Capturing Dependency Syntax
with "Deep” Sequential Models

Yoav Goldberg
Depling 2017

'\’A \ Bar-llan University
J 19'X-12 NV'D12IIN

g Dependency Syntax
with "Deep” Sequential Models

Yoav Goldberg
Depling 2017

’ \ Bar Ilan Universit
3 - y
: @ I9'X-12 NU'D12IIX

g Dependency Syntax
with "Deep" Sequential Models

Yoav Goldberg
Depling 2017

Eva's talk: 'deep” sentential structure

A\ Bar-llan Univers
Tl @ Il)ar ann L;\ll\)!ersl'cy

wo)
-

al

Z
-

Deep Learning

(0.9)

A

Deep Learning

IT LEARNS ON ITS OWN.
IT WORKS LIKE THE BRAIN.

IT CAN DO ANYTHING.

e

= My experience
with Deep Learning for Language

"I'M SORRY DAVE,
I'Mm AFRAID I CAN'T DO THAT."

(not in the scary sense)

NLF My experience
with Deep Learning for Language

* With proper tools, easy to produce "innovative" models.
 Not so easy to get good results.

* With Feed-forward nets, hard to beat linear models w/
human engineered feature combinations.

* On 20-newsgroups, NaiveBayes+Ttldf wins over deep
Feed-forward-nets and ConvNets.

NLF My experience
with Deep Learning for Language

* With proper tools, easy to produce "innovative” models.
 Not so easy to get good results.

* With Feed-forward nets, hard to beat linear models w/
human engineered feature combinations.

* On 20-newsgroups, NaiveBayes+Ttldf wins over deep
Feed-forward-nets and ConvNets.

K S?mi—sup Ieaminé sort-of easy‘vvith

|

—_— = ——

word2vec

dog = (0.12,-0.32,0.92,0.43,-0.3 ...)
cat = (0.15,-0.29,0.90,0.39,-0.32 ...)

chair = (0.8,0.9,-0.76,0.29,0.52 ...)

get a |V|xd matrix W where each
row is a vector for a word

>

>

dog

» cat, dogs, dachshund, rabbit, puppy, poodle, rottweller,
mixed-breed, doberman, pig

sheep

» cattle, goats, cows, chickens, sheeps, hogs, donkeys,
herds, shorthorn, livestock

november

» october, december, april, june, february, july, september,
january, august, march

jerusalem

» tiberias, jaffa, haifa, israel, palestine, nablus, damascus
katamon, ramla, safed

teva

» pfizer, schering-plough, novartis, astrazeneca,
glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme,
pharmacia

NLF My experience
with Deep Learning for Language

* With proper tools, easy to produce "innovative” models.
 Not so easy to get good results.

* With Feed-forward nets, hard to beat linear models w/
human engineered feature combinations.

* On 20-newsgroups, NaiveBayes+Ttldf wins over deep
Feed-forward-nets and ConvNets.

K S?mi—sup Ieaminé sort-of easy‘vvith

|

—_— = ——

A My experience

with Deep Learning for Language

* With proper tools, easy to produce "innovative” models.
 Not so easy to get good results.

* With Feed-forward nets, hard to beat linear models w/
human engineered feature combinations.

* On 20-newsgroups, NaiveBayes+Ttldf wins over deep
Feed-forward-nets and ConvNets.

. Seml sup Ieammg sort-of easy vv|th vvord embeddmgs

J

Doing stuff with LSTMs

~ Euclidean Distance -
VP L VP
VP L
= R vp \ N R \
VB NP | | L VB NP | VP
s~ 14 & ali — 74 e

£ pross== !

h i £ i
———S0 g | =S LT | =2 LT M |5 LT | =S LTS | ——S5— : I

£ - £ o7 '

£ - £ oo '

