|_.anguage Moaeling

Yoav Goldberg

with slides from Michael Collins, Noah Smith, Yoav Artzi.

Goal: assign a probabillity
distribution over sentences

o("he saw her duck")

We woula like..

o(MAann NN MYIN) > p(MAann N>INX NN)
0(D*21T) D'DID W) > p(71Ta D'DID W)
o(DY1N D'DID Y) > p(0O'P11 DDID 1Y)
o(NNan "N25nN) > p(Na Nad>nN)

o(*PoM NXI11 NIN) > p(PPoMNa prIAN NIN)

The Language Modeling Problem

» We have some (finite) vocabulary,
say V = {the, a, man, telescope, Beckham, two, ...}

» We have an (infinite) set of strings, VT

the STOP

a STOP

the fan STOP

the fan saw Beckham STOP

the fan saw saw STOP

the fan saw Beckham play for Real Madrid STOP

Michael Collins

The Language Modeling Problem (Continued)

» We have a training sample of example sentences in
English

Michael Collins

The Language Modeling Problem (Continued)

» We have a training sample of example sentences in
English

» We need to “learn” a probability distribution p
i.e., pis a function that satisfies

S p() =1, plx)>0forallz eV

=YAl

Michael Collins

The Language Modeling Problem (Continued)

» We have a training sample of example sentences in
English

» We need to “learn” a probability distribution p
i.e., pis a function that satisfies

S p() =1, plx)>0forallz eV

=YAl

p(the STOP) = 1012

p(the fan STOP) = 10~%

p(the fan saw Beckham STOP) = 2 x 1078
p(the fan saw saw STOP) = 10~%°

p(the fan saw Beckham play for Real Madrid STOP) = 2 x 10~

Michael Collins

Whny would we
Ike to do this?

* Central in many NLP applications
e Speech Recognition.
 Machine Translation.

« Spelling Correction.
 OCR.
e Summarization.

e ... whenever we "generate’ text.

Whny would we
Ike to do this?

* Central in many NLP applications
e Speech Recognition.
recognize speech / wreck a nice beach
 Machine Translation.
« Spelling Correction.
* OCR.

e Summarization.

e ... whenever we "generate’ text.

Whny would we
Ike to do this?

* Central in many NLP applications

e Speech Recognition.

recognize speech / wreck a nice beach
 Machine Translation.

he went home -> N2 75N XN / Nhan 90 NN
« Spelling Correction.

e OCR.
e Summarization.

e ... whenever we "generate’ text.

Why would we
Ike to do this?

* Central in many NLP applications

e Speech Recognition.

recognize speech / wreck a nice beach
 Machine Translation.

he went home -> N2 75N XN / Nhan 90 NN
« Spelling Correction.

the office Is fifteen minuets from here
« OCR.

e Summarization.

e ... whenever we "generate’ text.

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, X and Y:

Noah Smith

SOUrce

— Y —

channel

— X

13 /67

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, X and Y:

source | —» Y — |channel| — X
ideal

» Y is the plaintext, the true message, the missing information,
the output

Noah Smith 14 / 67

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, X and Y:

SOUrce

the output

— Y —
ideal

channel

— X

what we see
» Y is the plaintext, the true message, the missing information,

» X Is the ciphertext, the garbled message, the observable

evidence, the input

Noah Smith

15 / 67

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, X and Y:

source | —» Y — |channel| — X
ideal what we see

» Y is the plaintext, the true message, the missing information,
the output

» X Is the ciphertext, the garbled message, the observable
evidence, the input

» Decoding: select y given X = z.

y* = argmaxp(y | x)

— argmax pzly) ply)

- e p(z)

= argmax p(z|y) - p(y)
Y N—_—— S~~~

channel model source model

Noah Smith 16 / 67

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, X and Y:

source | —» Y — |channel| — X
ideal what we see

» Y is the plaintext, the true message, the missing information,
the output

» X Is the ciphertext, the garbled message, the observable
evidence, the input

» Decoding: select y given X = z.

