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Abstract

Recent advances in conditional recurrent language madéikve mainly focused
on network architectures (e.g., attention mechanismjnieg algorithms (e.g.,
scheduled sampling and sequence-level training) and aadications (e.g., im-
age/video description generation, speech recognitian) édn the other hand,
we notice that decoding algorithms/strategies have nat beestigated as much,
and it has become standard to use greedy or beam searchs [rathér, we pro-
pose a novel decoding strategy motivated by an earlier easen that nonlinear
hidden layers of a deep neural network stretch the data oidniThe proposed
strategy is embarrassingly parallelizable without any amication overhead,
while improving an existing decoding algorithm. We exteebi evaluate it with
attention-based neural machine translation on the task-ef&z translation.

1 Introduction

Since its first use as a language model in 2010 [19], a reduneral network has becomeda
factochoice for implementing a language modell[28], 25]. One ofappeealing properties of this
approach to language modelling, to which we referezsirrent language modellings that a re-
current language model can generate a long, coherent seri@&i. This is due to the ability of a
recurrent neural network to capture long-term dependencie

This property has come under spotlight in recent years asahditional version of a recurrent lan-
guage model began to be used in many different problemsdbaire generating a natural language
description of a high-dimensional, complex input. Thesigdnclude machine translation, speech
recognition, image/video description generation and nmaage [9] and references therein.

Much of the recent advances in conditional recurrent laggmaodel have focused either on network
architectures (e.g.[[1]), learning algorithms (e.gl,22,[2]) or novel applications (see![9] and
references therein). On the other hand, we notice that tteer@ot been much research on decoding
algorithms for conditional recurrent language modelshirost of work using recurrent language
models, it is a common practice to use either greedy or beansls¢o find the most likely natural
language description given an input.

In this paper, we investigate whether it is possible to dedmetter from a conditional recurrent lan-
guage model. More specifically, we propose a decoding glyatetivated by earlier observations
that nonlinear hidden layers of a deep neural network s$trifte data manifold such that a neigh-
bourhood in the hidden state space corresponds to a set ah$ieally similar configurations in
the input space [6]. This observation is exploited in thepps®ed strategy by injecting noise in the
hidden transition function of a recurrent language model.

The proposed strategy, called noisy parallel approximateding (NPAD), is a meta-algorithm that
runs in parallel many chains of the noisy version of an inremodling algorithm, such as greedy or
beam search. Once those parallel chains generate the atagjithe NPAD selects the one with the
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highest score. As there is effectively no communicatiorriogad during decoding, the wall-clock
performance of the proposed NPAD is comparable to a singlefan inner decoding algorithm

in a distributed setting, while it improves the performané¢ehe inner decoding algorithm. We
empirically evaluate the proposed NPAD against the greedsch, beam search as well as stochastic
sampling and diverse decoding [16] in attention-basedalenachine translation.

2 Conditional Recurrent Language M odel

A language model aims at modelling a probabilistic disttitnuover natural language text. A recur-
rent language model is a language model implemented as aeatoeural network [18].

Let us define a probability of a given natural language see®which we represent as a sequence
of linguistic symbolsX = (z1,z2,...,2z7), 8s

p(X) = p(x1, 22, ..., 27) = p(z1)p(2|zr)p(as|zy, 22) - - - plar|rar) = HP zilr<r), (1)

wherex ., is all the symbols preceding theth symbol in the sentenc&. Note that this condi-
tional dependency structure is not necessary but is peafenwer other possible structures due to its
naturalness as well as the fact that the length of a giveeseel” is often unknown in advance.

In a neural language modél [5], a neural network is used topeeneach of the conditional prob-
ability terms in Eq.[(L). A difficulty in doing so is that thepnt (x1, 2o, ..., 2:—1) to the neural
network is of variable size. A recurrent neural network eldy addresses this difficulty by reading
one symbol at a time while maintaining an internal memoriesta

hy = ¢ (h—1, E[z¢]), (2

whereh; is the internal memory state at timeE [z;] is a vector representation of théh symbol
in the input sentence. The internal memory slateffectively summarizes all the symbols read up
to thet-th time step.

