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Abstract

We survey the most widely-used algorithms for smoothing models for language
n-gram modeling. We then present an extensive empirical comparison of several
of these smoothing techniques, including those describelkliyek and Mercer
(1980; Katz (1987; Bell, Cleary and Witten (1990); Ney, Essen and Kneser
(1994), aniKneser and Ney (1995We investigate how factors such as training
data size, training corpus (e.g. Brown vs. Wall Street Journal), count cutoffs, and
n-gram order (bigram vs. trigram) affect the relative performance of these
methods, which is measured through the cross-entropy of test data. We find that
these factors can significantly affect the relative performance of models, with the
most significant factor being training data size. Since no previous comparisons
have examined these factors systematically, this is the first thorough
characterization of the relative performance of various algorithms. In addition, we
introduce methodologies for analyzing smoothing algorithm efficacy in detail, and
using these techniques we motivate a novel variation of Kneser—Ney smoothing
that consistently outperforms all other algorithms evaluated. Finally, results
showing that improved language model smoothing leads to improved speech
recognition performance are presented.

© 1999 Academic Press

1. Introduction

A language modeis a probability distributionp(s) over stringss that describes how of-
ten the strings occurs as a sentence in some domain of interest. Language models are em-
ployed in many tasks including speech recognition, optical character recognition, handwrit-
ing recognition, machine translation, and spelling correct©hufch, 1988 Brown et al,
1990 Kernighan, Church & Gale, 1996iull, 1992 Srihari & Baltus, 1992

The central goal of the most commonly used language models, trigram models, is to deter-
mine the probability of a word given the previous two worgéwi |wj _owj_1). The simplest
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way to approximate this probability is to compute

C(wij —2wi—1wj)
PmL (wi [wi —2wi-1) = ———————

C(wj—2wi—1)
i.e. the number of times the word sequenge ;w;_1w; occurs in some corpus of training
data divided by the number of times the word sequencew; _1 occurs. This value is called
themaximum likelihoodML) estimate.

Unfortunately, the maximum likelihood estimate can lead to poor performance in many
applications of language models. To give an example from the domain of speech recogni-
tion, if the correct transcription of an utterance contains a trigtgmw; _1wj that has never
occurred in the training data, we will hay®g_ (w;j |wi_2wj_1) = 0 which will preclude a
typical speech recognizer from selecting the correct transcription, regardless of how unam-
biguous the acoustic signal is.

Smoothings used to address this problem. The term smoothing describes techniques for
adjusting the maximum likelihood estimate of probabilities to produce more accurate proba-
bilities. The name comes from the fact that these techniques tend to make distributions more
uniform, by adjusting low probabilities such as zero probabilities upward, and high proba-
bilities downward. Not only do smoothing methods generally prevent zero probabilities, but
they also attempt to improve the accuracy of the model as a whole.

While smoothing is a central issue in language modeling, the literature lacks a definitive
comparison between the many existing techniques. Most previous studies that have compared
smoothing algorithmda\adas, 1984Katz, 1987 Church & Gale, 1991Kneser & Ney, 1995
MacKay & Peto, 199bhave only done so with a small number of methods (typically two) on
one or two corpora and using a single training set size. Perhaps the most complete previous
comparison is that dfley, Martin and Wessel (199,Aavhich compared a variety of smoothing
algorithms on three different training set sizes. However, this work did not consider all pop-
ular algorithms, and only considered data from a single source. Thus, it is currently difficult
for a researcher to intelligently choose among smoothing schemes.

In this work, we carry out an extensive empirical comparison of the most widely-used
smoothing techniques, including those describeddiinek and Mercer (1980Katz (1987;

Bell et al. (1990; Ney et al. (1994, andKneser and Ney (1995We carry out experiments

over many training set sizes on varied corpora usirgrams of various order (different

n), and show how these factors affect the relative performance of smoothing techniques.
For the methods with parameters that can be tuned to improve performance, we perform
an automated search for optimal values and show that sub-optimal parameter selection can
significantly decrease performance. To our knowledge, this is the first smoothing work that
systematically investigates any of these issues.

Our results make it apparent that previous evaluations of smoothing techniques have not
been thorough enough to provide an adequate characterization of the relative performance
of different algorithms. For instanc&atz (1987 compares his algorithm with an unspeci-
fied version of Jelinek—Mercer deleted estimation and Wédassmoothing 1984 using
a single training corpus and a single test set of 100 senteKaésconcludes that his algo-
rithm performs at least as well as Jelinek—Mercer smoothing\drthssmoothing. In Sec-
tion 5.1.1, we will show that, in fact, the relative performanceksdtz and Jelinek—Mercer
smoothing depends on training set size, with Jelinek—Mercer smoothing performing better on
smaller training sets, ariiatz smoothing performing better on larger sets.

In addition to evaluating the overall performance of various smoothing techniques, we
provide more detailed analyses of performance. We examine the performance of different
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algorithms onn-grams with particular numbers of counts in the training data; we find that
Katz smoothing performs well on-grams with large counts, while Kneser—Ney smoothing

is best for small counts. We calculate the relative impact on performance of small counts and
large counts for different training set sizes amdram orders, and use this data to explain
the variation in performance of different algorithms in different situations. Finally, we use
this detailed analysis to motivate a modification to Kneser—Ney smoothing; the resulting
algorithm consistently outperforms all other algorithms evaluated.

While smoothing is one technique for addressing sparse data issues, there are numerous
other techniques that can be applied, such as class-bagadn modelsBrown, Della Pietra,
de Souza, Lai & Mercer, 1992 or decision-tree model8g@hl, Brown, de Souza & Mercer,
1989. We will not address these other methods, but will instead constrain our discussion of
smoothing to techniques where the structure of a model is unchanged but where the method
used to estimate the probabilities of the model is modified. Smoothing can be applied to
these alternative models as well, and it remains to be seen whether improved smoothing for
word-based-gram models will lead to improved performance for these other mddels.

This paper is structured as follows: in the remainder of this section, we give a brief in-
troduction ton-gram models and discuss the performance metrics with which we evaluate
language models. In Sectidh we survey previous work on smoothimggram models. In
Section3, we describe our novel variation of Kneser—Ney smoothing. In Sedtiore dis-
cuss various aspects of our experimental methodology. In Ses;tiwe present the results of
all of our experiments. Finally, in Sectidhwe summarize the most important conclusions
of this work.

This work builds on our previously reported resear€én, 1996 Chen & Goodman,

1996. An extended version of this pape&t{en & Goodman, 1998s available; it contains a
tutorial introduction ton-gram models and smoothing, more complete descriptions of exist-
ing smoothing algorithms and our implementations of them, and more extensive experimental
results and analysis.

1.1. Background

The most widely-used language models, by far,;aggam language models. For a sentence
s composed of the words; - - - w;, we can expresp(s) as

p(s) = p(w1/(BOY) x p(w2[(BOSwy) x ---
x p(w [(BO§ws - - wi—1) x p(EO]|[(BOSwy - - - wy)
I+1
=] p(wi|(BOS /w1 - wi 1)
i=1
where the tokeriBOS) is a distinguished token signaling the beginning of the sentence, and
(EOS signals the end of the sentence. Inmagram model, we make the approximation that
the probability of a word depends only on the identity of the immediately precedind.
words, giving us
I+1 I+1 _
ps) =[] pwilws - wi—1) ~ [ ] plwi w21, )
i=1 i=1
IMaximum entropy techniques can also be used to smoegffam models. A discussion of these techniques can
be found elsewhere&chen & Rosenfeld, 1999
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wherewij denotes the words; - - - wj and where we takey_n» throughwg to be(BOS).

To estimatep(w; |wii:rf+l), a natural procedure is to count how often the tokgrollows
the context ohistory wii:r11+1 and to divide by the total number of times the history occurs,
i.e. to take
CW|_npy) _ G|y
CW Zpy) Xy S0 _py)

J

PmL (wi Iwiiiﬁﬂ) =

wherec(w/) denotes how often the-gramw] occurs in some training data. As mentioned
before, this estimate is thmaximum likelihoodstimate of these probabilities on a training
set, and smoothing algorithms typically produce probabilities near to this estimate.

The most common metric for evaluating a language model is the probability that the model
assigns to test data, or the derivative measuresosis-entropyandperplexity For a test set
T composed of the sentencés, ..., t;) we can calculate the probability of the test set
p(T) as the product of the probabilities of all sentences in thepg@at) = 'kT:1 p(ty). The
cross-entropyHp(T) of a modelp(tk) on dataT is defined asH(T) = —ﬁ log, p(T)

whereWy is the length of the texT measured in word% This value can be interpreted as
the average number of bits needed to encode each d4heords in the test data using the
compression algorithm associated with mogék) (Bell et al, 1990. We sometimes refer
to cross-entropy as jusntropy

The perplexity PR(T) of a modelp is the reciprocal of the (geometric) average probability
assigned by the model to each word in the tesflsednd is related to cross-entropy by the
equation

PP (T) = 2",

Clearly, lower cross-entropies and perplexities are better.

In this work, we take the performance of an algorithm to be its cross-entropy on test data.
As the cross-entropy of a model on test data gives the number of bits required to encode
that data, cross-entropy is a direct measure of application performance for the task of text
compression. For other applications, it is generally assumed that lower entropy correlates
with better performance. For speech recognition, it has been shown that this correlation is
reasonably strongdhen, Beeferman & Rosenfeld, 1998 Sectionb.3.3 we present results
that indicate that this correlation is especially strong when consideringnegigm models
that differ in the smoothing technique used.