y* = argmaxp(y | x)

— argmax pzly) ply)

- e p(z)

= argmax p(z|y) - p(y)
Y N—_—— S~~~

channel model source model

Noah Smith 16 / 67

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, X and Y:

source| — Y — |channel| — X
text acoustic wave

» Y is the plaintext, the true message, the missing information,
the output

» X Is the ciphertext, the garbled message, the observable
evidence, the input

» Decoding: select y given X = z.

y* = argmaxp(y | x)

— argmax pzly) ply)

- e p(z)

= argmax p(z|y) - p(y)
Y N—_—— S~~~

channel model source model

Noah Smith 16 / 67

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, X and Y:

source| — Y — |channel| — X

"good text in English" "corrupted
text in French”

» Y is the plaintext, the true message, the missing information,
the output

» X Is the ciphertext, the garbled message, the observable
evidence, the input

» Decoding: select y given X = z.

y~ = argmaxp(y | x)

— argmax pzly) ply)

- e p(z)

= argmax p(z|y) - p(y)
Y N—_—— S~~~

channel model source model

Noah Smith 16 / 67

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, X and Y:

source| — Y — |channel| — X
good text in English text with spelling errors

» Y is the plaintext, the true message, the missing information,
the output

» X Is the ciphertext, the garbled message, the observable
evidence, the input

» Decoding: select y given X = z.

y* = argmaxp(y | x)

— argmax pzly) ply)

- e p(z)

= argmax p(z|y) - p(y)
Y N—_—— S~~~

channel model source model

Noah Smith 16 / 67

Noisy Channel Example: Speech Recognition

source

— sequence in VI —

channel

— acoustics

» Acoustic model defines p(sounds | &) (channel)

» Language model defines p(x) (source)

Noah Smith

17 / 67

Noisy Channel Example: Speech Recognition
Credit: Luke Zettlemoyer

word sequence logp(acoustics | word sequence)

Noah Smith

t
t
t
t
t
t
t
t
t
t
t

ne station signs are in deep in english -14732
ne stations signs are in deep In english -14735
ne station signs are in deep into english -14739
ne station 's signs are in deep in english -14740
ne station signs are in deep Iin the english -14741
ne station signs are indeed in english -14757
ne station 's signs are indeed in english -14760
ne station signs are indians in english -14790
ne station signs are indian in english -14799
ne stations signs are indians in english -14807
ne stations signs are indians and english ~ -14815

18 / 67

Noisy Channel Example: Machine Translation

Also knowing nothing official about, but having guessed
and inferred considerable about, the powerful new
mechanized methods in cryptography—methods which |
believe succeed even when one does not know what
language has been coded—one naturally wonders if the
problem of translation could conceivably be treated as a
problem in cryptography. When | look at an article in
Russian, | say: “This is really written in English, but it
has been coded in some strange symbols. | will now
proceed to decode.”

Warren Weaver, 1955

Noah Smith 19 / 67

The Language Modeling Problem

» We have some (finite) vocabulary,
say V = {the, a, man, telescope, Beckham, two, ...}

» We have an (infinite) set of strings, VT

the STOP

a STOP

the fan STOP

the fan saw Beckham STOP

the fan saw saw STOP

the fan saw Beckham play for Real Madrid STOP

Michael Collins

Is “finite V"' realistic?

Is “finite V"' realistic?

No

Is “finite V"' realistic?

Noah Smith

notta

31/67

The Language Modeling Problem (Continued)

» We have a training sample of example sentences in
English

» We need to “learn” a probability distribution p
i.e., pis a function that satisfies

S p() =1, plx)>0forallz eV

=YAl

Michael Collins

A Naive Method

» We have NNV training sentences

» For any sentence z;...x,, c(x1...x,) is the number of
times the sentence Is seen in our training data

» A naive estimate:

Michael Collins

A Naive Method

» We have NNV training sentences

» For any sentence z;...x,, c(x1...x,) is the number of
times the sentence Is seen in our training data

» A naive estimate:

does this satisty the probability requirements?

