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Abstract

We survey the most widely-used algorithms for smoothing models for language
n-gram modeling. We then present an extensive empirical comparison of several
of these smoothing techniques, including those described byJelinek and Mercer
(1980); Katz (1987); Bell, Cleary and Witten (1990); Ney, Essen and Kneser
(1994), andKneser and Ney (1995). We investigate how factors such as training
data size, training corpus (e.g. Brown vs. Wall Street Journal), count cutoffs, and
n-gram order (bigram vs. trigram) affect the relative performance of these
methods, which is measured through the cross-entropy of test data. We find that
these factors can significantly affect the relative performance of models, with the
most significant factor being training data size. Since no previous comparisons
have examined these factors systematically, this is the first thorough
characterization of the relative performance of various algorithms. In addition, we
introduce methodologies for analyzing smoothing algorithm efficacy in detail, and
using these techniques we motivate a novel variation of Kneser–Ney smoothing
that consistently outperforms all other algorithms evaluated. Finally, results
showing that improved language model smoothing leads to improved speech
recognition performance are presented.

c© 1999 Academic Press

1. Introduction

A language modelis a probability distributionp(s) over stringss that describes how of-
ten the strings occurs as a sentence in some domain of interest. Language models are em-
ployed in many tasks including speech recognition, optical character recognition, handwrit-
ing recognition, machine translation, and spelling correction (Church, 1988; Brown et al.,
1990; Kernighan, Church & Gale, 1990; Hull, 1992; Srihari & Baltus, 1992).

The central goal of the most commonly used language models, trigram models, is to deter-
mine the probability of a word given the previous two words:p(wi |wi−2wi−1). The simplest
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way to approximate this probability is to compute

pML (wi |wi−2wi−1) =
c(wi−2wi−1wi )

c(wi−2wi−1)

i.e. the number of times the word sequencewi−2wi−1wi occurs in some corpus of training
data divided by the number of times the word sequencewi−2wi−1 occurs. This value is called
themaximum likelihood(ML) estimate.

Unfortunately, the maximum likelihood estimate can lead to poor performance in many
applications of language models. To give an example from the domain of speech recogni-
tion, if the correct transcription of an utterance contains a trigramwi−2wi−1wi that has never
occurred in the training data, we will havepML (wi |wi−2wi−1) = 0 which will preclude a
typical speech recognizer from selecting the correct transcription, regardless of how unam-
biguous the acoustic signal is.

Smoothingis used to address this problem. The term smoothing describes techniques for
adjusting the maximum likelihood estimate of probabilities to produce more accurate proba-
bilities. The name comes from the fact that these techniques tend to make distributions more
uniform, by adjusting low probabilities such as zero probabilities upward, and high proba-
bilities downward. Not only do smoothing methods generally prevent zero probabilities, but
they also attempt to improve the accuracy of the model as a whole.

While smoothing is a central issue in language modeling, the literature lacks a definitive
comparison between the many existing techniques. Most previous studies that have compared
smoothing algorithms (Nádas, 1984; Katz, 1987; Church & Gale, 1991; Kneser & Ney, 1995;
MacKay & Peto, 1995) have only done so with a small number of methods (typically two) on
one or two corpora and using a single training set size. Perhaps the most complete previous
comparison is that ofNey, Martin and Wessel (1997), which compared a variety of smoothing
algorithms on three different training set sizes. However, this work did not consider all pop-
ular algorithms, and only considered data from a single source. Thus, it is currently difficult
for a researcher to intelligently choose among smoothing schemes.

In this work, we carry out an extensive empirical comparison of the most widely-used
smoothing techniques, including those described byJelinek and Mercer (1980); Katz (1987);
Bell et al. (1990); Ney et al. (1994), andKneser and Ney (1995). We carry out experiments
over many training set sizes on varied corpora usingn-grams of various order (different
n), and show how these factors affect the relative performance of smoothing techniques.
For the methods with parameters that can be tuned to improve performance, we perform
an automated search for optimal values and show that sub-optimal parameter selection can
significantly decrease performance. To our knowledge, this is the first smoothing work that
systematically investigates any of these issues.

Our results make it apparent that previous evaluations of smoothing techniques have not
been thorough enough to provide an adequate characterization of the relative performance
of different algorithms. For instance,Katz (1987) compares his algorithm with an unspeci-
fied version of Jelinek–Mercer deleted estimation and withNádassmoothing (1984) using
a single training corpus and a single test set of 100 sentences.Katz concludes that his algo-
rithm performs at least as well as Jelinek–Mercer smoothing andNádassmoothing. In Sec-
tion 5.1.1, we will show that, in fact, the relative performance ofKatz and Jelinek–Mercer
smoothing depends on training set size, with Jelinek–Mercer smoothing performing better on
smaller training sets, andKatzsmoothing performing better on larger sets.

In addition to evaluating the overall performance of various smoothing techniques, we
provide more detailed analyses of performance. We examine the performance of different
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algorithms onn-grams with particular numbers of counts in the training data; we find that
Katz smoothing performs well onn-grams with large counts, while Kneser–Ney smoothing
is best for small counts. We calculate the relative impact on performance of small counts and
large counts for different training set sizes andn-gram orders, and use this data to explain
the variation in performance of different algorithms in different situations. Finally, we use
this detailed analysis to motivate a modification to Kneser–Ney smoothing; the resulting
algorithm consistently outperforms all other algorithms evaluated.

While smoothing is one technique for addressing sparse data issues, there are numerous
other techniques that can be applied, such as class-basedn-gram models (Brown, Della Pietra,
de Souza, Lai & Mercer, 1992b) or decision-tree models (Bahl, Brown, de Souza & Mercer,
1989). We will not address these other methods, but will instead constrain our discussion of
smoothing to techniques where the structure of a model is unchanged but where the method
used to estimate the probabilities of the model is modified. Smoothing can be applied to
these alternative models as well, and it remains to be seen whether improved smoothing for
word-basedn-gram models will lead to improved performance for these other models.1

This paper is structured as follows: in the remainder of this section, we give a brief in-
troduction ton-gram models and discuss the performance metrics with which we evaluate
language models. In Section2, we survey previous work on smoothingn-gram models. In
Section3, we describe our novel variation of Kneser–Ney smoothing. In Section4, we dis-
cuss various aspects of our experimental methodology. In Section5, we present the results of
all of our experiments. Finally, in Section6 we summarize the most important conclusions
of this work.

This work builds on our previously reported research (Chen, 1996; Chen & Goodman,
1996). An extended version of this paper (Chen & Goodman, 1998) is available; it contains a
tutorial introduction ton-gram models and smoothing, more complete descriptions of exist-
ing smoothing algorithms and our implementations of them, and more extensive experimental
results and analysis.

1.1. Background

The most widely-used language models, by far, aren-gram language models. For a sentence
s composed of the wordsw1 · · ·wl , we can expressp(s) as

p(s) = p(w1|〈BOS〉)× p(w2|〈BOS〉w1)× · · ·

×p(wl |〈BOS〉w1 · · ·wl−1)× p(〈EOS〉|〈BOS〉w1 · · ·wl )

=

l+1∏
i=1

p(wi |〈BOS〉w1 · · ·wi−1)

where the token〈BOS〉 is a distinguished token signaling the beginning of the sentence, and
〈EOS〉 signals the end of the sentence. In ann-gram model, we make the approximation that
the probability of a word depends only on the identity of the immediately precedingn − 1
words, giving us

p(s) =
l+1∏
i=1

p(wi |w1 · · ·wi−1) ≈

l+1∏
i=1

p(wi |w
i−1
i−n+1)

1Maximum entropy techniques can also be used to smoothn-gram models. A discussion of these techniques can
be found elsewhere (Chen & Rosenfeld, 1999).
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wherew j
i denotes the wordswi · · ·w j and where we takew−n+2 throughw0 to be〈BOS〉.

To estimatep(wi |w
i−1
i−n+1), a natural procedure is to count how often the tokenwi follows

the context orhistorywi−1
i−n+1 and to divide by the total number of times the history occurs,

i.e. to take

pML (wi |w
i−1
i−n+1) =

c(wi
i−n+1)

c(wi−1
i−n+1)

=
c(wi

i−n+1)∑
wi

c(wi
i−n+1)

wherec(w j
i ) denotes how often then-gramw j

i occurs in some training data. As mentioned
before, this estimate is themaximum likelihoodestimate of these probabilities on a training
set, and smoothing algorithms typically produce probabilities near to this estimate.

The most common metric for evaluating a language model is the probability that the model
assigns to test data, or the derivative measures ofcross-entropyandperplexity. For a test set
T composed of the sentences(t1, . . . , tlT ) we can calculate the probability of the test set
p(T) as the product of the probabilities of all sentences in the set:p(T) =

∏lT
k=1 p(tk). The

cross-entropyHp(T) of a modelp(tk) on dataT is defined asHp(T) = −
1

WT
log2 p(T)

whereWT is the length of the textT measured in words.2 This value can be interpreted as
the average number of bits needed to encode each of theWT words in the test data using the
compression algorithm associated with modelp(tk) (Bell et al., 1990). We sometimes refer
to cross-entropy as justentropy.

The perplexity PPp(T) of a modelp is the reciprocal of the (geometric) average probability
assigned by the model to each word in the test setT , and is related to cross-entropy by the
equation

PPp(T) = 2Hp(T).

Clearly, lower cross-entropies and perplexities are better.
In this work, we take the performance of an algorithm to be its cross-entropy on test data.

As the cross-entropy of a model on test data gives the number of bits required to encode
that data, cross-entropy is a direct measure of application performance for the task of text
compression. For other applications, it is generally assumed that lower entropy correlates
with better performance. For speech recognition, it has been shown that this correlation is
reasonably strong (Chen, Beeferman & Rosenfeld, 1998). In Section5.3.3, we present results
that indicate that this correlation is especially strong when considering onlyn-gram models
that differ in the smoothing technique used.

2. Previous work

In this section, we survey a number of smoothing algorithms forn-gram models. This list
is by no means exhaustive, but includes the algorithms used in the majority of language
modeling work. The algorithms (except for those described in Section2.9) are presented in
chronological order of introduction.

We first describe additive smoothing, a very simple technique that performs rather poorly.
Next, we describe the Good–Turing estimate, which is not used in isolation but which forms
the basis for later techniques such asKatz smoothing. We then discuss Jelinek–Mercer and
Katzsmoothing, two techniques that generally work well. After that, we describe Witten–Bell
smoothing; while Witten–Bell smoothing is well known in the compression community, we

2In this work, we include the end-of-sentence token〈EOS〉when computingWT , but not the beginning-of-sentence
tokens.
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will later show that it has mediocre performance compared to some of the other techniques
we describe. We go on to discuss absolute discounting, a simple technique with modest per-
formance that forms the basis for the last technique we describe, Kneser–Ney smoothing.
Kneser–Ney smoothing works very well, and variations we describe in Section3 outperform
all other tested techniques. In Section2.8, we characterize algorithms as eitherinterpolated
or backoff, a distinction that will be useful in characterizing performance and developing new
algorithms.

