Statistical Machine Translation:
IBM Models 1 and 2

Michael Collins

1 Introduction

The next few lectures of the course will be focused on machine translation, and in
particular on statistical machine translation (SMT) systems. In this note we will
focus on the IBM translation models, which go back to the late 1980s/early 1990s.
These models were seminal, and form the basis for many SMT models now used
today.

Following convention, we’ll assume throughout this note that the task is to
translate from French (the “source” language) into English (the “target” language).
In general we will use f to refer to a sentence in French: f is a sequence of words
f1, fa ... fm where m is the length of the sentence, and f; for j € {1...m} is the
j’th word in the sentence. We will use e to refer to an English sentence: e is equal
to ey, ez ... e; where [is the length of the English sentence.

In SMT systems, we assume that we have a source of example translations,
(f*), e®)) for k = 1...n, where f(*) is the k’th French sentence in the training
examples, e(¥) is the k’th English sentence, and e(¥) is a translation of f(*). Each
%) gs equal to fl(k) . fy(,fk) where my, is the length of the k’th French sentence.
Each e(®) is equal to egk) . el(f) where [}, is the length of the &£’th English sentence.
We will estimate the parameters of our model from these training examples.

So where do we get the training examples from? It turns out that quite large
corpora of translation examples are available for many language pairs. The original
IBM work, which was in fact focused on translation from French to English, made
use of the Canadian parliamentary proceedings (the Hansards): the corpus they
used consisted of several million translated sentences. The Europarl data consists
of proceedings from the European parliament, and consists of translations between
several European languages. Other substantial corpora exist for Arabic-English,
Chinese-English, and so on.

2 The Noisy-Channel Approach

A few lectures ago we introduced generative models, and in particular the noisy-
channel approach. The IBM models are an instance of a noisy-channel model, and
as such they have two components:

1. A language model that assigns a probability p(e) for any sentence e =
e1 ...e; in English. We will, for example, use a trigram language model for
this part of the model. The parameters of the language model can potentially
be estimated from very large quantities of English data.

2. A translation model that assigns a conditional probability p(f|e) to any
French/English pair of sentences. The parameters of this model will be esti-
mated from the translation examples. The model involves two choices, both
of which are conditioned on the English sentence e ...e;: first, a choice
of the length, m, of the French sentence; second, a choice of the m words

fiee s fm.

Given these two components of the model, following the usual method in the
noisy-channel approach, the output of the translation model on a new French sen-
tence f is:

¢" =argmax p(e) x p(fle)
eck

where E is the set of all sentences in English. Thus the score for a potential trans-
lation e is the product of two scores: first, the language-model score p(e), which
gives a prior distribution over which sentences are likely in English; second, the
translation-model score p(f|e), which indicates how likely we are to see the French
sentence f as a translation of e.

Note that, as is usual in noisy-channel models, the model p(f|e) appears to
be “backwards”: even though we are building a model for translation from French
into English, we have a model of p(f|e). The noisy-channel approach has used
Bayes rule:

__ple)p(fle)
) = 5 pew(le)
hence
_ p(e)p(fle)
argmaxp(e|f) = argmax p |

> rple)p(fle)
p(fle)

= argmaxp(e)p(fle

A major benefit of the noisy-channel approach is that it allows us to use a language
model p(e). This can be very useful in improving the fluency or grammaticality of
the translation model’s output.

The remainder of this note will be focused on the following questions:

e How can we define the translation model p(f|e)?

e How can we estimate the parameters of the translation model from the train-
ing examples (f*) e®) for k =1...n?

We will describe the IBM models—specifically, IBM models 1 and 2—for this
problem. The IBM models were an early approach to SMT, and are now not widely
used for translation: improved models (which we will cover in the next lecture)
have been derived in recent work. However, they will be very useful to us, for the
following reasons:

1. The models make direct use of the idea of alignments, and as a consequence
allow us to recover alignments between French and English words in the
training data. The resulting alignment models are of central importance in
modern SMT systems.

2. The parameters of the IBM models will be estimated using the expectation
maximization (EM) algorithm. The EM algorithm is widely used in statisti-
cal models for NLP and other problem domains. We will study it extensively
later in the course: we use the IBM models, described here, as our first ex-
ample of the algorithm.