Michael Collins

A Naive Method

» We have NNV training sentences

» For any sentence z;...x,, c(x1...x,) is the number of
times the sentence Is seen in our training data

» A naive estimate:

do you see a problem with this?

Michael Collins

Predicting the next word

* We can either compute the probability of a
sequence:
o(wl, w2, w3, w4, wh, wo)

* Or the probabillity of the next item given a prefix:
p(wo | w1, w2, w3, w4, wb)

* These are equivalent (why?)

* A model that computes any of these is called a
Language Model (LM)

Aside: Language Modeling
as Pertfect Al

* |f we can always predict the next word as good as
a human could, we have achieved human-level
intelligence.

(why?)

A Naive Method

Reminder:

» We have NNV training sentences

» For any sentence z;...x,, c(x1...x,) is the number of
times the sentence Is seen in our training data

» A naive estimate:

do you see a problem with this?

lets take the next-word-prediction view

Michael Collins

Using the chain rule”

p(w17 wa, ..., w’n) :p(wl)
X p(wa|wy)

X p(ws|wl, w2)

X p(w4 w1,w27w3)

X plwy|wl, w2, ..., w,_1)

Using the chain rule”

p(w17 wa, ..., w’n) :p(wl)
X p(wa|wy)

X p(ws|wl, w2)

X p(w4 w1,w27w3)

X plwy|wl, w2, ..., w,_1)

mostly the same problem..

Markov Assumption

The tuture is independent of the past given the present.

Markov Assumption

The tuture is independent of the past given the present.

First order markov assumption:
plwy|wl, w2, w3, ..., w,_1) ~ p(wWy, | Wn_1)

Markov Assumption

The tuture is independent of the past given the present.

First order markov assumption:
p(wy,|wl, w2, w3,,wp_1) = p(w, | Wy, _1)

Second order markov assumption:

p(wn|wLw27wg ey Wn— 1) p(wn‘wn 2, Wn— 1)

Markov Assumption

The tuture is independent of the past given the present.

First order markov assumption:
p(wn‘wlawzawga cy Wp,— 1) p(wn|wn 1)

Second order markov assumption:

p(wn|w17w27w37 ey Wpy,— 1) p(wn‘wn 2y W, — 1)

zero-order:
plwy,|wl, w2, w3,,w,_1) ~ p(wy,)

Markov Assumption

Unigram Model (zero order):

p(wi, wa, ..., wn) =p(w1)
X p(w2)
X p(ws3)
X p(wy)

Markov Assumption

Unigram Model (zero order):

p(wi, wa, ..., wn) =p(w1)
X p(w2)
X p(ws3)
X p(wy)

'‘bag of words'

Markov Assumption

Bigram Model (first order):

p(w17w27°“7wn) :p(wl)
X p(wa|wr)
X p(ws|ws)

X P(w4 ws)

X p(wn—l |wn—2)

X p(wn|wn—1)

Markov Assumption

Trigram Model (second order):

p(w17 w2, ..., wn) :p(wl)
X p(ws
X p(ws

X p(w4

wl)
W, ’lUQ)

w2,w3)

X p(wn—l ‘wn—Sa wn—2)

X p(wn|wn—27 wn—l)

'S the markov assumption
correct”

'S the markov assumption
correct”

he is from ltaly, so if | had to guess
I'd say his first language is ...

'S the markov assumption
correct”

he is from ltaly, so if | had to guess
I'd say his first language is ...

the boy with the blue shirt and the brown eyes ... [is/are]

'S the markov assumption
correct”

he is from ltaly, so if | had to guess
I'd say his first language is ...

the boy with the blue shirt and the brown eyes ... [is/are]

Long distance dependencies. Recursive structure.