2. Previous work

In this section, we survey a number of smoothing algorithmafgram models. This list

is by no means exhaustive, but includes the algorithms used in the majority of language
modeling work. The algorithms (except for those described in Se2t@rare presented in
chronological order of introduction.

We first describe additive smoothing, a very simple technique that performs rather poorly.
Next, we describe the Good—Turing estimate, which is not used in isolation but which forms
the basis for later techniques suchkatz smoothing. We then discuss Jelinek—Mercer and
Katzsmoothing, two techniques that generally work well. After that, we describe Witten—Bell
smoothing; while Witten—Bell smoothing is well known in the compression community, we

2In this work, we include the end-of-sentence tokE®S when computingVt, but not the beginning-of-sentence
tokens.
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will later show that it has mediocre performance compared to some of the other techniques
we describe. We go on to discuss absolute discounting, a simple technique with modest per-
formance that forms the basis for the last technique we describe, Kneser—-Ney smoothing.
Kneser—Ney smoothing works very well, and variations we describe in S&tatperform

all other tested techniques. In Sect@i8, we characterize algorithms as eitlimierpolated

or backoff a distinction that will be useful in characterizing performance and developing new
algorithms.

This section summarizes the original descriptions of previous algorithms, but does not in-
clude the details of our implementations of these algorithms; this information is presented
instead in Sectiod.1 As many of the original texts omit important details, our implementa-
tions sometimes differ significantly from the original algorithm description.

2.1. Additive smoothing

One of the simplest types of smoothing used in practiegditivesmoothing Laplace, 1825
Lidstone, 1920Johnson, 1932)effreys, 1948 To avoid zero probabilities, we pretend that
eachn-gram occurs slightly more often than it actually does: we add a fat¢toevery count,
where typically O< § < 1. Thus, we set

8 +c(w]_nyq) O

OIVI+ 2y, €W _nyp)
whereV is the vocabulary, or set of all words considered. Lidstone and Jeffreys advocate

takings = 1. Gale and Church (1990994 have argued that this method generally performs
poorly.

i-1
Padd(wi |wj _, 1) =

2.2. Good-Turing estimate

The Good-Turing estimateGpod, 1953 is central to many smoothing techniques. The
Good-Turing estimate states that for amgram that occurs times, we should pretend

that it occurg * times where
Nr41

2
o ()
and wheren; is the number oh-grams that occur exactly times in the training data. To
convert this count to a probability, we just normalize: forragram wi'_nJrl with r counts,
we take

r=r+12

*
PeT(]_pip) = 3)

whereN = Y72 n;r*. The Good—Turing estimate can be derived theoretically using only
a couple of weak assumptionidgdas, 198f and has been shown empirically to accurately
describe data whem, values are large.

In practice, the Good—Turing estimate is not used by itselhfgram smoothing, because
it does not include the combination of higher-order models with lower-order models neces-
sary for good performance, as discussed in the following sections. However, it is used as a
tool in several smoothing techniques.

2.3. Jelinek—Mercer smoothing
When there is little data for directly estimating argram probability p(w; |wii:rl1+1) (e.g.

if c(wii_n+1) = 0), useful information can be provided by the corresponding 1)-gram
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probability estimatep(wi |wI n 42)- The (n — 1)-gram probability will typically correlate

with the n-gram probability and has the advantage of being estimated from more data. A
simple method for combining the information from lower-ordegram models in estimating
higher-order probabilities is linear interpolation, and a general class of interpolated models
is described bylelinek and Mercer (1980An elegant way of performing this interpolation

is given byBrown, S. A. Della Pietra, V. J. Della Pietra, Lai and Mercer (189 follows

Pinterp(i 1] ) = Aot PML (i W Zpyp) + (L= Aot ) Pinterp(wi [} 3 o). (4)

That is, thenth-order smoothed model is defined recursively as a linear interpolation between
the nth-order maximum likelihood model and tlie — 1)th-order smoothed model. To end
the recursion, we can take the smoothed first-order model to be the maximum likelihood
distribution, or we can take the smoothed zeroth-order model to be the uniform distribution
Punif(wi) = |\%|

Given fixed pwmL, it is possible to search efficiently for tHe. 1 that maximize the
probability of some data using the Baum—Welch algoriti@aym, 197;?_ Training a distinct

A, i-1 for eachwI 1 Is not generally felicitous, while setting all, i1 to the same
i—n+1

value leads to poor performancRigtad, 199h Bahl, Jellnek and Mercer (1983uggest
partitioning thex Wik, into buckets according to(w;~ nJrl) where allr i1 in the same

Wi _ n+1
bucket are constralned to have the same value.

2.4. Katz smoothing

Katz smoothing {987 extends the intuitions of the Good—Turing estimate by adding the
combination of higher-order models with lower-order models. We first deskabesmooth-

ing for bigram models. For a bigram{ _, with countr = c(w;_,), we calculate its corrected
count using the equation

drr ifr >0
«(wi_1)puL(wi) ifr =0, ©®)

That is, all bigrams with a non-zero counare discounted according tadé&scount ratio ¢.

The discount ratia, is approximately?, the discount predicted by the Good-Turing esti-
mate, and will be specified exactly later. The counts subtracted from the non-zero counts are
then distributed among the zero-count bigrams according to the next lower-order distribution,
i.e. the unigram model. The valugwi_1) is chosen so that the total number of counts in
the distribution} ", Ckarz(w] _,) is unchanged, i.€}_, Ckaz(w{_;) = >_,. C(w;_4). The
appropriate value fax (wj_1) is

1= e =0 Pratz(wilwi—1) 1 =37 i -0 Pratz(wilwi-1)
2 wicwl =0 PML(wi) 1= Yuicui =0 PML(wD)

To calculatepyatz(wi |wi —1) from the corrected count, we just normalize:

Ckatz(wii )= {

a(wj-1) =

Ckatz(wii_l)
Zwi Ckatz(wil,l).

The d, are calculated as follows: large counts are taken to be reliable, so they are not
discounted. In particulakKatz takesd, = 1 for allr > k for somek, whereKatz suggests

k = 5. The discount ratios for the lower coumts< k are derived from the Good-Turing
estimate applied to the global bigram distribution; that is,ithén Equation 2) denote the

Pratz(wi |wj 1) =
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total numbers of bigrams that occur exactlifmes in the training data. These are chosen

such that the resulting discounts are proportional to the discounts predicted by the Good—
Turing estimate, and such that the total number of counts discounted in the global bigram
distribution is equal to the total number of counts that should be assigned to bigrams with

zero counts according to the Good-Turing estimate. The solution to these constraints is

r* (KD
=L M
B K+Dnr1
1- Eg
Katz smoothing for higher-ordem-gram models is defined analogously. As we can see
in Equation B), the bigram model is defined in terms of the unigram model; in general, the
Katz n-gram model is defined in terms of th&tz (n — 1)-gram model, similar to Jelinek—
Mercer smoothing. To end the recursion, Ketz unigram model is taken to be the maximum
likelihood unigram model.

2.5. Witten—Bell smoothing

Witten—Bell smoothingBell et al, 199Q Witten & Bell, 19912 was developed for the task

of text compression, and can be considered to be an instance of Jelinek—Mercer smoothing.
In particular, thenth-order smoothed model is defined recursively as a linear interpolation
between thath-order maximum likelihood model and tiie — 1)th-order smoothed model

as in Equation4). To compute the parametexs. L for Witten—Bell smoothing, we will

need to use the number of unique words that foIIow the hmz}gﬁﬂ We will write this

value asNH(wl_nJrl -), formally defined as

Ne (] 73,19 = [{wi : ¢!k, wi) > O}, (6)

The notationNy is meant to evoke the number of words that have one or more counts, and
the - is meant to evoke a free variable that is summed over. We assign the parameters

for Witten—Bell smoothing such that R
1—n ia = i N:H'(’wl n+1 ) (7)
Winy1 N1+(wi|—n+l') + Zwi C(wil—n+1)
Substituting into Equatiordj, we obtain
i c(w) ) + Nyg (w!— )pws(w !~ )
pw (Wi |wi|—r11+1) _ Wi_n41 i— n+1 i — n+2 8)

Zw. C(w| n+1) + Nl+(w| n+1 )

To motivate Witten—Bell smoothing, we can interpret the factor lw| L to be the

frequency with which we should use the lower-order model to predict the next word. Intu-
itively, we should only use the lower-order model when there are no counts for the given
n-gram in the hlgher -order model; i.e. when we see a novel word for the history. We can
view Ny (w! ~} nt1) to be the number of novel words we have seen after the h|stprﬂ( 1

over the training set, and this is in fact the count assigned by Witten—Bell smoothing to the
lower-order distribution.

3witten—Bell smoothing refers tmethod Gn these references. Different notation is used in the original text.
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2.6. Absolute discounting

Absolute discountingNey & Essen, 1991Ney, Essen and Kneser, 1994ike Jelinek—
Mercer smoothing, involves the interpolation of higher- and lower-order models. However,
instead of multiplying the higher-order maximum-likelihood distribution by a fakfera X

i—n+
the higher-order distribution is created by subtracting a fixed disdoufrndtm each non-zero
count. That s, instead of Equatiofi) ive have

maxc(w!_,.,) — D, 0}

Pavs(wilw{ "5, 1) = + (L= Ay1 ) Pandi [ Zpp). (9)

> CW] )
To make this distribution sum to 1, we take
D i
1—ai1 =N (w5 19 (10)

i i
Nt Zwi C(wi —n+1)

WhereN1+(wi'j+1-) is defined as in Equatio®) and where we assumeD < 1. Neyet
al. (1999 suggest settindp through deleted estimation on the training data. They arrive at
the estimate
N1
T N+ 2n
wheren; andn; are the total number af-grams with exactly one and two counts, respec-
tively, in the training data.