3 The IBM Models

3.1 Alignments

We now turn to the problem of modeling the conditional probability p(f|e) for any
French sentence f = fi ... f,, paired with an English sentence e = e; ... ¢;.

Recall that p(f|e) involves two choices: first, a choice of the length m of the
French sentence; second, a choice of the words f; ... f;,. We will assume that
there is some distribution p(m|l) that models the conditional distribution of French
sentence length conditioned on the English sentence length. From now on, we take
the length m to be fixed, and our focus will be on modeling the distribution

p(fi... fmler...e;,m)

i.e., the conditional probability of the words f; ... fi,,, conditioned on the English
string ey . . . ¢;, and the French length m.

It is very difficult to model p(fi ... fi]e1 ... e, m) directly. A central idea in
the IBM models was to introduce additional alignment variables to the problem.
We will have alignment variables a; . .. a,,—that is, one alignment variable for
each French word in the sentence—where each alignment variable can take any
value in {0, 1,...,1}. The alignment variables will specify an alignment for each
French word to some word in the English sentence.

Rather than attempting to define p(fi ... fm|e1 ... e, m) directly, we will in-
stead define a conditional distribution

p(fi.. fm,ar...amler... e, m)

over French sequences f; . .. f,,, together with alignment variables a; . . . a,,. Hav-
ing defined this model, we can then calculate p(fi ... fi,|e1 . .. €, m) by summing
over the alignment variables (“marginalizing out” the alignment variables):

l l l
p(fi- . fmle1...e) = Z Z Z Z p(fi-. fm,a1...amler...e)

We now describe the alignment variables in detail. Each alignment variable a;
specifies that the French word f; is aligned to the English word e,;: we will see
soon that intuitively, in the probabilistic model, word f; will be generated from
English word e,,. We define ¢ to be a special NULL word; so a; = 0 specifies
that word f; is generated from the NULL word. We will see the role that the NULL
symbol plays when we describe the probabilistic model.

As one example, consider a case where [= 6, m = 7, and

e = And the programme has been implemented

f = Le programme a ete mis en application

In this case the length of the French sentence, m, is equal to 7; hence we have
alignment variables a1, ag, . .. a7. As one alignment (which is quite plausible), we
could have

ap,az,...,a7 = (2,3,4,5,6,6,6)

specifying the following alignment:

Le = the
Programme =- program

a = has

ete = been

mis = implemented
en = implemented
application = implemented

Note that each French word is aligned to exactly one English word. The alignment
is many-to-one: more than one French word can be aligned to a single English
word (e.g., mis, en, and application are all aligned to implemented). Some English
words may be aligned to zero French words: for example the word And is not
aligned to any French word in this example.

Note also that the model is asymmetric, in that there is no constraint that each
English word is aligned to exactly one French word: each English word can be
aligned to any number (zero or more) French words. We will return to this point
later.

As another example alignment, we could have

ay,az,...a7 =(1,1,1,1,1,1,1)

specifying the following alignment:

Le = And
Programme = And
a = And
ete = And
mis = And
en = And
application = And

This is clearly not a good alignment for this example.

3.2 Alignment Models: IBM Model 2
We now describe a model for the conditional probability
p(fi- . fmsa1...amler...e,m)

The model we describe is usually referred to as IBM model 2: we will use IBM-M?2
as shorthand for this model. Later we will describe how IBM model 1 is a special
case of IBM model 2. The definition is as follows:

Definition 1 (IBM Model 2) An IBM-M2 model consists of a finite set € of En-
glish words, a set F of French words, and integers M and L specifying the max-
imum length of French and English sentences respectively. The parameters of the
model are as follows:

o t(fle) forany f € F, e € EU{NULL}. The parameter t(f|e) can be
interpreted as the conditional probability of generating French word f from
English word e.

e q(jli,l,m) foranyl € {1...L}, m € {1...M}, i € {1...m}, j €
{0...1}. The parameter q(j|i,l,m) can be interpreted as the probability of
alignment variable a; taking the value j, conditioned on the lengths | and m
of the English and French sentences.

