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Abstract models, or whether their strong learning capability
makes explicit linguistic features redundant.

Let us motivate the use of linguistic features
by example of actual translation errors by neu-
ral MT systems. In translation out of English,
one problem is that the same surface word form
may be shared between several word types, due to
homonymy or word formation processes such as
conversion. For instancelosecan be a verb, ad-
jective, or noun, and these different meanings of-
ten have distinct translations into other languages.
Consider the following Englisk-German exam-
ple:

Neural machine translation has recently
achieved impressive results, while using
little in the way of external linguistic in-
formation. In this paper we show that
the strong learning capability of neural
MT models does not make linguistic fea-
tures redundant; they can be easily incor-
porated to provide further improvements
in performance. We generalize the em-
bedding layer of the encoder in the at-
tentional encoder—decoder architecture to
support the inclusion of arbitrary features,
in addition to the baseline word feature.
We add morphological features, part-of-
speech tags, and syntactic dependency la-
bels as input features to EnglistGerman
neural machine translation systems. In
experiments on WMT16 training and test
sets, we find that linguistic input features
improve model quality according to three
metrics: perplexity, BEU andCHRF 3.

1. We thought a win like this might be close.

2. Wir dachten, dass ein solcher Sieg nah sein
kdnnte.

3. *Wir dachten, ein Sieg wie dieser konnte
schlieRen.

. For the English source sentence in Exaniple 1
1 Introduction (our translation in Examplél 2), a neural MT sys-

Neural machine translation has recently achievedem (our baseline system from Sectioh 4) mis-
impressive results (Bahdanau et al., 2015{ranslatecloseas a verb, and produces the Ger-

Jean et al,, 2015), while learning from raw,Man verb schlieBen(Example[8), even though
sentence-aligned parallel text and using littleCloseis an adjective in this sentence, which has
in the way of external linguistic informatigh. the German translatiomah Intuitively, part-
However, we hypothesize that various levels ofof-Speech annotation of the English input could
linguistic annotation can be valuable for neuraldisambiguate between verb, noun, and adjective
machine translation. Lemmatisation can reducdneanings otlose

data sparseness, and allow inflectional variants of As a second example, consider the following
the same word to explicitly share a representatiofs€rmar-English example:

in the model. Other types of annotation, such as

parts-of-speech (POS) or syntactic dependency 4. Gefahrlich ist die Route aber dennoch .
labels, can help in disambiguation. This paper  dangerous is the route but still .

addresses the research question whether linguis-

tic information is beneficial to neural translation 5. However the route is dangerous .

ILinguistic tools are most commonly used in preprocess- ]
ing, e.g. for Turkish segmentatidn (Gulcehre et al., 2015). 6. *Dangerous is the route , however .
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German main clauses have a verb-second (V2nodela;;, which models the probability that is
word order, whereas English word order is generaligned tox;. The alignment model is a single-
ally SVO. The German sentence (Exaniple 4; Enlayer feedforward neural network that is learned
glish reference in Examplé 5) topicalizes the predjointly with the rest of the network through back-
icate gefahrlich 'dangerous’, putting the subject propagation.
die Route'the route’ after the verb. Our baseline A detailed description can be found in
system (Examplgl6) retains the original word or-(Bahdanau et al., 2015). Training is performed on
der, which is highly unusual in English, especially a parallel corpus with stochastic gradient descent.
for prose in the news domain. A syntactic annotafor translation, a beam search with small beam
tion of the source sentence could support the attersize is employed.
tional encoder-decoder in learning which words in
the German source to attend (and translate) first. 2.1 Adding Input Features

We will investigate the usefulness of linguistic Our main innovation over the standard encoder-
features for the language pair GermaBinglish,  decoder architecture is that we represent the en-
considering the following linguistic features: coder input as a combination of features, or factors
(Alexandrescu and Kirchhoff, 2006).

