
Yoav Goldberg

Blackbox NLP workshop, 2018

Trying to Understand
 Recurrent Neural Networks
for Language Processing

My Research

Core Building Blocks
 for NLP

My Research

Core Building Blocks
 for NLP

Using Machine Learning

Trying to Understand
 Recurrent Neural Networks
for Language Processing

Trying to Understand
 Recurrent Neural Networks
for Language Processing

NLP

Trying to Understand
 Recurrent Neural Networks
for Language Processing

NLP

ML

Trying to Understand
 Recurrent Neural Networks
for Language Processing

NLP

ML

GAP!

How do we do NLP?

• 1950 -- ~1990s ---> Write many rules

• 1990s -- ~2000s ---> Corpus based statistics

• 2000s -- ~2014 ---> Supervised machine learning

• 2014 -- today ---> "deep learning"

How do we do NLP?

• 1950 -- ~1990s ---> Write many rules

• 1990s -- ~2000s ---> Corpus based statistics

• 2000s -- ~2014 ---> Supervised machine learning

• 2014 -- today ---> "deep learning"

<-- transparent

<-- BlackBoxNLP

How do we do NLP?

• 1950 -- ~1990s ---> Write many rules

• 1990s -- ~2000s ---> Corpus based statistics

• 2000s -- ~2014 ---> Supervised machine learning

• 2014 -- today ---> "deep learning"

• 2021+ ---> write rules, aided by ML/DL

<-- transparent

<-- BlackBoxNLP

NLP Today

NLP Today
RLSTM (sj�1,xj) =[cj;hj]

cj =cj�1 � f + g � i

hj =tanh(cj)� o

i =�(Wxi · xj +Whi · hj�1)

f =�(Wxf · xj +Whf · hj�1)

o =�(Wxo · xj +Who · hj�1)

g =tanh(Wxg · xj +Whg · hj�1)

NLP Today

Chris Manning 
April 2017

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff

strong results

publish many papers

make reviewers happy

Doing stuff with LSTMs

Goal: derive a representation from unannotated data that is predictive of
preposition-sense.

Ambiguity differs between languages:
“What action will it take to defuse the crisis and tension in the region?”

French: dans
“These are only available in English, which is totally unacceptable”

French: en

A representation that is predictive of the preposition's translation is likely to be
predictive also of its sense.

Extracting training data
Data in 12 languages from Europarl corpus: Bulgarian, Czech, Danish, German,
Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.

Training example: (The vote will take place tomorrow at 12 p.m. , at, à)

Encode the context as a concatenation of two LSTMs:

Context vector is fed into a language specific MLP for predicting the
target preposition:

Train the context-encoder with all languages together.
The context-encoder and the word embeddings are shared across languages.

Improving Preposition Sense Disambiguation
with Representations Learned from Multilingual Data

Hila Gonen and Yoav Goldberg

Prepositions are very common, very ambiguous and tend to carry different
meanings in different contexts.

Preposition-sense disambiguation is a task of assigning a category to a
preposition in context:

“You should book a room for 2 nights” Duration
“For some reason, he is not here yet” Explanation
“I went there to get a present for my mother” Beneficiary

- Can we improve performance by using unannotated data?
- Are translations of prepositions to other languages predictive for this task?
- How can we use multilingual corpora for learning a representation of the

context that can be used for sense-disambiguation?

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(߶ ,ݏ ݅)[݆]

hilagonen87@gmail.com yoav.goldberg@gmail.com

The vote will take place tomorrow at 12 p.m.

Le vote aura lieu demain à 12 heures.

1.Motivation

4. Multilingual data

5. Learning a context representation

Concatenate the representation obtained from the context encoder to the
features vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder
߶ ,ݏ ݅ - the features vector

The error back-propagates also to the context-encoder and to the word
embeddings.

6. Using the representation for sense classification

̂݌ = argmax௝ܮܯ ௅ܲ(ܿݔݐ ,ݏ ݅)[݆]

,s)ݔݐܿ i) = (ଵ:௜ିଵݓ)௙ܯܶܵܮ ∘ (௡:௜ାଵݓ)௕ܯܶܵܮ

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅)[݆]

The multilingual representation improves accuracy by 1.53 points:

External word embeddings do not improve results:

7. Results

model accuracy

base 74.75 (73.76-75.88)

+context 74.73 (73.88-75.65)

+context(multilingual) 76.28 (75.65-77.18)

model deps bow none

+context 74.87 (73.65-75.76) 73.91 (72.82-74.47) 74.73 (73.88-75.65)

+context(multilingual) 76.38 (74.82-77.06) 74.71 (73.06-75.41) 76.28 (75.65-77.18)

2. Full Model

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based model for preposition classification

Abstract

Improving Sequence to Sequence Learning for
Morphological Inflection Generation
Roee Aharoni and Yoav Goldberg Yonatan Belinkov

Bar Ilan University NLP Lab MIT CSAIL

The factored sequence to sequence approach (Faruqui et. al., 2016)

• Above two baselines:
the shared task
baseline system (ST-
Base) and an
implementation
similar to the factored
model from (Faruqui
et. al., 2016) (Fact.)

• Got the 2nd/3rd
place (depending on
which language) in
the sigmorphon 2016
shared task out of 8
participating teams

п е т ь<w> </w>

pos=V
mood=IMPER
num=PL
aspect=IPFV

f

п е

<w>

f f f f f f f f f

</w>step п step е step

step п т step e step

f f

step

0,0 1,0 1,1 3,4 4,4 4,5 5,5

о й т

о й step т

step о й step

2,1 2,2 2,3 3,3

t a r j m a<w> </w>

f

<w>

t a r j a m a ! ! ! !!
f f f f f f f f f f f

</w>

it u 0 1 2 3 i 5 ā n

f

a

pos=V

mood=IND

tense=PRS/FUT

gender=FEM

person=3

it u t a r j i m ā n

it u 0 1 2 3 i 5 ā n

Our first approach, the Bi-Directional Sequence to Sequence model (BS2S):

4. MS2S Network Architecture

2. Previous Work

Morpho-Syntactic Attribute
Embeddings allows us to train
joint models over examples that
share only the part of speech
rather than all the attributes

3. Novel Methods

pos=V

mood=IND

tense=PRS/FUT

gender=FEM

person=3

voice=ACT

num=DU

aspect=IPFV/PFV

f

M o r p h o l o g i c a l Te m p l a t e s
Instead of training the network to
predict only a specific character at
each step, we train the network to
either predict a character or copy a
character at a given position in the
input

Bi-Directional Input Character
Representation adds more
focused context when the
ne twork p red ic ts the nex t
inflection output

Neural Discriminative String
Transducer a NN architecture
maintaining an input pointer
variable which is dynamically
p romoted accord ing to the
network’s decision to “step”
forward to the next input character

it u t a r j i m ā n

it u 0 1 2 3 i 5 ā n

a

о й step т

step о й step

2,1 2,2 2,3 3,3

6. Results

1. The Task

writing written→past, passive+

سيأكلأكلوا future, singular + past, plural← +

מתורגמתתרגם feminine, present, passive, singular← +

5. NDST Network Architecture

Our second approach, the Neural Discriminative String Transducer (NDST):

Our first approach, the Morphological Sequence to Sequence architecture (MS2S):

4

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

VP

VB

cut

NP

PRP$

their

NNS

risks

VP

VB

take

NP

NNS

profits

R

VP

VB

cut

cut
V

B
V

P R

L

VP

R

NP

PRP$

their

their
PR

P$
N

P R V
P L

VP

L

NP

NNS

risks

risks
N

N
S

N
P L V
P

R

VP

VB

take
take
V

B
V

P R
L

VP

NP

NNS

profits

profits
N

N
S

N
P

V
P L

Euclidean Distance

Figure 2: Illustration of the symmetry scoring component that takes into account the conjuncts syntactic structures. Each conjunct
tree is decomposed into paths that are fed into the path-LSTMs (squares). The resulting vectors are fed into the symmetry LSTM
function (circles). The outcome vectors (blue circles) are then fed into the euclidean distance function.