We can motivate absolute discounting using the Good—Turing esti@atech and Gale
(1991 show empirically that the average Good-Turing discaurt r*) associated with
n-grams with larger counts > 3) is generally constant over Further supporting evidence
is presented in Sectidn2.1

11)

2.7. Kneser—Ney smoothing

Kneser and Ney (1995have introduced an extension of absolute discounting where the
lower-order distribution that one combines with a higher-order distribution is built in a novel
manner. In previous algorithms, the lower-order distribution is generally taken to be a
smoothed version of the lower-order maximum likelihood distribution. However, a lower-
order distribution is a significant factor in the combined model only when few or no counts
are present in the higher-order distribution. Consequently, they should be optimized to per-
form well in these situations.

To give a concrete example, consider building a bigram model on data where there ex-
ists a word that is very common, saRANCISCO, that occurs only after a single word, say
SAN. Sincec(FRANCISCO) is high, the unigram probabilityp(FRANCISCO) will be high
and an algorithm such as absolute discounting will assign a relatively high probability to the
word FRANCISCcoOoccurring after novel bigram histories. However, intuitively this probabil-
ity shouldnot be high since in the training data the wordANciscofollows only a single
history. That is, perhaps the worcRENCIScOshould receive a low unigram probability be-
cause the only time the word occurs is when the previous wordis $ which case the
bigram probability models its probability well. In Kneser—Ney smoothing, we generalize this
argument, not setting the unigram probability to be proportional to the number of occurrences
of a word, but instead to the number of different words that it follows.

Following Kneser and Ney (1995we can mathematically motivate their algorithm by
selecting the lower-order distribution such that the marginals of the higher-order smoothed
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distribution match the marginals of the training data. For example, for a bigram model we
would like to select a smoothed distributigxy that satisfies the following constraint on
unigram marginals for alb;:

C(wj)

u;:l PN (Wi —1wji) = m (12)

The left-hand side of this equation is the unigram marginakfoof the smoothed bigram
distribution pxn, and the right-hand side is the unigram frequencyjofound in the training
data?

Here, we present a different derivation of the resulting distribution than is presented by

Kneser and Ney (1995As in absolute discounting, let@ D < 1. Then, we assume that
the model has the form given in Equatid) (

maxc(w;_,.,) — D, 0}

i

Zwi C(wiifn+l)

, D
Zwi C(wiifn+l)

as opposed to the form used in the original paper

PN (wi [w] L ) =
Nie (w22 opn(wilwlTh ) (13)
ma><{c(wii7n.+l)fD,0}

pKN (wl |w::rj1'+1) = Zwi f(wil—n+l) - . )

if C(wii—n+1) >0

wherey(wiijﬂ) is chosen to make the distribution sum to 1. That is, we interpolate the

lower-order distribution for all words, not just for words that have zero counts in the higher-
order distribution. (Using the terminology to be defined in Secfid) we use arinterpo-
latedmodel instead of Aackoffmodel.) We use this formulation because it leads to a cleaner
derivation of essentially the same formula; no approximations are required, unlike in the orig-
inal derivation. In addition, as will be shown later in this paper, and as has been independently
observed byey et al. (1997, the former formulation generally yields better performance.

Now, our aim is to find a unigram distributigokn (wj) such that the constraints given by
Equation (2) are satisfied. Expanding Equatidt?), we obtain

c(wj) _

> Clwi) Z PN (Wi |wi—1) P(wi—_1).

wi-1

For p(w;j_1), we take the distribution found in the training dafgwi_1) = %
wij_g

Substituting and simplifying, we have

c(wi) = Y c(wi—1) Prn (wi [wi —1).
wi—1
Substituting in Equation1@3), we have

max{c(w;_jwj) — D, 0} D
cwi) =y C(wi—l)[ > Ic(wilflwi) + IO N1+ (wi—1) PKN (wi)}

Wi—1

4FoIIowing the notation in Sectioh.1, note thatw; can take the valugEOS but not(BOS), while wj _1 can take
the valug(BOS) but not(EOS.
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c(wj_qwj) — D
= Z C(wi—l)ﬁ
wi_1:C(wj_1w;)>0 -1

D
+ Y C(wi-1) w1 N (wi—1+) PN (wi)

wi-1

= c(wi) — N1y (-wi)D + Dpin (wi) D Niy (wi—1°)

wi—1
= c(wj) — N14(-wi)D + Dpn (wi) N1 (-)
where
Ny (wi) = {wi—1 : c(wi_1wj) > O}
is the number of different words; —; that precedey; in the training data and where
Ny () = Y Niy(wio19) = [{(wi—g, wi) : Cwi_gwi) > O} = > Ny (wy).
wi-1 Wi

Solving for pkn (wj ), we obtain

N1+ (-wi)

Niy(e)
Generalizing to higher-order models, we have that

prN (wi) =

i
2 (19
Ny (] ko)

i N1t (-w
PN (Wi |w] ) =

where
Niy (w]_py2) = [{wi—ng1: Cw]_pyq) > O}

Ny (W], 29) = {Wi—nga, wi) 1 Cwl_yp) > O} = ) Ny (wl_ o).

wj

2.8. Backoff vs. interpolated models

All of the smoothing algorithms we have described, except for additive smoothing, combine
higher-ordemn-gram models with lower-order models. There are two basic approaches taken
to perform this combination. One approach is characterized by smoothing algorithms that
can be described with the following equation:

t(willwii:l 1) if c(wl_,,.4) >0

. ) ! 15
J/(wil:rl]+1) PsmootH Wi |wi|:rl]+2) if C(wil—n-i-l) =0. (13)

Psmoot{ Wi |wii:rl1+1) = i

That is, if ann-gram has a non-zero count then we use the distribut(nmwiijﬂ). Other-

wise, webackoffto the lower-order distributiopsmootd wi |wiij o) where the scaling factor
y(wi':%+l) is chosen to make the conditional distribution sum to one. We refer to algorithms
that fall directly in this framework abackoff models.Katz smoothing is the canonical ex-
ample of backoff smoothing.

Several smoothing algorithms, such as Jelinek—Mercer smoothing, are expressed as the

linear interpolation of higher- and lower-ordeigram models:

Psmootwi [w] “n 1) = T(wi|w] T, 1) + ¥ (W k) Psmootwi [w] 1, 5).  (16)
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We refer to such models asterpolatedmodels.

The key difference between backoff and interpolated models is that in determining the
probability of n-grams withnon-zerocounts, interpolated models use information from
lower-order distributions while backoff models do not. In both backoff and interpolated mod-
els, lower-order distributions are used in determining the probability-gfams withzero
counts.

We note that it is easy to create a backoff version of an interpolated algorithm. Instead
of using Equation16), we can just use Equatiod%), modifying y(wi':rlwl) so that prob-
abilities sum to one. As described later, we have implemented the interpolated and backoff
versions of several algorithms.

2.9. Other smoothing techniques

In this section, we briefly describe several smoothing algorithms that are not widely used, but
which are interesting from a theoretical perspective. The algorithms in this section were not
re-implemented in this research, while all preceding algorithms were.

2.9.1. Church—-Gale smoothing

Church and Gale (199Hescribe a smoothing method that liKatz's, combines the Good—
Turing estimate with a method for merging the information from lower- and higher-order
models. Church and Gale bucket bigramjs , according to the valuegyi (wi—1) puL (w).
The Good-Turing estimate is then applied separately within each bucket to find bigram prob-
abilities.

In previous work Chen, 1995 we compared Church—Gale smoothing with other smooth-
ing methods and found that this algorithm works well for bigram language models. When
extending this method to trigram models, there are two options for implementation. One of
these methods is computationally intractable, and we have demonstrated that the other per-
forms poorly.

2.9.2. Bayesian smoothing

Several smoothing techniques are motivated within a Bayesian framework. A prior distribu-
tion over smoothed distributions is selected, and this prior is used to somehow arrive at a final
smoothed distribution. For exampldadas (198)selects smoothed probabilities to be their
meana posteriorivalue given the prior distribution.

Nadas (198%hypothesizes prior distribution from the family of beta functiondladas
reports results on a single training set indicating tNatlassmoothing performs slightly
worse tharKatz and Jelinek—Mercer smoothing.

MacKay and Peto (199%se Dirichlet priors in an attempt to motivate the linear interpo-
lation used in Jelinek—Mercer smoothing. They compare their method with Jelinek—Mercer
smoothing on a single training set of about two million words; their results indicate that
MacKay—Peto smoothing performs slightly worse than Jelinek—Mercer smoothing.

2.9.3. Other interpolated models

In our previous workChen, 1996Chen & Goodman, 1996we introduced two interpolated
smoothing algorithms that significantly outperfokatz and Jelinek—Mercer smoothing on
trigram models. One is a variation of Jelinek—Mercer smoothing; we have found that bucket-
ing Awiijﬂ according to the average number of counts per non-zero element in a distribution
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i
% yields better performance than bucketing according to the total number of
I i—n+1
counts of the historp c(wI n+1) @s suggested Hyahlet al. (1983.
The other algorlthm Can be viewed as a modification of Witten—Bell smoothing. Let
Nl(w, ne1t) = Hwi : c(wI n+1w.) = 1}, the number of words that appear after the context

|' r%+1 exactly once. Then, in EquatioB)( the termN1+(wii:r1]+1-) is replaced by the value

ﬂNl(wI nt17) + v whereg andy are parameters of the model optimized on held-out data.