The recurrent activation functianin Eqg. (2) can be as simple as an affine transformation fokkbwe
by a point-wise nonlinearity (e.gtanh) to as complicated a function as long short-term memory
(LSTM, [13]) or gated recurrent units (GRU, [10]). The lattavo are often preferred, as they
effectively avoid the issue of vanishing gradient [7].

Given the internal hidden state, the recurrent neural nétwomputes the conditional distribution
over the next symbot;. ;. Assuming a fixed vocabulary of linguistic symbols, it is straightfor-
ward to make a parametric function that returns a probglufieach symbol in the vocabulary:
exp(g; (he)) 3)
V b)
SvLy explgy (b))

whereg;(h,) is the j-th component of the output of the functign: R — RIVI The
formulation on the right-hand side of E@] (3) is called as@ix function[8].

(i1 = jlr<t) =

Given Egs.[(R)£(3), the recurrent neural network reads gnebsl of a given sentenc&” at a
time from left to right and computes the conditional proligbbf each symbol until the end of
the sequence is reached. The probability of the senten¢eiisdiven by a product of all those
conditional probabilities. We call this recurrent neuratwork arecurrent language model

Conditional Recurrent LanguageModel A recurrentlanguage model is turned intoanditional
recurrent language modglvhen the distribution over sentences is conditioned onhemanodality
including another language. In other words, a conditioealirrent language model estimates

p(X[Y) = Hp welwar, Y 4)

1 Although | use a “sentence” here, this is absolutely not ssasy, and any level of text, such as a phrase,
paragraph, chapter and document, can be used as a unit abgagrodelling. Furthermore, it does not have
to be a natural language text but any sequence such as spiksthor actions.



Y in Eq. [4) can be anything from a sentence in another lang(ragehine translation), an image
(image caption generation), a video clip (video descripgieneration) to speech (speech recogni-
tion). In any of those cases, a previously described rentiaaguage model requires only a slightest
tweak in order to take into accoukt

The tweak is to compute the internal hidden state of the rentitanguage model based not only on
h;_; andE [z;] (see Eq.[(R)) but also o¥i such that

hy = ¢ (hy 1, E 4], f(Y, 1)), )

wheref is a time-dependent function that maps fréhto a vector. Furthermore, we can make
in Eg. (3) to be conditioned ol as well

exp(g; (he, F(V,1)
S exp(gy (b, £(Y,1)))

(6)

(i1 = jlr<t) =

Learning Given a data seb of pairs(X,Y’), the conditional recurrent language model is trained
to maximize the log-likelihood function which is defined as

N T"
1 n n n
L£(6) = 0] > logp(aplat, Y™,
n=1t=1

This maximization is often done by stochastic gradient desavith the gradient computed by
backpropagatiori [23]. Instead of a scalar learning rataptake learning rate methods, such as
Adadelta[[27] and Adani[14], are often used.

3 Decoding

Decoding in a conditional recurrent language model comedp to finding a target sequentethat
maximizes the conditional probabilip{ X |Y') from Eq. [3):

X = argmaxlog p(X|Y).
X

As is clear from the formulation in Eq$.](5)3(6), exact dengds intractable, as the state space of

X grows exponentially with respect to the length of the seqagne.,|X| = O(|V[IX]), without
any trivial structure that can be exploited. Thus, we musbrieto approximate decoding.

3.1 Greedy Decoding

Greedy decoding is perhaps the most naive way to approxiyégeode from the conditional re-
current language model. At each time step, it greedily el most likely symbol under the
conditional probability:

Ty = argmaxlogp(zy = j|T<t). @)
j

This continues until a special marker indicating the enchefdequence is selected.

This greedy approach is computationally efficient, butkelif too crude. Any early choice based
on a high conditional probability can easily turn out to bdikely one due to low conditional
probabilities later on. This issue is closely related togamlen path sentence problem (see Sec. 3.2.4
of [17].)

3.2 Beam Search
Beam search improves upon the greedy decoding strategy ibyaiming X' hypotheses at each time
step, instead of a single one. Let

Hior = {(21,83,....%_), (35,35, ..., 87 _1), ..., (@, 85, ..., 2}



be a set of current hypotheses at timeThen, from each current hypothesis the followifi§
candidate hypotheses are generated:

HY = {@F, a5, w3 o), @ ES, ), @S a3 o) )

wherev; denotes thg-th symbols in the vocabulary.

