Trying to Understana
Recurrent Neural Networks
for Language Processing

Yoav Goldberg
Blackbox NLP workshop, 2018

B | U

N L P klz

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

l




(0.9)

c

A

-9

My Research

Core Building Blocks
for NLP

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIII



(0.9)

c

A

-9

My Research

Core Building Blocks
for NLP

Using Machine Learning

TTTTTTTTTTTTTT
||||||||||||||||||||||||



(0.9)

c

A

-9

Trying to Understanad
Recurrent Neural Networks
for Language Processing

TTTTTTTTTTTTTT
||||||||||||||||||||||||



(0.9)

c

A

-9

Trying to Understanad
Recurrent Neural Networks
foLanguage Processing

TTTTTTTTTTTTTT
||||||||||||||||||||||||



(0.9)

c

A

foPrceSS| j>

NLP

TTTTTTTTTTTTTT
||||||||||||||||||||||||||




_GAP!

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

Z
—
o

—_—
=] -
@
—— -

'\

urrent Neura\ Net o) ML

for “Language Prooesa@
’ NLP




== A2

""" How do we do NLP?

IIIIIIIIIIIIIIIIIIIIIIII

e 1950 -- ~1990s ---> Write many rules
e 1990s -- ~2000s ---> Corpus based statistics
e 2000s -- ~2014 ---> Supervised machine learning

e 2014 --today ---> "deep learning"



""" How do we do NLP?

LLLLLLLLLLLLLLLLLLLLLLLL

e 1950 -- ~1990s ---> Write many rules  <-- transparent
e 1990s -- ~2000s ---> Corpus based statistics

e 2000s -- ~2014 ---> Supervised machine learning

e 2014 --today ---> "deep learning" <-- BlackBoxNLP



""" How do we do NLP?

LLLLLLLLLLLLLLLLLLLLLLLL

e 1950 -- ~1990s ---> Write many rules  <-- transparent
e 1990s -- ~2000s ---> Corpus based statistics

e 2000s -- ~2014 ---> Supervised machine learning

e 2014 --today ---> "deep learning" <-- BlackBoxNLP

e 2021+ ---> write rules, aided by ML/DL
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NLP Today

3. The BiLSTM Hegemony

To a first approximation,
the de facto consensus in NLP in 2017 is
that no matter what the task,
you throw a BILSTM at it, with
attention if you need information flow

28
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On-the-fly Operation Batching
in Dynamic Computation Graphs

Graham Neubig* Yoav Goldberg*
Language Technologies Institute Computer Science Department
Carnegie Mellon University Bar-Ilan University
gneubig@cs.cmu.edu yogo@cs.biu.ac.il
Chris Dyer
DeepMind

cdyer@google.com
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LSTMs are very capable learners

Use them to build stuff Try to unerstand them

, scratching the surface
Except for this awesome

workshop!
’[hings qre Changing? | find it really interesting

reviewers don't care much
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¥ Alexander Clark and 2 others liked

Jelle Zuidema @wzuidema - Sep 6 v
& Replying to @mdlhx

Yes, the #BlackboxNLP program looks great. And kudos to its organizers for
allowing #EMNLP to colocate with it!

QO 1 1 3 ¥ 1 S v,

, scratching the surface
Except for this awesome

workshop! & CTiewers don't care Much>
’[hings qre Changing? | find it really interesting
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Published as a conference paper at ICLR 2017

FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

Yossi Adi'*?, Einat Kermany?, Yonatan Belinkov3, Ofer Lavi?, Yoav Goldberg'
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Q1: What is encoded/captured in a vector?

Published as a conference paper ICLR ZOD

Rejected from pretty much all* NLP venues

FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

Methodology: ¢an You train a classifier to predict
X from the representation”

*that matter




Understanding LSTMs

Q1: What is encoded/captured in a vector?

Published as a conference paper at ICLR 2017
Rejected from pretty much all* NLP venues

reviewer 2:

The paper reads very well, but
a) I do not understand the motivation, and
b) the experiments seem flawed.

*that matter
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Q1: What is encoded/captured in a vector?