Since these algorithms are not in wide use and since we have subsequently found that
Kneser—Ney smoothing and variations consistently outperform them, we do not re-examine
their performance here. However, they can be useful when Kneser—-Ney smoothing is not
applicable, such as when interpolating distributions from different sources.

w

3. Modified Kneser—Ney smoothing

In this section, we introduce a novel variation of Kneser—Ney smoothing, which we refer to as
modifiedKneser—Ney smoothing, that we have found has excellent performance. Instead of
using a single discourd for all non-zero counts as in Kneser—Ney smoothing, we have three
different parameterd)s, D2, and D3, that are applied ta-grams with one, two, and three

or more counts, respectively. In other words, instead of using EqudiBifrom Sectior2.7,

we take

c(w|_pp1) — DEW]_11)

PR (wi |w] ) = +y (W Zh ) prn (wi[w] T )

Z C(wl n+l)
where
0 ifc=0
_ D, fc=1
DO=1p, ifc=2
D3+ ifc>3.
To make the distribution sum to 1, we take
(i DlNl(w, ne1t) D2N2(w, ny1) + D3y N3+(w. ne1?)
)=
=0t Zw, C(wl n+l)

whereNz(u)I “ny1v) and Ng,Jr(wI ny1) are defined analogously tt;bl(wI ERDE

This modlflcanon is motivated by evidence to be presented in Seﬁtbmthat the ideal
average discount far-grams with one or two counts is substantially different from the ideal
average discount fon-grams with higher counts. Indeed, we will see later that modified
Kneser—Ney smoothing significantly outperforms regular Kneser—Ney smoothing.

Just ad\ey et al. (1994 have developed an estimate for the optirBafor absolute dis-
counting and Kneser—Ney smoothing as a function of training data counts (as given in Equa-
tion (11)), it is possible to create analogous equations to estimate the optimal values for
D,, andD3 (Ries, 1997. The analogous relations for modified Kneser—Ney smoothing are

Dy=1-2y2
ny
n
Dp=2—3Y—> (17)
nz
n
Da;, =3—4Y—
n3
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whereY = AT +12n

Note thatNey et al. (1997 independently introduced the idea of multiple discounts, sug-
gesting two discounts instead of three, and giving estimates for the discounts based on the
Good-Turing estimate. They performed experiments using multiple discounts for absolute
discounting, and found mixed results as compared to a single discount.

4. Experimental methodology

In this section, we describe our smoothing algorithm implementations, the method with
which we selected algorithm parameter values, the datasets we used, and other aspects of
our experimental methodology. Briefly, we implemented all of the most widely-used smooth-
ing algorithms for language modeling: additive smoothing, Jelinek—Mercer smooktatm,
smoothing, Witten—Bell smoothing, absolute discounting, and Kneser—Ney smoothing. In
addition, we selected a simple instance of Jelinek—Mercer smoothing to serve as a baseline,
and we implemented our modified version of Kneser—Ney smoothing. We compared these
smoothing algorithms using text from the Brown corpus, the North American Business news
corpus, the Switchboard corpus, and the Broadcast News corpus.

4.1. Smoothing implementations

In this section, we provide an overview of our implementations of various smoothing tech-
nigues. With each implementation we list a mnemonic that we use to refer to the implemen-
tation in later sections. We use the mnemonic when we are referring to our specific imple-
mentation of a smoothing method, as opposed to the algorithm in general. In the extended
version of this paperGhen & Goodman, 1998we provide a complete description of each
implementation, including all associated parameters, and how we resolved any ambiguities
in the original descriptions of the algorithms. Most algorithms have parameters that can be
optimized (though not all are mentioned here); in experiments, we set parameter values to
optimize the perplexity of held-out data, as described in Sedtian

Additive smoothingWe consider two versions of additive smoothing. Referring to Equa-
tion (1) in Section2.1, we fix§ = 1 in the implementatioplus-one. In the implementation
plus-delta, we consider any. To improve performance, we perform backoff when a his-
tory has no counts. For the methptlus-delta, instead of a singlé we have a separatg

for each level of the-gram model.

Jelinek—Mercer smoothingRecall that higher-order models are defined recursively in terms
of lower-order models. We end the recursion by taking the zeroth-order distribution to be the
uniform distributionpynif(wi) = 1/|V/|.

In jelinek-mercer, we bucket thei wict, according toy_, c(wI nt1) as suggested

by Bahl et al. (1983 We choose bucket boundarles by requiring that at lgagtcounts in
the held-out data fall in each bucket, whefg, is an adjustable parameter. We use separate
buckets for each-gram model being interpolated.

For our baseline smoothing methoglelinek mercer baseline, we constrain all

A,i-1 to be equal to a single valug, when c(wI n+1) > 0 and zero otherwise. This is
i—n+1

identical tojelinek-mercer when there is only a single bucket (for non-zero counts) for
eachn-gram level.

Katz smoothingln the implementatiokatz, instead of a singl& we allow a different,
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for eachn-gram model being combined. To end the model recursion, we smooth the unigram
distribution using additive smoothing with parametgwe found that applyinglatz backoff
to a unigram distribution performed poorly.

In the algorithm as described in the original paper, no probability is assignegtams
with zero counts in a conditional distributiqmw; |wi':r1]+1) if there are ncn-gramSwi'_nJrl
that occur between 1 ang, times in that distribution. This can lead to an infinite cross-
entropy on test data. To address this, whenever there are no counts betweek,liraad
conditional distribution, we give the zero-courgrams a total o counts, and increase the

normalization constant appropriately.

Witten—Bell smoothindlhe implementatiomitten-bell-interp is a faithful implemen-
tation of the original algorithm, where we end the model recursion by taking the zeroth-order
distribution to be the uniform distribution. The implementatidrtten-bell-backoff is a
backoff version of the original algorithm (see Sectf).

Absolute discountindn the implementatiombs-disc-interp, instead of a singl® over
the whole model we use a separ@g for eachn-gram level. As usual, we terminate the
model recursion with the uniform distribution. Also, instead of using Equafiént6 calcu-
late Dy, we find the values oD, by optimizing the perplexity of held-out data. The imple-
mentationabs-disc-backoff is a backoff version odbs-disc-interp.

Kneser—Ney smoothin&eferring to Sectior2.7, instead of taking Equatiori{) as is, we
smooth lower-order distributions in a similar fashion as the highest-order distribution in order
to handle data sparsity in the lower-order distributions. That is, far-glam models below

the highest level we take

o max{Ni+(-w' ) — D, 0}
P (wi[wi =k ) = T iondd
Zwi Nl+('wi_n+1)
D

Na (w] 12 prn (wi |[w] —E ).

+ :
Zwi N1t ('wil —n+1)

We end the model recursion by taking the zeroth-order distribution to be the uniform distribu-
tion. Also, instead of a singl® over the whole model we use a separatefor eachn-gram

level. The algorithmkneser-ney sets theDy, parameters by optimizing the perplexity of
held-out data. The methacheser-ney-fix sets theD,, parameters using Equatiohlj as
suggested in the original paper.

Modified Kneser—Ney smoothinbBhe implementatiokneser-ney-mod is identical to the
implementatiorkneser-ney, with the exception that three discount parametBrs;, Dn 2,
andDp, 34, are used at eaalrgram level instead of just a single discoudy.

The algorithmkneser-ney-mod-fix is identical tokneser-ney-mod, except that the
discount parameters are set using Equatiof) {hstead of by being optimized on held-out
data. The implementatidtheser-ney-mod-backoff is the backoff version of the interpo-
lated algorithmkneser-ney-mod.

4.2. Parameter setting

In this section, we discuss how the setting of smoothing parameters affects performance. In
Figurel, we give an example of the sensitivity of smoothing algorithms to parameter values:
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Figure 1. Performance relative to baseline algoritjglinek-mercer-baseline of
algorithmskatz andjelinek-mercer with respect to parametesandcpm;n,
respectively, over several training set sizes.

we show how the value of the paramedefwhich controls unigram smoothing) affects the
performance of th&atz algorithm, and how the value of the parametgp, (which deter-
mines bucket size) affects the performance ef inek-mercer. Note that poor parameter
setting can lead to very significant losses in performance. In Fiure see differences in
entropy from several hundredths of a bit to over a bit. Also, we see that the optimal value of
a parameter varies with training set size. Thus, it is important to optimize parameter values
to meaningfully compare smoothing techniques, and this optimization should be specific to
the given training set.

In each of our experiments, optimal values for the parameters of each method were search-
ed for using Powell’s search algorithmRress, Flannery, Teukolsky & Vetterling, 1988a-
rameters were chosen to optimize the cross-entropy of a held-out set associated with each
training set. More specifically, as described in Secti@Bthere are three held-out sets asso-
ciated with each training set, and parameter optimization was performed using the first of the
three. For instances of Jelinek—Mercer smoothing)theere trained using the Baum—-Welch
algorithm on the second of the three held-out sets; all other parameters were optimized using
Powell’'s algorithm on the first set.