.t

context representatioxi

he

booked

a room

for

two

nights

iNg stuff with LSTMs

~ Euclidean Distance

L . VP
| V‘P o~ I:> .
W L VB NP ‘
N ! R [\ | VP
cut PRP$ NNS | | NP take NNS \
“VBAQQA N‘PAAEAQA \42242 | VBAQQA 24
their risks ‘ . 5 o NNS 3. profits | <
at £ @ oo~ PRPS 2 x o 35O oz Z T g wke £ o o ~ -
| = risks 7Y wn o
their = O wn
iz
A Yn Compression ;
Multitask
= Gaze t
Embeddings: CCG-tags 2
lemma N Lo ", ",
® POS ! O Uy ! ~,'
dependency label o i L . I it
@ direction . average O q 2 m
H %‘ %\L pooling -~ (=,y) ||| t)i| ul|| o] 1
Y @ classification
(softmax) t a r j a
(000 (000 (000) 8 ©) L i) 1) i) f
X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/< EO
O Cascaded
= O Gaze
| — — — e L0
1 T op ‘J"I' ”,’
| o L
®)(000 (000)(000 O i ’ Ialivaival
X/NOUN/dobj/>define/VERB/ROOT/- as/ADP/prep/< Y/NOUN/pobj/< =7~
Path LSTM Term-pair Classifier L
<« t a r | a
LD> French prepositions German prepositions Spanish prepositions Prepositions supersenses
‘ Vihe ‘ ‘Vjumped‘ ‘ V. ‘ dans, en, sur, ..., par mit, vor, zu, ..., gegen sobre, con, para, ..., a Temporal, Place7 Manner, sy Explanation
mﬁ conca I |] ID I I I ID Dij Djj """"
v v vy v vh B
T e I e I B M S s “ . g
LLSTM LLSTM L LSTM (LSTM LLSTM MLPrg MLPsp :;
vi v5 w5 vh vE ' i 1
posdoas poadsosy £ rT-T-o poadsosy £ rT-T-o £ o
0 p TN | LITM |2 LST M |~ LT | A LM |5 | L | £ VI | 6(he booked a5) |
Ty Ty Ty Ty Ty RS SEE TES SRS SN RS REEE S S S SRR 5 O : :...:,. S ————
~ Xtne “Xbrown SO Xjumped —=x,— et
\yv context representatloli I I
— > -
t 4 4 4
he booked a room for two nights

pos=V
/~ mood=IND
~ tense=PRS/FUT

o

X gender=FEM
person=3

(0.9)

A

RNNS/LSTMs
and Syntax

-

Briet intro to RNNS

OO0

OO0

OO0

OO0 4

* Very strong models of sequential data.

e Function from n vectors to a single vector.

+ (0000

OO0

OO0

OO0

OO0 4

v(what)

* Very strong models of sequential data.

e Function from n vectors to a single vector.

Vv(is)

v(your) v(name)

+ (0000

OO0

OO0

OO0

OO0 4

v(what)

* Very strong models of sequential data.

e Function from n vectors to a single vector.

Vv(is)

v(your) v(name)

+ (0000

(e

QOO 1000 OO 1000~

viwhat) v(is) v(your) v(name)

* Very strong models of sequential data.

e Function from n vectors to a single vector.

OO0

OO0

OO0

OO0 4

v(what)

* Very strong models of sequential data.

Vv(is)

v(your) v(name)

+ (0000

enc(what is your name)

e Function from n vectors to a single vector.

OO0

OO0

OO0

OO0 4

v(what)

* Very strong models of sequential data.

Vv(is)

v(your) v(name)

+ (0000

enc(what is your name)

* Trainable function from n vectors to a single vector.

000

000

000

OO0 -

b (OOO0O

000

000

000

000 -

N 0000

000

000

000

000 -

e« \We'll focus on the interface level.

b (OOOO

* [here are different variants (Implementations).

OO0

OO0

OO0

OO0 4

v(what)

* Very strong models of sequential data.

Vv(is)

v(your) v(name)

+ (0000

enc(what is your name)

* Trainable function from n vectors to a single vector.

Recurrent Neural Networks

RN N (sg,X1:n) = Sn,¥n

X; - Rdzn7 Vi c Rdout’ S; - Rf(dout)

* Very strong models of sequential data.

* Trainable function from n vectors to a single* vector.