Given these definitions, for any English sentence ey ...e; where each e; € &,
for each length m, we define the conditional distribution over French sentences
fi...fm and alignments a, . . . a,, as

m
p(fi- fm,a1...amler...e,m) = Hq(ai\i,l,m)t(fﬂeai)
i=1
Here we define eq to be the NULL word. []

To illustrate this definition, consider the previous example where [= 6, m = 7,

e = And the programme has been implemented

f = Le programme a ete mis en application
and the alignment variables are
ap,az,...a7 =(2,3,4,5,6,6,6)

specifying the following alignment:

Le = the
Programme =- program

a = has

ete = been

mis = implemented
en = implemented
application = implemented

(@)

In this case we have

p(fi--. fmsa1...amler...e;,m)
= q(2|1,6,7) x t(Lel|the)
xq(3]2,6,7) x t(Programme|program)

q(4]3,6,7) x t(alhas)
q(5]4,6,7) x t(ete|been)
xq(6]5,6,7) x t(mis|implemented)
q(6]6,6,7) x t(en|implemented)
xq(6]7,6,7) x t(application|implemented)

Thus each French word has two associated terms: first, a choice of alignment
variable, specifying which English word the word is aligned to; and second, a
choice of the French word itself, based on the English word that was chosen in step
1. For example, for f5 = mis we first choose a5 = 6, with probability ¢(6]5, 6, 7),
and then choose the word mis, based on the English word eg = implemented, with
probability ¢(mis|implemented).

Note that the alignment parameters, ¢(j|i,l,m) specify a different distribu-
tion (¢(0|¢,1,m),q(1|i,l,m),...,q(l]i,l,m)) for each possible value of the tuple
i,, m, where i is the position in the French sentence, [is the length of the English
sentence, and m is the length of the French sentence. This will allow us, for exam-
ple, to capture the tendency for words close to the beginning of the French sentence
to be translations of words close to the beginning of the English sentence.

The model is certainly rather simple and naive. However, it captures some
important aspects of the data.

3.3 Independence Assumptions in IBM Model 2

We now consider the independence assumptions underlying IBM Model 2. Take
L to be a random variable corresponding to the length of the English sentence;
E ... Ej to be a sequence of random variables corresponding to the words in the
English sentence; M to be a random variable corresponding to the length of the
French sentence; and F ... F,, and A; ... A, to be sequences of French words,
and alignment variables. Our goal is to build a model of

PFi=fi..Fp=fmAi=a1...Apy=an|E1=¢€1...Ej=¢,L=1,M =m)

As a first step, we can use the chain rule of probabilities to decompose this into
two terms:

PFi=fi..Fpn=fmAi=a...An=an|E1=¢e1...E=¢,L=1,M=m)

= P(A1:al...Am:am]Elzel...El:el,L:l,M:m)
XP(F1:fl...Fm:fm]Al:al...Am:am,El:61...El:el,L:l,M:m)

We’ll now consider these two terms separately.
First, we make the following independence assumptions:

P(Ai=ay...Ap=an|E1=¢€1...Ey=¢,L=1,M =m)

m
= HP(Ai:ai]Al:al...Ai_l:ai_l,El:el...El:el,L:l,M:m)
i=1

= [[PAi=alL=1,M=m)
=1

The first equality is exact, by the chain rule of probabilities. The second equality
corresponds to a very strong independence assumption: namely, that the distribu-
tion of the random variable A; depends only on the values for the random variables
L and M (it is independent of the English words F ... Ej, and of the other align-
ment variables). Finally, we make the assumption that

P(A; = a;|L=1,M =m) = q(a;|i,l,m)

where each q(a;|i, [, m) is a parameter of our model.
Next, we make the following assumption:

P(F1:fl...Fm:fm|A1:al...Am:am,El:el...El:el,L:l,M:m)

m
= HP(Fi:fi|F1:fl---Fi—lzfi—lyAl:al---Am:am7E1:el-'-Elzel;L:laM:m)
i=1

= HP(FZ = fi|Ea¢ = eai)
i=1
The first step is again exact, by the chain rule. In the second step, we assume that

the value for F; depends only on £, i.e., on the identity of the English word to
which Fj is aligned. Finally, we make the assumption that for all 7,

P(FZ = fi‘Eai = eai) = t(fi|eai)

where each t(f;|eq,) is a parameter of our model.