This section summarizes the original descriptions of previous algorithms, but does not in-
clude the details of our implementations of these algorithms; this information is presented
instead in Section4.1. As many of the original texts omit important details, our implementa-
tions sometimes differ significantly from the original algorithm description.

2.1. Additive smoothing

One of the simplest types of smoothing used in practice isadditivesmoothing (Laplace, 1825;
Lidstone, 1920; Johnson, 1932; Jeffreys, 1948). To avoid zero probabilities, we pretend that
eachn-gram occurs slightly more often than it actually does: we add a factorδ to every count,
where typically 0< δ ≤ 1. Thus, we set

padd(wi |w
i−1
i−n+1) =

δ + c(wi
i−n+1)

δ|V | +
∑
wi

c(wi
i−n+1)

(1)

whereV is the vocabulary, or set of all words considered. Lidstone and Jeffreys advocate
takingδ = 1.Gale and Church (1990, 1994) have argued that this method generally performs
poorly.

2.2. Good–Turing estimate

The Good–Turing estimate (Good, 1953) is central to many smoothing techniques. The
Good–Turing estimate states that for anyn-gram that occursr times, we should pretend
that it occursr ∗ times where

r ∗ = (r + 1)
nr+1

nr
(2)

and wherenr is the number ofn-grams that occur exactlyr times in the training data. To
convert this count to a probability, we just normalize: for ann-gramwi

i−n+1 with r counts,
we take

pGT(w
i
i−n+1) =

r ∗

N
(3)

whereN =
∑
∞

r=0 nr r ∗. The Good–Turing estimate can be derived theoretically using only
a couple of weak assumptions (Nádas, 1985), and has been shown empirically to accurately
describe data whennr values are large.

In practice, the Good–Turing estimate is not used by itself forn-gram smoothing, because
it does not include the combination of higher-order models with lower-order models neces-
sary for good performance, as discussed in the following sections. However, it is used as a
tool in several smoothing techniques.

2.3. Jelinek–Mercer smoothing

When there is little data for directly estimating ann-gram probabilityp(wi |w
i−1
i−n+1) (e.g.

if c(wi
i−n+1) = 0), useful information can be provided by the corresponding(n − 1)-gram
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probability estimatep(wi |w
i−1
i−n+2). The (n − 1)-gram probability will typically correlate

with the n-gram probability and has the advantage of being estimated from more data. A
simple method for combining the information from lower-ordern-gram models in estimating
higher-order probabilities is linear interpolation, and a general class of interpolated models
is described byJelinek and Mercer (1980). An elegant way of performing this interpolation
is given byBrown, S. A. Della Pietra, V. J. Della Pietra, Lai and Mercer (1992a) as follows

pinterp(wi |w
i−1
i−n+1) = λwi−1

i−n+1
pML (wi |w

i−1
i−n+1)+ (1− λwi−1

i−n+1
)pinterp(wi |w

i−1
i−n+2). (4)

That is, thenth-order smoothed model is defined recursively as a linear interpolation between
thenth-order maximum likelihood model and the(n − 1)th-order smoothed model. To end
the recursion, we can take the smoothed first-order model to be the maximum likelihood
distribution, or we can take the smoothed zeroth-order model to be the uniform distribution
punif(wi ) =

1
|V | .

Given fixed pML , it is possible to search efficiently for theλ
wi−1

i−n+1
that maximize the

probability of some data using the Baum–Welch algorithm (Baum, 1972). Training a distinct
λ
wi−1

i−n+1
for eachwi−1

i−n+1 is not generally felicitous, while setting allλ
wi−1

i−n+1
to the same

value leads to poor performance (Ristad, 1995). Bahl, Jelinek and Mercer (1983) suggest
partitioning theλ

wi−1
i−n+1

into buckets according toc(wi−1
i−n+1), where allλ

wi−1
i−n+1

in the same

bucket are constrained to have the same value.

2.4. Katz smoothing

Katz smoothing (1987) extends the intuitions of the Good–Turing estimate by adding the
combination of higher-order models with lower-order models. We first describeKatzsmooth-
ing for bigram models. For a bigramwi

i−1 with countr = c(wi
i−1), we calculate its corrected

count using the equation

ckatz(w
i
i−1) =

{
dr r if r > 0
α(wi−1)pML (wi ) if r = 0.

(5)

That is, all bigrams with a non-zero countr are discounted according to adiscount ratio dr .
The discount ratiodr is approximatelyr ∗

r , the discount predicted by the Good–Turing esti-
mate, and will be specified exactly later. The counts subtracted from the non-zero counts are
then distributed among the zero-count bigrams according to the next lower-order distribution,
i.e. the unigram model. The valueα(wi−1) is chosen so that the total number of counts in
the distribution

∑
wi

ckatz(w
i
i−1) is unchanged, i.e.

∑
wi

ckatz(w
i
i−1) =

∑
wi

c(wi
i−1). The

appropriate value forα(wi−1) is

α(wi−1) =
1−

∑
wi :c(wi

i−1)>0 pkatz(wi |wi−1)∑
wi :c(wi

i−1)=0 pML (wi )
=

1−
∑
wi :c(wi

i−1)>0 pkatz(wi |wi−1)

1−
∑
wi :c(wi

i−1)>0 pML (wi )
.

To calculatepkatz(wi |wi−1) from the corrected count, we just normalize:

pkatz(wi |wi−1) =
ckatz(w

i
i−1)∑

wi
ckatz(w

i
i−1)

.

The dr are calculated as follows: large counts are taken to be reliable, so they are not
discounted. In particular,Katz takesdr = 1 for all r > k for somek, whereKatz suggests
k = 5. The discount ratios for the lower countsr ≤ k are derived from the Good–Turing
estimate applied to the global bigram distribution; that is, thenr in Equation (2) denote the
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total numbers of bigrams that occur exactlyr times in the training data. Thesedr are chosen
such that the resulting discounts are proportional to the discounts predicted by the Good–
Turing estimate, and such that the total number of counts discounted in the global bigram
distribution is equal to the total number of counts that should be assigned to bigrams with
zero counts according to the Good–Turing estimate. The solution to these constraints is

dr =

r ∗
r −

(k+1)nk+1
n1

1− (k+1)nk+1
n1

.

Katz smoothing for higher-ordern-gram models is defined analogously. As we can see
in Equation (5), the bigram model is defined in terms of the unigram model; in general, the
Katz n-gram model is defined in terms of theKatz (n − 1)-gram model, similar to Jelinek–
Mercer smoothing. To end the recursion, theKatzunigram model is taken to be the maximum
likelihood unigram model.

2.5. Witten–Bell smoothing

Witten–Bell smoothing (Bell et al., 1990; Witten & Bell, 1991)3 was developed for the task
of text compression, and can be considered to be an instance of Jelinek–Mercer smoothing.
In particular, thenth-order smoothed model is defined recursively as a linear interpolation
between thenth-order maximum likelihood model and the(n− 1)th-order smoothed model
as in Equation (4). To compute the parametersλ

wi−1
i−n+1

for Witten–Bell smoothing, we will

need to use the number of unique words that follow the historywi−1
i−n+1. We will write this

value asN1+(w
i−1
i−n+1·), formally defined as

N1+(w
i−1
i−n+1·) = |{wi : c(w

i−1
i−n+1wi ) > 0}|. (6)

The notationN1+ is meant to evoke the number of words that have one or more counts, and
the· is meant to evoke a free variable that is summed over. We assign the parametersλ

wi−1
i−n+1

for Witten–Bell smoothing such that

1− λ
wi−1

i−n+1
=

N1+(w
i−1
i−n+1·)

N1+(w
i−1
i−n+1·)+

∑
wi

c(wi
i−n+1)

. (7)

Substituting into Equation (4), we obtain

pWB(wi |w
i−1
i−n+1) =

c(wi
i−n+1)+ N1+(w

i−1
i−n+1·)pWB(wi |w

i−1
i−n+2)∑

wi
c(wi

i−n+1)+ N1+(w
i−1
i−n+1·)

. (8)

To motivate Witten–Bell smoothing, we can interpret the factor 1− λ
wi−1

i−n+1
to be the

frequency with which we should use the lower-order model to predict the next word. Intu-
itively, we should only use the lower-order model when there are no counts for the given
n-gram in the higher-order model; i.e. when we see a novel word for the history. We can
view N1+(w

i−1
i−n+1·) to be the number of novel words we have seen after the historywi−1

i−n+1
over the training set, and this is in fact the count assigned by Witten–Bell smoothing to the
lower-order distribution.

3Witten–Bell smoothing refers tomethod Cin these references. Different notation is used in the original text.
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2.6. Absolute discounting

Absolute discounting (Ney & Essen, 1991; Ney, Essen and Kneser, 1994), like Jelinek–
Mercer smoothing, involves the interpolation of higher- and lower-order models. However,
instead of multiplying the higher-order maximum-likelihood distribution by a factorλ

wi−1
i−n+1

,

the higher-order distribution is created by subtracting a fixed discountD from each non-zero
count. That is, instead of Equation (4) we have

pabs(wi |w
i−1
i−n+1) =

max{c(wi
i−n+1)− D, 0}∑

wi
c(wi

i−n+1)
+ (1− λ

wi−1
i−n+1

)pabs(wi |w
i−1
i−n+2). (9)

To make this distribution sum to 1, we take

1− λ
wi−1

i−n+1
=

D∑
wi

c(wi
i−n+1)

N1+(w
i−1
i−n+1·) (10)

whereN1+(w
i−1
i−n+1·) is defined as in Equation (6) and where we assume 0≤ D ≤ 1. Ney et

al. (1994) suggest settingD through deleted estimation on the training data. They arrive at
the estimate

D =
n1

n1+ 2n2
(11)

wheren1 andn2 are the total number ofn-grams with exactly one and two counts, respec-
tively, in the training data.

We can motivate absolute discounting using the Good–Turing estimate.Church and Gale
(1991) show empirically that the average Good–Turing discount(r − r ∗) associated with
n-grams with larger counts(r ≥ 3) is generally constant overr . Further supporting evidence
is presented in Section5.2.1.