We here show the equation for the forward
« subword tags (see Sectibn3.2) states of the encoder (for the simple RNN case;

consider|(Bahdanau et al., 2015) for GRU):

e lemmas

e morphological features

— — —
- Exr. . 1
e POStags Wy = tanh(W Ex; + U 1) 1)

erreE e R™*K+ is a word embedding ma-
trix, W e R"*™, ﬁ € R™" are weight matrices,

The inclusion of lemmas is motivated by the With m andn being the word embedding size and
hope for a better generalization over inflectionalUmber of hidden units, respectively, aid be-
variants of the same word form. The other lin-iNg the vocabulary size of the source language.
guistic features are motivated by disambiguation, Ve generalize this to an arbitrary number of fea-

e dependency labels

as discussed in our introductory examples. tures|F|:
2 Neural Machine Translation -
. . . = — —
We follow the neural machine translation archi- 7 ; = tanh(W( || Ezji) + U7,.) (2
tecture by Bahdanau et al. (2015), which we will k=1

briefly summarize here. , _
The neural machine translation system is imple- mw:l‘i(rf | is the vector concatenation, <
mented as an attentional encoder-decoder network are the feature embedding matrices, with

with recurrent neural networks. z‘kzll my, = m, and K}, is the vocabulary size of
The encoder is a bidirectional neural net-thekth feature. In other words, we look up sepa-

work with gated recurrent units (Cho et al., 2014)rate embedding vectors for each feature, which are
that reads an input sequenee = (1,...,2,,) hen concatenated. The length of the concatenated
states(ﬁl,...,ﬁm), and a backward sequence other parts of the model remain unchanged.

(?1, - Wm). The hidden stategj and%j are
concatenated to obtain the annotation veétor
The decoder is a recurrent neural network thaDur generalized model of the previous section
predicts a target sequenge= (y1,...,y,). Each supports an arbitrary number of input features.
word y; is predicted based on a recurrent hidderin this paper, we will focus on a number of
states;, the previously predicted worg;,_;, and well-known linguistic features. Our main em-
a context vector;. ¢; is computed as a weighted pirical question is if providing linguistic fea-
sum of the annotations;. The weight of each tures to the encoder improves the translation qual-
annotationh; is computed through aalignment ity of neural machine translation systems, or if

3 Linguistic Input Features



the information emerges from training encoder-potentially helpful to learn which symbols to at-
decoder models on raw text, making its inclu-tend to, and when to forget information in the re-
sion via explicit features redundant. All lin- current layers. We propose an annotation of sub-
guistic features are predicted automatically; weword structure similar to popular IOB format for
use Stanford CoreNLP| (Toutanova et al., 2003chunking and named entity recognition, marking
Minnen et al., 2001]; Chen and Manning, 2014) toif a symbol in the text forms the beginning (B), in-
annotate the English input for EnglisstGerman, side (1), or end (E) of a word. A separate tag (O)
and ParZu[(Sennrich et al., 2013) to annotate the used if a symbol corresponds to the full word.
German input for GermanrEnglish. We here dis-

cuss the individual features in more detail. 3.3 Morphological Features

For GermansEnglish, the parser annotates the

_ ) ~German input with morphological features. Dif-
Using lemmas as input features guarantees sharingyent word types have different features — for in-
of information between word forms that share théstance. nouns have case. number and gender, while
same base form. In principle, neural models caRerps have person, number, tense and aspect — and
learn that inflectional variants are semantically reteatures may be underspecified. We treat the con-
Iatec_l, and represent them as _Slmllar points in thestenation of all morphological features of a word,
continuous vector space_(Mikolov et al., 2013).sing a special symbol for underspecified features,

However, while this has been demonstrated fopg 5 string, and treat each such string as a separate
high-frequency words, we expect that a lemmaseaiyre value.

tized representation increases data efficiency; low-
frequency variants may even be unknown to word3.4 POS Tags and Dependency Labels

level models. With character- or subword-level . .
o In our introductory examples, we motivated POS
models, it is unclear to what extent they can lear : .
ags and dependency labels as possible disam-

the similarity between low f_requc_ency word forms biguators. Each word is associated with one POS
that share a lemma, especially if the word forms .

- T : tag, and one dependency label. The latter is the
are superficially dissimilar. Consider the follow-

ing two German word forms. which share theIabel of the edge connecting a word to its syntac-
9 . o ' tic head, or 'ROOT’ if the word has no syntactic
lemmaliegen‘lie’:

head.