Given two spans of lengths k and m with cor-
responding vector sequences u1:k and v1:m we en-
code each sequences using an LSTM, and take the
euclidean distance between the resulting representa-
tions:

Sym(u1:k, v1:m) = ||LSTM(u1:k)� LSTM(v1:m)||

The network is trained such that the distance is min-
imized for compatible spans and large for incompat-
ible ones in order to learn that vectors that represents
correct conjuncts are closer than vectors that do not
represent conjuncts.

What are the elements in the sequences to be com-
pared? One choice is to take the vectors ui to cor-
respond to embeddings of the ith POS in the span.
This approach works reasonably well, but does not
consider the conjuncts’ syntactic structure, which
may be useful as symmetry often occurs on a higher
level than POS tags. For example, in:

NP

NP

NN

tomorrow

PP

IN

at

CD

16:00

CC

or

NP

NP

NP

the day

PP

after tomorrow

PP

IN

at

CD

12:00

the similarity is more substantial in the third level of
the tree than in the POS level.

A way to allow the model access to higher levels
of syntactic symmetry is to represent each word as
the projection of the grammatical functions from the
word to the root.3 For example, the projections for
the first conjunct in Figure 2 are:

3We also experimented with tree-encoders based on recur-
sive networks, which did not work as well.

VP

VB

cut

VP

NP

PRP$

their

VP

NP

NNS

risks

This decomposition captures the syntactic context
of each word, but does not uniquely determine the
structure of the tree. To remedy this, we add to
the paths special symbols, R and L, which marks
the lowest common ancestors with the right and left
words respectively. These are added to the path
above the corresponding nodes. For example con-
sider the following paths which corresponds to the
above syntactic structure:

R

VP

VB

cut

L

VP

R

NP

PRP$

their

VP

L

NP

NNS

risks

The lowest common ancestor of “their” and “risks”

is NP. Thus, R is added after NP in the path of
“their” and L is added after NP in the path of
“risks”. Similarly, L and R are added after the VP
in the “their” and “cut” paths.

The path for each word is encoded using an
LSTM receiving vector embeddings of the elements
in the path from the word to the root. We then use the
resulting encodings instead of the POS-tag embed-
dings as input to the LSTMs in the similarity func-
tion. Figure 2 depicts the complete process for the
spans “cut their risks” and “take profits”.

Using syntactic projections requires the syntactic
structures of the conjuncts. This is obtained by run-
ning the Berkeley parser over the sentence and tak-
ing the subtree with the highest probability from the

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

X/NOUN/dobj/>define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

Path LSTM Term-pair Classifier

~op
average
pooling

~vwx

(x, y)
classification

(softmax)

~vwy

~vxy

Embeddings:

lemma
POS
dependency label
direction

Figure 2: An illustration of term-pair classification. Each term-pair is represented by several paths. Each path is a sequence of
edges, and each edge consists of four components: lemma, POS, dependency label and dependency direction. Each edge vector
is fed in sequence into the LSTM, resulting in a path embedding vector ~op. The averaged path vector becomes the term-pair’s
feature vector, used for classification. The dashed ~vwx , ~vwy vectors refer to the integrated network described in Section 3.2.

Term-Pair Classification Each (x, y) term-pair
is represented by the multiset of lexico-syntactic
paths that connected x and y in the corpus, de-
noted as paths(x, y), while the supervision is
given for the term pairs. We represent each (x, y)
term-pair as the weighted-average of its path vec-
tors, by applying average pooling on its path vec-
tors, as follows:

~vxy = ~vpaths(x,y) =
P

p2paths(x,y) fp,(x,y)· ~opP
p2paths(x,y) fp,(x,y)

(1)

where fp,(x,y) is the frequency of p in paths(x, y).
We then feed this path vector to a single-layer net-
work that performs binary classification to decide
whether y is a hypernym of x.

c = softmax(W · ~vxy) (2)

c is a 2-dimensional vector whose components
sum to 1, and we classify a pair as positive if
c[1] > 0.5.

Implementation Details To train the network,
we used PyCNN.3 We minimize the cross en-
tropy loss using gradient-based optimization, with
mini-batches of size 10 and the Adam update rule
(Kingma and Ba, 2014). Regularization is applied
by a dropout on each of the components’ embed-
dings. We tuned the hyper-parameters (learning
rate and dropout rate) on the validation set (see the
appendix for the hyper-parameters values).

We initialized the lemma embeddings with the
pre-trained GloVe word embeddings (Pennington
et al., 2014), trained on Wikipedia. We tried both

3https://github.com/clab/cnn

the 50-dimensional and 100-dimensional embed-
ding vectors and selected the ones that yield bet-
ter performance on the validation set.4 The other
embeddings, as well as out-of-vocabulary lemmas,
are initialized randomly. We update all embedding
vectors during training.

3.2 Integrated Network

The network presented in Section 3.1 classifies
each (x, y) term-pair based on the paths that con-
nect x and y in the corpus. Our goal was to im-
prove upon previous path-based methods for hy-
pernymy detection, and we show in Section 6
that our network indeed outperforms them. Yet,
as path-based and distributional methods are con-
sidered complementary, we present a simple way
to integrate distributional features in the network,
yielding improved performance.

We extended the network to take into account
distributional information on each term. In-
spired by the supervised distributional concatena-
tion method (Baroni et al., 2012), we simply con-
catenate x and y word embeddings to the (x, y)
feature vector, redefining ~vxy:

~vxy = [~vwx ,~vpaths(x,y), ~vwy] (3)

where ~vwx and ~vwy are x and y’s word embed-
dings, respectively, and ~vpaths(x,y) is the averaged
path vector defined in equation 1. This way, each
(x, y) pair is represented using both the distribu-
tional features of x and y, and their path-based
features.

4Higher-dimensional embeddings seem not to improve
performance, while hurting the training runtime.

phologically complex (Rayner et al., 2012). These
are also words that are likely to be replaced with
simpler ones in sentence simplification, but it is not
clear that they are words that would necessarily be
removed in the context of sentence compression.

Demberg and Keller (2008) show that syntac-
tic complexity (measured as dependency locality) is
also an important predictor of reading time. Phrases
that are often removed in sentence compression—
like fronted phrases, parentheticals, floating quanti-
fiers, etc.—are often associated with non-local de-
pendencies. Also, there is evidence that people are
more likely to fixate on the first word in a con-
stituent than on its second word (Hyönä and Pol-
latsek, 2000). Being able to identify constituent
borders is important for sentence compression, and
reading fixation data may help our model learn a rep-
resentation of our data that makes it easy to identify
constituent boundaries.

