence)
the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station ’s signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station ’s signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815

18 / 67Noah Smith



Noisy Channel Example: Machine Translation

Also knowing nothing o�cial about, but having guessed

and inferred considerable about, the powerful new

mechanized methods in cryptography—methods which I

believe succeed even when one does not know what

language has been coded—one naturally wonders if the

problem of translation could conceivably be treated as a

problem in cryptography. When I look at an article in

Russian, I say: “This is really written in English, but it

has been coded in some strange symbols. I will now

proceed to decode.”

Warren Weaver, 1955

19 / 67Noah Smith



The Language Modeling Problem

I We have some (finite) vocabulary,
say V = {the, a, man, telescope, Beckham, two, . . .}

I We have an (infinite) set of strings, V†

the STOP
a STOP
the fan STOP
the fan saw Beckham STOP
the fan saw saw STOP
the fan saw Beckham play for Real Madrid STOP

Michael Collins



Is “finite V” realistic?

No
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Is “finite V” realistic?

No
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Is “finite V” realistic?

No
no
n0
-no
notta
No

/no
//no
(no
|no

31 / 67Noah Smith



Speech Recognition
The Language Modeling Problem (Continued)

I We have a training sample of example sentences in
English

I We need to “learn” a probability distribution p

i.e., p is a function that satisfies

X

x2V†

p(x) = 1, p(x) � 0 for all x 2 V†

p(the STOP) = 10�12

p(the fan STOP) = 10�8

p(the fan saw Beckham STOP) = 2⇥ 10�8

p(the fan saw saw STOP) = 10�15

. . .

p(the fan saw Beckham play for Real Madrid STOP) = 2⇥ 10�9

. . .

Michael Collins



A Naive Method

I We have N training sentences

I For any sentence x1 . . . xn, c(x1 . . . xn) is the number of
times the sentence is seen in our training data

I A naive estimate:

p(x1 . . . xn) =
c(x1 . . . xn)

N

Michael Collins
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does this satisfy the probability requirements?



A Naive Method

I We have N training sentences

I For any sentence x1 . . . xn, c(x1 . . . xn) is the number of
times the sentence is seen in our training data

I A naive estimate:

p(x1 . . . xn) =
c(x1 . . . xn)

N

do you see a problem with this?
Michael Collins



Predicting the next word
• We can either compute the probability of a 

sequence:  
             p(w1, w2, w3, w4, w5, w6) 

• Or the probability of the next item given a prefix:  
             p(w6 | w1, w2, w3, w4, w5) 

• These are equivalent (why?) 

• A model that computes any of these is called a 
Language Model (LM)



Aside: Language Modeling 
as Perfect AI

• If we can always predict the next word as good as 
a human could, we have achieved human-level 
intelligence.  
 
(why?)



A Naive Method

I We have N training sentences

I For any sentence x1 . . . xn, c(x1 . . . xn) is the number of
times the sentence is seen in our training data

I A naive estimate:

p(x1 . . . xn) =
c(x1 . . . xn)

N

do you see a problem with this?

Michael Collins

Reminder:

lets take the next-word-prediction view



Using the chain rule?
p(w1, w2, ..., wn) =p(w1)

⇥ p(w2|w1)

⇥ p(w3|w1, w2)
⇥ p(w4|w1, w2, w3)

...

⇥ p(wn|w1, w2, ..., wn�1)
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⇥ p(w2|w1)

⇥ p(w3|w1, w2)
⇥ p(w4|w1, w2, w3)

...

⇥ p(wn|w1, w2, ..., wn�1)

mostly the same problem..



Markov Assumption
The future is independent of the past given the present.
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The future is independent of the past given the present.
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The future is independent of the past given the present.



Markov Assumption

p(wn|w1, w2, w3, ...., wn�1) ⇡ p(wn|wn�1)

p(wn|w1, w2, w3, ...., wn�1) ⇡ p(wn|wn�2, wn�1)

First order markov assumption:

Second order markov assumption:

p(wn|w1, w2, w3, ...., wn�1) ⇡ p(wn)
zero-order:

The future is independent of the past given the present.



Markov Assumption

p(w1, w2, ..., wn) =p(w1)

⇥ p(w2)

⇥ p(w3)

⇥ p(w4)

...

⇥ p(wn�1)

⇥ p(wn)

Unigram Model (zero order):



Markov Assumption

p(w1, w2, ..., wn) =p(w1)

⇥ p(w2)

⇥ p(w3)

⇥ p(w4)

...

⇥ p(wn�1)

⇥ p(wn)

Unigram Model (zero order):

"bag of words"



Markov Assumption

p(w1, w2, ..., wn) =p(w1)

⇥ p(w2|w1)

⇥ p(w3|w2)

⇥ p(w4|w3)

...