The top4# hypotheses from the union of all such hypothesesHéts: = 1,..., K are selected
based on their scores. In other words,

Ht = Ui(:lBka
where

B = argmaxlogp(XW), A = Ap_1 — Bi_1, andA; = Ui(/:ﬂ-lt/.
XeA

Among the topK hypotheses, we consider the ones whose last symbols arpebialsmarker for

the end of sequence to be complete and stop expanding suothlegps. All the other hypotheses
continue to be expanded, however, withreduced by the number of complete hypotheses. When
K reache$), the beam search ends, and the best one among all the cotygetheses is returned.

4 NPAD: Noisy Parallel Approximate Decoding

In this section, we introduce a strategy that can be usednjunotion with the two decoding strate-
gies discussed earlier. This new strategy is motivated byfdbt that a deep neural network, in-
cluding a recurrent neural network, learns to stretch tpetimanifold (on which only likely input
examples lie) and fill the hidden state space with it. Thisliegthat a neighbourhood in the hidden
state space corresponds to a set of semantically simildigcoations in the input space, regardless
of whether those configurations are close to each other imthe space/ [6]. In other words, small
perturbation in the hidden space corresponds to jumping &e plausible configuration to another.

In the case of conditional recurrent language model, we carege this behaviour of efficiently
exploration across multiple modes by injecting noise tdtthesition function of the recurrent neural
network. In other words, we replace Eq. (5) with

h; :gb(ht*l +€t7E[xt]7f(Kt))v (8)

where
e ~ N(0,071).

The time-dependent standard deviatiqrshould be selected to reflect the uncertainty dynamics in
the conditional recurrent language model. As the recumretvtork models a target sequence in one
direction, uncertainty is often greatest when predictiagier symbols and gradually decreases as
more and more context becomes available for the conditidistributionp(y:|y<.). This naturally
suggests a strategy where we start with a high level of nbigl ;) and anneal it€; — 0) as the
decoding progresses. One such scheduling scheme is
0o

Ot = 7
whereoy is an initial noise level. Although there are many altewesj we find this simple formu-
lation to be effective in experiments later.

We run M such noisy decoding processes in parallel. This can be dasity end efficiently, as
there is no communication between these parallel processept at the end of the decoding pro-
cessing. Let us denote By, a sequence decoded from theth decoding process. Among these
M hypotheses, we select the one with the highest probabdgigaed by th@on-noisymodel:

Y = argmax logp(Yy|X).
f/m:m:L...,M

We call this decoding strategy, based on running multiplalfe approximate decoding processes
with noise injectednoisy parallel approximate decodirfy PAD).



Computational Complexity Clearly, the proposed decoding strategydsimes more expensive,
i.e.,O(M D), whereD is the computational complexity of either greedy or beanncegsee Se€]3.)

It is however important to note that the proposed NPAD is amasaingly parallelizable, which is
well suited for distributed and parallel environments ofdam computing. By utilizing multi-
core machines, the practical cost of computation reducesntply running the greedy or beam
search once (with a constant multiplicative facto2df ¢ due to computing the non-noisy score and
generating pseudo random numbers.) This is contrary tanfbance, when comparing the beam
search to the greedy search, in which case the benefit fromfiglazation is limited due to the heavy
communication cost at each step.

Quality Guarantee A major issue with the proposed strategy is that the regu#taquence may be
worse than running a single inner-decoder, due to the ssticktg. This is however easily avoided
by settingo, to 0 for one of theM decoding processes. By doing so, even if all the other noisy
decoding processes resulted in sequences whose prabalzilé worse than the non-noisy process,
the proposed strategy nevertheless returns a sequends #sagood as a single run of the inner
decoding algorithm.

4.1 Why not Sampling?

The formulation of the conditional recurrent language niatuBq. (4) implies that we can generate
exact samples from the model, as this is a directed acydiptgcal model. At each time steépa
sample from the categorical distribution given all the slawjpf the previous time steps (EQl (6)) is
generated. This procedure is done iteratively either up tone steps or another type of stopping
criterion is met (e.g., the end-of-sequence symbol is sathpBimilarly to the proposed NPAD, we
can run a set of this sampling procedures in parallel.