-

Recurrent Neural Networks

yYs
-———-—==-=-=3 m— == === == e e I————|\———1
:S2 1 1 !
_— | E— |—>: | — | —— | ——
, I
____|_____ L___|_ ________ |_ ________ |_____ ____|_____
X3

e |nput vectors x7.;, output vector yj;

* The output vector Yi depends on all inputs X1

1
Sg 1

: 'Sy ' Sg : 'S4 :
' R,O —) R,O —) R,O —) R,O —) R,O — S5

RNN(Sﬂaxlzn) = Snj¥Yn
Si — R(Si—laxi)

: , Yi — O(Si)
* Recursively defined.
x; € R%n | y; € Riout | g5 ¢ RS (dour)

 [here's a vector Yi for every prefix Xi:j

(0.9)

A

Recurrent Neural Networks

* \WWhat are the vectors Yi good for?

Y1 Y2 ys3 Ya Ys

I SN e R T

RO M RO 2 RO P4 RO N RO b ss

* On their own” nothing.

A

Z
—
-

Recurrent Neural Networks

* \WWhat are the vectors Yi good for?

Y1 Y2 ys3 Ya Ys

I SN e R T

RO M RO 2 RO P4 RO N RO b ss

* On their own” nothing.

o o — ~ ‘.]
~+ But we can train them. |

-

Recurrent Neural Networks

* \WWhat are the vectors Yi good for?

Y1 Y2 ys3 Ya Ys

I SN e R T

RO M RO 2 RO P4 RO N RO b ss

* On their own” nothing.

S define function form
|

~* But we can train the

“i
|
!i

<
]

define loss

e

c

-

Recurrent Neural Networks

* \WWhat are the vectors Yi good for?

Y1 Y2 ys3 Ya Ys

I SN e R T

RO M RO 2 RO P4 RO N RO b ss

T trained parameters.

* On their own” nothing.
define function form

\; ® [<1i .
* Butwe can train them.{___ 4 fine [oss

SimpleRNN:

RsrnnN(Si—1,Xi) = tanh(W? - s;_1 + W™ . x3)

looks simple.
theoretically powerful.
practically, not so much.

1 1 1 1
Sq | So Sg 1 | Sy

E R,O i—»: R,O i—»i R,O i—»: R,O i—»: R,O i—» S5

T trained parameters.

define function form

define loss

r
l

LSTM:

Rrsrm(sj-1,%;) =|cj; hy]
c; =Cj—1 Of+g0oi
h; =tanh(c;) ® 0
i =c(W* . x; + W™ . h;_;)
f =c(W*' . x; + W . h;_)
0 =0(W*° . x; + W' . h;_;) looks complex, and is.
g =tanh(W*€ . x; + WP . h;_;) very strong in practice.

|
|
1
e
|
|

But we can train7e. <

1 1 1 1
S1 ¢ ' So Sg 1 | Syq

E R,O i—»: R,O i—»i R,O i—»: R,O i—»: R,O i—» S5

T trained parameters.

On their own? nothing.
define function form

—

[
|

define loss

1

-

Recurrent Neural Networks

* \WWhat are the vectors Yi good for?

Y1 Y2 ys3 Ya Ys

I SN e R T

RO M RO 2 RO P4 RO N RO b ss

* On their own” nothing.

~* But we can train them

define function form

]

jl
<
| | ‘|:

define loss

Recurrent Neural Networks

Detining the loss. loss
./

/ predict &
\
' calcloss

R,O R,O R,O R,O R,O
X X X3 X X5

Acceptor: predict something from end state.
Backprop the error all the way back.
Train the network to capture meaningtul information

Recurrent Neural Networks

Detining the loss. loss
/" predict &
‘\\\calc loss //
]}%
>0 R,O R,O RO 2. RO RO |
jl XL XL j XL

the final vector is a good
‘'summary" of the sequence
Acceptor: predict something from end state.
Backprop the error all the way back.
Train the network to capture meaningtul information

Predict sentiment of the sentence based on all words.

e Predict word | based on words 1.....1-1.