Visualisation and ‘diagnostic classifiers’ reveal how recurrent
and recursive neural networks process hierarchical structure

Dieuwke Hupkes D.HUPKES@QUVA.NL
Sara Veldhoen S.F.VELDHOEN@QUVA.NL
Willem Zuidema ZUIDEMA@QUVA.NL

ILLC, Unwversity of Amsterdam
P.O.Bozx 94242,
1000 C'F Amcecterdam. Netherlands
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Dieuwke Hupkes D.HUPKES@QUVA.NL
Sara Veldhoen I S.F.VELDHOEN@QUVA.NL
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ILLC, Unwversity of Amsterdam ~With us

P.O.Bozx 94242,

1000 C'F Amsterdam. Netherlan.dse
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Q1: What is encoded/captured in a vector?

much better name!

Visualisation and (‘kdiagnostic classifiers’| reveal how recurrent
and recursive neural networks process hierarchical structure
JAIR, NIPS workshop 2016

Dieuwke Hupkes I D.HUPKES@QUVA.NL

Sara Veldhoen S.F.VELDHOENQUVA.NL
Willem Zuidema ZUIDEMAQUVA.NL
ILLC, Unwversity of Amsterdam ~With us

P.O.Bozx 94242,

1000 C'F Amsterdam. Netherlan.dse
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Q1: What is encoded/captured in a vector?

Probing for semantic evidence of composition by means of simple
RepEval workshop classification tasks

2016

Allyson Ettinger', Ahmed Elgohary?, Philip Resnik!*
ILinguistics, 2Computer Science, ®Institute for Advanced Computer Studies
University of Maryland, College Park, MD
{aetting, resnik}@umd.edu, elgohary@cs.umd.edu

Visualisation and {Ldiagnostic classifiers’ reveal how recurrent

and recursive neural networks process hierarchical structure
JAIR, NIPS workshop 2016

Dieuwke Hupkes I D.HUPKES@QUVA.NL

Sara Veldhoen S.F.VELDHOENQUVA.NL
Willem Zuidema ZUIDEMAQUVA.NL
ILLC, Unwversity of Amsterdam ~With us

P.O.Bozx 94242,

1000 C'F Amsterdam. Netherlan.dse
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NIPS 2017

Analyzing Hidden Representations in End-to-End
Automatic Speech Recognition Systems

Yonatan Belinkov and James Glass
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
{belinkov, glass}@mit.edu
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Q1: What is encoded/captured in a vector?

NIPS 2017

Analyzing Hidden Representations in End-to-End
Automatic Speech Recognition Systems

IJCNLP 2017 Understanding and Improving Morphological Learning
in the Neural Machine Translation Decoder

Fahim Dalvi Nadir Durrani Hassan Sajjad
Yonatan Belinkov* Stephan Vogel

Qatar Computing Research Institute — HBKU, Doha, Qatar
{faimaduddin, ndurrani, hsajjad, svogel}@gf.org.ga

*MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA
belinkov(@mit.edu
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ACL 2018  What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties

Alexis Conneau German Kruszewski Guillaume Lample
Facebook AI Research Facebook AI Research Facebook AI Research
Université Le Mans germank@fb.com Sorbonne Universités
aconneaulfb.com glample@fb.com
Loic Barrault Marco Baroni

Université Le Mans Facebook Al Research

loic.barrault@univ—-lemans. fr mbaroni@fb.com
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Q1: What is encoded/captured in a vector?

ACL 2018  What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties

ACL 2018 Exploring Semantic Properties of Sentence Embeddings

Xunjie Zhu Tingfeng Li Gerard de Melo
Rutgers University Northwestern Polytechnical Rutgers University
Piscataway, NJ, USA University, Xi’an, China Piscataway, NJ, USA

Xunjie.zhud ltf@mail . .nwpu.edu.cn gdm@demelo.orqg

rutgers.edu
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ACL 2018  What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties

ACL 2018 Exploring Semantic Properties of Sentence Embeddings

many works in this workshop!
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Understanding LSTMs

Q1: What is encoded/cantured in a vector?