⇥ p(wn�1|wn�2)

⇥ p(wn|wn�1)

Bigram Model (first order):



Markov Assumption

p(w1, w2, ..., wn) =p(w1)

⇥ p(w2|w1)

⇥ p(w3|w1, w2)

⇥ p(w4|w2, w3)

...

⇥ p(wn�1|wn�3, wn�2)

⇥ p(wn|wn�2, wn�1)

Trigram Model (second order):



Is the markov assumption 
correct?
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he is from Italy, so if I had to guess 
 I'd say his first language is ...



Is the markov assumption 
correct?

he is from Italy, so if I had to guess 
 I'd say his first language is ...

the boy with the blue shirt and the brown eyes ... [is/are]



Is the markov assumption 
correct?

he is from Italy, so if I had to guess 
 I'd say his first language is ...

the boy with the blue shirt and the brown eyes ... [is/are]

Long distance dependencies. Recursive structure. 

Why CAN we often get away  
with markovian (n-gram) models?



Trigram Language Models

I A trigram language model consists of:

1. A finite set V
2. A parameter q(w|u, v) for each trigram u, v, w such that

w 2 V [ {STOP}, and u, v 2 V [ {*}.

I For any sentence x1 . . . xn where xi 2 V for
i = 1 . . . (n� 1), and xn = STOP, the probability of the
sentence under the trigram language model is

p(x1 . . . xn) =

nY

i=1

q(xi|xi�2, xi�1)

where we define x0 = x�1 = *.
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An Example

For the sentence

the dog barks STOP

we would have

p(the dog barks STOP) = q(the|*, *)
⇥q(dog|*, the)
⇥q(barks|the, dog)
⇥q(STOP|dog, barks)



N-gram language models 
define proper distributions

If every local estimate p(wi | wi-k, ,..., wi-1)  
is a probability distribution (positive, sums to 1),  
                             then  
the sequence probabilities under an N-gram (K-
gram...) language model with a STOP symbol  
are also a probability distribution.

(can you prove this?)



The Trigram Estimation Problem

Remaining estimation problem:

q(wi | wi�2, wi�1)

For example:
q(laughs | the, dog)

A natural estimate (the “maximum likelihood estimate”):

q(wi | wi�2, wi�1) =
Count(wi�2, wi�1, wi)

Count(wi�2, wi�1)

q(laughs | the, dog) = Count(the, dog, laughs)

Count(the, dog)
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Language Model as a 
Generative Process

• We can use the LM to: 

• Assign scores to existing sentences / 
sequences. 

• Generate sentences (how)?



[some LM generation examples - Small Hebrew Twitter]



Measuring Model Quality
• The goal isn’t to pound out fake sentences!

– Obviously, generated sentences get “better” as we 
increase the model order

– More precisely: using ML estimators, higher order 
always gives better likelihood on train, but not test

• What we really want to know is:
– Will our model prefer good sentences to bad ones?
– Bad ≠ ungrammatical!
– Bad » unlikely
– Bad = sentences that our acoustic model really likes 

but aren’t the correct answer



Measuring Model Quality
• The Shannon Game:

– How well can we predict the next word?

– Unigrams are terrible at this game.  (Why?)

• A better model of a text…
– is one which assigns a higher probability to the word that 

actually occurs

When I eat pizza, I wipe off the ____

Many children are allergic to ____

I saw a ____

grease 0.5

sauce 0.4

dust 0.05

….

mice 0.0001

….

the     1e-100
Claude Shannon



Evaluating a Language Model: Perplexity

I We have some test data, m sentences

s1, s2, s3, . . . , sm

I We could look at the probability under our modelQm
i=1 p(si). Or more conveniently, the log probability

log

mY

i=1

p(si) =

mX

i=1

log p(si)

I In fact the usual evaluation measure is perplexity

Perplexity = 2

�l where l =

1

M

mX

i=1

log p(si)

and M is the total number of words in the test data.
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Some Intuition about Perplexity

I Say we have a vocabulary V , and N = |V|+ 1

and model that predicts

q(w|u, v) = 1

N

for all w 2 V [ {STOP}, for all u, v 2 V [ {*}.
I Easy to calculate the perplexity in this case:

Perplexity = 2

�l where l = log

1

N

)
Perplexity = N

Perplexity is a measure of e↵ective “branching factor”



Typical Values of Perplexity

I Results from Goodman (“A bit of progress in language
modeling”), where |V| = 50, 000

I A trigram model: p(x1 . . . xn) =
Qn

i=1 q(xi|xi�2, xi�1).
Perplexity = 74

I A bigram model: p(x1 . . . xn) =
Qn

i=1 q(xi|xi�1).
Perplexity = 137

I A unigram model: p(x1 . . . xn) =
Qn

i=1 q(xi).
Perplexity = 955
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Some History

I Shannon conducted experiments on entropy of English
i.e., how good are people at the perplexity game?