A major difference between this sampling-at-the-output #ire proposed NPAD is that the NPAD
exploits the hidden state space of a neural network in whierdata manifold is highliinearized

In other words, training a neural network tendsilicup the hidden state space as much as possible
with valid data point§,and consequently any point in the neighbourhood of a vatidém statel,

Eqg. (8)) should map to a plausible point in the output spadss iE contrary to the actual output
space, where only a fraction of the output space is plausible

Later, we show empirically that it is indeed more efficiensgnple in the hidden state space than
in the output state space.

4.2 Related Work

Perturb-and-MAP Perturb-and-MAPL[21] is an algorithm that reduces prolistizlinference,
such as sampling, to energy minimization in a Markov randaid f{MRF) [20]. For instance,
instead of Gibbs sampling, one can use the perturb-and-Ngfd?ithm to find multiple instances of
configurations that minimize theerturbedenergy function. Each instance of the perturb-and-MAP
works by first injecting noise to the energy function of the MRe.,E(x) = F(x)+¢(x), followed

by maximum-a-posterior (MAP) step, i.arg min, F(x).

A connection between this perturb-and-MAP and the propddedD is clear. Let us define the
energy function of the conditional recurrent language rhedets log-probability, i.e. F(X|Y) =
log p(X|Y) (see Eq.[(#).) Then, the noise injection to the hidden steki [8) is a process similar
to injecting noise to the energy function. This connectidees from the fact that the NPAD and
perturb-and-MAP share the same goal of “[giving] other lovergy states the chancé” [20].

Diverse Decoding One can view the proposed NPAD as a way to generate a divdreéldgely
solutions from a conditional recurrent language model!16i,[a variant of beam search was pro-
posed, which modifies the scoring function at each time sfdgeam search to promote diverse
decoding. This is done by penalizing low ranked hypothesgisshare a previous hypothesis. This
approach is however only applicable to beam search and iasptarallelizable as the proposed
NPAD. It should be noted that the NPAD and the diverse deapdam be used together.

2 This behaviour can be further encouraged by regularizieg(#pproximate) posterior over the hidden
state, for instance, as in variational autoencoders (sge[€5/11].)



Earlier, Batra et al/[3] proposed another approach thatlesalecoding multiple, diverse solutions
from an MRF. This method decodes one solution at a time, whgelarizing the energy function

of an MRF with the diversity measure between the solutiomenily being decoded and all the
previous solutions. Unlike the perturb-and-MAP or the NRARIs is a deterministic algorithm.

A major downside to this approach is that it is inherentlywsagial. This makes it impractical

especially for neural machine translation, as already thpmssue behind its deployment is the
computational bottleneck in decoding.

5 Experiments: Attention-based Neural Machine Trandation

5.1 Settings

In this paper, we evaluate the proposed noisy parallel apaie decoding (NPAD) strategy in
attention-based neural machine translation. More spatifiave train an attention-based encoder-
decoder network on the task of English-to-Czech transiatitd evaluate different decoding strate-
gies.

The encoder is a single-layer bidirectional recurrent akengtwork with 1028 gated recurrent units
(GRU, [10))E The decoder consists of an attention mechanism [1] and aresttineural network
again with 1028 GRU's. Both source and target words wereeptefl to a 512-dimensional contin-
uous space. We used the code from dl4mt-tutorial availahliedd for training. Both source and
target sentences were represented as sequences of BPEdshmbols([24].

We trained this model on a large parallel corpus of approtéiyal2m sentence pairs, available
from WMT’15[ for 2.5 weeks. During training, ADADELTA[27] was used to atisely adjust
the learning rate of each parameter, and the norm of thegyradias renormalized to if it exceed

1. The training run was early-stopped based on the validgtgwplexity using newstest-2013 from
WMT’15. The model is tested with two held-out sets, newsBt4 and newstest-20fi5.

We closely followed the training and test strategies fro2],[And more details can be found in it.

Evaluation Metric The main evaluation metric is the negative conditional pogbability of a
decoded sentence, where lower is better. Additionally, s& BLEU as a secondary evaluation
metric. BLEU is a de-facto standard metric for automaticatlleasuring the translation quality of
machine translation systems, in which case higher is better

5.2 Decoding Strategies

We evaluate four decoding strategies. We choose the seatéat have comparable computational
complexity per core/machine, assuming multiple coreshimes are available. This selection left
us with greedy search, beam search, stochastic samplirmgsdidecoding and the proposed NPAD.