ACL 2018  What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties

ACL 2018 Exploring Semantic Properties of Sentence Embeddings

many works in this workshop!

(ML) workshops --> ML --> non-ACL NLP --> ACL (NAACL, EMNLP...)

is top-tier NLP too conservative?
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Q2: what kinds of linguistic structures
can be captured by an RNN?

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen'* Emmanuel Dupoux’ Yoav Goldberg
LSCP! & IIN?, CNRS, Computer Science Department
EHESS and ENS, PSL Research University Bar Ilan University
{tal.linzen, yoav.goldberglRgmail.com

emmanuel .dupoux}@ens. fr
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Q2: what kinds of linguistic structures
can be captured by an RNN?

This triggered a lot of very interesting work!

Colorless green recurrent networks dream hierarchically

Kristina Gulordava* Piotr Bojanowski Edouard Grave
Department of Linguistics Facebook AI Research Facebook AI Research
University of Geneva Paris New York
kristina.gulordava@unige.ch bojanowski@Rfb.com egravel@fb.com
Tal Linzen Marco Baroni
Department of Cognitive Science Facebook Al Research
Johns Hopkins University Paris

tal.linzen@jhu.edu mbaroni@fb.com
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Q2: what kinds of linguistic structures
can be captured by an RNN?

This triggered a lot of very interesting work!

Colorless green recurrent networks dream hierarchically

Kristina Gulordava* Piotr Bojanowski
Department of Linguistics Facebook Al Researct LSTMs Can Learn Syntax-Sensitive Dependencies Well,

~ University of Geneva - Paris But Modeling Structure Makes Them Better

kristina.gulordava@unige.ch bojanowski@Rfb.com
Adhiguna Kuncoro®* Chris Dyer® John Hale*"
Tal Linzen Dani Yogatama® Stephen Clark® Phil Blunsom**
Department of Cognitive Science F #DeepMind, London, UK
Johns Hopkins University *Department of Computer Science, University of Oxford, UK
tal.linzen@jhu.edu “Department of Linguistics, Cornell University, NY, USA

{akuncoro, cdyer, jthale,dyogatama, clarkstephen, pblunsom}@google.com
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This triggered a lot of very interesting work!

Colorless green recurrent networks dream hierarchically

Kristina Gulordava* Piotr Bojanowski
Department of Linguistics Facebook Al Researct LSTMs Can Learn Syntax-Sensitive Dependencies Well,
~ University of Geneva - Paris But Modeling Structure Makes Them Better
kristina.gulordava@unige.ch bojanowski@fb.com

" Chris Dyer® John Hale*"
»hen Clark® Phil Blunsom**
ind, London, UK

Science, University of Oxford, UK
ics, Cornell University, NY, USA

Targeted Syntactic Evaluation of Language Models

Rebecca Marvin Tal Linzen arkstenhen obe e .
. ... . ima, clarKkste en, unsom (e]®) e.com
Department of Computer Science Department of Cognitive Science pRenp 9008
Johns Hopkins University Johns Hopkins University

becky@jhu.edu tal.linzen@jhu.edu
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Colorless green recurrent networks dream hierarchically

Kristina Gulordava* Piotr Bojanowski
Department of Linguistics Facebook Al Researct LSTMs Can Learn Syntax-Sensitive Dependencies Well,
University of Geneva - Paris But Modeling Structure Makes Them Better
kristina.gulordava@unige.ch bojanowski@fb.com

" Chris Dyer® John Hale*"
. . ) : (1)
Targeted Syntactic Evaluation of Language Models hen Clark® Phil Blunsom
RNN:ss as psycholinguistic subjects: Syntactic state and grammatical

. dependency
Rebecca Marvin
Department of Computer Science Depart Richard Futrell', Ethan Wilcox?, Takashi Morita®*, and Roger Levy’

Johns Hopkins University Joh 'Department of Language Science, UC Irvine, rfutrell@uci.edu
becky@jhu.edu tal 2Department of Linguistics, Harvard University, wilcoxeg@g.harvard.edu
3Primate Research Institute, Kyoto University, tmorita@alum.mit .edu
“Department of Linguistics and Philosophy, MIT
Department of Brain and Cognitive Sciences, MIT, rplevy@mit .edu
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This triggered a lot of very interesting work!
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Q2: what kinds of linguistic structures
can be captured by an RNN?