2.7. Kneser–Ney smoothing

Kneser and Ney (1995) have introduced an extension of absolute discounting where the
lower-order distribution that one combines with a higher-order distribution is built in a novel
manner. In previous algorithms, the lower-order distribution is generally taken to be a
smoothed version of the lower-order maximum likelihood distribution. However, a lower-
order distribution is a significant factor in the combined model only when few or no counts
are present in the higher-order distribution. Consequently, they should be optimized to per-
form well in these situations.

To give a concrete example, consider building a bigram model on data where there ex-
ists a word that is very common, say FRANCISCO, that occurs only after a single word, say
SAN. Sincec(FRANCISCO) is high, the unigram probabilityp(FRANCISCO) will be high
and an algorithm such as absolute discounting will assign a relatively high probability to the
word FRANCISCOoccurring after novel bigram histories. However, intuitively this probabil-
ity shouldnot be high since in the training data the word FRANCISCO follows only a single
history. That is, perhaps the word FRANCISCOshould receive a low unigram probability be-
cause the only time the word occurs is when the previous word is SAN, in which case the
bigram probability models its probability well. In Kneser–Ney smoothing, we generalize this
argument, not setting the unigram probability to be proportional to the number of occurrences
of a word, but instead to the number of different words that it follows.

Following Kneser and Ney (1995), we can mathematically motivate their algorithm by
selecting the lower-order distribution such that the marginals of the higher-order smoothed
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distribution match the marginals of the training data. For example, for a bigram model we
would like to select a smoothed distributionpKN that satisfies the following constraint on
unigram marginals for allwi :∑

wi−1

pKN(wi−1wi ) =
c(wi )∑
wi

c(wi )
. (12)

The left-hand side of this equation is the unigram marginal forwi of the smoothed bigram
distributionpKN , and the right-hand side is the unigram frequency ofwi found in the training
data.4

Here, we present a different derivation of the resulting distribution than is presented by
Kneser and Ney (1995). As in absolute discounting, let 0≤ D ≤ 1. Then, we assume that
the model has the form given in Equation (9)

pKN(wi |w
i−1
i−n+1) =

max{c(wi
i−n+1)− D, 0}∑

wi
c(wi

i−n+1)

+
D∑

wi
c(wi

i−n+1)
N1+(w

i−1
i−n+1·)pKN(wi |w

i−1
i−n+2) (13)

as opposed to the form used in the original paper

pKN(wi |w
i−1
i−n+1) =


max{c(wi

i−n+1)−D,0}∑
wi

c(wi
i−n+1)

if c(wi
i−n+1) > 0

γ (wi−1
i−n+1)pKN(wi |w

i−1
i−n+2) if c(wi

i−n+1) = 0

whereγ (wi−1
i−n+1) is chosen to make the distribution sum to 1. That is, we interpolate the

lower-order distribution for all words, not just for words that have zero counts in the higher-
order distribution. (Using the terminology to be defined in Section2.8, we use aninterpo-
latedmodel instead of abackoffmodel.) We use this formulation because it leads to a cleaner
derivation of essentially the same formula; no approximations are required, unlike in the orig-
inal derivation. In addition, as will be shown later in this paper, and as has been independently
observed byNeyet al. (1997), the former formulation generally yields better performance.

Now, our aim is to find a unigram distributionpKN(wi ) such that the constraints given by
Equation (12) are satisfied. Expanding Equation (12), we obtain

c(wi )∑
wi

c(wi )
=

∑
wi−1

pKN(wi |wi−1)p(wi−1).

For p(wi−1), we take the distribution found in the training data,p(wi−1) =
c(wi−1)∑

wi−1
c(wi−1)

.

Substituting and simplifying, we have

c(wi ) =
∑
wi−1

c(wi−1)pKN(wi |wi−1).

Substituting in Equation (13), we have

c(wi ) =
∑
wi−1

c(wi−1)

[
max{c(wi−1wi )− D, 0}∑

wi
c(wi−1wi )

+
D∑

wi
c(wi−1wi )

N1+(wi−1·)pKN(wi )

]
4Following the notation in Section1.1, note thatwi can take the value〈EOS〉 but not〈BOS〉, whilewi−1 can take

the value〈BOS〉 but not〈EOS〉.



368 An empirical study of smoothing techniques for language modeling

=

∑
wi−1:c(wi−1wi )>0

c(wi−1)
c(wi−1wi )− D

c(wi−1)

+

∑
wi−1

c(wi−1)
D

c(wi−1)
N1+(wi−1·)pKN(wi )

= c(wi )− N1+(·wi )D + DpKN(wi )
∑
wi−1

N1+(wi−1·)

= c(wi )− N1+(·wi )D + DpKN(wi )N1+(··)

where

N1+(·wi ) = |{wi−1 : c(wi−1wi ) > 0}|

is the number of different wordswi−1 that precedewi in the training data and where

N1+(··) =
∑
wi−1

N1+(wi−1·) = |{(wi−1, wi ) : c(wi−1wi ) > 0}| =
∑
wi

N1+(·wi ).

Solving for pKN(wi ), we obtain

pKN(wi ) =
N1+(·wi )

N1+(··)
.

Generalizing to higher-order models, we have that

pKN(wi |w
i−1
i−n+2) =

N1+(·w
i
i−n+2)

N1+(·w
i−1
i−n+2·)

(14)

where

N1+(·w
i
i−n+2) = |{wi−n+1 : c(w

i
i−n+1) > 0}|

N1+(·w
i−1
i−n+2·) = |{(wi−n+1, wi ) : c(w

i
i−n+1) > 0}| =

∑
wi

N1+(·w
i
i−n+2).

2.8. Backoff vs. interpolated models

All of the smoothing algorithms we have described, except for additive smoothing, combine
higher-ordern-gram models with lower-order models. There are two basic approaches taken
to perform this combination. One approach is characterized by smoothing algorithms that
can be described with the following equation:

psmooth(wi |w
i−1
i−n+1) =

{
τ(wi |w

i−1
i−n+1) if c(wi

i−n+1) > 0

γ (wi−1
i−n+1)psmooth(wi |w

i−1
i−n+2) if c(wi

i−n+1) = 0.
(15)

That is, if ann-gram has a non-zero count then we use the distributionτ(wi |w
i−1
i−n+1). Other-

wise, webackoffto the lower-order distributionpsmooth(wi |w
i−1
i−n+2), where the scaling factor

γ (wi−1
i−n+1) is chosen to make the conditional distribution sum to one. We refer to algorithms

that fall directly in this framework asbackoff models.Katz smoothing is the canonical ex-
ample of backoff smoothing.

Several smoothing algorithms, such as Jelinek–Mercer smoothing, are expressed as the
linear interpolation of higher- and lower-ordern-gram models:

psmooth(wi |w
i−1
i−n+1) = τ(wi |w

i−1
i−n+1)+ γ (w

i−1
i−n+1)psmooth(wi |w

i−1
i−n+2). (16)
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We refer to such models asinterpolatedmodels.
The key difference between backoff and interpolated models is that in determining the

probability of n-grams withnon-zerocounts, interpolated models use information from
lower-order distributions while backoff models do not. In both backoff and interpolated mod-
els, lower-order distributions are used in determining the probability ofn-grams withzero
counts.

We note that it is easy to create a backoff version of an interpolated algorithm. Instead
of using Equation (16), we can just use Equation (15), modifying γ (wi−1

i−n+1) so that prob-
abilities sum to one. As described later, we have implemented the interpolated and backoff
versions of several algorithms.

2.9. Other smoothing techniques

In this section, we briefly describe several smoothing algorithms that are not widely used, but
which are interesting from a theoretical perspective. The algorithms in this section were not
re-implemented in this research, while all preceding algorithms were.

2.9.1. Church–Gale smoothing

Church and Gale (1991) describe a smoothing method that likeKatz’s, combines the Good–
Turing estimate with a method for merging the information from lower- and higher-order
models. Church and Gale bucket bigramswi

i−1 according to the valuespML (wi−1)pML (wi ).
The Good–Turing estimate is then applied separately within each bucket to find bigram prob-
abilities.

In previous work (Chen, 1996), we compared Church–Gale smoothing with other smooth-
ing methods and found that this algorithm works well for bigram language models. When
extending this method to trigram models, there are two options for implementation. One of
these methods is computationally intractable, and we have demonstrated that the other per-
forms poorly.

2.9.2. Bayesian smoothing

Several smoothing techniques are motivated within a Bayesian framework. A prior distribu-
tion over smoothed distributions is selected, and this prior is used to somehow arrive at a final
smoothed distribution. For example,Nádas (1984) selects smoothed probabilities to be their
meana posteriorivalue given the prior distribution.

Nádas (1984) hypothesizesa prior distribution from the family of beta functions.Nádas
reports results on a single training set indicating thatNádassmoothing performs slightly
worse thanKatzand Jelinek–Mercer smoothing.

MacKay and Peto (1995) use Dirichlet priors in an attempt to motivate the linear interpo-
lation used in Jelinek–Mercer smoothing. They compare their method with Jelinek–Mercer
smoothing on a single training set of about two million words; their results indicate that
MacKay–Peto smoothing performs slightly worse than Jelinek–Mercer smoothing.

2.9.3. Other interpolated models

In our previous work (Chen, 1996; Chen & Goodman, 1996), we introduced two interpolated
smoothing algorithms that significantly outperformKatz and Jelinek–Mercer smoothing on
trigram models. One is a variation of Jelinek–Mercer smoothing; we have found that bucket-
ing λ

wi−1
i−n+1

according to the average number of counts per non-zero element in a distribution
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wi

c(wi
i−n+1)

|wi :c(wi
i−n+1)>0|

yields better performance than bucketing according to the total number of

counts of the history
∑
wi

c(wi
i−n+1) as suggested byBahlet al. (1983).

The other algorithm can be viewed as a modification of Witten–Bell smoothing. Let
N1(w

i−1
i−n+1·) = |{wi : c(w

i−1
i−n+1wi ) = 1}|, the number of words that appear after the context

wi−1
i−n+1 exactly once. Then, in Equation (8), the termN1+(w

i−1
i−n+1·) is replaced by the value

βN1(w
i−1
i−n+1·)+ γ whereβ andγ are parameters of the model optimized on held-out data.

Since these algorithms are not in wide use and since we have subsequently found that
Kneser–Ney smoothing and variations consistently outperform them, we do not re-examine
their performance here. However, they can be useful when Kneser–Ney smoothing is not
applicable, such as when interpolating distributions from different sources.