Why CAN we often get away
with markovian (n-gram) models”

Trigram Language Models

» A trigram language model consists of:

1. A finite set V
2. A parameter g(w|u,v) for each trigram u, v, w such that
w € VU{STOP}, and u,v € YV U {*}.

Trigram Language Models

» A trigram language model consists of:

1. A finite set V
2. A parameter g(w|u,v) for each trigram u, v, w such that

w € VU{STOP}, and u,v € YV U {*}.

» For any sentence x; ...z, where z; € V for
i=1...(n—1), and x,, = STOP, the probability of the

sentence under the trigram language model is

n

p(r1...m,) = H q(Ti|Ti—2, Ti 1)

1=1

where we define g = 2_; = *.

An Example

For the sentence
the dog barks STOP

we would have

p(the dog barks STOP) = ¢q(thel*, *)
X q(dogl|*, the)
X q(barks|the, dog)
xq(STOP|dog, barks)

N-gram language models
define proper distributions

f every local estimate p(wil wiw, ..., Wi-1)

IS a probability distribution (positive, sums to 1),
then

the sequence probabilities under an N-gram (K-

gram...) language model with a STOP symbol

are also a probability distribution.

(can you prove this?)

The Trigram Estimation Problem

Remaining estimation problem:

Q(wz‘ \ W;—2, wz’—l)

For example:
q(laughs | the, dog)

The Trigram Estimation Problem

Remaining estimation problem:

Q(wi \ W;—2, wz’—l)

For example:
q(laughs | the, dog)

A natural estimate (the “maximum likelihood estimate”):

Count(w;_o, w;_1, w;)

q(w; | Wiz, wi1) = Count(w;—2, w;—1)
1—2zy YY1 —

Count(the, dog, laughs)
Count(the, dog)

q(laughs | the, dog) =

. anguage Model as a
Generative Process

e \We can use the LM to:

* Assign scores to existing sentences /
sequences.

* (Generate sentences (how)?

[some LM generation examples - Small Hebrew Twitter]

Measuring Model Quality

* The goal isn’'t to pound out fake sentences!

— Obviously, generated sentences get “better” as we
iIncrease the model order

— More precisely: using ML estimators, higher order
always gives better likelihood on train, but not test

— Will our model prefer good sentences to bad ones”
— Bad # ungrammatical!
— Bad =~ unlikely

— Bad = sentences that our acoustic model really likes
but aren’t the correct answer

Measuring Model Quality

* The Shannon Game: / grease 0.5
— How well can we predict the next word? sauce 0.4

< dust 0.05

Many children are allergic to mice 0.0001

When | eat pizza, | wipe off the

| saw a

Claude Shannon

_the 1e-100
— Unigrams are terrible at this game. (Why?)

A better model of a text...

— Is one which assigns a higher probability to the word that
actually occurs

Evaluating a Language Model: Perplexity

» We have some test data, m sentences

51952,y53y...,5m

Evaluating a Language Model: Perplexity

» We have some test data, m sentences

51952,y53y...,5m

» We could look at the probability under our model
[T~ p(si). Or more conveniently, the log probability

10%1_[29(&@) — Z log p(s;)
i=1 i=1

Evaluating a Language Model: Perplexity

» We have some test data, m sentences

51952,y53y...,5m

» We could look at the probability under our model
[T~ p(si). Or more conveniently, the log probability

10%1_[29(3@) — Z log p(s;)
i=1 i=1

» In fact the usual evaluation measure is perplexity

1 m
: o=l o |
Perplexity = 27" where [= — ;1 log p(s;)

and M is the total number of words in the test data.

Some Intuition about Perplexity

» Say we have a vocabulary V, and N = |V| + 1
and model that predicts

1
Q(w‘ua U) — N

for all w € YV U {STOP}, for all u,v € VU {*}.