3.1 Lemma

liegt ‘lies’ (3.p.sg. present
* €9 (3.p-sg. P ) 3.5 On Using Word-level Features in a

e lage'‘lay’ (3.p.sg. subjunctive II) Subword Model

The lemmatisers we use are based on finite-stat¥/€ Ségment rare words into subword units using
methods, which ensures a large coverage, evdiPE- The subword tags encode the segmentation

for infrequent word forms. We use the Zmorge©f Words into subword units, and need no fur-
analyzer for German [ (Schmid et al. 5004 ther modification. All other features are originally

Sennrich and Kunz, 2014), and the lemmatiseivord-level features. To annotate the segmented
in the Stanford CoreNLP toolkit for English SOUrc€ text with features, we copy the word's fea-
(Minnen et al., 2001). ture value to all its subword units. An example is

shown in Figuré1l.
3.2 Subword Tags

In our experiments, we operate on the level oft Evaluation

subwords to achieve open-vocabulary translatiofys evaluate our systems on the WMT16 shared

with a.fixed symbol vocabylary, u§ing 8 S€0-translation task EnglishGerman. The parallel
mentation based oiyte-pair encoding(BPE)  y15ining data consists of about 4.2 million sentence

(Sennrich et al., 2016c). We note that in BPE Segbairs.

mentation, some symbols are potentially ambigu- v« pase our implementation on code provided

ous, and can either be a separate word, qr a sul?ﬁ the dl4mt-tutoriai, which we modified to sup-
word segment of a larger word. Also, te_xt IS _rep'port an arbitrary number of input features.
resented as a sequence of subword units with no

explicit word boundaries, but word boundaries are htt ps://gi t hub. coni nyu- di / dl 4nt - tut or i al
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root root

nsubj prep pobj l
N l AT

Leonidas begged in the arena

NNP VBD IN DT NN
words Le: oni: das beg: ged in the arena
lemmas Leonidas Leonidas Leonidas beg beg in the arena
subword tags B I E B E (0] (0] (0] (0]
POS NNP NNP NNP VBD VBD IN DT NN .
dep nsubj nsubj nsubj root root prep det pobj ropt

Figure 1: Original dependency tree for senteheenidas begged in the arenaand our feature repre-
sentation after BPE segmentation.

To enable  open-vocabulary transla- input vocabulary | embedding

. . -~ E feature EN DE model all single
tion, we encode words via joint BBE —sibwordtags 2 2 a5 5
(Sennrich et al., 2016c), learning 89500 mergePOS tags 46 54 54 10 10
; ; orph. features - 1400 140Q 10 10
operations on the concatenatlon_ pf the source'OTl‘ependenCy bels 46 233 44 10 10
and target side of the parallel training data. We|emmas 800000 1500000 8504015 167
use minibatches of size 80, a maximum sentencevords 78500 85000 8500p * *

Iﬁggth ?f 50, wchrd_ emllz)ez(idmvg\]/s o1|‘- S'tzﬁ 5OO’d.am:TabIe 1: Vocabulary size, and size of embedding
\aden fayers of size - VVe clip Ihe gradien layer of linguistic features, in system that includes

norm to 1.0 ((Pascanu et al., 2013). We train theall features, and contrastive experiments that add
models with Adadeltal (Zeiler, 2012), reshuffling '

- .. - asingle feature over the baseline. The embeddin
the training corpus between epochs. We validat g g

§ ize of th f i ing th
the model every 10000 minibatches via i ayer size o the word feature is set to brlng the

. L total size to 500.
and perplexity on a validation set (newstest2013).