In the experiments below, we learn models to pre-
dict the first pass duration of word fixations and the
total duration of regressions to a word. These two
measures constitute a perfect separation of the to-
tal reading time of each word split between the first
pass and subsequent passes. Both measures are de-
scribed below. They are both discretized into six
bins as follows with only non-zero values contribut-
ing to the calculation of the standard deviation (SD):

0: measure = 0 or
1: measure < 1 SD below reader’s average or
2: measure < .5 SD below reader’s average or
3: measure < .5 above reader’s average or
4: measure > .5 SD above reader’s average or
5: measure > 1 SD above reader’s average

First pass duration measures the total time spent
reading a word first time it is fixated, including
any immediately following re-fixations of the same
word. This measure correlates with word length, fre-
quency and ambiguity because long words are likely
to attract several fixations in a row unless they are
particularly easily predicted or recognized. This ef-
fect arises because long words are less likely to fit
inside the fovea of the eye. Note that for this mea-
sure the value 0 indicates that the word was not fix-
ated by this reader.

Words FIRST PASS REGRESSIONS

Are 4 4
tourists 2 0
enticed 3 0
by 4 0
these 2 0
attractions 3 0
threatening 3 3
their 5 0
very 3 3
existence 3 5
? 3 5

Figure 1: Example sentence from the Dundee Corpus

Regression duration measures the total time
spent fixating a word after the gaze has already left
it once. This measure belongs to the group of late
measures, i.e., measures that are sensitive to the later
cognitive processing stages including interpretation
and integration of already decoded words. Since
the reader by definition has already had a chance to
recognize the word, regressions are associated with
semantic confusion and contradiction, incongruence
and syntactic complexity, as famously experienced
in garden path sentences. For this measure the value
0 indicates that the word was read at most once by
this reader.

See Table 1 for an example of first pass duration
and regression duration annotations for one reader
and sentence.

Figure 2: Multitask and cascaded bi-LSTMs for sentence com-
pression. Layer L�1 contain pre-trained embeddings. Gaze
prediction and CCG-tag prediction are auxiliary training tasks,
and loss on all tasks are propagated back to layer L0.

Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser and Yoav Goldberg

BiLSTMs are State-of-the-art Works for both
Simple & Effective Parsing Accuracies Graph-based & Transition-based
Feature Extractors with Minimal Effort Parsing

Dependency Parsing

The soup , which I expected to be good , was bad

subj

acompdet

rcmod
rel

subj

xcomp

aux acomp

root

Dependency parsing is the task of extracting a dependency tree for a given sentence.
Dependency tree is a directed tree where each word modifies (i.e. modifier) the parent’s
word (i.e. head).

Context Rich Feature
MANY Hand-Crafted Features:

posi, posi+1, posj�1, posj
posi�1, posi, posj�1, posj
posi, posi+1, posj, posj+1

posi�1, posi, posj, posj+1
...
+

Few Context Rich, Learned,

BiLSTM Features.

Graph-based Parsing Algorithm (Global Optimization)

Inference
parse(sent) = argmax

t2Trees(sent)
score(sent, t)

score(sent, t) ⇡
X

(h,m)2t

���!score(sent, h,m)

Score Function
���!score(sent, h,m) = MLP (vh � vm)

vi = BiLSTM(x1:n, i)

Cost Augmented Loss
max(0,1 + score(x, y)�

max
y0 6=y

X

(h,m)2y0

(���!score(x, h,m) + I(h,m) 62y))

First-Order Neural Parser

LSTMf

xthe

concat

yf
1

sf0 LSTMf

xbrown

concat

yf
2

sf1 LSTMf

xfox

concat

yf
3

sf2 LSTMf

xjumped

concat

yf
4

sf3 LSTMf

x⇤

concat

yf
5

sf4 sf5

LSTM b s0s
b
0

yb
1

LSTM b s1s
b
1

yb
2

LSTM b s2s
b
2

yb
3

LSTM b s3s
b
3

yb
4

LSTM b s4s
b
4

yb
5

sb5

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Transition-based Parsing Algorithm (Greedy Optimization)

Shift

S0 S1 S2 B0 B1

S0 S1 S2 B0 B1

Left Arc
S0 S1 S2 B0 B1

S1S0 B0

S2

B1

Right Arc
S0 S1 S2 B0 B1

S0 S1

S2

B0 B1

Arc-Hybrid Neural Parser

LSTMf

xthe

concat

yf
1

sf0 LSTMf

xbrown

concat

yf
2

sf1 LSTMf

xfox

concat

yf
3

sf2 LSTMf

xjumped

concat

yf
4

sf3 LSTMf

xover

concat

yf
5

sf4 LSTMf

xthe

concat

yf
6

sf5 LSTMf

xlazy

concat

yf
7

sf6 LSTMf

xdog

concat

yf
8

sf7 sf8

LSTM b s0s
b
0

yb
1

LSTM b s1s
b
1

yb
2

LSTM b s2s
b
2

yb
3

LSTM b s3s
b
3

yb
4

LSTM b s4s
b
4

yb
5

LSTM b s5s
b
5

yb
6

LSTM b s6s
b
6

yb
7

LSTM b s7s
b
7

yb
8

sb8

Vthe Vbrown Vfox Vjumped Vover Vthe Vlazy Vdog

MLP

(ScoreLeftArc, ScoreRightArc, ScoreShift)

the jumped over the lazy dog

fox

brown

Results

System Method Representation Emb PTB-YM PTB-SD CTB
UAS UAS LAS UAS LAS

This work graph, 1st order 2 BiLSTM vectors – – 93.2 91.0 86.9 85.3
This work transition (greedy) 4 BiLSTM vectors – – 92.9 90.7 86.2 84.5
This work transition (greedy) 11 BiLSTM vectors – – 93.2 91.1 86.6 85.0
ZhangNivre11 transition (beam) large feature set (sparse) – 92.9 – – 86.0 84.4
Martins13 (TurboParser) graph, 3rd order+ large feature set (sparse) – 92.8 93.1 – – –
Pei15 graph, 2nd order large feature set (dense) – 93.0 – – – –
Dyer15 transition (greedy) Stack-LSTM + composition – – 92.4 90.0 85.7 84.1
This work graph, 1st order 2 BiLSTM vectors YES – 93.1 90.6 86.3 84.7
This work transition (greedy) 4 BiLSTM vectors YES – 93.5 91.4 87.6 86.1
This work transition (greedy) 11 BiLSTM vectors YES – 93.9 91.9 87.7 86.1
Weiss15 transition (greedy) large feature set (dense) YES – 93.2 91.2 – –
Weiss15 transition (beam) large feature set (dense) YES – 94.0 92.0 – –
Pei15 graph, 2nd order large feature set (dense) YES 93.3 – – – –
Dyer15 transition (greedy) Stack-LSTM + composition YES – 93.1 90.9 87.1 85.5
LeZuidema14 reranking /blend inside-outside recursive net YES 93.1 93.8 91.5 – –
Zhu15 reranking /blend recursive conv-net YES 93.8 – – 85.7 –

Graph based parser:

• State-of-the-art results without external resources

• First order parer competitive with higher order

• No feature engineering

Transition based parser:

• State-of-the-art results

• Competitive with beam parsers

• Minimal feature engineering

Doing stuff with LSTMs

Goal: derive a representation from unannotated data that is predictive of
preposition-sense.

Ambiguity differs between languages:
“What action will it take to defuse the crisis and tension in the region?”

French: dans
“These are only available in English, which is totally unacceptable”

French: en

A representation that is predictive of the preposition's translation is likely to be
predictive also of its sense.

Extracting training data
Data in 12 languages from Europarl corpus: Bulgarian, Czech, Danish, German,
Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.