This triggered a lot of very interesting work!

many works in this workshop!

Including our poster on Basque
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Q3: how did a given model reach a decision?
how is the architecture capturing the phenomena?

Representation of Linguistic Form and
Function in Recurrent Neural Networks

Akos Kadar*

Tilburg University pioneering work in this space

G Chrupata*

Tﬂr}fu";g‘ﬁfiversﬁypa : (also took forever to get accepted)
Afra Alishahi*

Tilburg University
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Q3: how did a given model reach a decision?
how is the architecture capturing the phenomena?

Sharp Nearby, Fuzzy Far Away: How Neural
Language Models Use Context

Urvashi Khandelwal, He He, Peng Qi, Dan Jurafsky
Computer Science Department

Stanford University
{urvashik, hehe, pengqi, jurafsky}@stanford.edu
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Q3: how did a given model reach a decision?
how is the architecture capturing the phenomena?

my student Alon Jacovi will present our work on
analyzing 1D-CNNs for text.
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Understanding LSTMs

Q4: when do models fail? what can't they do?
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Understanding LSTMs

Q4: when do models fail? what can't they do?

O Build It, Break It

/| T/I\

/\ The Language Edition A\

join our workshop.at.emntp2017

designed & implemented by

Emily M. Bender BEagl=Rill Allyson Ettin

l

Ephra mRth child
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Q4: when do models fail? what can't they do?

ACL 2018 Breaking NLI Systems
with Sentences that Require Simple Lexical Inferences

Max Glockner!', Vered Shwartz® and Yoav Goldberg”

IComputer Science Department, TU Darmstadt, Germany
2Computer Science Department, Bar-Ilan University, Ramat-Gan, Israel
{maxg216,veredl1986, yoav.goldberg}@gmail.com
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Q4: when do models fail? what can't they do?

ACL 2018 Breaking NLI Systems
with Sentences that Require Simple Lexical Inferences

Max Glockner!', Vered Shwartz® and Yoav Goldberg”

IComputer Science Department, TU Darmstadt, Germany
2Computer Science Department, Bar-Ilan University, Ramat-Gan, Israel
{maxg216,veredl1986, yoav.goldberg}@gmail.com

and others from other groups
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Q4: when do models fail? what can't they do?

The Nature of ...
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Q2: what kinds of linguistic structures
can be captured by an RNN?

Q3: how did a given model reach a decision?
how is the architecture capturing the phenomena?
Q4: when do models fail? what can't they do?

The Nature of.. Treat the representations / model
as an "organism®.

Come up with hypotheses.
Perform experiments.




Q1: What is encoded/captured in a vector?

Q2: what kinds of linguistic structures
can be captured by an RNN?

Q3: how did a given model reach a decision?
how is the architecture capturing the phenomena?
Q4: when do models fail? what can't they do?

The Nature of.. Treat the representations / model
j | as an "organism".

Come up with hypotheses.
Perform experiments.

‘»‘
R4we never learned to do this in CS :(

N



Q5: What is the representation power
of different architectures?

Q6: Extracting a discrete representation
from a trained model.
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Q5: What is the representation power
of different architectures?

Q6: Extracting a discrete representation
from a trained model.

Back to a "familiar territory".
Computer science. Math.
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 Formal expressive power of RNNs

e Extracting FSAs from RNNs
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* Very strong models of sequential data.

e Function from n vectors to a single vector.
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viwhat)  v(is) v(your) v(name)

* Very strong models of sequential data.

e Function from n vectors to a single vector.
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* Very strong models of sequential data.

e Function from n vectors to a single vector.
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viwhat)  v(is) v(your) v(name) enc(what is your name)

* Very strong models of sequential data.

e Function from n vectors to a single vector.
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QOO 1000 OO 1000~ - | O00O0

viwhat)  v(is) v(your) v(name) enc(what is your name)

* Very strong models of sequential data.