3. Modified Kneser–Ney smoothing

In this section, we introduce a novel variation of Kneser–Ney smoothing, which we refer to as
modifiedKneser–Ney smoothing, that we have found has excellent performance. Instead of
using a single discountD for all non-zero counts as in Kneser–Ney smoothing, we have three
different parameters,D1, D2, andD3+, that are applied ton-grams with one, two, and three
or more counts, respectively. In other words, instead of using Equation (13) from Section2.7,
we take

pKN(wi |w
i−1
i−n+1) =

c(wi
i−n+1)− D(c(wi

i−n+1))∑
wi

c(wi
i−n+1)

+ γ (wi−1
i−n+1)pKN(wi |w

i−1
i−n+2)

where

D(c) =


0 if c = 0
D1 if c = 1
D2 if c = 2
D3+ if c ≥ 3.

To make the distribution sum to 1, we take

γ (wi−1
i−n+1) =

D1N1(w
i−1
i−n+1·)+ D2N2(w

i−1
i−n+1·)+ D3+N3+(w

i−1
i−n+1·)∑

wi
c(wi

i−n+1)

whereN2(w
i−1
i−n+1·) andN3+(w

i−1
i−n+1·) are defined analogously toN1(w

i−1
i−n+1·).

This modification is motivated by evidence to be presented in Section5.2.1that the ideal
average discount forn-grams with one or two counts is substantially different from the ideal
average discount forn-grams with higher counts. Indeed, we will see later that modified
Kneser–Ney smoothing significantly outperforms regular Kneser–Ney smoothing.

Just asNey et al. (1994) have developed an estimate for the optimalD for absolute dis-
counting and Kneser–Ney smoothing as a function of training data counts (as given in Equa-
tion (11)), it is possible to create analogous equations to estimate the optimal values forD1,
D2, andD3 (Ries, 1997). The analogous relations for modified Kneser–Ney smoothing are

D1 = 1− 2Y
n2

n1

D2 = 2− 3Y
n3

n2
(17)

D3+ = 3− 4Y
n4

n3
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whereY = n1
n1+2n2

.
Note thatNey et al. (1997) independently introduced the idea of multiple discounts, sug-

gesting two discounts instead of three, and giving estimates for the discounts based on the
Good–Turing estimate. They performed experiments using multiple discounts for absolute
discounting, and found mixed results as compared to a single discount.

4. Experimental methodology

In this section, we describe our smoothing algorithm implementations, the method with
which we selected algorithm parameter values, the datasets we used, and other aspects of
our experimental methodology. Briefly, we implemented all of the most widely-used smooth-
ing algorithms for language modeling: additive smoothing, Jelinek–Mercer smoothing,Katz
smoothing, Witten–Bell smoothing, absolute discounting, and Kneser–Ney smoothing. In
addition, we selected a simple instance of Jelinek–Mercer smoothing to serve as a baseline,
and we implemented our modified version of Kneser–Ney smoothing. We compared these
smoothing algorithms using text from the Brown corpus, the North American Business news
corpus, the Switchboard corpus, and the Broadcast News corpus.

4.1. Smoothing implementations

In this section, we provide an overview of our implementations of various smoothing tech-
niques. With each implementation we list a mnemonic that we use to refer to the implemen-
tation in later sections. We use the mnemonic when we are referring to our specific imple-
mentation of a smoothing method, as opposed to the algorithm in general. In the extended
version of this paper (Chen & Goodman, 1998), we provide a complete description of each
implementation, including all associated parameters, and how we resolved any ambiguities
in the original descriptions of the algorithms. Most algorithms have parameters that can be
optimized (though not all are mentioned here); in experiments, we set parameter values to
optimize the perplexity of held-out data, as described in Section4.2.

Additive smoothing.We consider two versions of additive smoothing. Referring to Equa-
tion (1) in Section2.1, we fix δ = 1 in the implementationplus-one. In the implementation
plus-delta, we consider anyδ. To improve performance, we perform backoff when a his-
tory has no counts. For the methodplus-delta, instead of a singleδ we have a separateδn
for each level of then-gram model.

Jelinek–Mercer smoothing.Recall that higher-order models are defined recursively in terms
of lower-order models. We end the recursion by taking the zeroth-order distribution to be the
uniform distributionpunif(wi ) = 1/|V |.

In jelinek-mercer, we bucket theλ
wi−1

i−n+1
according to

∑
wi

c(wi
i−n+1) as suggested

by Bahl et al. (1983) We choose bucket boundaries by requiring that at leastcmin counts in
the held-out data fall in each bucket, wherecmin is an adjustable parameter. We use separate
buckets for eachn-gram model being interpolated.

For our baseline smoothing method,jelinek-mercer-baseline, we constrain all
λ
wi−1

i−n+1
to be equal to a single valueλn whenc(wi−1

i−n+1) > 0 and zero otherwise. This is

identical tojelinek-mercer when there is only a single bucket (for non-zero counts) for
eachn-gram level.

Katz smoothing.In the implementationkatz, instead of a singlek we allow a differentkn
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for eachn-gram model being combined. To end the model recursion, we smooth the unigram
distribution using additive smoothing with parameterδ; we found that applyingKatzbackoff
to a unigram distribution performed poorly.

In the algorithm as described in the original paper, no probability is assigned ton-grams
with zero counts in a conditional distributionp(wi |w

i−1
i−n+1) if there are non-gramswi

i−n+1
that occur between 1 andkn times in that distribution. This can lead to an infinite cross-
entropy on test data. To address this, whenever there are no counts between 1 andkn in a
conditional distribution, we give the zero-countn-grams a total ofβ counts, and increase the
normalization constant appropriately.

Witten–Bell smoothing.The implementationwitten-bell-interp is a faithful implemen-
tation of the original algorithm, where we end the model recursion by taking the zeroth-order
distribution to be the uniform distribution. The implementationwitten-bell-backoff is a
backoff version of the original algorithm (see Section2.8).

Absolute discounting.In the implementationabs-disc-interp, instead of a singleD over
the whole model we use a separateDn for eachn-gram level. As usual, we terminate the
model recursion with the uniform distribution. Also, instead of using Equation (11) to calcu-
late Dn, we find the values ofDn by optimizing the perplexity of held-out data. The imple-
mentationabs-disc-backoff is a backoff version ofabs-disc-interp.

Kneser–Ney smoothing.Referring to Section2.7, instead of taking Equation (14) as is, we
smooth lower-order distributions in a similar fashion as the highest-order distribution in order
to handle data sparsity in the lower-order distributions. That is, for alln-gram models below
the highest level we take

pKN(wi |w
i−1
i−n+1) =

max{N1+(·w
i
i−n+1)− D, 0}∑

wi
N1+(·w

i
i−n+1)

+
D∑

wi
N1+(·w

i
i−n+1)

N1+(w
i−1
i−n+1·)pKN(wi |w

i−1
i−n+2).

We end the model recursion by taking the zeroth-order distribution to be the uniform distribu-
tion. Also, instead of a singleD over the whole model we use a separateDn for eachn-gram
level. The algorithmkneser-ney sets theDn parameters by optimizing the perplexity of
held-out data. The methodkneser-ney-fix sets theDn parameters using Equation (11) as
suggested in the original paper.

Modified Kneser–Ney smoothing.The implementationkneser-ney-mod is identical to the
implementationkneser-ney, with the exception that three discount parameters,Dn,1, Dn,2,
andDn,3+, are used at eachn-gram level instead of just a single discountDn.

The algorithmkneser-ney-mod-fix is identical tokneser-ney-mod, except that the
discount parameters are set using Equation (17) instead of by being optimized on held-out
data. The implementationkneser-ney-mod-backoff is the backoff version of the interpo-
lated algorithmkneser-ney-mod.

4.2. Parameter setting

In this section, we discuss how the setting of smoothing parameters affects performance. In
Figure1, we give an example of the sensitivity of smoothing algorithms to parameter values:



S. F. Chen and J. Goodman 373

0.001

–0.4

–0.2

0

0.2

0.4

0.6

D
if

f.
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

ba
se

lin
e 

(b
its

/to
ke

n)

D
if

f.
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

ba
se

lin
e 

(b
its

/to
ke

n)

0.8

1

1.2

1.4

0.01 0.1

Delta Minimum number of counts per bucket

Performance of katz with respect to delta
Performance of jelinek-mercer

 with respect to c-min

1 10

45 000 sent

10 000 000 sent

1 000 000 sent

10 000 sent

1000 sent

100 sent

100 1

–0.1

–0.09

–0.08

–0.07

–0.06

–0.05

–0.04

10 100 1000 10 000

Figure 1. Performance relative to baseline algorithmjelinek-mercer-baseline of
algorithmskatz andjelinek-mercer with respect to parametersδ andcmin,
respectively, over several training set sizes.

we show how the value of the parameterδ (which controls unigram smoothing) affects the
performance of thekatz algorithm, and how the value of the parametercmin (which deter-
mines bucket size) affects the performance ofjelinek-mercer. Note that poor parameter
setting can lead to very significant losses in performance. In Figure1, we see differences in
entropy from several hundredths of a bit to over a bit. Also, we see that the optimal value of
a parameter varies with training set size. Thus, it is important to optimize parameter values
to meaningfully compare smoothing techniques, and this optimization should be specific to
the given training set.

In each of our experiments, optimal values for the parameters of each method were search-
ed for using Powell’s search algorithm (Press, Flannery, Teukolsky & Vetterling, 1988). Pa-
rameters were chosen to optimize the cross-entropy of a held-out set associated with each
training set. More specifically, as described in Section4.3 there are three held-out sets asso-
ciated with each training set, and parameter optimization was performed using the first of the
three. For instances of Jelinek–Mercer smoothing, theλs were trained using the Baum–Welch
algorithm on the second of the three held-out sets; all other parameters were optimized using
Powell’s algorithm on the first set.

To constrain the parameter search in our main experiments, we searched only those pa-
rameters that were found to noticeably affect performance in preliminary experiments over
several data sizes. Details of these experiments and their results can be found elsewhere
(Chen & Goodman, 1998).

4.3. Data

We used data from the Brown corpus, the North American Business (NAB) news corpus, the
Switchboard corpus, and the Broadcast News (BN) corpus, all of which we obtained from the
Linguistic Data Consortium. The Brown corpus (Kucera and Francis, 1967) consists of one
million words of text from various sources. For Brown experiments, we used the vocabulary
of all 53 850 distinct words in the corpus. The NAB corpus consists of 110 million words of
Associated Press (AP) text from 1988–1990, 98 million words of Wall Street Journal (WSJ)
text from 1990–1995, and 35 million words of San Jose Mercury News (SJM) text from
1991. We used the 20 000 word vocabulary supplied for the 1995 ARPA speech recognition
evaluation (Stern, 1996). For the NAB corpus, we primarily used the Wall Street Journal
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text, and only used the other text if more than 98 million words of data was required. We
refer to this data as the WSJ/NAB corpus. The Switchboard data is three million words of
telephone conversation transcriptions (Godfrey, Holliman & McDaniel, 1992). We used the
9800 word vocabulary created byFinkeet al. (1997). The Broadcast News text (Rudnicky,
1996) consists of 130 million words of transcriptions of television and radio news shows
from 1992–1996. We used the 50 000 word vocabulary developed byPlacewayet al. (1997).