Training example: (The vote will take place tomorrow at 12 p.m. , at, à)

Encode the context as a concatenation of two LSTMs:

Context vector is fed into a language specific MLP for predicting the
target preposition:

Train the context-encoder with all languages together.
The context-encoder and the word embeddings are shared across languages.

Improving Preposition Sense Disambiguation
with Representations Learned from Multilingual Data

Hila Gonen and Yoav Goldberg

Prepositions are very common, very ambiguous and tend to carry different
meanings in different contexts.

Preposition-sense disambiguation is a task of assigning a category to a
preposition in context:

“You should book a room for 2 nights” Duration
“For some reason, he is not here yet” Explanation
“I went there to get a present for my mother” Beneficiary

- Can we improve performance by using unannotated data?
- Are translations of prepositions to other languages predictive for this task?
- How can we use multilingual corpora for learning a representation of the

context that can be used for sense-disambiguation?

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(߶ ,ݏ ݅)[݆]

hilagonen87@gmail.com yoav.goldberg@gmail.com

The vote will take place tomorrow at 12 p.m.

Le vote aura lieu demain à 12 heures.

1.Motivation

4. Multilingual data

5. Learning a context representation

Concatenate the representation obtained from the context encoder to the
features vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder
߶ ,ݏ ݅ - the features vector

The error back-propagates also to the context-encoder and to the word
embeddings.

6. Using the representation for sense classification

̂݌ = argmax௝ܮܯ ௅ܲ(ܿݔݐ ,ݏ ݅)[݆]

,s)ݔݐܿ i) = (ଵ:௜ିଵݓ)௙ܯܶܵܮ ∘ (௡:௜ାଵݓ)௕ܯܶܵܮ

ݕ = argmax௝ܮܯ ௦ܲ௘௡௦௘(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅)[݆]

The multilingual representation improves accuracy by 1.53 points:

External word embeddings do not improve results:

7. Results

model accuracy

base 74.75 (73.76-75.88)

+context 74.73 (73.88-75.65)

+context(multilingual) 76.28 (75.65-77.18)

model deps bow none

+context 74.87 (73.65-75.76) 73.91 (72.82-74.47) 74.73 (73.88-75.65)

+context(multilingual) 76.38 (74.82-77.06) 74.71 (73.06-75.41) 76.28 (75.65-77.18)

2. Full Model

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based model for preposition classification

Abstract

Improving Sequence to Sequence Learning for
Morphological Inflection Generation
Roee Aharoni and Yoav Goldberg Yonatan Belinkov

Bar Ilan University NLP Lab MIT CSAIL

The factored sequence to sequence approach (Faruqui et. al., 2016)

• Above two baselines:
the shared task
baseline system (ST-
Base) and an
implementation
similar to the factored
model from (Faruqui
et. al., 2016) (Fact.)

• Got the 2nd/3rd
place (depending on
which language) in
the sigmorphon 2016
shared task out of 8
participating teams

п е т ь<w> </w>

pos=V
mood=IMPER
num=PL
aspect=IPFV

f

п е

<w>

f f f f f f f f f

</w>step п step е step

step п т step e step

f f

step

0,0 1,0 1,1 3,4 4,4 4,5 5,5

о й т

о й step т

step о й step

2,1 2,2 2,3 3,3

t a r j m a<w> </w>

f

<w>

t a r j a m a ! ! ! !!
f f f f f f f f f f f

</w>

it u 0 1 2 3 i 5 ā n

f

a

pos=V

mood=IND

tense=PRS/FUT

gender=FEM

person=3

it u t a r j i m ā n

it u 0 1 2 3 i 5 ā n

Our first approach, the Bi-Directional Sequence to Sequence model (BS2S):

4. MS2S Network Architecture

2. Previous Work

Morpho-Syntactic Attribute
Embeddings allows us to train
joint models over examples that
share only the part of speech
rather than all the attributes

3. Novel Methods

pos=V

mood=IND

tense=PRS/FUT

gender=FEM

person=3

voice=ACT

num=DU

aspect=IPFV/PFV

f

M o r p h o l o g i c a l Te m p l a t e s
Instead of training the network to
predict only a specific character at
each step, we train the network to
either predict a character or copy a
character at a given position in the
input

Bi-Directional Input Character
Representation adds more
focused context when the
ne twork p red ic ts the nex t
inflection output

Neural Discriminative String
Transducer a NN architecture
maintaining an input pointer
variable which is dynamically
p romoted accord ing to the
network’s decision to “step”
forward to the next input character

it u t a r j i m ā n

it u 0 1 2 3 i 5 ā n

a

о й step т

step о й step

2,1 2,2 2,3 3,3

6. Results

1. The Task

writing written→past, passive+

سيأكلأكلوا future, singular + past, plural← +

מתורגמתתרגם feminine, present, passive, singular← +

5. NDST Network Architecture

Our second approach, the Neural Discriminative String Transducer (NDST):

Our first approach, the Morphological Sequence to Sequence architecture (MS2S):

4

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

VP

VB

cut

NP

PRP$

their

NNS

risks

VP

VB

take

NP

NNS

profits

R

VP

VB

cut

cut
V

B
V

P R

L

VP

R

NP

PRP$

their

their
PR

P$
N

P R V
P L

VP

L

NP

NNS

risks

risks
N

N
S

N
P L V
P

R

VP

VB

take
take
V

B
V

P R
L

VP

NP

NNS

profits

profits
N

N
S

N
P

V
P L

Euclidean Distance

Figure 2: Illustration of the symmetry scoring component that takes into account the conjuncts syntactic structures. Each conjunct
tree is decomposed into paths that are fed into the path-LSTMs (squares). The resulting vectors are fed into the symmetry LSTM
function (circles). The outcome vectors (blue circles) are then fed into the euclidean distance function.

Given two spans of lengths k and m with cor-
responding vector sequences u1:k and v1:m we en-
code each sequences using an LSTM, and take the
euclidean distance between the resulting representa-
tions:

Sym(u1:k, v1:m) = ||LSTM(u1:k)� LSTM(v1:m)||

The network is trained such that the distance is min-
imized for compatible spans and large for incompat-
ible ones in order to learn that vectors that represents
correct conjuncts are closer than vectors that do not
represent conjuncts.

What are the elements in the sequences to be com-
pared? One choice is to take the vectors ui to cor-
respond to embeddings of the ith POS in the span.
This approach works reasonably well, but does not
consider the conjuncts’ syntactic structure, which
may be useful as symmetry often occurs on a higher
level than POS tags. For example, in:

NP

NP

NN

tomorrow

PP

IN

at

CD

16:00

CC

or

NP

NP

NP

the day

PP

after tomorrow

PP

IN

at

CD

12:00

the similarity is more substantial in the third level of
the tree than in the POS level.

A way to allow the model access to higher levels
of syntactic symmetry is to represent each word as
the projection of the grammatical functions from the
word to the root.3 For example, the projections for
the first conjunct in Figure 2 are:

3We also experimented with tree-encoders based on recur-
sive networks, which did not work as well.

VP

VB

cut

VP

NP

PRP$

their

VP

NP

NNS

risks

This decomposition captures the syntactic context
of each word, but does not uniquely determine the
structure of the tree. To remedy this, we add to
the paths special symbols, R and L, which marks
the lowest common ancestors with the right and left
words respectively. These are added to the path
above the corresponding nodes. For example con-
sider the following paths which corresponds to the
above syntactic structure:

R

VP

VB

cut

L

VP

R

NP

PRP$

their

VP

L

NP

NNS

risks

The lowest common ancestor of “their” and “risks”

is NP. Thus, R is added after NP in the path of
“their” and L is added after NP in the path of
“risks”. Similarly, L and R are added after the VP
in the “their” and “cut” paths.