For neural MT, perplexity is a useful measure

of how well the model can predict a referenceresults for an ensemble of the 4 last saved models
translation given the source sentence. Perplexwith models saved every 12 hours). The ensem-
ity is thus a good indicator of whether input fea- ble serves to smooth the variance between single
tures provide any benefit to the models, and we remodels.

port the best validation set perplexity of each ex- Decoding is performed with beam search with a
periment. To evaluate whether the features alspeam size of 12.

increase translation performance, we report case- T4 ensure that performance improvements are
sensitive BREU scores with mteval-13b.perl on ot simply due to an increase in the number of
two test sets, newstest2015 and newstest2016. Wgodel parameters, we keep the total size of the

also reporcHRF3 (Popowt, 2013), a character n- empedding layer fixed to 500. Tallé 1 lists the
gram F3 score which was found to correlate well gmpedding size we use for linguistic features —

with human judgments, especially for translationsy,g embedding layer size of the word-level fea-
out of English (Stanojetiet al., 2015 The two e varies, and is set to bring the total embedding
metrics may occasionally disagree, partly becausgyer size to 500. If we include the lemma feature,
they are highly sensitive to the length of the out-,¢ roughly split the embedding vector one-to-two
put. BLEU is precision-based, where&SiRF3  petween the lemma feature and the word feature.
considers both precision and recall, with a bias fofre taple also shows the network vocabulary size;

recall. For BEu, we also report whether differ- or 5| features except lemmas, we can represent
ences between systems are statistically significanf)| feature values in the network vocabulary — in

according to a bootstrap resampling significancgne case of words, this is due to BPE segmenta-
test (Rlegler and Maxwell, 2005). tion. For lemmas, we choose the same vocabulary
We train models for about a week, and reportsize as for words, replacing rare lemmas with a

_ special UNK symbol.
“https://github. conmrsennrich/ subword- nnt . . .
“We use the re-implementation available at |o€nnrich etal. (2016b) report large gains from

https://gi t hub. coni rsennri ch/ subwor d- nnt using monolingual in-domain training data, auto-
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matically back-translated into the source language — EN-DE baseline (synth. data)

to produce a synthetic parallel training corpus. We 199} |- EN-DE all features (synth. data) |
. . —— DE-EN baseline (synth. data)

use the synthetic corpora produced in these exper- | | . DE-EN all features (synth. data)

iment§ (3.6-4.2 million sentence pairs), and we _ 1
trained systems which include this data to compare‘g :
against the state of the art. We note that our exper=o
iments with this data entail a syntactic annotation &
of automatically translated data, which may be a

source of noise. For the systems with synthetic 60
data, we double the training time to two weeks.

40 - ! ! ! ! ! ]
41 Results 0 10 20 30 40 50 60

) training time (minibatchesl 0000)
Table [2 shows our main results for

German- English, and  EnglishGerman. Figure 2: English~-German (black) and

The baseline system is a neural MT system Witl"b ,
: erman-English (red) development set per-
only one input feature, the (sub)words themselves,

. o L plexity as a function of training time (number of
For both translation directions, linguistic features_ . . . . .
) ) minibatches) with and without linguistic features.
improve the best perplexity on the development

data (47.3— 46.2, and 54.9~ 52.9, respectively).

For German+English, the linguistic features lead pare our neural systems against phrase-based (PB-
to an increase of 1.5 IEu (31.4-+32.9) and SMT) and syntax-based (SBSMT) systems by
0.5 CHRF3 (58.0— 58.5), on the newstest2016 (wjilliams et al., 2015), all of which make use
test set. For EnglishGerman, we observe of |inguistic annotation on the source and/or
improvements of 0.6 BEu (27.8— 28.4)and 1.2 target side. Results are shown in Tafile 4.
CHRF3 (56.0— 57.2). For GermansEnglish, we observe similar im-
To evaluate the effectiveness of different "n-provements in the best development perplexity
guistic features in isolation, we performed CON-(45.2 — 44.1), test set Beu (37.5-38.5) and
trastive experiments in which only a single featurechrF3 (62.2 — 62.8). Our test set Beu
was added to the baseline. Results are shown i3 gn par to the best submitted system to this
Table[3. Unsurprisingly, the combination of all year's WMT 16 shared translation task, which
features (Table]2) gives the highest improvements similar to our baseline MT system, but which
averaged over metrics and test sets, but most fegiso uses a right-to-left decoder for reranking
tures are beneficial on their own. Subword tag§Sennrich et al., 2016a). We expect that linguis-
give small improvements for EnglishGerman, tic input features and bidirectional decoding are
but not for German>English. All other features orthogonal, and that we could obtain further im-
outperform the baseline in terms of perplexity, an%rovements by combining the two.
yield significant improvements inlBu on at least For EnglishGerman, improvements in devel-
one test set. The gain from different features is nobpment set perplexity carry over (49-% 48.4),
fully cumulative; we note that the information en- ,y + \ve see only small, non-significant differences
coded in different features overlaps. For instance;, g ey andcHRF3. While we cannot clearly ac-