To constrain the parameter search in our main experiments, we searched only those pa-
rameters that were found to noticeably affect performance in preliminary experiments over
several data sizes. Details of these experiments and their results can be found elsewhere
(Chen & Goodman, 1998

4.3. Data

We used data from the Brown corpus, the North American Business (NAB) news corpus, the
Switchboard corpus, and the Broadcast News (BN) corpus, all of which we obtained from the
Linguistic Data Consortium. The Brown corpusucera and Francis, 19p¢onsists of one
million words of text from various sources. For Brown experiments, we used the vocabulary
of all 53 850 distinct words in the corpus. The NAB corpus consists of 110 million words of
Associated Press (AP) text from 1988-1990, 98 million words of Wall Street Journal (WSJ)
text from 1990-1995, and 35 million words of San Jose Mercury News (SJM) text from
1991. We used the 20 000 word vocabulary supplied for the 1995 ARPA speech recognition
evaluation Stern, 199% For the NAB corpus, we primarily used the Wall Street Journal
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text, and only used the other text if more than 98 million words of data was required. We
refer to this data as the WSJ/NAB corpus. The Switchboard data is three million words of
telephone conversation transcriptio@ogfrey, Holliman & McDaniel, 1992 We used the
9800 word vocabulary created IBynke et al. (1997). The Broadcast News texiR(dnicky,

1996 consists of 130 million words of transcriptions of television and radio news shows
from 1992-1996. We used the 50 000 word vocabulary develop&ldmgwayet al. (1997).

For all corpora, any out-of-vocabulary words were mapped to a distinguished token and
otherwise treated in the same fashion as all other words. These tokens were included in the
calculation of cross-entropy. The Brown corpus was segmented into sentences manually, the
Switchboard corpus was segmented using turn boundaries, and the other corpora were seg-
mented automatically using transcriber punctuation. The resulting average sentence length is
about 21 words in the Brown corpus, 22 in Associated Press, 23 in Wall Street Journal, 20 in
San Jose Mercury News, 16 in Switchboard, and 15 in Broadcast News.

For each experiment, we selected three segments of held-out data along with the segment
of training data. These four segments were chosen to be adjacent in the original corpus and
disjoint, the held-out segments following the training. The first two held-out segments were
used to select the parameters of each smoothing algorithm, and the last held-out segment
was used as the test data for performance evaluation. The reason that two segments were
reserved for parameter selection instead of one is described in Sé@id¥or experiments
over multiple training set sizes, the different training sets share the same held-out sets. For
the news corpora, which were ordered chronologically, the held-out sets contain the most
recent data in the corpora while the training sets contain data adjacent and preceding in time
to the held-out sets. In experiments with multiple runs on the same training set size, the data
segments of each run are completely disjoint. Each piece of held-out data was chosen to be
2500 sentences, or roughly 50 000 words. In selecting held-out sets, no effort was made to
preserve the proportion of data from different news sources (in Broadcast News) and factors
such as speaker identity and topic (in Switchboard) were ignored.

The decision to use the same held-out set size regardless of training set size does not
necessarily reflect practice well. For example, if the training set size is less than 50 000 words
then itis not realistic to have this much held-out data available. However, we made this choice
to avoid considering the training vs. held-out data tradeoff for each data size. In addition, the
held-out data is used to optimize typically very few parameters, so in practice small held-
out sets are generally adequate, and perhaps can be avoided altogether with techniques such
as deleted estimation. Another technique is to use some held-out data to find smoothing
parameter values, and then to fold that held-out data back into the training data and to rebuild
the models.

To give some flavor about how the strategy used to select a held-out set affects perfor-
mance, we ran two small sets of experiments with the algorithéldnek-mercer and
kneser-ney-mod investigating how held-out set size and how folding back the held-out set
into the training set affects cross-entropy. On the left in Figyreve display the effect of
held-out set size on the performancejef inek-mercer over three training set sizes on the
Broadcast News corpus. Performance is calculated relative to the cross-entropy yielded by
using a 2500 sentence held-out set for that training set sizejdldhek-mercer smooth-
ing, which can have hundreds bparameters or more, the size of the held-out set can have a
moderate effect. For held-out sets much smaller than the baseline size, test cross-entropy can
be up to 003 bits/word higher, which is approximately equivalent to a 2% perplexity differ-
ence. However, even when the held-out set is a factor of four larger than the baseline size of
2500 sentences, we see an improvement of at mo&tifits/word. As we will see later, these
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Figure 2. On the left, performance relative to baseline held-out set size

(2500 sentences) gklinek-mercer for several held-out set sizes; on the right,
performance relative to baseline held-out methodologjeafinek-mercer for
alternative held-out methodologies.

differences are much smaller than the typical difference in performance between smoothing
algorithms. Forkneser-ney-mod smoothing which has about 10 parameters, held-out set
size has little effect, typically less thar0D5 bits/word.

On the right in Figure2, we display how folding back the held-out set into the training set
after smoothing parameter optimization affects performance over different training set sizes
for jelinek-mercer. Performance is calculated relative to the cross-entropy of our default
methodology of not folding the held-out set back into the training set after parameter opti-
mization. Thefold-backline corresponds to the case where the held-out set used to optimize
parameters is later folded back into the training set; anéxtr@line corresponds to the case
where after folding the held-out data back into the training, an additional held-out set is used
to re-optimize the smoothing parameters. As would be expected, for small training set sizes
performance is augmented significantly when the held-out data is folded back in, as this in-
creases the training set size noticeably. However, for training set sizes of 100 000 sentences or
more, this improvement becomes negligible. The difference betwedalthbackandextra
lines represents the benefit of using a held-out set disjoint from the training set to optimize pa-
rameters. This difference can be noticeablejierinek-mercer for smaller datasets. While
not shownkneser-ney-mod exhibits behavior similar to that shown in Figutexcept that
the difference between tHeld-backandextralines is negligible.

5. Results

In this section, we present the results of our main experiments. In Sécfipwe present

the performance of various algorithms for different training set sizes on different corpora
for both bigram and trigram models. We demonstrate that the relative performance of dif-
ferent smoothing methods can vary significantly as conditions vary; however, Kneser—Ney
smoothing and variations consistently outperform all other methods.

In Section5.2, we present a more detailed analysis of performance, rating different tech-
nigues on how well they perform amgrams with a particular count in the training data,
e.g.n-grams that have occurred exactly once in the training data. We finc&hat most
accurately smootha-grams with large counts, whilkneser-ney-mod is best for small
counts. We then show the relative impact on performance of small counts and large counts
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Figure 3. Cross-entropy of the baseline algorith@linek-mercer-baseline the
on test set over various training set sizes; Brown, Broadcast News, Switchboard, and
WSJ/NAB corpora.

for different training set sizes andgram orders, and use this data to explain the variation in
performance of different algorithms in different situations.

In Section5.3, we present experiments with 4-gram and 5-gram models, mvigham
models with count cutoffs (i.e. models that ignorgrams with fewer than some number of
counts in the training data), and experiments that examine how cross-entropy is related to
word-error rate in speech recognition.

5.1. Overall results

As mentioned earlier, we evaluate smoothing methods through their cross-entropy on test
data, as described in Sectidnl In Figure 3, we display the cross-entropy of our base-

line smoothing methodjelinek-mercer-baseline, over a variety of training set sizes

for both bigram and trigram models on all four corpora described in Sedt@riVe see

that cross-entropy decreases steadily as the training set used grows in size; this decrease is
somewhat slower than linear in the logarithm of the training set size. Furthermore, we see
that the entropies of different corpora can be very different, and that trigram models perform
substantially better than bigram models only for larger training sets.

In the following discussion, we will primarily report the performance of a smoothing algo-
rithm as the difference of its cross-entropy on a test set from the cross-entrgpyiafek-
mercer-baseline with the same training set. Fixed differences in cross-entropy are equiv-
alent to fixed ratios in perplexity. For example, a 1% decrease in perplexity is equivalent to
a 0014 bits/word decrease in entropy, and a 10% decrease in perplexity is equivalent to a
0-152 bits/word decrease in entropy.

Unless noted, all of the points in each graph represent a single run on a single training and
test set. To give some idea about the magnitude of the error in our results, we ran a set of
experiments where for each training set size, we ran 10 experiments on completely disjoint
datasets (training and test). We calculated the empirical mean and the standard error (of the
mean) over these 10 runs; these values are displayed in Figued5. In Figure4, we
display the absolute cross-entropy of the baseline algorijleiinek-mercer-baseline,
on the Switchboard and Broadcast News corpora for bigram and trigram models over a range
of training set sizes. The standard error on the Switchboard runs was very small; on Broad-
cast News, the variation was relatively large, comparable to the differences in performance
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and Switchboard corpora, trigram model; each point displays the mean and standard
error over 10 runs on disjoint datasets.

between smoothing algorithms. In Figube we display the performance of a number of
smoothing algorithms relative to the baseline algorithm on the Broadcast News and Switch-
board corpora for trigram models on a range of training set sizes. We see that the varia-
tion in cross-entropy relative to the baseline is generally fairly small, much smaller than
the difference in performance between algorithms. Hence, while the variation in absolute
cross-entropies is large, the variation in relative cross-entropies is small and we can make
meaningful statements about the relative performance of algorithms in this domain.
However, in later graphs each point will represent a single run instead of an average over 10
runs, and thus our uncertainty about the position of each point (the standard deviation of our
estimate of mean relative cross-entropy) will be a factor of akél larger than the values
plotted in Figureb. With these larger deviations, the relative performance of two algorithms
with similar performance may be difficult to determine from a single pair of points. However,
we believe that an accurate and precise picture of relative performance can be gleaned from
the graphs to be presented later due to the vast overall number of experiments performed:
most experiments are carried out over a variety of training set sizes and on each of four
independent corpora. Relative performance trends are largely consistent over these runs.
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Figure 6. Performance relative to baseline of various algorithms on all four corpora,
bigram and trigram models, over various training set sizes.