* Trainable function from n vectors to a single vector.
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* Same interface. Same power?

b (OOOO

* [here are different variants (Implementations).
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Recurrent Neural Networks

Detining the loss. Joss
./

/ predict &
|
‘. calcloss

{}%
So ! R,O v S1 R,O S22 ! R,O  Sg R,O v Sq R,O |
X X X3 X X5

Acceptor: Read in a sequence. Predict from the end state.
Backprop the error all the way back.
Train the network to capture meaningtul information
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Q5: What is the representation power
of different architectures?
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Jor ARTIFICIAL INTELLIGENCE
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Q5: What is the representation power
of different architectures?

Recurrent Neural Networks as Weighted Language Recognizers

Yining Chen Sorcha Gilroy Andreas Maletti
Dartmouth College ILCC Institute of Computer Science
yining.chen.18@dartmouth.edu University of Edinburgh Universitét Leipzig

s.gilroy@sms.ed.ac.uk andreas.maletti@uni-leipzig.de

Jonathan May Kevin Knight
Information Sciences Institute Information Sciences Institute
University of Southern California University of Southern California

jonmay@isi.edu knight@isi.edu
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Rational Recurrences = il

Hao Peng® Roy Schwartz®” Sam Thomson®* Noah A. Smith¢¥
OPaul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
*Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA

¥ Allen Institute for Artificial Intelligence, Seattle, WA, USA
{hapeng, roysch,nasmith}@cs.washington.edu, sthomson@cs.cmu.edu

Q5: What is the representation power
of different architectures?

Recurrent Neural Networks as Weighted Language Recognizers

Yining Chen Sorcha Gilroy Andreas Maletti
Dartmouth College ILCC Institute of Computer Science
yining.chen.18@dartmouth.edu University of Edinburgh Universitét Leipzig

s.gilroy@sms.ed.ac.uk andreas.maletti@uni-leipzig.de

Jonathan May Kevin Knight
Information Sciences Institute Information Sciences Institute
University of Southern California University of Southern California

jonmay@isi.edu knight@isi.edu



Q5: What is the representation power
of different architectures?

are all RNNs equivalent?
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On the Practical Computational Power of Finite Precision RNNs
for Language Recognition

Gail Weiss Yoav Goldberg Eran Yahav
Technion, Israel Bar-Ilan University, Israel Technion, Israel

{sgailw,yahave}@cs.technion.ac.il
yogo@dcs.biu.ac.il
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" RNNs have Turing Power?

On the Computational Power of Neural Nets*

HAvA T. SIEGELMANN'

Department of Information Systems Engineering, Technion, Haifa 32000, Israel

AND

EpuARDO D. SONTAG?

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Received February 4, 1992; revised May 24, 1993

YES, THEY DO!
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RNNs have Turing Power®?

On the Computational Power of Neural Nets*

HAvA T. SIEGELMANN'

Department of Information Systems Engineering, Technion, Haifa 32000, Israel

AND

EpuARDO D. SONTAG?

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Received February 4, 1992; revised May 24, 1993

YES, THEY DO!
But this answer is not very useful.
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RNNs have Turing Power®?

~ On _the Computational Power of Neural

|
|

‘ Proof requires infinite precision.
‘push O into stack™ g =g/4 + 1/4 ;
this allows pushing 15 zeros when using 32 bit floating point. |

ets*

Received February 4, 1992; revised May 24, 1993

YES, THEY DO!
But this answer is not very useful.
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RNNs have Turing Power®?

_On_the Computational Power of Neural N
\ W

| ‘*
Construction requires complex combination of many |
carefully crafted components. ‘

__ _ __

Received February 4, 1992; revised May 24, 1993

YES, THEY DO!
But this answer is not very useful.
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RNNs have Turing Power®?