4 Applying IBM Model 2

The next section describes a parameter estimation algorithm for IBM Model 2.
Before getting to this, we first consider an important question: what is IBM Model
2 useful for?

The original motivation was the full machine translation problem. Once we
have estimated parameters q(j|i,l, m) and ¢(f|e) from data, we have a distribution

p(f,ale)

for any French sentence f, alignment sequence a, and English sentence e; from
this we can derive a distribution

p(fle) =D _p(f.ale)

Finally, assuming we have a language model p(e), we can define the translation of
any French sentence f to be

arg max p(e)p(fle) (D

where the arg max is taken over all possible English sentences. The problem of
finding the arg max in Eq. 1 is often referred to as the decoding problem. Solving
the decoding problem is a computationally very hard problem, but various approx-
imate methods have been derived.

In reality, however, IBM Model 2 is not a particularly good translation model.
In later lectures we’ll see alternative, state-of-the-art, models that are far more
effective.

The IBM models are, however, still crucial in modern translation systems, for
two reasons:

1. The lexical probabilities ¢(f|e) are directly used in various translation sys-
tems.

2. Most importantly, the alignments derived using IBM models are of direct use
in building modern translation systems.

Let’s consider the second point in more detail. Assume that we have estimated
our parameters ¢(f|e) and ¢(j|é,, m) from a training corpus (using the parameter
estimation algorithm described in the next section). Given any training example
consisting of an English sentence e paired with a French sentence f, we can then
find the most probably alignment under the model:

arg max play...am|f1... fm,€1...€,m) 2

Because the model takes such as simple form, finding the solution to Eq. 2 is
straightforward. In fact, a simple derivation shows that we simply define

T = » .alv t(file;
a argjer?g??l} (q(4l,1,m) x t(file;))

for ¢ = 1...m. So for each French word ¢, we simply align it to the English posi-
tion 7 which maximizes the product of two terms: first, the alignment probability
q(j]%,1,m); and second, the translation probability £(f;|e;).

5 Parameter Estimation

This section describes methods for estimating the ¢(f|e) parameters and ¢(j|i, 1, m)
parameters from translation data. We consider two scenarios: first, estimation with
fully observed data; and second, estimation with partially observed data. The first
scenario is unrealistic, but will be a useful warm-up before we get to the second,
more realistic case.

5.1 Parameter Estimation with Fully Observed Data

We now turn to the following problem: how do we estimate the parameters ¢(f|e)
and q(j|,1,m) of the model? We will assume that we have a training corpus
{f (k) (k) }i_, of translations. Note however, that a crucial piece of information is
missing in this data: we do not know the underlying alignment for each training ex-
ample. In this sense we will refer to the data being only partially observed, because
some information—i.e., the alignment for each sentence—is missing. Because of
this, we will often refer to the alignment variables as being hidden variables. In
spite of the presence of hidden variables, we will see that we can in fact estimate
the parameters of the model.

Note that we could presumably employ humans to annotate data with under-
lying alignments (in a similar way to employing humans to annotate underlying
parse trees, to form a treebank resource). However, we wish to avoid this because
manual annotation of alignments would be an expensive task, taking a great deal
of time for reasonable size translation corpora—moreover, each time we collect a
new corpus, we would have to annotate it in this way.

In this section, as a warm-up for the case of partially-observed data, we will
consider the case of fully-observed data, where each training example does in fact
consist of a triple (f(k), ek, a(k)) where f(¥) = fl(k) . fy(,]fk) is a French sentence,
elk) = egk) o egf) is an English sentence, and a*) = agk) - a&’i,{ is a sequence of
alignment variables. Solving this case will be be useful in developing the algorithm
for partially-observed data.

The estimates for fully-observed data are simple to derive. Define c(e, f) to
be the number of times word e is aligned to word f in the training data, and c(e)
to be the number of times that e is aligned to any French word. In addition, de-
fine ¢(jli,l,m) to be the number of times we see an English sentence of length

10

[, and a French sentence of length m, where word ¢ in French is aligned to word
j in English. Finally, define ¢(i,1,m) to be the number of times we see an En-
glish sentence of length [together with a French sentence of length m. Then the
maximum-likelihood estimates are

tur(fle) = C(ce(’e{)
qmr(jli,l,m) = c(i,l,m)

Thus to estimate parameters we simply compile counts from the training corpus,
then take ratios of these counts.