Nevertheless, there is one phenomenon that seems to adversely and significantly affect the
performance of a certain group of algorithms on a small number of datasets; e.g. see the
points corresponding to a training set size of 30000 sentences on the Switchboard corpus
in Figure 6. We discovered that this phenomenon was caused by the duplication of a long
segment of text in the training set. An analysis and discussion of this anomaly is presented in
the extended version of this paper.

5.1.1. Overall performance differences

In Figure 6, we display the performance of various algorithms relative to the baseline al-
gorithm jelinek-mercer-baseline over a variety of training set sizes, for bigram and
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trigram models, and for each of the four corpora described in Seét®ihese graphs do

not include all algorithm implementations; they are meant only to provide an overall picture
of the relative performance of different algorithm types. The performance of other methods
are given in later sections.

From these graphs, we see that the methadser-ney andkneser-ney-mod consis-
tently outperform all other algorithms, over all training set sizes and corpora, and for both
bigram and trigram models. These methods also outperform all algorithms not shown in the
graphs, except for other variations of Kneser—Ney smoothing. In Segtibme will show
that this excellent performance is due to the modified backoff distributions that Kneser—Ney
smoothing employs, as described in Section

The algorithmskatz and jelinek-mercer generally yield the next best performance.
Both perform substantially better than the baseline method in almost all situations, except
for cases with very little training data. The algorithjeil inek-mercer performs better than
katz in sparse data situations, and the reverse is true when there is much data. For example,
katz performs better on Broadcast News and WSJ/NAB trigram models for training sets
larger than 50 000—100 000 sentences; for bigram models the cross-over point is generally
lower. In Sectiorb.2, we will explain this variation in performance relative to training set size
by showing thakatz is better at smoothing larger counts; these counts are more prevalent in
larger datasets.

The worst of the displayed algorithms (not including the baseline) are the algorithms
abs-disc-interp andwitten-bell-backoff. The methocbs-disc-interp generally
outperforms the baseline algorithm, though not for very small datasets. The metttach-
bell-backoff performs poorly, much worse than the baseline, for smaller datasets. Both of
these algorithms are superior to the baseline for very large datasets; in these situations, they
are competitive with the algorithmatz andjelinek-mercer.

These graphs make it apparent that the relative performance of smoothing techniques can
vary dramatically over training set size;gram order, and training corpus. For example,
the methodvitten-bell-backoff performs extremely poorly for small training sets but
competitively on very large training sets. There are numerous instances where the relative
performance of two methods reverse over different training set sizes, and this cross-over
point varies widely oven-gram order or corpus. Thus, it is not sufficient to run experiments
on one or two datasets for a single training set size to reasonably characterize the performance
of a smoothing algorithm, as is the typical methodology in previous work.

5.1.2. Additive smoothing

In Figure7, we display the performance of th@us-one andplus-delta algorithms rela-

tive to the baseline algorithmlelinek-mercer-baseline for bigram and trigram models

on the WSJ/NAB corpus over a range of training set sizes. In general, these algorithms per-
form much worse than the baseline algorithm, except for situations with a wealth of data. For
exampleplus-delta is competitive with the baseline method when using a training set of
10 000 000 sentences for a bigram model on WSJ/NAB data. Though not shown, these algo-
rithms have similar performance on the other three corpgéede and Church (1990994

further discuss the performance of these algorithms.

5.1.3. Backoff vs. interpolation

In this section, we compare the performance between the backoff and interpolated versions of
several smoothing algorithms. We implemented three pairs of algorithms that differ only in
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the backoff strategy useditten-bell-interp andwitten-bell-backoff, abs-disc-

interp andabs-disc-backoff, andkneser-ney-mod andkneser-ney-mod-backoff.

In Figure 8, we display the performance of all of these algorithms relative to the baseline
algorithm jelinek-mercer-baseline for bigram and trigram models on the Broadcast
News corpus over a range of training set sizes. While not shown, these algorithms have
similar performance on the other three corpora.

We see that one class of algorithm does not always outperform the other. For Witten—Bell
smoothing, the backoff version consistently outperforms the interpolated version; for mod-
ified Kneser—Ney smoothing, the interpolated version consistently outperforms the backoff
version; and for absolute discounting, the interpolated version works better on small datasets
but worse on large datasets. In SectioB we present an analysis that partially explains the
relative performance of backoff and interpolated algorithms.
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5.1.4. Kneser—Ney smoothing and variations

In this section, we compare the performance of the different variations of Kneser—Ney
smoothing that we implementeRheser-ney, kneser-ney-mod, kneser-ney-fix, and
kneser-ney-mod-fix. We do not discuss the performance of metlkadser-ney-mod-
backoff here, as this was presented in Sectoh3

At the top of Figure9, we display the performance kheser-ney andkneser-ney-mod
relative to the baseline algorithjrelinek-mercer-baseline for bigram and trigram mod-
els on the WSJ/NAB corpus over a range of training set sizes. Recall that these algorithms
differ in that for eacm-gram level kneser-ney has a single discourid,, for each count,
while kneser-ney-mod has three discount®y 1, Dpn 2, and Dy 34 for n-grams with one
count, two counts, and three or more counts, respectively, as described in Settidie see
thatkneser-ney-mod consistently outperformsneser-ney over all training set sizes and
for both bigram and trigram models. While not shown, these algorithms have similar behavior
on the other three corpora. Their difference in performance is generally considerable, though
is smaller for very large datasets. In Secttf, we explain this difference by showing that
the correct average discount foigrams with one count or two counts deviates substantially
from the correct average discount for larger counts.

In the middle of Figure®, we display the performance &fieser-ney andkneser-ney-
fix for bigram and trigram models on the WSJ/NAB corpus over a range of training set
sizes. Recall that these algorithms differ in thatéaeser-ney we set the parameteB, by
optimizing the cross-entropy of held-out data, while ¥aeser-ney-fix these parameters
are set using the formula suggestedKiyeser and Ney (1995While their performances
are sometimes very close, especially for large datasets, we séaésetr-ney consistently
outperformsneser-ney-fix.

At the bottom of Figuré®, we display the performance ®fieser-ney-mod andkneser-
ney-mod-fix for bigram and trigram models on the WSJ/NAB corpus over a range of train-
ing set sizes. As witkneser-ney andkneser-ney-fix, these algorithms differ in whether
the discounts are set using held-out data or using a formula based on training set counts.
We see similar behavior as before: while their performance is often close, especially for
large datasetneser-ney-mod consistently outperformg&neser-ney-mod-fix. While
the -fix variations have the advantage of not having any external parameters that need to
be optimized, we see that we can generally do a little better by optimizing parameters on
held-out data. In addition, in situations where we have held-out data known to be similar to
the test data, the variations with free parameters should do well even if the training data does
not exactly match the test data.

5.2. Count-by-count analysis

In order to paint a more detailed picture of the performance of various algorithms, instead
of just looking at the overall cross-entropy of a test set, we partition test sets according to
how often eacim-gram in the test set occurred in the training data, and examine performance
within each of these partitions. More specifically, the cross-entropy ofgiam modelp of

atest sef can be rewritten as

1 ; i
Hp(T) = — 5 > Cr(wi_nyq)log; P(wilw; “q,1)
wil—n+1
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Figure 9. Performance relative to baselinelafeser-ney, kneser-ney-mod,
kneser-ney-fix, andkneser-ney-mod-fix algorithms on WSJ/NAB corpus,
bigram and trigram models.

where the sum ranges over aligrams andt (wii_n+1) is the number of occurrences of the

n—gramenJrl in the test data. Instead of summing oa#n-grams, consider summing only
overn-grams with exactly counts in the training data, for somgi.e. consider the value

1 . .
Hp,r (T) = W Z T (Wi _n41) l0gp p(wi |wi':r1]+1). 18)

i . i _
Wi _py1:C(Wi_py )=r

Then, we might compare the valuestef , (T) between modelg for eachr to yield a more
detailed picture of performance.

However, there are two orthogonal components that determine thehglu@ ), and it is
informative to separate them. First, there is the total probability ivgss(T) that a modeb
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uses to prediat-grams with exactly counts given the histories in the test set, i.e. the value

Mp,r (T) = > cr(wi—h ) p(wilw| 5 ).
w;7n+l:c(w:7n+l)=r

An interpretation of the valubl, ( (T) is theexpected courih the test seT of n-grams with
r counts according to model given the histories in the test set. Ideally, the valudgf; (T)
should matcte; (T), the actual number aof-grams in the test sét that have counts in the
training data, where

«M= > ol

wiifn+1zc(wii7n+1):r
The valueMp (T) is proportional to the average probability a mogehssigns tar-grams
with r counts; an algorithm with a largé  (T) will tend to have a loweHp (T).
Now, consider a metric similar tdd,,(T) where we factor out the contribution of
Mp,r (T), so that algorithms with a largevp (T) will not tend to receive a better score.
That is, consider a metric where we scale probabilities so that all algorithms devote the same
total probability ton-grams withr counts for each. In particular, we use the value

& (M

. 1
Hp,r(T) = _W_T Z CT(w| n+l) log, ——— Mp.r (T)

i
Wi _py1:CW;_py =T

pQwi [w %, ).