On the Computational Power of Neural N
|

. Construction requires extra processing time

at the end of the sequence. ‘

ts*

we use ‘real time" RNNs in practice.

|! _

Received February 4, 1992; revised May 24, 1993

YES, THEY DO!
But this answer is not very useful.
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A

RNN Flavors

ht — R(th, ht—l)

Eiman RNN (SRNN) Saturating activation.
ht — taﬂh(Wﬁt -+ Uht_l -+ b)

IRNN Rel.U activation.
ht — max((), (Wﬂft -+ Uht_l -+ b))
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RNN Flavors

ht — R(th, ht—l)

Gated Recurrent Unit
O'(WZZIZ‘t T Uzht_l -+ bz)
oc(W xy +UThi_q + ")
tanh(W"zy + U™ (14 0 hy_1) + b")
zeohi_1+ (1 — 2z) o hy

LSTM

c(W/ay + U hy_y + )
o(W'xy + Ulhy_1 + b*)

o (WOzs + UChs_1 + b°)
tanh(Wx; + U hi—1 + b°)
Jtoci—1 +i0c

O¢ O Q(Ct)



B I U TECHNION

RNN Flavors

ht — R(th, ht—l)

With finite precision, Elman RNNs are Fi

We do not know much about other f

nite State.

aVvors.
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Common Wisdom

A

Gated architectures (GRU, LSTM)
are petter than
non-Gated architectures (SRNN, [RNN)
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A

Gated architectures (GRU, LSTM)
are petter than
non-Gated architectures (SRNN, I[RNN)

we show that in terms of expressive power,
there Is an aspect in which:

LSTM > GRU
IRNN > SRNN
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Power of Counting

Counter Machines and Counter Languages™

by

PaTrick C. FISCHERZE
Cornell University
Ithaca, New York

and

ALBERT R. MEYERY and ARNOLD L. ROSENBERG
IBM Watson Research Center
Yorktown Heights, New York

(1968)
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Power of Counting

Counter Machines and Counter Languages™{

e — —

| counter machines are |
Finite State Automata with k counters.

INC, DEC, Compare0

(1968)
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Chomsky Hierarchy

Regular Languages
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Chomsky Hierarchy

Context Free
Regular Languages




Chomsky Hierarchy

Context Free
Regular Languages

T 1.7
a b Palindromes
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Chomsky Hierarchy

Context Free
Regular Languages

Context Sensitiv
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Chomsky Hierarchy

Context Free
Regular Languages

Context Sensitiv




~wr
B | U TECHNION

lllllllllllllll
oooooooooooo

Power of Counting

A

ontext Free
Regular Languages

Counter Context Sensitiv
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A

ContextlSensitive

T 1.1
a b Cln ann Palindromes
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A

ontext Free

Regular Languages
GRU / SRNN

ContextlSensitive

T 1.1
a b Cln ann Palindromes
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Power of Counting
' ontext Free
‘ Regular Languages
| GRU / SRNN
ContextlSensitive
(A N4
a b Cln bn Cn Palindromes
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IRNN / LSTM can count

fi = oWl +U h_q + 1)
it — O'(Wi.flft Uiht_l bz)

Or — O'(WOZEt -+ UOht_l -+ bO)
Et — tanh(cht -+ Ucht_l -+ bc)
ct = JtocC—1+1t0¢C

hy = OtOg(Ct)
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IRNN / LSTM can count

fi = oW/lay+U h_y +b))
it — O'(Wiilft Uiht_l bz)

Or — O'(Woft -+ UOht_l -+ bO)
1 Et — tanh(cht -+ Ucht_l -+ bc)
(via sigmoid) ct = JtOC—1 T 10c
he = otog(c) \
/ 1,

compare to zero is easy (via tanh)



countmg s EASY!
iﬂ Just needs to saturate 3 gates B

Or — O'(Woft -+ UOht_l -+ bO)
1 Et — tanh(cht -+ Ucht_l -+ bc)
(via sigmoid) ct = JtOC—1 T 10c
he = otog(c) \
/ 1,

compare to zero is easy (via tanh)
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IRNN / LSTM can count

IRNN
ht — mam((), (Wﬁlft -+ Uht_l -+ b))

a

+1 in one dim =INC
+1 in other dim =DEC

compare to zero
by subtracting dims
(requires MLP)
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NLPSRNN / GRU cannot count