For all corpora, any out-of-vocabulary words were mapped to a distinguished token and
otherwise treated in the same fashion as all other words. These tokens were included in the
calculation of cross-entropy. The Brown corpus was segmented into sentences manually, the
Switchboard corpus was segmented using turn boundaries, and the other corpora were seg-
mented automatically using transcriber punctuation. The resulting average sentence length is
about 21 words in the Brown corpus, 22 in Associated Press, 23 in Wall Street Journal, 20 in
San Jose Mercury News, 16 in Switchboard, and 15 in Broadcast News.

For each experiment, we selected three segments of held-out data along with the segment
of training data. These four segments were chosen to be adjacent in the original corpus and
disjoint, the held-out segments following the training. The first two held-out segments were
used to select the parameters of each smoothing algorithm, and the last held-out segment
was used as the test data for performance evaluation. The reason that two segments were
reserved for parameter selection instead of one is described in Section4.2. For experiments
over multiple training set sizes, the different training sets share the same held-out sets. For
the news corpora, which were ordered chronologically, the held-out sets contain the most
recent data in the corpora while the training sets contain data adjacent and preceding in time
to the held-out sets. In experiments with multiple runs on the same training set size, the data
segments of each run are completely disjoint. Each piece of held-out data was chosen to be
2500 sentences, or roughly 50 000 words. In selecting held-out sets, no effort was made to
preserve the proportion of data from different news sources (in Broadcast News) and factors
such as speaker identity and topic (in Switchboard) were ignored.

The decision to use the same held-out set size regardless of training set size does not
necessarily reflect practice well. For example, if the training set size is less than 50 000 words
then it is not realistic to have this much held-out data available. However, we made this choice
to avoid considering the training vs. held-out data tradeoff for each data size. In addition, the
held-out data is used to optimize typically very few parameters, so in practice small held-
out sets are generally adequate, and perhaps can be avoided altogether with techniques such
as deleted estimation. Another technique is to use some held-out data to find smoothing
parameter values, and then to fold that held-out data back into the training data and to rebuild
the models.

To give some flavor about how the strategy used to select a held-out set affects perfor-
mance, we ran two small sets of experiments with the algorithmsjelinek-mercer and
kneser-ney-mod investigating how held-out set size and how folding back the held-out set
into the training set affects cross-entropy. On the left in Figure2, we display the effect of
held-out set size on the performance ofjelinek-mercer over three training set sizes on the
Broadcast News corpus. Performance is calculated relative to the cross-entropy yielded by
using a 2500 sentence held-out set for that training set size. Forjelinek-mercer smooth-
ing, which can have hundreds ofλ parameters or more, the size of the held-out set can have a
moderate effect. For held-out sets much smaller than the baseline size, test cross-entropy can
be up to 0·03 bits/word higher, which is approximately equivalent to a 2% perplexity differ-
ence. However, even when the held-out set is a factor of four larger than the baseline size of
2500 sentences, we see an improvement of at most 0·01 bits/word. As we will see later, these
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Figure 2. On the left, performance relative to baseline held-out set size
(2500 sentences) ofjelinek-mercer for several held-out set sizes; on the right,
performance relative to baseline held-out methodology ofjelinek-mercer for
alternative held-out methodologies.

differences are much smaller than the typical difference in performance between smoothing
algorithms. Forkneser-ney-mod smoothing which has about 10 parameters, held-out set
size has little effect, typically less than 0·005 bits/word.

On the right in Figure2, we display how folding back the held-out set into the training set
after smoothing parameter optimization affects performance over different training set sizes
for jelinek-mercer. Performance is calculated relative to the cross-entropy of our default
methodology of not folding the held-out set back into the training set after parameter opti-
mization. Thefold-backline corresponds to the case where the held-out set used to optimize
parameters is later folded back into the training set; and theextraline corresponds to the case
where after folding the held-out data back into the training, an additional held-out set is used
to re-optimize the smoothing parameters. As would be expected, for small training set sizes
performance is augmented significantly when the held-out data is folded back in, as this in-
creases the training set size noticeably. However, for training set sizes of 100 000 sentences or
more, this improvement becomes negligible. The difference between thefold-backandextra
lines represents the benefit of using a held-out set disjoint from the training set to optimize pa-
rameters. This difference can be noticeable forjelinek-mercer for smaller datasets. While
not shown,kneser-ney-mod exhibits behavior similar to that shown in Figure2 except that
the difference between thefold-backandextra lines is negligible.

5. Results

In this section, we present the results of our main experiments. In Section5.1, we present
the performance of various algorithms for different training set sizes on different corpora
for both bigram and trigram models. We demonstrate that the relative performance of dif-
ferent smoothing methods can vary significantly as conditions vary; however, Kneser–Ney
smoothing and variations consistently outperform all other methods.

In Section5.2, we present a more detailed analysis of performance, rating different tech-
niques on how well they perform onn-grams with a particular count in the training data,
e.g.n-grams that have occurred exactly once in the training data. We find thatkatz most
accurately smoothsn-grams with large counts, whilekneser-ney-mod is best for small
counts. We then show the relative impact on performance of small counts and large counts
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Figure 3. Cross-entropy of the baseline algorithmjelinek-mercer-baseline the
on test set over various training set sizes; Brown, Broadcast News, Switchboard, and
WSJ/NAB corpora.

for different training set sizes andn-gram orders, and use this data to explain the variation in
performance of different algorithms in different situations.

In Section5.3, we present experiments with 4-gram and 5-gram models, withn-gram
models with count cutoffs (i.e. models that ignoren-grams with fewer than some number of
counts in the training data), and experiments that examine how cross-entropy is related to
word-error rate in speech recognition.

5.1. Overall results

As mentioned earlier, we evaluate smoothing methods through their cross-entropy on test
data, as described in Section1.1. In Figure 3, we display the cross-entropy of our base-
line smoothing method,jelinek-mercer-baseline, over a variety of training set sizes
for both bigram and trigram models on all four corpora described in Section4.3. We see
that cross-entropy decreases steadily as the training set used grows in size; this decrease is
somewhat slower than linear in the logarithm of the training set size. Furthermore, we see
that the entropies of different corpora can be very different, and that trigram models perform
substantially better than bigram models only for larger training sets.

In the following discussion, we will primarily report the performance of a smoothing algo-
rithm as the difference of its cross-entropy on a test set from the cross-entropy ofjelinek-
mercer-baseline with the same training set. Fixed differences in cross-entropy are equiv-
alent to fixed ratios in perplexity. For example, a 1% decrease in perplexity is equivalent to
a 0·014 bits/word decrease in entropy, and a 10% decrease in perplexity is equivalent to a
0·152 bits/word decrease in entropy.

Unless noted, all of the points in each graph represent a single run on a single training and
test set. To give some idea about the magnitude of the error in our results, we ran a set of
experiments where for each training set size, we ran 10 experiments on completely disjoint
datasets (training and test). We calculated the empirical mean and the standard error (of the
mean) over these 10 runs; these values are displayed in Figures4 and5. In Figure4, we
display the absolute cross-entropy of the baseline algorithm,jelinek-mercer-baseline,
on the Switchboard and Broadcast News corpora for bigram and trigram models over a range
of training set sizes. The standard error on the Switchboard runs was very small; on Broad-
cast News, the variation was relatively large, comparable to the differences in performance
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between smoothing algorithms. In Figure5, we display the performance of a number of
smoothing algorithms relative to the baseline algorithm on the Broadcast News and Switch-
board corpora for trigram models on a range of training set sizes. We see that the varia-
tion in cross-entropy relative to the baseline is generally fairly small, much smaller than
the difference in performance between algorithms. Hence, while the variation in absolute
cross-entropies is large, the variation in relative cross-entropies is small and we can make
meaningful statements about the relative performance of algorithms in this domain.

However, in later graphs each point will represent a single run instead of an average over 10
runs, and thus our uncertainty about the position of each point (the standard deviation of our
estimate of mean relative cross-entropy) will be a factor of about

√
10 larger than the values

plotted in Figure5. With these larger deviations, the relative performance of two algorithms
with similar performance may be difficult to determine from a single pair of points. However,
we believe that an accurate and precise picture of relative performance can be gleaned from
the graphs to be presented later due to the vast overall number of experiments performed:
most experiments are carried out over a variety of training set sizes and on each of four
independent corpora. Relative performance trends are largely consistent over these runs.
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Figure 6. Performance relative to baseline of various algorithms on all four corpora,
bigram and trigram models, over various training set sizes.

Nevertheless, there is one phenomenon that seems to adversely and significantly affect the
performance of a certain group of algorithms on a small number of datasets; e.g. see the
points corresponding to a training set size of 30 000 sentences on the Switchboard corpus
in Figure6. We discovered that this phenomenon was caused by the duplication of a long
segment of text in the training set. An analysis and discussion of this anomaly is presented in
the extended version of this paper.

5.1.1. Overall performance differences

In Figure6, we display the performance of various algorithms relative to the baseline al-
gorithm jelinek-mercer-baseline over a variety of training set sizes, for bigram and



S. F. Chen and J. Goodman 379

trigram models, and for each of the four corpora described in Section4.3. These graphs do
not include all algorithm implementations; they are meant only to provide an overall picture
of the relative performance of different algorithm types. The performance of other methods
are given in later sections.

From these graphs, we see that the methodskneser-ney andkneser-ney-mod consis-
tently outperform all other algorithms, over all training set sizes and corpora, and for both
bigram and trigram models. These methods also outperform all algorithms not shown in the
graphs, except for other variations of Kneser–Ney smoothing. In Section5.2, we will show
that this excellent performance is due to the modified backoff distributions that Kneser–Ney
smoothing employs, as described in Section2.7.

The algorithmskatz andjelinek-mercer generally yield the next best performance.
Both perform substantially better than the baseline method in almost all situations, except
for cases with very little training data. The algorithmjelinek-mercer performs better than
katz in sparse data situations, and the reverse is true when there is much data. For example,
katz performs better on Broadcast News and WSJ/NAB trigram models for training sets
larger than 50 000–100 000 sentences; for bigram models the cross-over point is generally
lower. In Section5.2, we will explain this variation in performance relative to training set size
by showing thatkatz is better at smoothing larger counts; these counts are more prevalent in
larger datasets.