» Easy to calculate the perplexity in this case:

1
Perplexity = 27! where [= log —
N

Perplexity = NV

Perplexity is a measure of effective “branching factor”

Typical Values of Perplexity

» Results from Goodman (“A bit of progress in language
modeling”), where |V| = 50, 000

> A trigram model: p(zy...x,) =[], ¢(xi|®i—2, xi—1).
Perplexity = 74

Typical Values of Perplexity

» Results from Goodman (“A bit of progress in language
modeling”), where |V| = 50, 000

> A trigram model: p(zy...x,) =[], ¢(xi|®i—2, xi—1).
Perplexity = 74

» A bigram model: p(z;...x,) =[], ¢(xi|zi_1).
Perplexity = 137

Typical Values of Perplexity

» Results from Goodman (“A bit of progress in language
modeling”), where |V| = 50, 000

> A trigram model: p(zy...x,) =[], ¢(xi|®i—2, xi—1).
Perplexity = 74

» A bigram model: p(z;...x,) =[], ¢(xi|zi_1).
Perplexity = 137

> A unigram model: p(zy...x,) = [[,_, ¢(z:).
Perplexity = 955

Some History

» Shannon conducted experiments on entropy of English
i.e., how good are people at the perplexity game?

C. Shannon. Prediction and entropy of printed
English. Bell Systems Technical Journal,
30:50-64, 1951.

Some History (perplexity |= grammaticality)
Chomsky (in Syntactic Structures (1957)):

Second, the notion “grammatical” cannot be identified with
“meaningful” or “significant” in any semantic sense.
Sentences (1) and (2) are equally nonsensical, but any speaker
of English will recognize that only the former is grammatical.

(1) Colorless green ideas sleep furiously.

(2) Furiously sleep ideas green colorless.

... Third, the notion “grammatical in English” cannot be
identified in any way with the notion “high order of statistical
approximation to English”. It is fair to assume that neither
sentence (1) nor (2) (nor indeed any part of these sentences)
has ever occurred in an English discourse. Hence, in any
statistical model for grammaticalness, these sentences will be
ruled out on identical grounds as equally ‘remote’ from

English. Yet (1), though nonsensical, is grammatical, while
(2) is not. ...

Perplexity

pp=2" = 37 2 logs p(X)

1=1

* Perplexity is the inverse probability of the
test set normalized by the number of words

* |f we ever give a test n-gram zero probability
- perplexity will be infinity

e How can we avoid this?

Sparse Data Problems

Reminder:
A natural estimate (the “maximum likelihood estimate”):

Count(w;_o, w;_1,w;)

q(w; | Wiz, wi—1) = Count(w;_z, w;_1)

Count(the, dog, laughs)
Count(the, dog)

q(laughs | the, dog) =

Say our vocabulary size is N = |V|, then there are N°
parameters in the model.

e.g., N =20,000 = 20,000° =8 x 10** parameters

/eroes

* Training set: * [est set:
.. denied the allegations .. denied the offer
. ... denied the loan
... denied the reports
... denied the claims
... denied the request

P(“offer” | denied the) = 0

» Bigrams with zero probability
— Mean that we will assign O probabillity to the test set!

* And hence we cannot compute perplexity (can't
divide by 0)!

Smoothing

How to assign non-zero probability
to zero-occurrence events?

Smoothing

How to assign non-zero probability
to zero-occurrence events?

Smoothing used to be a HUGE issue.
Mitigated to a large extent by neural techniques.
Still worth knowing the basics,
perhaps without the gory details.

Smoothing

« We often want to make estimates from sparse statistics:

P(w | denied the)
3 allegations

2 reports

1 claims 2 2
O) cC E

1 request O O o
& 9o 7

7 total 5 € &

« Smoothing flattens spiky distributions so they generalize better

P(w | denied the)

2.5 allegations -

1.5 reports -

0.5 claims é - o - L

0.5 request ;5;; g > O “qc‘g
@) = © O

2 other = §|§||§|'S e 9

/ total (3 =< | | | | |

« Very important all over NLP (and ML more generally), but easy to do badly!

Add-one Estimation

Also called LLaplace smoothing

Pretend we saw each word one more time than we
did
Just add one to all the counts!