This is similar to defining an (improper) distribution
& (M)

p (w||w| n+l) Mp’r(T)

P(wi |w| n+1)

where we are assurell < (T) = ¢ (T) as is ideal, and calculating the performance
Hp«r (T) for this new model. As the measuH?;r (T) assures that each model predicts each
countr with the same total mass, this value just measures how well a model distributes its
probability mass among-grams with the same count.

To recap, we can use the measivg, (T) to determine how well a smoothed modzel
assigns probabilities on averagertgrams withr counts in the test data; in particular, we
want M‘”(T) (or the ratio between expected and actual counts in the test data) to be near 1
forall r. The valueH *’ (T), which we refer to amormalized cross-entropgr normalized
performance measures how well a smoothed mogetdlistributes probabilities between
grams with the same count; as with cross-entropy, the lower the better.

We ran experiments with count-by-count analysis for two training set sizes, 30 000 sen-
tences (about 750000 words) and 3700000 sentences (about 75 million words), on the
WSJ/NAB corpus using a test set of about 10 million words.

5.2.1. Expected vs. actual counts, overall

In Figure 10, we display the ratio of expected to actual couﬁ’t%(}@ for various algo-

rithms on the larger training set for trigram models, separated into low and high counts for
clarity® For low counts, we see that the algorithsz andkneser-ney-mod come clos-
est to the ideal value of 1. The values farthest from the ideal are attained by the methods

SFor the zero-count case, we exclude thosgamsw!

counts, i.e. for Whlclf:wi i_r%Jrlw,) =0.

i _n1 for which the corresponding hlstow n+1 has no
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Figure 10.Ratio of expected number to actual number in the test setgvhms with a
given count in training data for various smoothing algorithms, low counts and high
counts, WSJ/NAB corpus, trigram model.

jelinek-mercer-baseline, jelinek-mercer, andwitten-bell-backoff. These al-
gorithms assign considerably too much probability on averageg@mms with low counts.
For high countskatz is nearest to the ideal. Results for bigram models are similar.

To explain these behaviors, we calculate itheal average discourfor each count. That
is, consider aIIn-gramSwi'_nJrl with countr. Let us assume that we perform smoothing
by pretending that all suchrgrams actually receivie counts; i.e. instead of the maximum-

likelihood distribution
r

pmL (wi|w] L ) = ————
ST ew

we take

/ i—1 r

P (wilwj hyg) = ———
(W Zhyp)
Then, we can calculate the valueroguch that the ideal probability mabsy , (T) = ¢ (T)
is achieved. We take— 1 for the ideal" to be thedeal average discourfor countr. This is
an estimate of the correct number of counts on average to take away frapgrains with
r counts in the training data. On the left of Figur® we graph the empirical estimate of
this value for < 13 for bigram and trigram models for a one million and 200 million word
training set. (For values above= 13, the graph becomes very noisy due to data sparsity.)
We can see that for very smalthe correct discount rises quickly, and then levels off.

In other words, it seems that a scheme that discounts diffeneniformly is more appro-
priate than a scheme that assigns discounts that are proportion&lgwrithms that fall un-
der the former category includé®s-disc-interp andkneser-ney; these algorithms use a
fixed discountD,, over all counts. Algorithms that fall in the latter category include all three
algorithms that fared poorly in Figud): jelinek-mercer-baseline, jelinek-mercer,
andwitten-bell-backoff. These algorithms are all of the form given in Equatidh (
where the discount of an-gram with count is approximatelyr — Ar. Because discounts
are linear inr when ideally they should be roughly constant, discounts for these algorithms
are too low for low counts and too high for high counts.

Katz smoothing chooses discounts according to the Good—Turing discount, which theo-
retically should estimate the correct average discount well, and we find this to be the case
empirically. WhileKatz assigns the correct total massr@rams with a particular count, it
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Figure 11.0On the left, correct average discount fegrams with a given count in
training data on two training set sizes, WSJ/NAB corpus, bigram and trigram models;
on the right, cumulative fraction of cross-entropy on the test set devotegtams

with r or fewer counts in training data for variou®n WSJ/NAB corpus,
jelinek-mercer-baseline smoothing, trigram model.

does not perform particularly well because it does not distribute probabilities well between

n-grams with the same count, as we shall see when we examine its normalized cross-entropy.
The algorithmkneser-ney-mod uses a uniform discourd, 3+ for all counts three and

above, but separate discouridg 1 and Dy, » for one and two counts. This modification of

Kneser—Ney smoothing was motivated by the observation in Fijltbat smaller counts

have a very different ideal average discount than larger counts. Indeed, in Ejwesee

that kneser-ney-mod is much closer to the ideal thameser-ney for low counts. (The

performance gain in using separate discounts for counts larger than two is marginal.)

5.2.2. Normalized performance, overall

In Figure12, we display the normalized cross-entrdgy , (T) of various algorithms relative
to the normalized cross-entropy of the baseline algorithm on the 75 million word training set
for trigram models, separated into low and high counts for clarity. For the points on the graph
with a count of 0, we exclude thos*egramswi'_nH for which the corresponding history

wiI:rlH-l has no counts, i.e. for whicﬁjwi C(w;:%+1wi) = 0. The associated values for these
cases are displayed under a count value bf

We see thakneser-ney andkneser-ney-mod considerably outperform all other algo-
rithms on low counts, especially for the point with a count value of zero. We attribute this
to the modified backoff distribution that is used in Kneser—Ney smoothing as described in
Section2.7. As the ratio of expected to actual counts for these algorithms is not significantly
superior to those for all other algorithms, and as their normalized performance on high counts
is good but not remarkable, we conclude that their excellent normalized performance on low
counts is the reason for their consistently superior overall performance.

The algorithms with the worst normalized performance on low (non-zero) couritaete
andwitten-bell-backoff; these are also the only two algorithms shown that use backoff
instead of interpolation. Thus, it seems that for low counts lower-order distributions provide
valuable information about the correct amount to discount, and thus interpolation is superior
for these situations. Backoff models do not use lower-order distributions to help estimate the
probability ofn-grams with low (non-zero) counts.

For large counts, the two worst performing algorithms gekdlinek-mercer and
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Figure 12.Normalized cross-entropy for-grams with a given count in training data
for various smoothing algorithms, low counts and high counts, WSJ/NAB corpus,
trigram model.

jelinek-mercer-baseline. We hypothesize that the combination of being an interpolated
model and using linear discounting leads to large variation in the discoumtjedms with

a given large count, while a more ideal strategy is to assign a fairly constant discount as in
Katz smoothing. All of the other algorithms are very near to each other in terms of normal-
ized performance on large counts; we guess that it does not matter much how large counts
are smoothed as long as they are not modified too much.

5.2.3. Performance variation over training set size

Given the preceding analysis, it is relevant to note what fraction of the total entropy of the
test data is associated witihgrams of different counts, to determine how the performance for
each count affects overall performance. On the right in Fiddreve display the cumulative

values ofHH”:((TT)) (see Equation1(8)) for different counts for the baseline algorithm over a

range of training set sizes for trigram models on the WSJ/NAB corpus. A line labetekl

k
graphs the fraction of the entropy devotechtgrams with up tdk counts, i.e.%.

Actually, this is not quite accurate, as we exclude from this value the contribution from all
n-gramsw;_, ., for which the corresponding histo i:%+1 has no counts. The contribution
from thesen-grams represents the area abovertheoco line.

As would be expected, the proportion of the entropy devoteddeams with high counts
grows as the size of the training set grows. More surprising is the fraction of the entropy
devoted to low counts in trigram models even for very large training sets; for a training set of
10 million sentences about 40% of the entropy comes from trigrams with zero counts in the
training data. This explains the large impact that performance on low counts has on overall
performance, and why modified Kneser—Ney smoothing has the best overall performance
even though it excels mostly on low counts only.

In combination with the previous analysis, this data also explains some of the variation in
the relative performance of different algorithms over different training set sizes and between
bigram and trigram models. In particular, algorithms that perform well on low counts will
perform well overall when low counts form a larger fraction of the total entropy (i.e. small
datasets), and conversely, algorithms that perform well on high counts will perform better
on large datasets. For example, the observationjiiainek-mercer outperformskatz on
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Figure 13.kneser-ney-mod andkneser-ney-mod-backoff on WSJ/NAB,
trigram model; left graph shows normalized cross-entropyfgrams with a given
count in training data; right graph shows the ratio of expected number to actual
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small datasets whileatz is superior on large datasets is explained by the factuhet is
superior on high counts whilgelinek-mercer is superior on low counts. Similarly, since
bigram models contain more high counts than trigram models on the same sizeadata,
performs better on bigram models than on trigram models.

5.2.4. Backoff vs. interpolation

In the left graph of Figurdl3, we display the normalized performance of the backoff and
interpolated versions of modified Kneser—Ney smoothing over a range of counts for trigram
models. We can see that the interpolated algorithm greatly outperforms the backoff algorithm
on low (positive) counts. As discussed in SectiB.2 it seems that for low counts lower-
order distributions provide valuable information about the correct amount to discount, and
thus interpolation is superior for these situations. Though not shown, this behavior holds for
bigram models and with the backoff and interpolated versions of Witten—Bell smoothing and
absolute discounting.