The worst of the displayed algorithms (not including the baseline) are the algorithms
abs-disc-interp andwitten-bell-backoff. The methodabs-disc-interp generally
outperforms the baseline algorithm, though not for very small datasets. The methodwitten-
bell-backoff performs poorly, much worse than the baseline, for smaller datasets. Both of
these algorithms are superior to the baseline for very large datasets; in these situations, they
are competitive with the algorithmskatz andjelinek-mercer.

These graphs make it apparent that the relative performance of smoothing techniques can
vary dramatically over training set size,n-gram order, and training corpus. For example,
the methodwitten-bell-backoff performs extremely poorly for small training sets but
competitively on very large training sets. There are numerous instances where the relative
performance of two methods reverse over different training set sizes, and this cross-over
point varies widely overn-gram order or corpus. Thus, it is not sufficient to run experiments
on one or two datasets for a single training set size to reasonably characterize the performance
of a smoothing algorithm, as is the typical methodology in previous work.

5.1.2. Additive smoothing

In Figure7, we display the performance of theplus-one andplus-delta algorithms rela-
tive to the baseline algorithmjelinek-mercer-baseline for bigram and trigram models
on the WSJ/NAB corpus over a range of training set sizes. In general, these algorithms per-
form much worse than the baseline algorithm, except for situations with a wealth of data. For
example,plus-delta is competitive with the baseline method when using a training set of
10 000 000 sentences for a bigram model on WSJ/NAB data. Though not shown, these algo-
rithms have similar performance on the other three corpora.Gale and Church (1990, 1994)
further discuss the performance of these algorithms.

5.1.3. Backoff vs. interpolation

In this section, we compare the performance between the backoff and interpolated versions of
several smoothing algorithms. We implemented three pairs of algorithms that differ only in
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Figure 7. Performance relative to baseline ofplus-one andplus-delta algorithms
on WSJ/NAB corpus, bigram and trigram models.
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Witten–Bell smoothing, absolute discounting, and modified Kneser–Ney smoothing
on Broadcast News corpus, bigram and trigram models.

the backoff strategy used:witten-bell-interp andwitten-bell-backoff, abs-disc-
interp andabs-disc-backoff, andkneser-ney-mod andkneser-ney-mod-backoff.
In Figure8, we display the performance of all of these algorithms relative to the baseline
algorithm jelinek-mercer-baseline for bigram and trigram models on the Broadcast
News corpus over a range of training set sizes. While not shown, these algorithms have
similar performance on the other three corpora.

We see that one class of algorithm does not always outperform the other. For Witten–Bell
smoothing, the backoff version consistently outperforms the interpolated version; for mod-
ified Kneser–Ney smoothing, the interpolated version consistently outperforms the backoff
version; and for absolute discounting, the interpolated version works better on small datasets
but worse on large datasets. In Section5.2, we present an analysis that partially explains the
relative performance of backoff and interpolated algorithms.



S. F. Chen and J. Goodman 381

5.1.4. Kneser–Ney smoothing and variations

In this section, we compare the performance of the different variations of Kneser–Ney
smoothing that we implemented:kneser-ney, kneser-ney-mod, kneser-ney-fix, and
kneser-ney-mod-fix. We do not discuss the performance of methodkneser-ney-mod-
backoff here, as this was presented in Section5.1.3.

At the top of Figure9, we display the performance ofkneser-ney andkneser-ney-mod
relative to the baseline algorithmjelinek-mercer-baseline for bigram and trigram mod-
els on the WSJ/NAB corpus over a range of training set sizes. Recall that these algorithms
differ in that for eachn-gram level,kneser-ney has a single discountDn for each count,
while kneser-ney-mod has three discountsDn,1, Dn,2, and Dn,3+ for n-grams with one
count, two counts, and three or more counts, respectively, as described in Section4.1. We see
thatkneser-ney-mod consistently outperformskneser-ney over all training set sizes and
for both bigram and trigram models. While not shown, these algorithms have similar behavior
on the other three corpora. Their difference in performance is generally considerable, though
is smaller for very large datasets. In Section5.2, we explain this difference by showing that
the correct average discount forn-grams with one count or two counts deviates substantially
from the correct average discount for larger counts.

In the middle of Figure9, we display the performance ofkneser-ney andkneser-ney-
fix for bigram and trigram models on the WSJ/NAB corpus over a range of training set
sizes. Recall that these algorithms differ in that forkneser-ney we set the parametersDn by
optimizing the cross-entropy of held-out data, while forkneser-ney-fix these parameters
are set using the formula suggested byKneser and Ney (1995). While their performances
are sometimes very close, especially for large datasets, we see thatkneser-ney consistently
outperformskneser-ney-fix.

At the bottom of Figure9, we display the performance ofkneser-ney-mod andkneser-
ney-mod-fix for bigram and trigram models on the WSJ/NAB corpus over a range of train-
ing set sizes. As withkneser-ney andkneser-ney-fix, these algorithms differ in whether
the discounts are set using held-out data or using a formula based on training set counts.
We see similar behavior as before: while their performance is often close, especially for
large datasets,kneser-ney-mod consistently outperformskneser-ney-mod-fix. While
the-fix variations have the advantage of not having any external parameters that need to
be optimized, we see that we can generally do a little better by optimizing parameters on
held-out data. In addition, in situations where we have held-out data known to be similar to
the test data, the variations with free parameters should do well even if the training data does
not exactly match the test data.

5.2. Count-by-count analysis

In order to paint a more detailed picture of the performance of various algorithms, instead
of just looking at the overall cross-entropy of a test set, we partition test sets according to
how often eachn-gram in the test set occurred in the training data, and examine performance
within each of these partitions. More specifically, the cross-entropy of ann-gram modelp of
a test setT can be rewritten as

Hp(T) = −
1

WT

∑
wi

i−n+1

cT (w
i
i−n+1) log2 p(wi |w

i−1
i−n+1)



382 An empirical study of smoothing techniques for language modeling

100

–0.2

–0.15

–0.1

D
if

f.
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

ba
se

lin
e 

(b
its

/to
ke

n)
D

if
f.

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
ba

se
lin

e 
(b

its
/to

ke
n)

D
if

f.
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

ba
se

lin
e 

(b
its

/to
ke

n)

D
if

f.
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

ba
se

lin
e 

(b
its

/to
ke

n)
D

if
f.

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
ba

se
lin

e 
(b

its
/to

ke
n)

D
if

f.
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

ba
se

lin
e 

(b
its

/to
ke

n)

–0.05

0
jelinek-mercer-baseline jelinek-mercer-baseline

jelinek-mercer-baseline jelinek-mercer-baseline

jelinek-mercer-baseline jelinek-mercer-baseline

kneser-ney-mod-fix
kneser-ney-mod-fix

kneser-ney-fix

kneser-ney-fix

kneser-ney

kneser-ney

kneser-ney

kneser-ney-mod
kneser-ney-mod

kneser-ney-mod
kneser-ney-mod

–0.2

–0.15

–0.1

–0.05

0

–0.2

–0.15

–0.1

–0.05

0

1000 10 000

Training set size (sentences) Training set size (sentences)

Training set size (sentences) Training set size (sentences)

Relative performance of algorithms on WSJ/NAB corpus, 2-gram Relative performance of algorithms on WSJ/NAB corpus, 3-gram

Relative performance of algorithms on WSJ/NAB corpus, 2-gram Relative performance of algorithms on WSJ/NAB corpus, 3-gram

Relative performance of algorithms on WSJ/NAB corpus, 2-gram Relative performance of algorithms on WSJ/NAB corpus, 3-gram

Training set size (sentences) Training set size (sentences)

100 000 1 × 106 1 × 107 100

–0.25

–0.2

–0.15

–0.1

–0.05

0

–0.25

–0.2

–0.15

–0.1

–0.05

0

0.05

1000 10 000 100 000 1 × 106 1 × 107

100 1000 10 000 100 000 1 × 106 1 × 107 100 1000 10 000 100 000 1 × 106 1 × 107

100 1000 10 000 100 000 1 × 106 1 × 107 100

–0.25

–0.2

–0.15

–0.1

–0.05

0

1000 10 000 100 000 1 × 106 1 × 107

kneser-ney

Figure 9. Performance relative to baseline ofkneser-ney, kneser-ney-mod,
kneser-ney-fix, andkneser-ney-mod-fix algorithms on WSJ/NAB corpus,
bigram and trigram models.

where the sum ranges over alln-grams andcT (w
i
i−n+1) is the number of occurrences of the

n-gramwi
i−n+1 in the test data. Instead of summing overall n-grams, consider summing only

overn-grams with exactlyr counts in the training data, for somer ; i.e. consider the value

Hp,r (T) = −
1

WT

∑
wi

i−n+1:c(w
i
i−n+1)=r

cT (w
i
i−n+1) log2 p(wi |w

i−1
i−n+1). (18)

Then, we might compare the values ofHp,r (T) between modelsp for eachr to yield a more
detailed picture of performance.

However, there are two orthogonal components that determine the valueHp,r (T), and it is
informative to separate them. First, there is the total probability massMp,r (T) that a modelp
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uses to predictn-grams with exactlyr counts given the histories in the test set, i.e. the value

Mp,r (T) =
∑

wi
i−n+1:c(w

i
i−n+1)=r

cT (w
i−1
i−n+1)p(wi |w

i−1
i−n+1).

An interpretation of the valueMp,r (T) is theexpected countin the test setT of n-grams with
r counts according to modelp, given the histories in the test set. Ideally, the value ofMp,r (T)
should matchcr (T), the actual number ofn-grams in the test setT that haver counts in the
training data, where

cr (T) =
∑

wi
i−n+1:c(w

i
i−n+1)=r

cT (w
i
i−n+1).

The valueMp,r (T) is proportional to the average probability a modelp assigns ton-grams
with r counts; an algorithm with a largerMp,r (T) will tend to have a lowerHp,r (T).

Now, consider a metric similar toHp,r (T) where we factor out the contribution of
Mp,r (T), so that algorithms with a largerMp,r (T) will not tend to receive a better score.
That is, consider a metric where we scale probabilities so that all algorithms devote the same
total probability ton-grams withr counts for eachr . In particular, we use the value

H∗p,r (T) = −
1

WT

∑
wi

i−n+1:c(w
i
i−n+1)=r

cT (w
i
i−n+1) log2

cr (T)

Mp,r (T)
p(wi |w

i−1
i−n+1).

This is similar to defining an (improper) distribution

p∗(wi |w
i−1
i−n+1) =

cr (T)

Mp,r (T)
p(wi |w

i−1
i−n+1)

where we are assuredMp∗,r (T) = cr (T) as is ideal, and calculating the performance
Hp∗,r (T) for this new model. As the measureH∗p,r (T) assures that each model predicts each
countr with the same total mass, this value just measures how well a model distributes its
probability mass amongn-grams with the same count.