Figure 1 shows an algorithm for parameter estimation with fully observed data.
The algorithm for partially-observed data will be a direct modification of this algo-
rithm. The algorithm considers all possible French/English word pairs in the cor-
pus, which could be aligned: i.e., all possible (k, 1, j) tuples where k € {1...n},
i€ {l...mg},and j € {0...[;}. For each such pair of words, we have al(k) =7
if the two words are aligned. In this case we increment the relevant c(e, f), c(e),
c(jli,1,m) and ¢(7,1, m) counts. If al(-k) # j then the two words are not aligned,
and no counts are incremented.

5.2 Parameter Estimation with Partially Observed Data

We now consider the case of partially-observed data, where the alignment variables
a'®) are not observed in the training corpus. The algorithm for this case is shown in
figure 2. There are two important differences for this algorithm from the algorithm
in figure 1:

e The algorithm is iterative. We begin with some initial value for the ¢ and
q parameters: for example, we might initialize them to random values. At
each iteration we first compile some “counts” c(e), c(e, f), c(j|i,1, m) and
c(i,1,m) based on the data together with our current estimates of the param-
eters. We then re-estimate the parameters using these counts, and iterate.

e The counts are calculated using a similar definition to that in figure 1, but
with one crucial difference: rather than defining

0(k,i,7) = 1if agk) = 4, 0 otherwise
we use the definition
. k), (k
a(jli, b i)t (£)

6(k,i,j) =
b (i,)t (£)

11

Input: A training corpus (f*) e®) o)) for & = 1...n, where f*) =

k k k k k k
£ o) — o) o) o) o)
Algorithm:
e Setallcounts ¢(...) =0
e Fork=1...n
— Fori=1...my
* Forj=0...0x
(el 1) = e, ;M) + 8k i)
< i) = ee) + ok)
c(jli,l,m) — c(jli,l,m) + 6(k, i,)
c(i,l,m) «— c(i,l,m) 4+ 0(k,i,j)

where §(k,7,7) = 1if agk) = j, 0 otherwise.

Output:
c(jli, 1, m)
c(i,l,m)

tML(f|6) = c(e) qML(j|i7lvm) =

Figure 1: The parameter estimation algorithm for IBM model 2, for the case of
fully-observed data.

12

Input: A training corpus (f*), e()) for k = 1...n, where f*¥) = fl(k) . f#fk),
o) —)0
k

Initialization: Initialize ¢(f|e) and ¢(j|i, [, m) parameters (e.g., to random values).

Algorithm:

e Fors=1...5

— Setall counts ¢(...) =0

— Fork=1...n
* Fori=1...my;
- Forj=0...0
(e, 1) e el 1) + é(k, i,)
c(e) — (@) + ok, i, 5)
(le,l,m) — c(jli,l,m) +6(k,i,7)
c(i,l,m) «— c(i,l,m)+6(k,i,j)
where
. a(jli, ey mi)t(f 1)
ok, 6J) =)|, (F)
jZOq(]|Zalkamk)t(fi |ej)
-5 e.9) (i1, m)
c(e, . c(gle, L, m
t = l _ 7
(fle)) q(jli, 1, m) G Lm)

Output: parameters ¢(f|e) and ¢(j|i,l, m)

Figure 2: The parameter estimation algorithm for IBM model 2, for the case of
partially-observed data.

where the ¢ and ¢ values are our current parameter estimates.

Let’s consider this last definition in more detail. We can in fact show the fol-
lowing identity:

Q(j‘i7 la m)t(fi’e]')
Sk o a(ili, L m)t(file;)

where P(A; = jlei...e, fi ... fm,m) is the conditional probability of the align-
ment variable a; taking the value j, under the current model parameters. Thus we
have effectively filled in the alignment variables probabilistically, using our current
parameter estimates. This in contrast to the fully observed case, where we could
simply define d(k,7,j) = 1if al(k) = j, and 0 otherwise.
As an example, consider our previous example where | = 6, m = 7, and

P(A;=jler...e,, fi.o. fm,m) =

e%) = And the programme has been implemented

f) = Le programme a ete mis en application

The value for §(k, 5,6) for this example would be the current model’s estimate
of the probability of word f5 being aligned to word eg in the data. It would be
calculated as

q(6]5,6,7) x t(mis|implemented)

d(k,5,6) = - :
§=04(j15,6,7) x t(mis|e;)

Thus the numerator takes into account the translation parameter t(mis|implemented)
together with the alignment parameter ¢(6|5, 6, 7); the denominator involves a sum
over terms, where we consider each English word in turn.