The path for each word is encoded using an
LSTM receiving vector embeddings of the elements
in the path from the word to the root. We then use the
resulting encodings instead of the POS-tag embed-
dings as input to the LSTMs in the similarity func-
tion. Figure 2 depicts the complete process for the
spans “cut their risks” and “take profits”.

Using syntactic projections requires the syntactic
structures of the conjuncts. This is obtained by run-
ning the Berkeley parser over the sentence and tak-
ing the subtree with the highest probability from the

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

X/NOUN/dobj/>define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

Path LSTM Term-pair Classifier

~op
average
pooling

~vwx

(x, y)
classification

(softmax)

~vwy

~vxy

Embeddings:

lemma
POS
dependency label
direction

Figure 2: An illustration of term-pair classification. Each term-pair is represented by several paths. Each path is a sequence of
edges, and each edge consists of four components: lemma, POS, dependency label and dependency direction. Each edge vector
is fed in sequence into the LSTM, resulting in a path embedding vector ~op. The averaged path vector becomes the term-pair’s
feature vector, used for classification. The dashed ~vwx , ~vwy vectors refer to the integrated network described in Section 3.2.

Term-Pair Classification Each (x, y) term-pair
is represented by the multiset of lexico-syntactic
paths that connected x and y in the corpus, de-
noted as paths(x, y), while the supervision is
given for the term pairs. We represent each (x, y)
term-pair as the weighted-average of its path vec-
tors, by applying average pooling on its path vec-
tors, as follows:

~vxy = ~vpaths(x,y) =
P

p2paths(x,y) fp,(x,y)· ~opP
p2paths(x,y) fp,(x,y)

(1)

where fp,(x,y) is the frequency of p in paths(x, y).
We then feed this path vector to a single-layer net-
work that performs binary classification to decide
whether y is a hypernym of x.

c = softmax(W · ~vxy) (2)

c is a 2-dimensional vector whose components
sum to 1, and we classify a pair as positive if
c[1] > 0.5.

Implementation Details To train the network,
we used PyCNN.3 We minimize the cross en-
tropy loss using gradient-based optimization, with
mini-batches of size 10 and the Adam update rule
(Kingma and Ba, 2014). Regularization is applied
by a dropout on each of the components’ embed-
dings. We tuned the hyper-parameters (learning
rate and dropout rate) on the validation set (see the
appendix for the hyper-parameters values).

We initialized the lemma embeddings with the
pre-trained GloVe word embeddings (Pennington
et al., 2014), trained on Wikipedia. We tried both

3https://github.com/clab/cnn

the 50-dimensional and 100-dimensional embed-
ding vectors and selected the ones that yield bet-
ter performance on the validation set.4 The other
embeddings, as well as out-of-vocabulary lemmas,
are initialized randomly. We update all embedding
vectors during training.

3.2 Integrated Network

The network presented in Section 3.1 classifies
each (x, y) term-pair based on the paths that con-
nect x and y in the corpus. Our goal was to im-
prove upon previous path-based methods for hy-
pernymy detection, and we show in Section 6
that our network indeed outperforms them. Yet,
as path-based and distributional methods are con-
sidered complementary, we present a simple way
to integrate distributional features in the network,
yielding improved performance.

We extended the network to take into account
distributional information on each term. In-
spired by the supervised distributional concatena-
tion method (Baroni et al., 2012), we simply con-
catenate x and y word embeddings to the (x, y)
feature vector, redefining ~vxy:

~vxy = [~vwx ,~vpaths(x,y), ~vwy] (3)

where ~vwx and ~vwy are x and y’s word embed-
dings, respectively, and ~vpaths(x,y) is the averaged
path vector defined in equation 1. This way, each
(x, y) pair is represented using both the distribu-
tional features of x and y, and their path-based
features.

4Higher-dimensional embeddings seem not to improve
performance, while hurting the training runtime.

phologically complex (Rayner et al., 2012). These
are also words that are likely to be replaced with
simpler ones in sentence simplification, but it is not
clear that they are words that would necessarily be
removed in the context of sentence compression.

Demberg and Keller (2008) show that syntac-
tic complexity (measured as dependency locality) is
also an important predictor of reading time. Phrases
that are often removed in sentence compression—
like fronted phrases, parentheticals, floating quanti-
fiers, etc.—are often associated with non-local de-
pendencies. Also, there is evidence that people are
more likely to fixate on the first word in a con-
stituent than on its second word (Hyönä and Pol-
latsek, 2000). Being able to identify constituent
borders is important for sentence compression, and
reading fixation data may help our model learn a rep-
resentation of our data that makes it easy to identify
constituent boundaries.

In the experiments below, we learn models to pre-
dict the first pass duration of word fixations and the
total duration of regressions to a word. These two
measures constitute a perfect separation of the to-
tal reading time of each word split between the first
pass and subsequent passes. Both measures are de-
scribed below. They are both discretized into six
bins as follows with only non-zero values contribut-
ing to the calculation of the standard deviation (SD):

0: measure = 0 or
1: measure < 1 SD below reader’s average or
2: measure < .5 SD below reader’s average or
3: measure < .5 above reader’s average or
4: measure > .5 SD above reader’s average or
5: measure > 1 SD above reader’s average

First pass duration measures the total time spent
reading a word first time it is fixated, including
any immediately following re-fixations of the same
word. This measure correlates with word length, fre-
quency and ambiguity because long words are likely
to attract several fixations in a row unless they are
particularly easily predicted or recognized. This ef-
fect arises because long words are less likely to fit
inside the fovea of the eye. Note that for this mea-
sure the value 0 indicates that the word was not fix-
ated by this reader.

Words FIRST PASS REGRESSIONS

Are 4 4
tourists 2 0
enticed 3 0
by 4 0
these 2 0
attractions 3 0
threatening 3 3
their 5 0
very 3 3
existence 3 5
? 3 5

Figure 1: Example sentence from the Dundee Corpus

Regression duration measures the total time
spent fixating a word after the gaze has already left
it once. This measure belongs to the group of late
measures, i.e., measures that are sensitive to the later
cognitive processing stages including interpretation
and integration of already decoded words. Since
the reader by definition has already had a chance to
recognize the word, regressions are associated with
semantic confusion and contradiction, incongruence
and syntactic complexity, as famously experienced
in garden path sentences. For this measure the value
0 indicates that the word was read at most once by
this reader.

See Table 1 for an example of first pass duration
and regression duration annotations for one reader
and sentence.

Figure 2: Multitask and cascaded bi-LSTMs for sentence com-
pression. Layer L�1 contain pre-trained embeddings. Gaze
prediction and CCG-tag prediction are auxiliary training tasks,
and loss on all tasks are propagated back to layer L0.

Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser and Yoav Goldberg

BiLSTMs are State-of-the-art Works for both
Simple & Effective Parsing Accuracies Graph-based & Transition-based
Feature Extractors with Minimal Effort Parsing

Dependency Parsing

The soup , which I expected to be good , was bad

subj

acompdet

rcmod
rel

subj

xcomp

aux acomp

root

Dependency parsing is the task of extracting a dependency tree for a given sentence.
Dependency tree is a directed tree where each word modifies (i.e. modifier) the parent’s
word (i.e. head).

Context Rich Feature
MANY Hand-Crafted Features:

posi, posi+1, posj�1, posj
posi�1, posi, posj�1, posj
posi, posi+1, posj, posj+1

posi�1, posi, posj, posj+1
...
+

Few Context Rich, Learned,

BiLSTM Features.