To recap, we can use the measureMp,r (T) to determine how well a smoothed modelp
assigns probabilities on average ton-grams withr counts in the test data; in particular, we
want Mp,r (T)

cr (T)
(or the ratio between expected and actual counts in the test data) to be near 1

for all r . The valueH∗p,r (T), which we refer to asnormalized cross-entropyor normalized
performance, measures how well a smoothed modelp distributes probabilities betweenn-
grams with the same count; as with cross-entropy, the lower the better.

We ran experiments with count-by-count analysis for two training set sizes, 30 000 sen-
tences (about 750 000 words) and 3 700 000 sentences (about 75 million words), on the
WSJ/NAB corpus using a test set of about 10 million words.

5.2.1. Expected vs. actual counts, overall

In Figure 10, we display the ratio of expected to actual countsMp,r (T)
cr (T)

for various algo-
rithms on the larger training set for trigram models, separated into low and high counts for
clarity.5 For low counts, we see that the algorithmskatz andkneser-ney-mod come clos-
est to the ideal value of 1. The values farthest from the ideal are attained by the methods

5For the zero-count case, we exclude thosen-gramswi
i−n+1 for which the corresponding historywi−1

i−n+1 has no

counts, i.e. for which
∑
wi

c(wi−1
i−n+1wi ) = 0.
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jelinek-mercer-baseline, jelinek-mercer, andwitten-bell-backoff. These al-
gorithms assign considerably too much probability on average ton-grams with low counts.
For high counts,katz is nearest to the ideal. Results for bigram models are similar.

To explain these behaviors, we calculate theideal average discountfor each count. That
is, consider alln-gramswi

i−n+1 with count r . Let us assume that we perform smoothing
by pretending that all suchn-grams actually receivēr counts; i.e. instead of the maximum-
likelihood distribution

pML (wi |w
i−1
i−n+1) =

r

c(wi−1
i−n+1)

we take

p′(wi |w
i−1
i−n+1) =

r̄

c(wi−1
i−n+1)

.

Then, we can calculate the value ofr̄ such that the ideal probability massMp′,r (T) = cr (T)
is achieved. We taker − r̄ for the idealr̄ to be theideal average discountfor countr . This is
an estimate of the correct number of counts on average to take away from alln-grams with
r counts in the training data. On the left of Figure11, we graph the empirical estimate of
this value forr ≤ 13 for bigram and trigram models for a one million and 200 million word
training set. (For values abover = 13, the graph becomes very noisy due to data sparsity.)
We can see that for very smallr the correct discount rises quickly, and then levels off.

In other words, it seems that a scheme that discounts differentr uniformly is more appro-
priate than a scheme that assigns discounts that are proportional tor . Algorithms that fall un-
der the former category includeabs-disc-interp andkneser-ney; these algorithms use a
fixed discountDn over all counts. Algorithms that fall in the latter category include all three
algorithms that fared poorly in Figure10: jelinek-mercer-baseline, jelinek-mercer,
and witten-bell-backoff. These algorithms are all of the form given in Equation (4)
where the discount of ann-gram with countr is approximatelyr − λr . Because discounts
are linear inr when ideally they should be roughly constant, discounts for these algorithms
are too low for low counts and too high for high counts.

Katz smoothing chooses discounts according to the Good–Turing discount, which theo-
retically should estimate the correct average discount well, and we find this to be the case
empirically. WhileKatz assigns the correct total mass ton-grams with a particular count, it
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on the right, cumulative fraction of cross-entropy on the test set devoted ton-grams
with r or fewer counts in training data for variousr on WSJ/NAB corpus,
jelinek-mercer-baseline smoothing, trigram model.

does not perform particularly well because it does not distribute probabilities well between
n-grams with the same count, as we shall see when we examine its normalized cross-entropy.

The algorithmkneser-ney-mod uses a uniform discountDn,3+ for all counts three and
above, but separate discountsDn,1 and Dn,2 for one and two counts. This modification of
Kneser–Ney smoothing was motivated by the observation in Figure11 that smaller counts
have a very different ideal average discount than larger counts. Indeed, in Figure10 we see
that kneser-ney-mod is much closer to the ideal thankneser-ney for low counts. (The
performance gain in using separate discounts for counts larger than two is marginal.)

5.2.2. Normalized performance, overall

In Figure12, we display the normalized cross-entropyH∗p,r (T) of various algorithms relative
to the normalized cross-entropy of the baseline algorithm on the 75 million word training set
for trigram models, separated into low and high counts for clarity. For the points on the graph
with a count of 0, we exclude thosen-gramswi

i−n+1 for which the corresponding history

wi−1
i−n+1 has no counts, i.e. for which

∑
wi

c(wi−1
i−n+1wi ) = 0. The associated values for these

cases are displayed under a count value of−1.
We see thatkneser-ney andkneser-ney-mod considerably outperform all other algo-

rithms on low counts, especially for the point with a count value of zero. We attribute this
to the modified backoff distribution that is used in Kneser–Ney smoothing as described in
Section2.7. As the ratio of expected to actual counts for these algorithms is not significantly
superior to those for all other algorithms, and as their normalized performance on high counts
is good but not remarkable, we conclude that their excellent normalized performance on low
counts is the reason for their consistently superior overall performance.

The algorithms with the worst normalized performance on low (non-zero) counts arekatz
andwitten-bell-backoff; these are also the only two algorithms shown that use backoff
instead of interpolation. Thus, it seems that for low counts lower-order distributions provide
valuable information about the correct amount to discount, and thus interpolation is superior
for these situations. Backoff models do not use lower-order distributions to help estimate the
probability ofn-grams with low (non-zero) counts.

For large counts, the two worst performing algorithms arejelinek-mercer and
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Figure 12.Normalized cross-entropy forn-grams with a given count in training data
for various smoothing algorithms, low counts and high counts, WSJ/NAB corpus,
trigram model.

jelinek-mercer-baseline. We hypothesize that the combination of being an interpolated
model and using linear discounting leads to large variation in the discount ofn-grams with
a given large count, while a more ideal strategy is to assign a fairly constant discount as in
Katz smoothing. All of the other algorithms are very near to each other in terms of normal-
ized performance on large counts; we guess that it does not matter much how large counts
are smoothed as long as they are not modified too much.

5.2.3. Performance variation over training set size

Given the preceding analysis, it is relevant to note what fraction of the total entropy of the
test data is associated withn-grams of different counts, to determine how the performance for
each count affects overall performance. On the right in Figure11, we display the cumulative
values ofHp,r (T)

Hp(T)
(see Equation (18)) for different countsr for the baseline algorithm over a

range of training set sizes for trigram models on the WSJ/NAB corpus. A line labeledr ≤ k

graphs the fraction of the entropy devoted ton-grams with up tok counts, i.e.
∑k

r=0 Hp,r (T)
Hp(T)

.
Actually, this is not quite accurate, as we exclude from this value the contribution from all
n-gramswi

i−n+1 for which the corresponding historywi−1
i−n+1 has no counts. The contribution

from thesen-grams represents the area above ther ≤ ∞ line.
As would be expected, the proportion of the entropy devoted ton-grams with high counts

grows as the size of the training set grows. More surprising is the fraction of the entropy
devoted to low counts in trigram models even for very large training sets; for a training set of
10 million sentences about 40% of the entropy comes from trigrams with zero counts in the
training data. This explains the large impact that performance on low counts has on overall
performance, and why modified Kneser–Ney smoothing has the best overall performance
even though it excels mostly on low counts only.

In combination with the previous analysis, this data also explains some of the variation in
the relative performance of different algorithms over different training set sizes and between
bigram and trigram models. In particular, algorithms that perform well on low counts will
perform well overall when low counts form a larger fraction of the total entropy (i.e. small
datasets), and conversely, algorithms that perform well on high counts will perform better
on large datasets. For example, the observation thatjelinek-mercer outperformskatz on
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trigram model; left graph shows normalized cross-entropy forn-grams with a given
count in training data; right graph shows the ratio of expected number to actual
number in the test set ofn-grams with a given count in training data.

small datasets whilekatz is superior on large datasets is explained by the fact thatkatz is
superior on high counts whilejelinek-mercer is superior on low counts. Similarly, since
bigram models contain more high counts than trigram models on the same size data,katz
performs better on bigram models than on trigram models.

5.2.4. Backoff vs. interpolation

In the left graph of Figure13, we display the normalized performance of the backoff and
interpolated versions of modified Kneser–Ney smoothing over a range of counts for trigram
models. We can see that the interpolated algorithm greatly outperforms the backoff algorithm
on low (positive) counts. As discussed in Section5.2.2, it seems that for low counts lower-
order distributions provide valuable information about the correct amount to discount, and
thus interpolation is superior for these situations. Though not shown, this behavior holds for
bigram models and with the backoff and interpolated versions of Witten–Bell smoothing and
absolute discounting.

In the right graph of Figure13, we display the ratio of expected to actual counts of the
backoff and interpolated versions of modified Kneser–Ney smoothing over a range of counts
for trigram models. We see that the backoff version is generally closer to the ideal according
to this criterion. We see similar results for bigram models and for the backoff and interpolated
versions of absolute discounting. For Witten–Bell smoothing, the backoff version is closer to
the ideal only for small counts, but by a large amount.

We hypothesize that the relative strength of these two opposing influences determine the
relative performance of the backoff and interpolated versions of an algorithm, which varies
between algorithms as seen in Section5.1.3.

5.3. Auxiliary experiments

5.3.1. Higher order n-gram models

Due to the increasing speed and memory of computers, there has been some use of higher-
ordern-gram models such as 4-gram and 5-gram models in speech recognition in recent years
(Seymore, Chen, Eskenazi & Rosenfeld, 1997; Wenget al., 1997). In this section, we examine
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Figure 14.Performance relative to baseline of various algorithms on WSJ/NAB
corpus, 4-gram and 5-gram models.

how various smoothing algorithms perform for these larger models. In the extended version
of this paper, we show that the advantages of higher-ordern-gram models over lower-order
models increase with the amount of training data. These increases can be quite considerable:
with several million sentences of training data, they can exceed 0·2 bits per word for a 5-gram
model as compared to a trigram model.

In Figure14, we display the relative performance of various smoothing algorithms relative
to the baseline method for 4-gram and 5-gram models over a range of training set sizes on
the WSJ/NAB corpus. Note that all of these models were built with no count cutoffs. Again,
we seekneser-ney andkneser-ney-mod consistently outperforming the other algorithms.
In addition, we see that algorithms that do not perform well on small datasets for bigram and
trigram models perform somewhat worse on these higher-order models, as the use of a larger
model exacerbates the sparse data problem. The methodskatz, abs-disc-interp, and
witten-bell-backoff perform about as well or worse than the baseline algorithm except
for the largest datasets. On the other hand,jelinek-mercer consistently outperforms the
baseline algorithm.