The algorithm in figure 2 is an instance of the expectation-maximization (EM)
algorithm. The EM algorithm is very widely used for parameter estimation in the
case of partially-observed data. The counts c(e), c(e, f) and so on are referred to as
expected counts, because they are effectively expected counts under the distribution

play...aml|f1... fm,€1...€;,m)

defined by the model. In the first step of each iteration we calculate the expected
counts under the model. In the second step we use these expected counts to re-
estimate the ¢ and ¢ parmeters. We iterate this two-step procedure until the param-
eters converge (this often happens in just a few iterations).

14

6 More on the EM Algorithm: Maximum-likelihood Esti-
mation

Soon we’ll trace an example run of the EM algorithm, on some simple data. But
first, we’ll consider the following question: how can we justify the algorithm?
What are it’s formal guarantees, and what function is it optimizing?

In this section we’ll describe how the EM algorithm is attempting to find the
maximum-likelihood estimates for the data. For this we’ll need to introduce some
notation, and in particular, we’ll need to carefully specify what exactly is meant by
maximum-likelihood estimates for IBM model 2.

First, consider the parameters of the model. There are two types of parameters:
the translation parameters t(f|e), and the alignment parameters q(j|i,1,m). We
will use ¢ to refer to the vector of translation parameters,

t ={t(fle) : f € F,e € EU{NULL}}
and q to refer to the vector of alignment parameters,
g=A{q(jli,l,m):le{l...L},yme{l...M},j€{0...1},ie{l...m}}

We will use 7 to refer to the parameter space for the translation parameters—that
is, the set of valid settings for the translation parameters, defined as follows:

T ={t:Ve, f,t(fle) > 0; Ve€ EU{NULL}, Y t(fle) =1}
feF

and we will use Q to refer to the parameter space for the alignment parameters,

l

Q={q:Vj,i,l,m, q(jli,l,m) > 0; Vi,l,m, Zq(j|i,l,m) =1}
=0

Next, consider the probability distribution under the model. This depends on
the parameter settings ¢ and g. We will introduce notation that makes this depen-
dence explicit. We write

m

p(fv a‘ev m;t, Q) = H q(alhv l7 m)t(fl|eaz)

i=1

as the conditional probability of a French sentence f ... f,,,, with alignment vari-
ables a; ... ay,, conditioned on an English sentence e; . .. e;, and the French sen-
tence length m. The function p(f,ale, m;t,q) varies as the parameter vectors ¢

15

@,

and ¢ vary, and we make this dependence explicit by including ¢ and ¢ after the *;
in this expression.
As we described before, we also have the following distribution:

p(fle,mit,q) = Y p(f ale,m;t,q)

ac€A(l,m)

where A(l,m) is the set of all possible settings for the alignment variables, given
that the English sentence has length [, and the French sentence has length m:

A(l,m) ={(a1...an) 1a; €{0...1} forj=1...m}

So p(f|e,m;t,q) is the conditional probability of French sentence f, conditioned
on e and m, under parameter settings ¢ and q.
Now consider the parameter estimation problem. We have the following set-up:

e The input to the parameter estimation algorithm is a set of training examples,
(f®) e®), fork=1...n.

o The output of the parameter estimation algorithm is a pair of parameter vec-
torst € T,q € Q.

So how should we choose the parameters ¢ and ¢? We first consider a single
training example, (f (k) e(k)), for some k € {1...n}. For any parameter settings
t and ¢, we can consider the probability

p(f®[e® my;t, q)

under the model. As we vary the parameters ¢ and g, this probability will vary.
Intuitively, a good model would make this probability as high as possible.