C. Shannon. Prediction and entropy of printed

English. Bell Systems Technical Journal,

30:50–64, 1951.



Some History
Chomsky (in Syntactic Structures (1957)):

Second, the notion “grammatical” cannot be identified with
“meaningful” or “significant” in any semantic sense.
Sentences (1) and (2) are equally nonsensical, but any speaker
of English will recognize that only the former is grammatical.

(1) Colorless green ideas sleep furiously.

(2) Furiously sleep ideas green colorless.

. . .

. . . Third, the notion “grammatical in English” cannot be
identified in any way with the notion “high order of statistical
approximation to English”. It is fair to assume that neither
sentence (1) nor (2) (nor indeed any part of these sentences)
has ever occurred in an English discourse. Hence, in any
statistical model for grammaticalness, these sentences will be
ruled out on identical grounds as equally ‘remote’ from
English. Yet (1), though nonsensical, is grammatical, while
(2) is not. . . .

(perplexity != grammaticality)



Perplexity

• Lower is better!
• Perplexity is the inverse probability of the 

test set normalized by the number of words
• If we ever give a test n-gram zero probability 
à perplexity will be infinity

• How can we avoid this?

PP = 2�l l =
1

M

mX

i=1

log2 p(X
(i)
)



Sparse Data Problems

A natural estimate (the “maximum likelihood estimate”):

q(wi | wi�2, wi�1) =
Count(wi�2, wi�1, wi)

Count(wi�2, wi�1)

q(laughs | the, dog) = Count(the, dog, laughs)

Count(the, dog)

Say our vocabulary size is N = |V|, then there are N

3

parameters in the model.

e.g., N = 20, 000 ) 20, 000

3
= 8⇥ 10

12 parameters

Reminder:



Zeroes
• Training set:

… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

• Test set:
… denied the offer
… denied the loan

• Bigrams with zero probability
– Mean that we will assign 0 probability to the test set!

• And hence we cannot compute perplexity (can’t 
divide by 0)!



Smoothing

How to assign non-zero probability 
to zero-occurrence events?



Smoothing used to be a HUGE issue.
Mitigated to a large extent by neural techniques.

Still worth knowing the basics, 
 perhaps without the gory details.

Smoothing

How to assign non-zero probability 
to zero-occurrence events?



Smoothing
• We often want to make estimates from sparse statistics:

• Smoothing flattens spiky distributions so they generalize better

• Very important all over NLP (and ML more generally), but easy to do badly!

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total
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P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total



Add-one Estimation
• Also called Laplace smoothing
• Pretend we saw each word one more time than we 

did
• Just add one to all the counts!

• MLE estimate:

• Add-1 estimate:

PMLE(xi | xi�1) =
c(xi�1, xi)

c(xi�1)

PAdd-1(xi | xi�1) =
c(xi�1, xi) + 1

c(xi�1) + V



Add-one Estimation
• Also called Laplace smoothing
• Pretend we saw each word one more time than we 

did
• Just add one to all the counts!

• MLE estimate:

• Add-1 estimate:

PMLE(xi | xi�1) =
c(xi�1, xi)

c(xi�1)

PAdd-1(xi | xi�1) =
c(xi�1, xi) + 1

c(xi�1) + V

this is a very crude method, 
that over-assigns probability to unseen events.



More General Formulation

• Add-K: 

• Unigram Prior Smoothing:

PAdd-k(xi | xi�1) =
c(xi�1, xi) + k

c(xi�1) + kV

PAdd-k(xi | xi�1) =
c(xi�1, xi) +m

1
V

c(xi�1) +m

PAdd-k(xi | xi�1) =
c(xi�1, xi) +mP (xi)

c(xi�1) +m



Linear Interpolation

I Take our estimate q(wi | wi�2, wi�1) to be

q(wi | wi�2, wi�1) = �1 ⇥ qML(wi | wi�2, wi�1)

+�2 ⇥ qML(wi | wi�1)

+�3 ⇥ qML(wi)

where �1 + �2 + �3 = 1, and �i � 0 for all i.