In the right graph of Figurd 3, we display the ratio of expected to actual counts of the
backoff and interpolated versions of modified Kneser—Ney smoothing over a range of counts
for trigram models. We see that the backoff version is generally closer to the ideal according
to this criterion. We see similar results for bigram models and for the backoff and interpolated
versions of absolute discounting. For Witten—Bell smoothing, the backoff version is closer to
the ideal only for small counts, but by a large amount.

We hypothesize that the relative strength of these two opposing influences determine the
relative performance of the backoff and interpolated versions of an algorithm, which varies
between algorithms as seen in Sectioh.3

5.3. Auxiliary experiments
5.3.1. Higher order n-gram models

Due to the increasing speed and memory of computers, there has been some use of higher-
ordern-gram models such as 4-gram and 5-gram models in speech recognition in recent years
(Seymore, Chen, Eskenazi & Rosenfeld, 1,98@nget al., 1997). In this section, we examine
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Figure 14.Performance relative to baseline of various algorithms on WSJ/NAB
corpus, 4-gram and 5-gram models.

how various smoothing algorithms perform for these larger models. In the extended version
of this paper, we show that the advantages of higher-areggam models over lower-order
models increase with the amount of training data. These increases can be quite considerable:
with several million sentences of training data, they can exceézbis per word for a 5-gram
model as compared to a trigram model.

In Figure14, we display the relative performance of various smoothing algorithms relative
to the baseline method for 4-gram and 5-gram models over a range of training set sizes on
the WSJ/NAB corpus. Note that all of these models were built with no count cutoffs. Again,
we seeneser-ney andkneser-ney-mod consistently outperforming the other algorithms.
In addition, we see that algorithms that do not perform well on small datasets for bigram and
trigram models perform somewhat worse on these higher-order models, as the use of a larger
model exacerbates the sparse data problem. The mekads abs-disc-interp, and
witten-bell-backoff perform about as well or worse than the baseline algorithm except
for the largest datasets. On the other hajwd,inek-mercer consistently outperforms the
baseline algorithm.

5.3.2. Count cutoffs

For large datasetspunt cutoffare often used to restrict the size of tigram model con-
structed. With count cutoffs, afl-grams of a certain length with fewer than a given number
of occurrences in the training data are ignored in some fashion. How counts are “ignored”
is algorithm-specific, and has not generally been specified in the original descriptions of
previous smoothing algorithms. In these experiments, we implemented what we felt was
the most “natural” way to add cutoffs to various algorithms. The general strategy we took
was: forn-grams with counts below the cutoffs, we pretended they occurred zero times and
assigned probabilities through backoff/interpolation;riegrams with counts above the cut-
offs, we assigned similar probabilites as in the non-cutoff case; and we adjusted the back-
off/interpolation scaling factors so that distributions were correctly normalized. The exact
descriptions of our cutoff implementations are given in the extended version of this paper.
To introduce the terminology we use to describe cutoff models, we use an example:
0-0-1 cutoffsfor a trigram model signals that all unigrams with 0 or fewer counts are ig-
nored, all bigrams with O or fewer counts are ignored, and all trigrams with 1 or fewer counts
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Figure 15. Performance relative to model with no count cutoffs of models with cutoffs
on WSJ/NAB corpus, trigram modelfelinek-mercer-baseline on the left,
kneser-ney-mod on the right.

are ignored. Using cutoffs of one or two for bigrams and trigrams can greatly decrease the
size of a model, while yielding only a small degradation in performance.

In Figure 15, we display the performance of trigram models with different cutoffs relative
to the corresponding model with no cutoffs figlinek-mercer-baseline andkneser-
ney-mod smoothing on various training set sizes on the WSJ/NAB corpus. We see that for
kneser-ney-mod smoothing, models with higher cutoffs tend to perform more poorly as
would be expected. Fgrelinek-mercer-baseline smoothing, we see that models with O-
0-1 cutoffs actually outperform models with no cutoffs over most of the training set sizes. In
other words, it seems that the algorithjelinek-mercer-baseline smooths trigrams with
one count so poorly that using these counts actually hurt performance.

In Figure 16, we display the performance of various smoothing algorithms for trigram
models for two different cutoffs over a range of training set sizes on the WSJ/NAB corpus.
Overall, we see that the ordering of algorithms by performance is largely unchanged from the
non-cutoff casekneser-ney andkneser-ney-mod still yield the best performance. The
most significant difference is that our implementatiiss-disc-interp performs more
poorly relative to the other algorithms; it generally performs worse than the baseline algo-
rithm, unlike in the non-cutoff case. In addition, the magnitudes of the differences in perfor-
mance seem to be less when cutoffs are used.

Recently, several more sophisticategram model pruning techniques have been devel-
oped Kneser, 1996Seymore & Rosenfeld, 1996tolcke, 1998 It remains to be seen how
smoothing interacts with these new techniques.

5.3.3. Cross-entropy and speech recognition

In this section, we briefly examine how the performance of a language model measured in
terms of cross-entropy correlates with speech recognition word-error rates using the language
model. More details about these experiments are given in the extended version of this paper.
We constructed trigram language models for each of four smoothing algorithms for five
different training set sizes (ranging from 1000 to 8 300 000 sentences) in the Broadcast News
domain; the algorithms, training set sizes, and the corresponding speech recognition word-
error rates are shown on the left in Figuré All models were built with no count cutoffs
except for the largest training set, for which trigrams occurring only once in the training
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Figure 17.0n the left, speech recognition word-error rate on the Broadcast News test
set over various training set sizes, trigram model, various smoothing algorithms; on
the right, relation between perplexity and speech recognition word-error rate on the
test set for the 20 language models.

data were excluded. On the right in Figuré we graph the word-error rate vs. the test set
cross-entropy of each of the twenty models.

We can see that the linear correlation between cross-entropy and word-error rate is very
strong for this set of models. Thus, it seems that smoothing algorithms with lower cross-
entropies will generally lead to lower word-error rates when plugged into speech recognition
systems. For our particular dataset, we see an absolute reduction of at8éunh5vord-error
rate for every bit of reduction in cross-entropy. As seen in Se&itrthe difference in cross-
entropy between the best smoothing algorithm and a mediocre smoothing algorithm can be
0.2 bits or more, corresponding to about a 1% absolute difference in word-error rate. Hence,
the choice of smoothing algorithm can make a significant difference in speech recognition
performance.

6. Discussion

Smoothing is a fundamental technique for statistical modeling, important not only for lan-
guage modeling but for many other applications as well, e.g. prepositional phrase attach-
ment Collins & Brooks, 199%, part-of-speech tagginghurch, 1988 and stochastic pars-
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ing (Magerman, 1994Collins, 1997 Goodman, 1997 Whenever data sparsity is an issue,
smoothing can help performance, and data sparsity is almost always an issue in statistical
modeling. In the extreme case where there is so much training data that all parameters can be
accurately trained without smoothing, one can almost always expand the model, such as by
moving to a higher-ordan-gram model, to achieve improved performance.

To our knowledge, this is the first empirical comparison of smoothing techniques in lan-
guage modeling of such scope: no other study has systematically examined multiple training
data sizes, different corpora, or has performed automatic parameter optimization. We show
that in order to completely characterize the relative performance of two techniques, it is nec-
essary to consider multiple training set sizes and to try both bigram and trigram models.
In addition, we show that sub-optimal parameter selection can substantially affect relative
performance.

We created techniques for analyzing the count-by-count performance of different smooth-
ing techniques. This detailed analysis helps explain the relative performance of various al-
gorithms, and can help predict how different algorithms will perform in novel situations.
Using these tools, we found that several factors had a consistent effect on the performance of
smoothing algorithms.

e The factor with the largest influence is the use of a modified lower-order distribution
as in Kneser—Ney smoothing. This seemed to be the primary reason that the variations
of Kneser—Ney smoothing performed so well relative to the remaining algorithms.

e Absolute discounting is superior to linear discounting. As was shown earlier, the ideal
average discount for counts rises quickly for very low counts but is basically flat for
larger counts. However, the Good—Turing estimate can be used to predict this average
discount even better than absolute discounting, as was demonstra@tzsmooth-
ing.

e In terms of normalized performance, interpolated models are significantly superior to
backoff models for low (non-zero) counts. This is because lower-order models provide
valuable information in determining the correct discountrfegrams with low counts.

e Adding free parameters to an algorithm and optimizing these parameters on held-out
data can improve the performance of an algorithm (though requires the availability of
a held-out set), e.kneser-ney-mod vVS.kneser-ney-mod-fix.

Our algorithmkneser-ney-mod was designed to take advantage of all of these factors, and

it consistently outperformed all other algorithms. Performing just slightly worse is the al-
gorithm kneser-ney-mod-£fix; this algorithm differs fromkneser-ney-mod in that dis-

counts are set using a formula based on training data counts. This algorithm has the practical
advantage that no external parameters need to be optimized on held-out data.

Though we measured the performance of smoothing algorithms primarily through the
cross-entropy of test data, we also performed experiments measuring the word-error rate
of speech recognition. In our experiments we found that when the only difference between
models is smoothing, the correlation between the two measures is quite strong, and that better
smoothing algorithms may lead to up to a 1% absolute improvement in word-error rate.

While we have systematically explored smoothingregram language models, there re-
main many directions that need to be explored. Almost any statistical model, notguaim
models, can and should be smoothed, and further work will be needed to determine how well
the techniques described here transfer to other domains. However, the techniques we have
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developed, both for smoothing and for analyzing smoothing algorithm performance, should
prove useful not only for language modeling research but for other tasks as well.
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