both the dependency labels and the morphologiag nt for the discrepancy between perplexity and

cal features encode the distinction between Gefgangation metrics, factors that potentially lower

man subjects and accusative objects, the formepe \sefulness of linguistic features in this setting
through different labelss(ibj and obja), the lat- 41 the stronger baseline, trained on more data,

ter through grammatical casedqminativeandac-  gnq the low robustness of linguistic tools in the
cusative. annotation of the noisy, synthetic data sets. Both
We also evaluated adding linguistic featurésoyr paseline neural MT systems and the systems
to a stronger baseline, which includes synthetiGyth linguistic features substantially outperform
parallel training data. In addition, we €OM- phrase-based and syntax-based systems for both
— . translation directions.
The corpora are available at

http://statnt.org/rsennri ch/wnt 16_backt r ansl atiinoiieg previous tables, we have reported the best
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German~English English—German

system ppll BLEU T CHRF31 ppld BLEU 1 CHRF31
dev | testl5 testl6| testl5 testl6|| dev | testl5 testl6 testl5 testl6

baseline 473 | 27.9 31.4 54.0 58.0 || 54.9 | 23.0 27.8 52.6 56.0

all features‘ 46.2 | 28.7* 32.9* | 54.8 58.5 H 52.9 ‘ 23.8* 28.4* | 53.9 57.2

Table 2: Germa#asEnglish translation results: best perplexity on dev (nest2013), and Beu and
CHRF3 on test15 (newstest2015) and test16 (newstest201&)u Bcores that are significantly different
(p < 0.05) from respective baseline are marked with (*).

German~English English—German
system ppl 4 BLEU T CHRF31 ppll BLEU T CHRF31
dev | testl5 testlf| testl5 testlf| dev | testl5 testl6 testl5 testl6
baseline 473 | 27.9 314 54.0 58.0 || 54.9 | 23.0 27.8 52.6 56.0
lemmas 47.1 | 28.4 32.3* | 54.6 58.7 || 53.4 | 23.8* 28.5* | 53.7 56.7
subword tags 473 | 27.7 315 54.0 58.1 || 54.7 | 23.6* 28.1 53.2 56.4
morph. features | 47.1 | 28.2 32.4* | 54.3 58.4 - - - - -
POS tags 46.9 | 28.1 32.4*% | 54.1 57.8 || 53.2 | 24.0* 28.9*| 533 56.8
dependency labels 46.9 | 28.1 31.8%| 54.2 58.3 || 54.0 | 23.4* 28.0 53.1 56.5

Table 3: Contrastive experiments with individual lingigsteatures: best perplexity on dev (new-
stest2013), and B:u and CHRF3 on testl5 (newstest2015) and test16 (newstest20163uU Bcores
that are significantly different (p < 0.05) from respectiaséline are marked with (*).

German-~English English—German
system ppld BLEU T CHRF31 ppll BLEU T CHRF31
dev | testl5 testlf testl5 testlf| dev | testl5 testlf testl5 testl6
PBSMT [Williams et al., 2016)] - 29.9 35.1 56.2 60.9 - 23.7 28.4 52.6 56.6
SBSMT (Williams et al., 2016) - 29.5 34.4 56.0 61.0 - 24.5 30.6 55.3 59.9
baseline 452 | 315 375 57.0 62.2 || 49.7 | 275 331 56.3 60.5
all features 44.1 | 32.1* 38.5* | 57.5 62.8 48.4 | 27.1 33.2 56.5 60.6