Graph-based Parsing Algorithm (Global Optimization)

Inference
parse(sent) = argmax

t2Trees(sent)
score(sent, t)

score(sent, t) ⇡
X

(h,m)2t

���!score(sent, h,m)

Score Function
���!score(sent, h,m) = MLP (vh � vm)

vi = BiLSTM(x1:n, i)

Cost Augmented Loss
max(0,1 + score(x, y)�

max
y0 6=y

X

(h,m)2y0

(���!score(x, h,m) + I(h,m) 62y))

First-Order Neural Parser

LSTMf

xthe

concat

yf
1

sf0 LSTMf

xbrown

concat

yf
2

sf1 LSTMf

xfox

concat

yf
3

sf2 LSTMf

xjumped

concat

yf
4

sf3 LSTMf

x⇤

concat

yf
5

sf4 sf5

LSTM b s0s
b
0

yb
1

LSTM b s1s
b
1

yb
2

LSTM b s2s
b
2

yb
3

LSTM b s3s
b
3

yb
4

LSTM b s4s
b
4

yb
5

sb5

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Transition-based Parsing Algorithm (Greedy Optimization)

Shift

S0 S1 S2 B0 B1

S0 S1 S2 B0 B1

Left Arc
S0 S1 S2 B0 B1

S1S0 B0

S2

B1

Right Arc
S0 S1 S2 B0 B1

S0 S1

S2

B0 B1

Arc-Hybrid Neural Parser

LSTMf

xthe

concat

yf
1

sf0 LSTMf

xbrown

concat

yf
2

sf1 LSTMf

xfox

concat

yf
3

sf2 LSTMf

xjumped

concat

yf
4

sf3 LSTMf

xover

concat

yf
5

sf4 LSTMf

xthe

concat

yf
6

sf5 LSTMf

xlazy

concat

yf
7

sf6 LSTMf

xdog

concat

yf
8

sf7 sf8

LSTM b s0s
b
0

yb
1

LSTM b s1s
b
1

yb
2

LSTM b s2s
b
2

yb
3

LSTM b s3s
b
3

yb
4

LSTM b s4s
b
4

yb
5

LSTM b s5s
b
5

yb
6

LSTM b s6s
b
6

yb
7

LSTM b s7s
b
7

yb
8

sb8

Vthe Vbrown Vfox Vjumped Vover Vthe Vlazy Vdog

MLP

(ScoreLeftArc, ScoreRightArc, ScoreShift)

the jumped over the lazy dog

fox

brown

Results

System Method Representation Emb PTB-YM PTB-SD CTB
UAS UAS LAS UAS LAS

This work graph, 1st order 2 BiLSTM vectors – – 93.2 91.0 86.9 85.3
This work transition (greedy) 4 BiLSTM vectors – – 92.9 90.7 86.2 84.5
This work transition (greedy) 11 BiLSTM vectors – – 93.2 91.1 86.6 85.0
ZhangNivre11 transition (beam) large feature set (sparse) – 92.9 – – 86.0 84.4
Martins13 (TurboParser) graph, 3rd order+ large feature set (sparse) – 92.8 93.1 – – –
Pei15 graph, 2nd order large feature set (dense) – 93.0 – – – –
Dyer15 transition (greedy) Stack-LSTM + composition – – 92.4 90.0 85.7 84.1
This work graph, 1st order 2 BiLSTM vectors YES – 93.1 90.6 86.3 84.7
This work transition (greedy) 4 BiLSTM vectors YES – 93.5 91.4 87.6 86.1
This work transition (greedy) 11 BiLSTM vectors YES – 93.9 91.9 87.7 86.1
Weiss15 transition (greedy) large feature set (dense) YES – 93.2 91.2 – –
Weiss15 transition (beam) large feature set (dense) YES – 94.0 92.0 – –
Pei15 graph, 2nd order large feature set (dense) YES 93.3 – – – –
Dyer15 transition (greedy) Stack-LSTM + composition YES – 93.1 90.9 87.1 85.5
LeZuidema14 reranking /blend inside-outside recursive net YES 93.1 93.8 91.5 – –
Zhu15 reranking /blend recursive conv-net YES 93.8 – – 85.7 –

Graph based parser:

• State-of-the-art results without external resources

• First order parer competitive with higher order

• No feature engineering

Transition based parser:

• State-of-the-art results

• Competitive with beam parsers

• Minimal feature engineering

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff

strong results

publish many papers

make reviewers happy

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff

strong results

publish many papers

make reviewers happy
build tools to build stuff

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff

strong results

publish many papers

make reviewers happy
build tools to build stuff

build stuff faster
help others build stuff
publish more papers

LSTMs are very capable learners

Use them to build stuff

build tools to build stuff
build stuff faster

help others build stuff
publish more papers

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff

strong results

publish many papers

make reviewers happy
build tools to build stuff

build stuff faster
help others build stuff
publish more papers

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff Try to understand them

strong results

publish many papers

make reviewers happy
build tools to build stuff

build stuff faster
help others build stuff
publish more papers

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff Try to understand them

I find it really interesting

scratching the surface

reviewers don't care much

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff Try to understand them

I find it really interesting

scratching the surface

reviewers don't care much
Except for this awesome

workshop!
things are changing?

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff Try to understand them

I find it really interesting

scratching the surface

reviewers don't care much
Except for this awesome

workshop!
things are changing?

Understanding LSTMs
Q1: What is encoded/captured in a vector?

Understanding LSTMs
Q1: What is encoded/captured in a vector?

Understanding LSTMs
Q1: What is encoded/captured in a vector?

Methodology: can you train a classifier to predict
X from the representation?

Understanding LSTMs
Q1: What is encoded/captured in a vector?

Methodology: can you train a classifier to predict
X from the representation?

Understanding LSTMs
Q1: What is encoded/captured in a vector?

Rejected from pretty much all* NLP venues

*that matter

Methodology: can you train a classifier to predict
X from the representation?

Understanding LSTMs
Q1: What is encoded/captured in a vector?

Rejected from pretty much all* NLP venues

*that matter

reviewer 2:

The paper reads very well, but
a) I do not understand the motivation, and
b) the experiments seem flawed.

Understanding LSTMs
Q1: What is encoded/captured in a vector?

JAIR

Understanding LSTMs
Q1: What is encoded/captured in a vector?

JAIR, NIPS workshop 2016

~with us

Understanding LSTMs
Q1: What is encoded/captured in a vector?

JAIR, NIPS workshop 2016

~with us

much better name!

Understanding LSTMs
Q1: What is encoded/captured in a vector?

JAIR, NIPS workshop 2016

~with us

much better name!

RepEval workshop
2016

Understanding LSTMs
Q1: What is encoded/captured in a vector?

NIPS 2017

Understanding LSTMs
Q1: What is encoded/captured in a vector?

NIPS 2017

IJCNLP 2017

Understanding LSTMs
Q1: What is encoded/captured in a vector?

ACL 2018

Understanding LSTMs
Q1: What is encoded/captured in a vector?

ACL 2018

ACL 2018

Understanding LSTMs
Q1: What is encoded/captured in a vector?

ACL 2018

ACL 2018

many works in this workshop!

Understanding LSTMs
Q1: What is encoded/captured in a vector?

ACL 2018

ACL 2018

(ML) workshops --> ML --> non-ACL NLP --> ACL (NAACL, EMNLP...)

is top-tier NLP too conservative?

many works in this workshop!