MLE estimate: c(zi_1,x;)

C(Zli'i_l)

Puie(z; | ;1) =

Add-1 estimate;
c(xi—1,x;) + 1

Prga-1(z; | mi—1) = @)+ V

Add-one Estimation

this is a very crude method,
that over-assigns probability to unseen events.

* MLE estimate: c(T;_1, T
Pyie(w; | wi-1) = (i1,)

C($7;_1)
« Add-1 estimate:
c(xi—1,2;) + 1

Pagaa(z; | zi—1) = @)tV

More General Formulation

o Add-K: c(ri—1,x;) + k

C(xi—l) -+ kV

Pagax(x; | ©i—1) =

c(Ti—1,%i) + m%

c(ri—1) +m

Pagax(x; | ;1) =

» Unigram Prior Smoothing:
C($i_1, l‘z) -+ mP(a:Z)

Paga-x(x; | xi_1) = (@) T m

Linear Interpolation (another smoothing method)

» Take our estimate q(w; | w;_o,w;_1) to be

Q(wz’ \ wi—27wz’—1) = A1 X ql\/l_(wz' \ wi—27wi—1)
+A2 X gu(w; | wi-1)
+A3 X gmr (w;)

where A\{ + Ao + A3 = 1, and A\; > 0 for all «.

Katz Back-Off Models (Bigrams)

» For a bigram model, define two sets

A(w;_1) = {w : Count(w;_1,w) >0}
B(w;,_1) = {w : Count(w;_1,w) =0}

» A bigram model

Count’™ (w;_1 ,w;) | .
Count(w;_1) i € Alwia)

QBO(wi \ wi—l) —

| aML (W) | |
(Wit) gy I wi € Bwiy)

Count™(w;_1, w)
i-1) =1 —
Oé(w 1) Z Count(wi_l)

Katz Back-Off Models (Trigrams)

» For a trigram model, first define two sets
A(wi_g, wi_l) — {w . Cou nt(wi_g, W;—1, w) > O}
B(wi_g, wi_l) — {w : Count(wi_g, W;—1, UJ) — O}

» A trigram model is defined in terms of the bigram model:
Count*(wi_g,wi_l,wi)
COunt(wi_g,wi_l)
|f w; € A(wi_g, wi_l)

QBO(wi \ W;—2, wz’—l) —
a(w;—2,w;—1)qpo (wi|w;—1)

|f w; € B(wi_g, wi_l)

where

Z Count™ (w;_9, w;_1, w)

. 1) =1—
Oé(wz 2, Wy 1) COunt(UJi—Q,wi—l)

wEA(wi—z 7w’i—1)

Advanced smoothing Algorithms

 Intuition: Use the count of things we've seen
once

— To help estimate the count of things we've never
seen

» Used by many smoothing algorithms
— (Good-Turing

— Kneser-Ney \ Invented during WWII by Alan Turing and

— Also: Witten-Bell later published by Good. Frequency
estimates were needed for Enigma code-

breaking effort

Advanced smoothing Algorithms

 Intuition: Use the count of things we've seen
once

— In heln ectimate the f~niint nf thinae we’vive naver

Smoothing used to be a HUGE issue.
Mitigated to a large extent by neural techniques.
Still worth knowing the basics,

perhaps without the gory details.
- NNIESTIINTY = nvented during WWII by Alan Turing and

— Also: Witten-Bell later published by Good. Frequency
estimates were needed for Enigma code-

breaking effort

Kneser-Ney smoothing

(main Tntuition)

Better estimate for probabilities of lower-order
unigrams!

— Shannon game: | can't see without my
reading ? glasses” / Francisco?

— “Francisco” is more common than “glasses”
— ... but “Francisco” always follows “San”
Instead of P(w): “How likely is w”

Pcomi_nuaﬂon.(vv): "How likely Is w to appear as a novel
continuation?

What Actually Works™

* [rigrams and beyond:

— Unigrams, bigrams generally useless
— Trigrams much better (when there’s enough data)
— 4-, 5-grams really useful in MT, but not so much for speech

» Discounting

— Absolute discounting, Good-Turing, held-out estimation, Witten-
Bell, etc...