Table 4: Germas>English translation results with additional, synthetaining data: best perplexity on
dev (newstest2013), and.Bu andCcHRF3 on testl5 (newstest2015) and test16 (newstest201&u B
scores that are significantly different (p < 0.05) from retipe baseline are marked with (*).



system _|sentence Factored translation models are widespread
source Gefahrlich ist dieRoute aber dennoch.

reference | Howeverthe route is dangerous. in phrase-based SMT (Koehn and Hoang, 2007).
baseline | Dangerous ishe route, however. Phrase-based models cannot easily generalize to

all features However,the route is dangerous. new feature combinations, and the individual

source [We thought] a win like this might belose ; P
reference |[...] dass ein solcher Gewinmah sein kénnte. models ?Ither_ treat e_aCh .feature complnatlon as
baseline |[...] ein Sieg wie dieser konntchlieRen an atomic unit, resulting in data sparsity, or as-
all featureq [...] ein Sieg wie dieser konnteah sein. sume independence between features, for instance

by having separate language models for words and
POS tags. In contrast, we exploit the strong gen-
eralization ability of neural networks, and expect
that even new feature combinations, e.g. a word
perplexity. To address the question about the rarthat appears in a novel syntactic function, are han-
domness in perplexity, and whether the best perdled gracefully.
plexity just happened to be lower for the systems One could consider the lemmatized rep-
with linguistic features, we show perplexity on resentation of the input as a second source
our development set as a function of training timetext, and perform multi-source translation
for different systems (Figuie 2). We can see that{Zoph and Knight, 2016). The main technical
perplexity is consistently lower for the systemsdifference is that in our approach, the encoder
trained with linguistic features. and attention layers are shared between features,
Table[® shows translation examples of our basewhich we deem appropriate for the types of
line, and the system augmented with linguis-features that we tested.
tic features. We see that the augmented neural
MT systems, in contrast to the respective base6 Conclusion

lines, successfully resolve the reordering for theT . .
: . . his paper addresses the research question
German~English example, and the disambigua- NN o
whether linguistic input features are beneficial to

tion of closefor the English-~German example. ) : - .
neural machine translation, and our empirical evi-

Table 5: Translation examples illustrating the ef-
fect of adding linguistic input features.

5 Related Work dence sugggsts that this |.s the case. _
We describe a generalization of the encoder in

Linguistic features have been the popular attentional encoder-decoder architec-

used in neural language  modelling ture for neural machine translation that allows for

(Alexandrescu and Kirchhoff, 2006), and arethe inclusion of an arbitrary number of input fea-
also used in other tasks for which neural modelduresl! We empirically test the inclusion of var-
have recently been employed, such as syntacti®us linguistic features, including lemmas, part-
parsing [(Chen and Manning, 2014). This papepf-speech tags, syntactic dependency labels, and
addresses the question whether linguistic feature@orphological features, into EnglishGerman
on the source side are beneficial for neuraneural MT systems. Our experiments show that
machine translation. On the target side, linguistidhe linguistic features yield improvements over
features are harder to obtain for a generation tasRur baseline, resulting in improvements on new-
such as machine translation, since this wouldtest2016 of 1.5 Beu for German~English, and
require incremental parsing of the hypotheses &@.6 BLEU for English—German, respectively.
test time, and this is possible future work. In the future, we expect several developments

Among others, our model incorporates that will shed more light on the usefulness of lin-
information from a dependency annotation,guistic (or other) input features, and whether they
but is stil a sequence-to-sequence modelWwill establish themselves as a core component of
Eriguchi et al. (2016) propose a tree-to-sequenc@eural machine translation. On the one hand, the
model whose encoder computes vector represerﬁnachine learning capability of neural architectures
tations for each phrase in the source tree. Theis likely to increase, decreasing the benefit pro-
focus is on exploiting the (unlabelled) structureVided by the features we tested. On the other hand,
of a syntactic annotation, whereas we are focused—; , .

. . . . Code available &ttt ps:// gi t hub. coni r sennri ch/ nenmat us

on the disambiguation power of the functional 7gympie  files and  configurations available  at
dependency labels. https://gi thub. conirsennri ch/wit 16- scripts
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