Understanding LSTMs
Q2: what kinds of linguistic structures  
 can be captured by an RNN?

Understanding LSTMs
Q2: what kinds of linguistic structures  
 can be captured by an RNN?

Understanding LSTMs
Q2: what kinds of linguistic structures  
 can be captured by an RNN?

This triggered a lot of very interesting work!

Understanding LSTMs
Q2: what kinds of linguistic structures  
 can be captured by an RNN?

This triggered a lot of very interesting work!

Understanding LSTMs
Q2: what kinds of linguistic structures  
 can be captured by an RNN?

This triggered a lot of very interesting work!

Understanding LSTMs
Q2: what kinds of linguistic structures  
 can be captured by an RNN?

This triggered a lot of very interesting work!

Understanding LSTMs
Q2: what kinds of linguistic structures  
 can be captured by an RNN?

This triggered a lot of very interesting work!

many others

Understanding LSTMs
Q2: what kinds of linguistic structures  
 can be captured by an RNN?

This triggered a lot of very interesting work!

many works in this workshop!

Understanding LSTMs
Q2: what kinds of linguistic structures  
 can be captured by an RNN?

This triggered a lot of very interesting work!

many works in this workshop!

Including our poster on Basque

Understanding LSTMs
Q3: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

pioneering work in this space

Q3: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

(also took forever to get accepted)

Q3: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q3: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

my student Alon Jacovi will present our work on
analyzing 1D-CNNs for text.

Q4: when do models fail? what can't they do?

Understanding LSTMs

Q4: when do models fail? what can't they do?

Understanding LSTMs

Q4: when do models fail? what can't they do?

Understanding LSTMs

ACL 2018

Q4: when do models fail? what can't they do?

Understanding LSTMs

ACL 2018

and others from other groups

Q1: What is encoded/captured in a vector?

Q2: what kinds of linguistic structures  
 can be captured by an RNN?

Q3: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q4: when do models fail? what can't they do?

Q1: What is encoded/captured in a vector?

Q2: what kinds of linguistic structures  
 can be captured by an RNN?

Q3: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q4: when do models fail? what can't they do?

Q1: What is encoded/captured in a vector?

Q2: what kinds of linguistic structures  
 can be captured by an RNN?

Q3: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q4: when do models fail? what can't they do?
Treat the representations / model

as an "organism".
Come up with hypotheses.

Perform experiments.

Q1: What is encoded/captured in a vector?

Q2: what kinds of linguistic structures  
 can be captured by an RNN?

Q3: how did a given model reach a decision? 
 how is the architecture capturing the phenomena?

Q4: when do models fail? what can't they do?
Treat the representations / model

as an "organism".
Come up with hypotheses.

Perform experiments.

we never learned to do this in CS :(

Q5: What is the representation power  
 of different architectures?

Q6: Extracting a discrete representation 
 from a trained model.

Q5: What is the representation power  
 of different architectures?

Q6: Extracting a discrete representation 
 from a trained model.

Back to a "familiar territory".
Computer science. Math.

Agenda

• Formal expressive power of RNNs

• Extracting FSAs from RNNs

brief recap of RNNs

Recurrent Neural Networks

• Very strong models of sequential data.

• Function from n vectors to a single vector.

Recurrent Neural Networks

• Very strong models of sequential data.

• Function from n vectors to a single vector.

v(what) v(is) v(your) v(name)

Recurrent Neural Networks

• Very strong models of sequential data.

• Function from n vectors to a single vector.

v(what) v(is) v(your) v(name) ????

Recurrent Neural Networks

• Very strong models of sequential data.

• Function from n vectors to a single vector.

v(what) v(is) v(your) v(name) enc(what is your name)

Recurrent Neural Networks

• Very strong models of sequential data.

• Trainable function from n vectors to a single vector.

v(what) v(is) v(your) v(name) enc(what is your name)

Recurrent Neural Networks

• There are different variants (implementations).

• Same interface. Same power?

Recurrent Neural Networks
Defining the loss.

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of yn = O(sn), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.

R,O

x1

s0
R,O

x2

s1
R,O

x3

s2
R,O

x4

s3
R,O

x5

s4

predict &
calc loss

y5

loss

Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, yn. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector yn summarizing the entire document. Then, yn will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal Llocal(ŷi,yi)
for each of the outputs ŷi based on a true label yi. The loss for unrolled sequence will
then be: L(ˆy1:n,y1:n) =

Pn
i=1 Llocal(ŷi,yi), or using another combination rather than a

sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take xi:n to be feature representations for the
n words of a sentence, and yi as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x1:i is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

Acceptor: Read in a sequence. Predict from the end state.
Backprop the error all the way back.
Train the network to capture meaningful information

Q5: What is the representation power  
 of different architectures?

Q5: What is the representation power  
 of different architectures?

Q5: What is the representation power  
 of different architectures?

Q5: What is the representation power  
 of different architectures?

are all RNNs equivalent?

RNNs have Turing Power?

RNNs have Turing Power?

YES, THEY DO!

RNNs have Turing Power?

YES, THEY DO!
But this answer is not very useful.

RNNs have Turing Power?

YES, THEY DO!
But this answer is not very useful.

Proof requires infinite precision.
"push 0 into stack": g = g/4 + 1/4

this allows pushing 15 zeros when using 32 bit floating point.

RNNs have Turing Power?

YES, THEY DO!
But this answer is not very useful.

Construction requires complex combination of many
carefully crafted components.

can this really be reached by gradient methods?

RNNs have Turing Power?

YES, THEY DO!
But this answer is not very useful.

Construction requires extra processing time
at the end of the sequence.

we use "real time" RNNs in practice.

RNN Flavors

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

Elman RNN (SRNN)

IRNN

Saturating activation.

ReLU activation.

"Classic" RNNs

RNN Flavors

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

Gated Recurrent Unit

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

LSTM

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

Gated RNNs

RNN Flavors

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

With finite precision, Elman RNNs are Finite State.
We do not know much about other flavors.

Common Wisdom

Gated architectures (GRU, LSTM)
are better than

non-Gated architectures (SRNN, IRNN)

Common Wisdom

Gated architectures (GRU, LSTM)
are better than

non-Gated architectures (SRNN, IRNN)

we show that in terms of expressive power,
there is an aspect in which:

LSTM > GRU
IRNN > SRNN

Power of Counting

(1968)

Power of Counting

(1968)

counter machines are  
Finite State Automata with k counters.

INC, DEC, Compare0

Chomsky Hierarchy

Regular Languages

Chomsky Hierarchy

Regular Languages
Context Free

Chomsky Hierarchy

Regular Languages
Context Free

anbn Palindromes

Chomsky Hierarchy

Regular Languages
Context Free

Context Sensitive

Chomsky Hierarchy

Regular Languages
Context Free

Context Sensitive

anbncn

Power of Counting

Regular Languages
Context Free

Context SensitiveCounter

Power of Counting

Regular Languages
Context Free

Context SensitiveCounter

anbn anbncn Palindromes

Power of Counting

Regular Languages
Context Free

Context SensitiveCounter

anbn anbncn Palindromes

GRU / SRNN

Power of Counting

Regular Languages
Context Free

Context SensitiveCounter

anbn anbncn Palindromes

LSTM / IRNN

GRU / SRNN

IRNN / LSTM can count

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

IRNN / LSTM can count

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

-1 , 1
(via tanh)

1
(via sigmoid)

compare to zero is easy

IRNN / LSTM can count

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

-1 , 1
(via tanh)

1
(via sigmoid)

compare to zero is easy

counting is EASY!
just needs to saturate 3 gates.