Greedy and Beam Search Both greedy and beam search are the most widely used decoding
strategies in neural machine translation, as well as otwditional recurrent language models for
other tasks. In the case of beam search, we test with two behihsy5 and 10. We use the script
made available at dl4mt-tutorial.

Stochastic Sampling A naive baseline for injecting noise during decoding is toy sample
from the output distribution at each time step, instead kil the top#" entries. We test three
configurations, where 5, 10 or 50 such samplers are run illglara

Noisy Parallel Approximate Decoding (NPAD) We extensively evaluate the NPAD by varying
the number of parallel decoding (5, 10 or 50), the beamwititts (or 10) and the initial noise level
00 (0.1,0.2,0.3 0r 0.5).

3 The number 1028 resulted from a typo, when originally weridesl to use 1024.

“https://github. com nyu-dl/dl 4nt-tutorial/tree/ master/ sessi on2

5 http://www.statmt.org/wmt15/translation-task.html

® Due to the space constraint, we only report the result on testv2014. We however observed the same
trend from newstest-2014 on newstest-2015.
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DiverseDecoding We try the diverse decoding strategy framli[16]. There is oypehparametey,

and we search ove0.001,0.01,0.1, 1}, as suggested by the authors[ofi[16] based on the validation
set performandé. Also, we vary the beam width (5 or 10). This is included as @uinistic
counter-part to the NPAD.

Valid Test-1

Strategy oo || NLLJ BLEUT | NLLI BLEUT y44e 1: Effect of noise injec-

Greedy - || 27879 155 | 264928  16.66 tjon. For both stochastic sampling
Sto. Sampling - || 22.9818 15.64 | 26.2536 16.76  and NPAD. we used 50 parallel

NPAD 01| 21.125 16.06 | 23.8542 17.48 ’

NPAD 0.2 || 206353  16.37 | 23.2631  17.86 fﬁ?ﬁ:g& ggogiﬁAg’s";ﬁ iﬁ:ﬁ_

NPAD 03| 204463 1671 | 230111 18.03 9 h y 9

NPAD 05| 20.7648 16.48 | 23.3056 18.13 decoding strategy.

5.3 Resaultsand Analysis

Effect of NoiseInjection First, we analyze the effect of noise injection by compatiregstochas-
tic sampling and the proposed NPAD against the deterministedy decoding. In doing so, we
used 50 parallel decoding processes for both stochastiplsapand NPAD. We varied the amount
of initial noiseoy as well.

In Table[d, we present both the average negative log-prbtyadnd BLEU for all the cases. As ex-
pected, the proposed NPAD improves upon the deterministiedy decoding as well as the stochas-
tic sampling strategy. It is important to notice that the imgment by the NPAD is significantly
larger than that by the stochastic sampling, which confitmas it is more efficient and effective to
inject noise in the hidden state of the neural network.

Valid Test-1
Strategy  # Parallels)] NLL| BLEU?T NLL]  BLEU?T
Greedy 1 27.879 155 | 264928 16.66 lable 2: Effect of the number of
NPAD 5 21.5984 16.09 | 24.3863 1/.51 parallel decoding processes. For
NPAD 10 21.054  16.33 | 23.6942 17.81 NPAD, oy = 0.3.
NPAD 50 204463 1671 | 23.0111 18.03

Effect of theNumber of Parallel Chains Next, we see the effect of having more parallel decoding
processes of the proposed NPAD. As we show in Table 2, thslation quality, in both the average
negative log-probability and BLEU, improves as more patalecoding processes are used, while it
does significantly better than greedy strategy even withchvans. We observed this trend for all the
other noise levels. This is an important observation, agjilies that the performance of decoding

can easily be improved without sacrificing the delay betweeeiving the input and returning the
result by simply adding in more cores/machines.