(another smoothing method)



Katz Back-O↵ Models (Bigrams)
I For a bigram model, define two sets

A(wi�1) = {w : Count(wi�1, w) > 0}
B(wi�1) = {w : Count(wi�1, w) = 0}

I A bigram model

qBO(wi | wi�1) =

8
>><

>>:

Count⇤(wi�1,wi)

Count(wi�1)
If wi 2 A(wi�1)

↵(wi�1)
qML(wi)P

w2B(wi�1)
qML(w) If wi 2 B(wi�1)

where

↵(w

i�1) = 1�
X

w2A(wi�1)

Count⇤(w
i�1, w)

Count(w
i�1)



Katz Back-O↵ Models (Trigrams)
I For a trigram model, first define two sets

A(wi�2, wi�1) = {w : Count(wi�2, wi�1, w) > 0}
B(wi�2, wi�1) = {w : Count(wi�2, wi�1, w) = 0}

I A trigram model is defined in terms of the bigram model:

qBO(wi | wi�2, wi�1) =

8
>>>>>><

>>>>>>:

Count⇤(wi�2,wi�1,wi)

Count(wi�2,wi�1)

If wi 2 A(wi�2, wi�1)

↵(wi�2,wi�1)qBO(wi|wi�1)P
w2B(wi�2,wi�1)

qBO(w|wi�1)

If wi 2 B(wi�2, wi�1)

where

↵(w

i�2, wi�1) = 1�
X

w2A(wi�2,wi�1)

Count⇤(w
i�2, wi�1, w)

Count(w
i�2, wi�1)



Advanced Smoothing Algorithms

• Intuition: Use the count of things we’ve seen
once
– To help estimate the count of things we’ve never 

seen
• Used by many smoothing algorithms

– Good-Turing
– Kneser-Ney
– Also: Witten-Bell

Invented during WWII by Alan Turing and 
later published by Good. Frequency 
estimates were needed for Enigma code-
breaking effort
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Kneser-Ney Smoothing
• Better estimate for probabilities of lower-order 

unigrams!
– Shannon game:  I can’t see without my 

reading___________?
– “Francisco” is more common than “glasses”
– … but “Francisco” always follows “San”

• Instead of  P(w): “How likely is w”
• Pcontinuation(w):  “How likely is w to appear as a novel 

continuation?
– For each word, count the number of bigram types it 

completes
– Every bigram type was a novel continuation the first time it 

was seen
PCONTINUATION (w)∝  {wi−1 : c(wi−1,w)> 0}

Franciscoglasses   glasses? / Francisco?

(main intuition)



What Actually Works?
• Trigrams and beyond:

– Unigrams, bigrams generally useless
– Trigrams much better (when there’s enough data)
– 4-, 5-grams really useful in MT, but not so much for speech

• Discounting
– Absolute discounting, Good-Turing, held-out estimation, Witten-

Bell, etc…

• See [Chen+Goodman] reading for tons of graphs…
Kneser-Ney is very competitive.



Summary

I Three steps in deriving the language model probabilities:
1. Expand p(w1, w2 . . . wn) using Chain rule.
2. Make Markov Independence Assumptions

p(wi | w1, w2 . . . wi�2, wi�1) = p(wi | wi�2, wi�1)
3. Smooth the estimates using low order counts.

I Other methods used to improve language models:

I “Topic” or “long-range” features.
I Syntactic models.

It’s generally hard to improve on trigram models though!!



Web-scale N-grams

…

Smoothing "alternative":



Google N-grams
• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html



Even More Data!
Tons of data closes gap, for extrinsic MT evaluation

http://www.aclweb.org/anthology/D07-1090.pdf



Practical Issues
• We do everything in log space
– Avoid underflow
– (also adding is faster than multiplying)
– (though log can be slower than multiplication)

log(p1 × p2 × p3 × p4 ) = log p1 + log p2 + log p3 + log p4



Dealing with  
Unknown Words

• Realistically, many words will be unknown  
(OOV -- Out of vocabulary) 

• What can we do? 

• Use a special <UNK> symbol.  
(how do we estimate its probability?) 

• Look for "similar" words (how?)



Case Study: Language Identification
• How can we tell what language a document is in?

• How to tell the French from the English?
– Treat it as word-level text categorization?
– Overkill, and requires a lot of training data

• You don’t actually need to know about words!
• Option: build a character-level language model

The 38th Parliament will meet on 
Monday, October 4, 2004, at 11:00 a.m. 
The first item of business will be the 
election of the Speaker of the House of 
Commons. Her Excellency the Governor 
General will open the First Session of 
the 38th Parliament on October 5, 2004, 
with a Speech from the Throne. 

La 38e législature se réunira à 11 heures le 
lundi 4 octobre 2004, et la première affaire 
à l'ordre du jour sera l�élection du 
président de la Chambre des communes. 
Son Excellence la Gouverneure générale 
ouvrira la première session de la 38e 
législature avec un discours du Trône le 
mardi 5 octobre 2004. 

Σύμφωνο σταθερότητας και ανάπτυξης
Patto di stabilità e di crescita
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Build two character-level language models: 
- English language model. 
- French Language Model. 

Which assigns the text a higher probability?



To Summarize (this part)
• The Language Modeling Problem 

• The markov assumption and N-gram language 
models. 

• Maximum Likelihood Estimation (MLE). 

• Smoothing. 

• LM as classifier.