Now consider the entire set of training examples. For any parameter settings ¢
and ¢, we can evaluate the probability of the entire training sample, as follows:

[T p(r®1e®), mu;t, q)
k=1

Again, this probability varies as the paramters ¢ and ¢ vary; intuitively, we would
like to choose parameter settings ¢ and ¢ which make this probability as high as
possible. This leads to the following definition:

Definition 2 (Maximum-likelihood (ML) estimates for IBM model 2) 7he ML es-

timates for IBM model 2 are

tmr, =arg max L(t,
(tmr,qmr) g, Jmax (t,q)

16

where
L(t,q) = 10g(Hp(f("”)!e(’“),mk;t,Q)>
k=1
= Y logp(f*e®), my;t, q)
k=1

= Ylog Y p(f®,ale® my;t,q)
k=1

a‘EA(lk 7mk)

We will refer to the function L(t, q) as the log-likelihood function. []

Under this definition, the ML estimates are defined as maximizing the function

log (H p(f®e® myst, q))
k=1

It is important to realise that this is equivalent to maximizing
n
[T p(#®1e®) my;t, q)
k=1

because log is a monotonically increasing function, hence maximizing a function
log f(t,q) is equivalent to maximizing f(t,q). The log is often used because it
makes some mathematical derivations more convenient.

We now consider the function L(¢, ¢) which is being optimized. This is actually
a difficult function to deal with: for one thing, there is no analytical solution to the
optimization problem

t.q) = Lt 3
(t,q) arg, max (t,q) (3)

By an “analytical” solution, we mean a simple, closed-form solution. As one exam-
ple of an analytical solution, in language modeling, we found that the maximum-
likelihood estimates of trigram parameters were

count(u, v, w
qur(wlu,v) = couni(u, v, w)

count(u,v)
Unfortunately there is no similar simple expression for parameter settings that max-
imize the expression in Eq. 3.

A second difficulty is that L(¢, ¢) is not a convex function. Figure 3 shows ex-
amples of convex and non-convex functions for the simple case of a function f(x)
where x is a scalar value (as opposed to a vector). A convex function has a single

17

GLDBAL

/ orTIMOM
4/

Figure 3: Examples of convex and non-convex functions in a single dimension. On
the left, f(x) is convex. On the right, g(x) is non-convex.

—_—

-

global optimum, and intuitively, a simple hill-climbing algorithm will climb to this
point. In contrast, the second function in figure 3 has multiple “local” optima, and
intuitively a hill-climbing procedure may get stuck in a local optimum which is not
the global optimum.

The formal definitions of convex and non-convex functions are beyond the
scope of this note. However, in brief, there are many results showing that con-
vex functions are “easy” to optimize (i.e., we can design efficient algorithms that
find the arg max), whereas non-convex functions are generally much harder to deal
with (i.e., we can often show that finding the arg max is computationally hard, for
example it is often NP-hard). In many cases, the best we can hope for is that the
optimization method finds a local optimum of a non-convex function.

In fact, this is precisely the case for the EM algorithm for model 2. It has the
following guarantees:

Theorem 1 (Convergence of the EM algorithm for IBM model 2) We use t©) and
q(s) to refer to the parameter estimates after s iterations of the EM algorithm, and
t©) and ¢\ to refer to the initial parameter estimates. Then for any s > 1, we
have

L(t®, ¢®)) > LY gDy (4)

Furthermore, under mild conditions, in the limit as s — 00, the parameter esti-
mates (t(s), q(s)) converge to a local optimum of the log-likelihood function.

Later in the class we will consider the EM algorithm in much more detail:

18

we will show that it can be applied to a quite broad range of models in NLP, and
we will describe it’s theoretical properties in more detail. For now though, this
convergence theorem is the most important property of the algorithm.

Eq. 4 states that the log-likelihood is strictly non-decreasing: at each iteration
of the EM algorithm, it cannot decrease. However this does not rule out rather
uninteresting cases, such as

Lt ¢®)) = Lt ¢t=b)

for all s. The second condition states that the method does in fact converge to a
local optimum of the log-likelihood function.

One important consequence of this result is the following: the EM algorithm
for IBM model 2 may converge to different parameter estimates, depending on the
initial parameter values t©) and ¢(%). This is because the algorithm may converge
to a different local optimum, depending on its starting point. In practice, this means
that some care is often required in initialization (i.e., choice of the initial parameter
values).