Beam # Valid Test-1

Strategy  Width oo Chains|| NLL| BLEU?t NLL)  BLEU? Table 3: NPAD
NPAD+G 1 03 50 || 204463 16.71| 230111 1803  (NpAD+B)

Beam 5 - T 20.1842 17.03 | 22.8106  18.56 '
NPAD+B 5 03 5 | 10.8106 1719 | 22.1374 18.64 KIVSADL%QSH Witt?]e
NPAD+B 5 01 10 || 197771 17.16 | 22.1594 18.61 he b

Beam 10 - T [ 199173 17.13 | 22.4392 1859 € Dbest average
NPAD+B 10 02 5 | 19.7888 1716 | 22.1178 18.68 l0og-probability on
NPAD+B 10 0.1 10 || 196674 17.14 | 21.9786 18.78 the validation set.

NPAD with Beam Search As described earlier, NPAD can be used with any other detestig
decoding strategy. Hence, we test it together with the bezarch strategy. As in Tablg 3, we
observe again that the proposed NPAD improves the detestigisirategy. However, as the beam

" Personal communication.



search is already able to find a good solution, the improvémenuch smaller than that against the
greedy strategy.

In Table3, we observe that difference between the greedpeaih search strategies is much smaller
when the NPAD is used as an outer loop. For instance, congptréngreedy decoding and beam
search with with 10, the differences without and with NPAR @r9617 vs. 0.7789 (NLL) and 1.66
vs. 0.43 (BLEU). This again confirms that the proposed NPAB &aotential to make the neural
machine translation more suitable for deploying in the veadd.

Beam # Valid Test-1 Table. 4: NPAD
Strategy Width Chains|| NLL, BLEUt | NLL{ BLEUt vs. diverse decod-
Beam 5 - 20.1842 17.03 | 22.8106 1856 Ing. The hyperpa-
NPAD+B 5 0.3 19.8106 17.19 | 22.1374 18.64 rametem, was se-
Diverse 5 0.001 20.1859 17.03 | 22.8156  18.56 lected based on the
Beam 10 - 19.9173 17.13 | 22.4392 1859 BLEU on the vali-
NPAD+B 10 0.2 19.7888 17.16 | 221178 18.68 dation set. £) oo
Diverse 10 0.1 19.8908  17.2 | 22.4451 18.62 if NPAD, and if
Diverse.

NPAD vs Diverse Decoding In Table[4, we present the result using the diverse decodiing.
diverse decoding was proposed|in|[16] as a way to improverémstation quality, and accordingly,
we present the best approaches based on the validation Blalke what was reported in [16], we
were not able to see any substantial improvement by thestiwdecoding. This may be due to the
fact that Li & Jurafsky[[16] used additional translatiomgaiage models to re-rank the hypotheses
collected by diverse decoding. As those additional modedsrained and selected for a specific
application of machine translation, we find the proposed DRA be more generally applicable
than the diverse decoding is. It is however worthwhile tcertbiat the diverse decoding may also
benefit from having the NPAD as an outer loop.

6 Conclusion and Future Work

In this paper, we have proposed a novel decoding strategyofaditional recurrent language mod-
els. The proposed strategy, called noisy, parallel appraté decoding (NPAD), exploits the hidden
state space of a recurrent language model by injectingustabed Gaussian noise at each transi-
tion. Multiple chains of this noisy decoding process areiruparallel without any communication
overhead, which makes the NPAD appealing in practice.

We empirically evaluated the proposed NPAD against the lwidsed greedy and beam search as
well as stochastic sampling and diverse decoding stragegjiee empirical evaluation has confirmed
that the NPAD indeed improves decoding, and this improverizeaspecially apparent when the
inner decoding strategy, which can be any of the existingtesgies, is more approximate. Using
NPAD as an outer loop significantly closed the gap betweety fag more approximate greedy
search and slow, but more accurate beam search, increbsipgtential for deploying conditional
recurrent language models, such as neural machine triamsliait practice.

FutureWork We consider this work as a first step toward developing abd¢igoding strategy for
recurrent language models. The success of this simple NPgBests a number of future research
directions. First, thorough investigation into injectingise during training should be done, not
only in terms of learning and optimization (see, e.gl, [#Dt also in the context of its influence
on decoding. It is conceivable that there exists a noisectime mechanism during training that
may fit better with the noise injection process during deegdas in the NPAD.) Second, we must
study the relationship between different types and scliegloff noise in the NPAD in addition to
white Gaussian noise with annealed variance investigattidd paper. Lastly, the NPAD should be
validated on the tasks other than neural machine trans|aiech as image/video caption generation
and speech recognition (see, eldl., [9] and referencesnbere
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