5.3.2. Count cutoffs

For large datasets,count cutoffsare often used to restrict the size of then-gram model con-
structed. With count cutoffs, alln-grams of a certain length with fewer than a given number
of occurrences in the training data are ignored in some fashion. How counts are “ignored”
is algorithm-specific, and has not generally been specified in the original descriptions of
previous smoothing algorithms. In these experiments, we implemented what we felt was
the most “natural” way to add cutoffs to various algorithms. The general strategy we took
was: forn-grams with counts below the cutoffs, we pretended they occurred zero times and
assigned probabilities through backoff/interpolation; forn-grams with counts above the cut-
offs, we assigned similar probabilites as in the non-cutoff case; and we adjusted the back-
off/interpolation scaling factors so that distributions were correctly normalized. The exact
descriptions of our cutoff implementations are given in the extended version of this paper.

To introduce the terminology we use to describe cutoff models, we use an example:
0-0-1 cutoffsfor a trigram model signals that all unigrams with 0 or fewer counts are ig-
nored, all bigrams with 0 or fewer counts are ignored, and all trigrams with 1 or fewer counts



S. F. Chen and J. Goodman 389

100
–0.1

–0.05

0

D
if

f.
 in

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 n
o

cu
to

ff
s 

(b
its

/to
ke

n)

D
if

f.
 in

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 n
o

cu
to

ff
s 

(b
its

/to
ke

n)0.05

0.1 0-1-1 cutoffs 0-1-1 cutoffs

0-0-1 cutoffs
0-0-1 cutoffs

0-0-2 cutoffs

0-0-2 cutoffs

no cutoffs

1000 10 000

Training set size (sentences) Training set size (sentences)

Relative performance of cutoffs on
WSJ/NAB corpus, trigram

Relative performance of cutoffs on
WSJ/NAB corpus, trigram

100 000 1 × 106 100

0

0.05

0.1

0.15

0.2

1000 1 × 10610 000 100 000

Figure 15.Performance relative to model with no count cutoffs of models with cutoffs
on WSJ/NAB corpus, trigram models,jelinek-mercer-baseline on the left,
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are ignored. Using cutoffs of one or two for bigrams and trigrams can greatly decrease the
size of a model, while yielding only a small degradation in performance.

In Figure15, we display the performance of trigram models with different cutoffs relative
to the corresponding model with no cutoffs forjelinek-mercer-baseline andkneser-
ney-mod smoothing on various training set sizes on the WSJ/NAB corpus. We see that for
kneser-ney-mod smoothing, models with higher cutoffs tend to perform more poorly as
would be expected. Forjelinek-mercer-baseline smoothing, we see that models with 0-
0-1 cutoffs actually outperform models with no cutoffs over most of the training set sizes. In
other words, it seems that the algorithmjelinek-mercer-baseline smooths trigrams with
one count so poorly that using these counts actually hurt performance.

In Figure 16, we display the performance of various smoothing algorithms for trigram
models for two different cutoffs over a range of training set sizes on the WSJ/NAB corpus.
Overall, we see that the ordering of algorithms by performance is largely unchanged from the
non-cutoff case;kneser-ney andkneser-ney-mod still yield the best performance. The
most significant difference is that our implementationabs-disc-interp performs more
poorly relative to the other algorithms; it generally performs worse than the baseline algo-
rithm, unlike in the non-cutoff case. In addition, the magnitudes of the differences in perfor-
mance seem to be less when cutoffs are used.

Recently, several more sophisticatedn-gram model pruning techniques have been devel-
oped (Kneser, 1996; Seymore & Rosenfeld, 1996; Stolcke, 1998). It remains to be seen how
smoothing interacts with these new techniques.

5.3.3. Cross-entropy and speech recognition

In this section, we briefly examine how the performance of a language model measured in
terms of cross-entropy correlates with speech recognition word-error rates using the language
model. More details about these experiments are given in the extended version of this paper.

We constructed trigram language models for each of four smoothing algorithms for five
different training set sizes (ranging from 1000 to 8 300 000 sentences) in the Broadcast News
domain; the algorithms, training set sizes, and the corresponding speech recognition word-
error rates are shown on the left in Figure17. All models were built with no count cutoffs
except for the largest training set, for which trigrams occurring only once in the training



390 An empirical study of smoothing techniques for language modeling

100
–0.2

–0.15

–0.1

–0.05

D
if

f.
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

ba
se

lin
e 

(b
its

/to
ke

n)

D
if

f.
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

ba
se

lin
e 

(b
its

/to
ke

n)

0

0.05

0.1

1000

kneser-ney-mod

kneser-ney-mod

kneser-ney
kneser-ney

jelinek-mercer
jelinek-mercer

jelinek-mercer-baseline

jelinek-mercer-baseline

abs-disc-interp

abs-disc-interpwitten-bell-backoff

witten-bell-backoff

katz

katz

10 000

Training set size (sentences) Training set size (sentences)

Rel. perf. of algs. on WSJ/NAB corpus,
3-gram, 0-0-1 cutoffs

Rel. perf. of algs. on WSJ/NAB corpus,
3-gram, 0-1-1 cutoffs

100 000 1 × 106 100

–0.1

–0.05

0

0.05

0.1

1000 10 000 100 000 1 × 106

Figure 16.Performance relative to baseline of various algorithms on WSJ/NAB
corpus, trigram model with 0-0-1 and 0-1-1 cutoffs.

1000

34

36

38

40

42

W
or

d-
er

ro
r 

ra
te

 o
n 

te
st

 s
et

 

W
or

d-
er

ro
r 

ra
te

 o
n 

te
st

 s
et

 

44

46

48

50

52

10 000 100 000
Training set sizes (sentences) Cross-entropy of test set

1 × 106 7
34

36

38

40

42

44

46

48

50

52
abs-disc-interp

katz
kneser-ney-fix
kneser-ney-mod

abs-disc-interp
katz

kneser-ney-fix
kneser-ney-mod

7.5 8 8.5 9 9.5 10 10.5

Figure 17.On the left, speech recognition word-error rate on the Broadcast News test
set over various training set sizes, trigram model, various smoothing algorithms; on
the right, relation between perplexity and speech recognition word-error rate on the
test set for the 20 language models.

data were excluded. On the right in Figure17, we graph the word-error rate vs. the test set
cross-entropy of each of the twenty models.

We can see that the linear correlation between cross-entropy and word-error rate is very
strong for this set of models. Thus, it seems that smoothing algorithms with lower cross-
entropies will generally lead to lower word-error rates when plugged into speech recognition
systems. For our particular dataset, we see an absolute reduction of about 5·4% in word-error
rate for every bit of reduction in cross-entropy. As seen in Section5.1, the difference in cross-
entropy between the best smoothing algorithm and a mediocre smoothing algorithm can be
0.2 bits or more, corresponding to about a 1% absolute difference in word-error rate. Hence,
the choice of smoothing algorithm can make a significant difference in speech recognition
performance.

6. Discussion

Smoothing is a fundamental technique for statistical modeling, important not only for lan-
guage modeling but for many other applications as well, e.g. prepositional phrase attach-
ment (Collins & Brooks, 1995), part-of-speech tagging (Church, 1988), and stochastic pars-
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ing (Magerman, 1994; Collins, 1997; Goodman, 1997). Whenever data sparsity is an issue,
smoothing can help performance, and data sparsity is almost always an issue in statistical
modeling. In the extreme case where there is so much training data that all parameters can be
accurately trained without smoothing, one can almost always expand the model, such as by
moving to a higher-ordern-gram model, to achieve improved performance.

To our knowledge, this is the first empirical comparison of smoothing techniques in lan-
guage modeling of such scope: no other study has systematically examined multiple training
data sizes, different corpora, or has performed automatic parameter optimization. We show
that in order to completely characterize the relative performance of two techniques, it is nec-
essary to consider multiple training set sizes and to try both bigram and trigram models.
In addition, we show that sub-optimal parameter selection can substantially affect relative
performance.

We created techniques for analyzing the count-by-count performance of different smooth-
ing techniques. This detailed analysis helps explain the relative performance of various al-
gorithms, and can help predict how different algorithms will perform in novel situations.
Using these tools, we found that several factors had a consistent effect on the performance of
smoothing algorithms.

• The factor with the largest influence is the use of a modified lower-order distribution
as in Kneser–Ney smoothing. This seemed to be the primary reason that the variations
of Kneser–Ney smoothing performed so well relative to the remaining algorithms.
• Absolute discounting is superior to linear discounting. As was shown earlier, the ideal

average discount for counts rises quickly for very low counts but is basically flat for
larger counts. However, the Good–Turing estimate can be used to predict this average
discount even better than absolute discounting, as was demonstrated byKatz smooth-
ing.
• In terms of normalized performance, interpolated models are significantly superior to

backoff models for low (non-zero) counts. This is because lower-order models provide
valuable information in determining the correct discount forn-grams with low counts.
• Adding free parameters to an algorithm and optimizing these parameters on held-out

data can improve the performance of an algorithm (though requires the availability of
a held-out set), e.g.kneser-ney-mod vs.kneser-ney-mod-fix.

Our algorithmkneser-ney-mod was designed to take advantage of all of these factors, and
it consistently outperformed all other algorithms. Performing just slightly worse is the al-
gorithm kneser-ney-mod-fix; this algorithm differs fromkneser-ney-mod in that dis-
counts are set using a formula based on training data counts. This algorithm has the practical
advantage that no external parameters need to be optimized on held-out data.

Though we measured the performance of smoothing algorithms primarily through the
cross-entropy of test data, we also performed experiments measuring the word-error rate
of speech recognition. In our experiments we found that when the only difference between
models is smoothing, the correlation between the two measures is quite strong, and that better
smoothing algorithms may lead to up to a 1% absolute improvement in word-error rate.

While we have systematically explored smoothing forn-gram language models, there re-
main many directions that need to be explored. Almost any statistical model, not justn-gram
models, can and should be smoothed, and further work will be needed to determine how well
the techniques described here transfer to other domains. However, the techniques we have
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developed, both for smoothing and for analyzing smoothing algorithm performance, should
prove useful not only for language modeling research but for other tasks as well.
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Nádas, A. (1984). Estimation of probabilities in the language model of the IBM speech recognition system.IEEE
Transactions on Acoustics, Speech and Signal Processing, 32, 859–861.
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