SRNN

ht — ta,nh(Wa:‘t -+ Uht_l -+ b)
T

squashing prevents counting



GRU
u = o(W?xy+ Uhy_q + b?)
re = oW ey +U"he1 +0")
he = tanh(W'z; + U"(rpo hy_y) + bh)
hy = zzohi—1+ (1 — 2) oht

\ N

gate tie prevents counting
(via tanh
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~ can do some bounded countlng W|th|n the 1 1range |
hard: requmng precise settmg of non- saturated values |

re = oWy +U"hi—y +0")
he = 240 h 1+('-—zt)oizt
gate tie prevents counting \1 1

(via tanh)
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A

Counting in some other way”

cannot implement a binary-counter (or any k-base counter)
in a single SRNN step.
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| STM vs. GRU

train on anb up to Nn=100
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| STM vs. GRU

IS

0

250 500 750 1000 1250 1500 1750 2000

(a) a"b"-LSTM on a'?%0p1000

train on anb" up to N=100



~w
B I U TECHNION
I//’ u Israel Institute
./I/I of Technology

NLP
1000 - 100 -
0.75 -
800 -
0.50 -
600 - 0.25 -
0.00 -
007 ~0.25 -
200 - 0501 | /
0751 N\ L
0] &= s 1004 B |
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
nLn 10002,1000
(a) a™b™-LSTM on 100041000 (¢) a™b"-GRU on a*""b

train on anb up to Nn=100

GRU starts to fail at n=38
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| STM vs. GRU

100 -

0 50 100 150 200 250 300

(b) a"b"c"*-LSTM on q!%0p100100

train on anbnhen up to N=50
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| STM vs. GRU

100 A1
0.75
0.50 -
0.25 -
0.00 -

-0.25 -

-0.50 -

-0.75 1

-1.00 -

0 50 100 150 200 250 300

(b) a"b"c"*-LSTM on q!%0p100100

0 50 100 150 200 250

(d) a"b"c"-GRU on 1905100100

train on anbnhen up to N=50

GRU starts to fail at n=8

300
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" To summarize (this part)

* Escape Turing-completeness by looking into
finite-precision, real-time RNN

* Real difference in expressive power between
SENN, GRU] and [IRNN, LSTM].

e Small architectural choices can matter.
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Q6: Extracting a discrete representation
from a trained model.

what do trained LSTM acceptors encode”

Extracting FSAs from RNNs
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Extracting Automata from Recurrent Neural Networks
Using Queries and Counterexamples

Gail Weiss!, Yoav Goldberg?, and Eran Yahav'!

(ICML 2018)
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RNN acceptors as
State Machines
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- sum
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‘. calcloss ' calcloss 0 ( calcloss S calcloss S caleloss
{}ﬁ {}b {Y3 {yzl {Ys
So 0o b St b bisy o lisg s 4
>~ RO —— RO — RO +———~ RO +—— R, !
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{}ﬁ {}b {Y3 {yzl {Ys
So 0o b St b bisy o lisg s 4
>~ RO —— RO — RO +———~ RO +—— R, !
X1 Xo X3 X4 X5

state
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{}ﬁ {}b {Y3 {yzl {Ys
So 0o b St b bisy o lisg s 4
>~ RO —— RO — RO +———~ RO +—— R, !
X1 Xo X3 X4 X5
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RNN acceptors as
State Machines

loss

/ predict & 7 predict &

v predict &

—

7 predict & 7 predict &

|

| | | | |
‘. calcloss . calcloss . calcloss . calcloss . - calcloss

0 RO —'J RO 2.0 RO 2.4 RO —%. RO !
X1 X2 X3 X4 X5

staté  input new

symbpol state
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RNN acceptors as
State Machines

loss

accept/reject

—

7 predict & 7 predict &

/ predict & 7 predict &

v predict &

|

| | | | |
‘. calcloss . calcloss . calcloss . calcloss . - calcloss

0 RO —'J RO 2.0 RO 2.4 RO —%. RO !
X1 X2 X3 X4 X5

staté  input new

symbpol state



“tr — RNN acceptors as
State Machines

accept/reject

| very similar to FSA ’
unfortunately the states are contlnuous vectors '

_____________________________________________

iINnput new
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INFORMATION AND COMPUTATION 7§, 87-106 (1987)