Kneser-Ney Is very competitive.
« See [Chen+Goodman] reading for tons of graphs...

» Three steps in deriving the language model probabilities:

1. Expand p(wi,ws...w,) using Chain rule.
2. Make Markov Independence Assumptions

p(w; | wi,wa ... wi—2, wi—1) = p(w; | wi—2, W;—1)
3. Smooth the estimates using low order counts.

» Other methods used to improve language models:

» “Topic” or “long-range” features.
» Syntactic models.

Smoothing "alternative”:

Web-scale N-grams

All Our N-gram are Belong to You
Thursday, August 03, 2006

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

their computing resources, to play together. That's why we decided to share this enormous dataset
with everyone. We processed 1,024,908,267,229 words of running text and are publishing the
counts for all 1,176,470,663 five-word sequences that appear at least 40 times. There are
13,588,391 unique words, after discarding words that appear less than 200 times.

Google N-grams

serve as the incoming 92

serve as the incubator 99
serve as the independent 794
serve as the index 223

serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

0.44

0.42

Test data BLEU

0.34

Tons of data closes gap, for extrinsic MT evaluation

_ +O.51BPIX2, Lyttt]
oW +0.15BP/x2

i & © +0.39BP/x2 |

+0.56BP/x2_ "
n 5 :/l// .
* «#0.70BP/x2

, target KN ——
— 7 +ldcnews KN -

- / e +webnews KN % .
EI target SB P
~ +0.66BP/x2 +ldchews SB ---=--

" +webnews SB - o -~ _
) ! | ! ! | ! 1 | ! +.W§Ib S.B ...l

10 100 1000 10000 100000 1e+06

EFven More Datal

LM training data size in million tokens

http://www.aclweb.org/anthology/D07-1090.pdf

Practical Issues

* We do everything in log space
— Avoid underflow
— (also adding is taster than multiplying)
— (though log can be slower than multiplication)

log(p, x p, x p3x py) =log p, +log p, +log p; +log p,

Dealing with
Unknown Words

* Realistically, many words will be unknown
(OOV -- Out of vocabulary)

e \What can we do?

* Use a special <UNK> symbol.
(how do we estimate its probability?)

* Look for "similar® words (how?)

Case Study: Language ldentification

« How can we tell what language a document is in?

The 38th Parliament will meet on La 38e legislature se réunira a 11 heures le
Monday, October 4, 2004, at 11:00 a.m. lundi 4 octobre 2004, et la premiéere affaire
The first item of business will be the a l'ordre du jour sera I’ élection du

election of the Speaker of the House of président de la Chambre des communes.
Commons. Her Excellency the Governor Son Excellence la Gouverneure générale
General will open the First Session of ouvrira la premiere session de la 38e

the 38th Parliament on October 5, 2004, leégislature avec un discours du Trone le
with a Speech from the Throne. mardi 5 octobre 2004.

« How to tell the French from the English?

Case Study: Language ldentification

« How can we tell what language a document is in?

The 38th Parliament will meet on La 38e legislature se réunira a 11 heures le
Monday, October 4, 2004, at 11:00 a.m. lundi 4 octobre 2004, et la premiéere affaire
The first item of business will be the a l'ordre du jour sera I’ élection du

election of the Speaker of the House of président de la Chambre des communes.
Commons. Her Excellency the Governor Son Excellence la Gouverneure générale
General will open the First Session of ouvrira la premiere session de la 38e

the 38th Parliament on October 5, 2004, leégislature avec un discours du Trone le
with a Speech from the Throne. mardi 5 octobre 2004.

« How to tell the French from the English?

Build two character-level language models:
- English language model.
- French Language Model.

Which assigns the text a higher probability?

To Summarize (this part)

* The Language Modeling Problem

* The markov assumption and N-gram language
models.

 Maximum Likelihood Estimation (MLE).
* Smoothing.

e | M as classitier.