IRNN / LSTM can count

+1 in one dim =INC
+1 in other dim =DEC

compare to zero
by subtracting dims

(requires MLP)

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

IRNN

SRNN / GRU cannot count

squashing prevents counting2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

SRNN

SRNN / GRU cannot count

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

gate tie prevents counting -1 , 1
(via tanh)

GRU

SRNN / GRU cannot count

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht�1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating

mechanism, taking the form:

zt = �(W zxt + U zht�1 + bz) (4)
rt = �(W rxt + U rht�1 + br) (5)
h̃t = tanh(W hxt + Uh(rt � ht�1) + bh)(6)
ht = zt � ht�1 + (1� zt) � h̃t (7)

Where � is the sigmoid function and � is the
hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = �(W fxt + Ufht�1 + bf) (8)
it = �(W ixt + U iht�1 + bi) (9)
ot = �(W oxt + Uoht�1 + bo) (10)
c̃t = tanh(W cxt + U cht�1 + bc) (11)
ct = ft � ct�1 + it � c̃t (12)
ht = ot � g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 0,ot = 1, and ft = 0. This is easily
achieved by setting the matrices W and U to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computation
is allowed, a 2-counter machine has Turing power.

However, for computation bound by input length
(real-time) there is a more interesting hierarchy. In
particular, real-time counting languages cut across
the traditional Chomsky hierarchy: k-counter ma-
chines can recognize at least one context-free lan-
guage (anbn), and at least one context-sensitive
one (anbncn). However, they cannot recognize
the context free language given by the grammar
S ! x|aSa|bSb (palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,1 an SKCM is a finite-state automata ex-
tended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
and are provided in the supplementary material.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht�1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the
counter’s value to 0.

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht�1 + b)

1Formal definition is given in the supplementary material.

gate tie prevents counting -1 , 1
(via tanh)

can do some bounded counting within the -1,1 range.
 hard: requiring precise setting of non-saturated values.

Counting in some other way?

cannot implement a binary-counter (or any k-base counter)
in a single SRNN step.

LSTM vs. GRU

train on anbn up to n=100

LSTM vs. GRU

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

train on anbn up to n=100

LSTM vs. GRU

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

train on anbn up to n=100

GRU starts to fail at n=38

LSTM vs. GRU

train on anbncn up to n=50

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

LSTM vs. GRU

train on anbncn up to n=50

GRU starts to fail at n=8

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

To summarize (this part)

• Escape Turing-completeness by looking into  
finite-precision, real-time RNN

• Real difference in expressive power between
[SRNN, GRU] and [IRNN, LSTM].

• Small architectural choices can matter.

Extracting FSAs from RNNs
what do trained LSTM acceptors encode?

Q6: Extracting a discrete representation 
 from a trained model.

(ICML 2018)

RNN acceptors as
State Machines

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

state

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

state input
symbol

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

state input
symbol

new
state

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

state input
symbol

new
state

accept/reject

RNN acceptors as
State Machines

R,O

x1

s0

predict &
calc loss

y1

R,O

x2

s1

predict &
calc loss

y2

R,O

x3

s2

predict &
calc loss

y3

R,O

x4

s3

predict &
calc loss

y4

R,O

x5

s4

predict &
calc loss

y5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation yn, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation yn, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as yn. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that xn corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t1, . . . , tn, an encoder RNN is first used to encode the sentence x1:n into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x1:n to predict the label ti at each position i. This approach

50

state input
symbol

new
state

accept/reject

very similar to FSA
unfortunately the states are continuous vectors

Learning  
Finite State Automata

• L* algorithm

• FSAs are learnable from "minimally adequate teacher"

• Membership queries  

• Equivalence queries

"does this word belong in the language?"

"does this automaton represent the language?"

Game Plan

• Train an RNN

• Use it as a Teacher in the L* algorithm

• L* learns the FSA represented by the RNN

RNN as  
Minimally Adequate Teacher

Membership Queries

Equivalence Queries

Easy. Just run the word through the RNN.

Hard. Requires some trickery.

Answering  
Equivalence Queries

• Map RNN states to discrete states, forming an FSA
abstraction of the RNN.

• Compare L* Query FSA to RNN-Abstract-FSA.

• Different?

• Maybe state-mapping is wrong. Refine the
mapping.

• Maybe L* FSA is wrong, return a counter example.

Answering  
Equivalence Queries

• Compare L* Query FSA to RNN-Abstract-FSA.

• Different?

• Maybe state-mapping is wrong. Refine the
mapping.

• Maybe L* FSA is wrong, return a counter
example.

=??

Answering  
Equivalence Queries

• Conflict?

• Maybe state-mapping is wrong.  
If so: refine the mapping.

• Maybe L* FSA is wrong.  
If so: return a counter example.

Some Results
• Many random FSAs:

• 5 or 10 states, alphabet sizes of 3 or 5

• LSTM/GRU with 50, 100, 500 dimensions.

• The FSAs were learned well by LSTM / GRU

• And recovered well by L*.

"lists or dicts"

• F

• S

• [F,S,0,F,N,T]

• {S:F,S:F,S:0,S:T,S:S,S:N}

alphabet: F S 0 N T , : { } []

"lists or dicts" perfect!

Balanced Parenthesis

(a((ejka((acs))(asdsa))djljf)kls(fjkljklkids))

alphabet: a-z ()
nesting level up to 8.

Balanced Parenthesis

Balanced Parenthesis

Balanced Parenthesis

Balanced Parenthesis

Balanced Parenthesis

final automaton:

Balanced Parenthesis

final automaton:

Balanced Parenthesis
not quite right

final automaton:

"Emails"
• bla12@abc.com, ahjlkoo@jjjgs.net

[a-z][a-z0-9]*@[a-z0-9]+\.(com|net|co\.[a-z][a-z])

mailto:bla12@abc.com

"Emails"

20,000 positive examples
20,000 negative examples
2,000 examples dev set

• bla12@abc.com, ahjlkoo@jjjgs.net

[a-z][a-z0-9]*@[a-z0-9]+\.(com|net|co\.[a-z][a-z])

mailto:bla12@abc.com

"Emails"

20,000 positive examples
20,000 negative examples
2,000 examples dev set

LSTM has 100% accuracy on both train and dev (and test)

• bla12@abc.com, ahjlkoo@jjjgs.net

[a-z][a-z0-9]*@[a-z0-9]+\.(com|net|co\.[a-z][a-z])

mailto:bla12@abc.com

"Emails"

LSTM has 100% accuracy on both train and dev (and test)

the extraction algorithm did not converge.
we stopped it when it reached over 500 states.

"Emails"

LSTM has 100% accuracy on both train and dev (and test)

the extraction algorithm did not converge.
we stopped it when it reached over 500 states.

some counter-examples it found:

25.net
5x.nem
2hs.net

• We can extract FSAs from RNNs

• ... if the RNN indeed captured a regular structure

• ... and in many cases the representation
captured by the RNN is much more complex
(and wrong!) than the actual concept class.

• Much more to do:

• scale to larger FSAs and alphabets

• scale to non-regular languages

• apply to "real" language data

•

To summarize (the talk)
• LSTMs (deep nets, RNNs, ...) are very powerful

• We know how to use them.

• We don't know enough about their power and
limitations.

• We should try to understand them better.

• Very excited to see the evolving community in
this workshop! Keep it up!