7 Initialization using IBM Model 1

As described in the previous section, the EM algorithm for IBM model 2 may
be sensitive to initialization: depending on the inital values, it may converge to
different local optima of the log-likelihood function.

Because of this, in practice the choice of a good heuristic for parameter ini-
tialization is important. A very common method is to use IBM Model 1 for this
purpose. We describe IBM Model 1, and the initialization method based on IBM
Model 1, in this section.

Recall that in IBM model 2, we had parameters

q(jli, 1, m)

which are interpreted as the conditional probability of French word f; being aligned
to English word e;, given the French length m and the English length /. In IBM

Model 1, we simply assume that for all ¢, 5,1, m,
1

il _
ailisLom) =

Thus there is a uniform probability distribution over all [4+ 1 possible English
words (recall that the English sentence is e . . . ¢;, and there is also the possibility
that j = 0, indicating that the French word is aligned to eg = NULL.). This leads to
the following definition:

19

Definition 3 (IBM Model 1) An IBM-M1 model consists of a finite set £ of En-
glish words, a set F of French words, and integers M and L specifying the max-
imum length of French and English sentences respectively. The parameters of the
model are as follows:

o t(fle) forany f € F, e € EU{NULL}. The parameter t(f|e) can be
interpreted as the conditional probability of generating French word f from
English word e.

Given these definitions, for any English sentence ey ...e; where each e; € &,
for each length m, we define the conditional distribution over French sentences
fi...fm and alignments a, . .. a,, as

ffm, o ... €[, = thi ai) = T m tfi a;
p(f1 ai...amler...e;,m) i:l—Il(l+1) (filea;) = g(lea;)

Here we define eq to be the NULL word. []

The parameters of IBM Model 1 can be estimated using the EM algorithm,
which is very similar to the algorithm for IBM Model 2. The algorithm is shown
in figure 4. The only change from the algorithm for IBM Model 2 comes from
replacing

.- k k
aGili, b mu)t(£7 5

6(k,i, j) = -
St alli, e mi)t (7 1e?)

. (k) (k)
L k), (k
i) - TG U
)]{; k- k k
Sy et (1) Sl t(rP1el)

reflecting the fact that in Model 1 we have

. 1
q(jli, b, my) = 1)

A key property of IBM Model 1 is the following:

Proposition 1 Under mild conditions, the EM algorithm in figure 4 converges to
the global optimum of the log-likelihood function under IBM Model 1.

Thus for IBM Model 1, we have a guarantee of convergence to the global
optimum of the log-likelihood function. Because of this, the EM algorithm will
converge to the same value, regardless of initialization. This suggests the following
procedure for training the parameters of IBM Model 2:

20

Input: A training corpus (f*), e(®)) for k = 1...n, where f*) = fl(k) e

elk) = e&k) - el(k).

Initialization: Initialize ¢(f|e) parameters (e.g., to random values).

Algorithm:

e Fort=1...T

— Setall counts ¢(...) =0

— Fork=1...n
* Fori=1...my;
- Forj=0...10
(e) e el 1) 4 ok, g)
()~ e(el) + ok, i)
c(jli,l,m) <« c(jli,l,m) +6(k,4,7)
c(i,l,m) — c(i,l,m)+d(k,i,7)
where) (k)
i) I
Y k k-
St (£l
— Set
c(e) a1 c(i,l,m)

Output: parameters ¢(f|e)

Figure 4: The parameter estimation algorithm for IBM model 2, for the case of

partially-observed data.

21

1. Estimate the ¢ parameters using the EM algorithm for IBM Model 1, using
the algorithm in figure 4.

2. Estimate parameters of IBM Model 2 using the algorithm in figure 2. To
initialize this model, use: 1) the ¢(f|e) parameters estimated under IBM
Model 1, in step 1; 2) random values for the ¢(j|i, , m) parameters.

Intuitively, if IBM Model 1 leads to reasonable estimates for the ¢ parameters,
this method should generally perform better for IBM Model 2. This is often the
case in practice.

See the lecture slides for an example of parameter estimation for IBM Model
2, using this heuristic.

22