Learning Regular Sets from Queries
and Counterexamples™

DANA ANGLUIN

Department of Computer Science, Yale University,
P.O. Box 2158, Yale Station, New Haven, Connecticut 06520
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Finite State Automata

- L* algorithm
 FSAs are learnable from "minimally adequate teacher’

* Membership queries

"does this word belong in the language™”"

* Equivalence queries

"does this automaton represent the language™”
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Game Plan

* Jrain an RNN
* Use it as a Teacher in the L™ algorithm

 |L*learns the FSA represented by the RNN
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JI RNN as
Minimally Adequate leacher

A

Membership Queries

Easy. Just run the word through the RNN.

Equivalence Queries

Hard. Requires some trickery.
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A

oooooooooooo

Answering
Equivalence Queries

 Map RNN states to discrete states, forming an FSA
abstraction of the RNN.
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Answering
Equivalence Queries

 Compare L* Query FSA to RNN-Abstract-FSA.

A
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Answering
Equivalence Queries

a b
b
a,b
b a

A

e Conflict”

 Maybe state-mapping is wrong.
It so: refine the mapping.

 Maybe L* FSA is wrong.
If so: return a counter example.
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Some Results

- Many random FSAs:

* 5 or 10 states, alphabet sizesof 3 or 5
* LSTM/GRU with 50, 100, 500 dimensions.
 The FSAs were learned well by LSTM / GRU

* And recovered well by L*.
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'lIsts or dicts’

« I

* S

* [FISIOIFINIT]

- {S:}F,S:}¥,S:0,S:T,S:S,S:N}

alphabet: ¥ s 0O N T ,

{

J



S NTLLY

S ENTLLL

start

>
99

. .
.

F.S

|

’—" .

0:ENSTLI{ [ 4
0:FENST[]{)}

NS T}

perfect!

0, FENS.TJ[.{.}

RANEN
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Balanced Parenthesis

A

(a((ejka((acs)) (asdsa))djljf)kls(fjkljklkids))

alphabet: a-z ( )
nesting level up to 8.
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Ba\anced Parenthesis

start I -7
A

(,))
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Ba\anced Parenthesis

start -2
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Balanced Parenthesis

final automaton:
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Balanced Parenthesis

final automaton:
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Balanced Par

final automaton:

enthesis

not quite right
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‘Emails’

- blal2@abc.com, ahjlkoo@jjjgs.net

[a-z] [2a-20-9]*@[a-2z0-9]+\. (com|net|co\.[a-z] [a-z])


mailto:bla12@abc.com
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‘Emails’

- blal2@abc.com, ahjlkoo@jjjgs.net
[a-z] [2a-20-9]*@[a-2z0-9]+\. (com|net|co\.[a-z] [a-z])
20,000 positive examples

20,000 negative examples
2,000 examples dev set
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‘Emails’

- blal2@abc.com, ahjlkoo@jjjgs.net

[a-z] [2a-20-9]*@[a-2z0-9]+\. (com|net|co\.[a-z] [a-z])

20,000 positive examples
20,000 negative examples
2,000 examples dev set

LSTM has 100% accuracy on both train and dev (and test)
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‘Emails’

the extraction algorithm did not converge.
we stopped it when it reached over 500 states.

LSTM has 100% accuracy on both train and dev (and test)
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‘Emails’

the extraction algorithm did not converge.
we stopped it when it reached over 500 states.

some counter-examples it found:

25 . net

5x.nem
2hs.net

LSTM has 100% accuracy on both train and dev (and test)
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- We can extract FSAs from RNNs
* ... If the RNN indeed captured a regular structure
* ... and in many cases the representation

captured by the RNN is much more complex
(and wrong!) than the actual concept class.
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Much more to do:

scale to larger FSAs and alphabets
scale to non-regular languages

apply to "real” language data
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To summarize (the talk)

 LSTMs (deep nets, RNNSs, ...) are very powerful
* We know how to use them.

* We don't know enough about their power and
[imitations.

* We should try to understand them better.

- Very excited to see the evolving community in
this workshop! Keep it up!
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