/" predict & \\\\
. calcloss
]}%
P e R e S VO
0 R,O ! o R0 ’ 4 R0 > o R,0 o RO
____T ________ T ________ T ________ T ________ T----
X1 X2 X3 X4 X5

the final vector is a good
‘'summary’ of the sequence

Acceptor: predict something from end state.
Backprop the error all the way back.
Train the network to capture meaningtul information

Predict sentiment of the sentence based on all words.

Predict word i based on words 1,...,i-1.

/"~ predict & \\\\
. calcloss
|Y5
S S S S :
0 R,O ! o R0 ’ 4 R0 > o R,0 o RO
""T ________ T ________ T ________ T ________ T----
X1 X2 X3 X4 X5

the final vector is a good
‘'summary’ of the sequence

Acceptor: predict something from end state.
Backprop the error all the way back.
Train the network to capture meaningtul information

Recurrent Neural Networks

—

/ predict & predict & . predict & . predict & 7 predict &
| | | | |
‘. calcloss . ' calcloss . calcloss . calcloss . calcloss

S0 RO ' RO 2. RO 2.0 RO —*. RO
X1 X2 X3 X4 X5

Transducer: predict something from each state.
Backprop the sum of errors all the way back.
Train the network to capture meaningtul information

‘Deep RNNSs’

3 1
So |
> R3703
! 1
L,
2
t}ﬁ
g oo
So

RNN can be stacked
deeper is better!
(better how?)

IR 3 3 3 L o3
ST S5 SE S3 'Sy
— R3,03 ——— R3,05 ——— R5,03 ——— R3,03 ——
! 1 ! 1 ! 1 ! 1
- Lo Lo Lo Lo
2 2 2 2
[Y2 [Y3 [Y4 tY5
1 R 2 [~TTTTT-» 2 [~TTTTT-T» o 2

Story so far:

There is a thing called a (deep) RNN.
We can teed it a list of vectors.
* Each vector represents a word.

At the end it spits out a vector summarizing the list
of vectors.

We influence the summarization with training.

Story so far:

Sequence in, vector out.
' But human language is not (only) a sequence! ;

of vectors.

We influence the summarization with training.

-

Can RNNs learn hierarchy?

Can RNNs learn hierarchy?

(joint work with Tal Linzen and Emmanuel Dupoux)

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen'* Emmanuel Dupoux! Yoav Goldberg
LSCP! & IIN?, CNRS, Computer Science Department
EHESS and ENS, PSL Research University Bar Ilan University
{tal.linzen, yoav.goldberg@gmail.com

emmanuel .dupoux}@ens.fr

(0.9)

A

c

-

The case for Syntax

 Some natural-language phenomena
are indicative of hierarchical structure.

* For example, subject verb agreement.

the boy kicks the ba
the boys kick the ba

The case for Syntax

 Some natural-language phenomena
are indicative of hierarchical structure.

* For example, subject verb agreement.

the boy wit
the boys wit

Nt

N 1

ne w

ne w

Nite s

Nite s

Nirt with the bl

Nirts with the b

e collar kicks the ball
ue collars kick the ball

The case for Syntax

 Some natural-language phenomena
are indicative of hierarchical structure.

* For example, subject verb agreement.

the boy (wit
e boys (wit

Nt

Nt

ne w

ne w

Nite s

Nite s

nirt (with the blue collar)) kicks the ball

nirts (with the blue collars)) kick the ball

The case for Syntax

 Some natural-language phenomena
are indicative of hierarchical structure.

* For example, subject verb agreement.

the boy (with t

1e boys (with t

ne w

ne w

Nite s

Nite s

nirt (with the blue collar)) kicks the ball

nirts (with the blue collars)) kick the ball

~_

NSub]

-

Can a sequence LSTM
learn agreement??

el Can a sequence LSTM
learn agreement??

some prominent figures in the history of philosophy who have
defended moral rationalism are plato and immanuel kant .

el Can a sequence LSTM
learn agreement??

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

replace rare words with their POS

el Can a sequence LSTM
learn agreement??

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject

A

Z
—
-

Can a sequence LSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN

cut the sentence at the verb

el Can a sequence LSTM
learn agreement??

some prominent figures in the history of philosophy who have
defended moral NN

A

plural or singular?

binary prediction task

QO 00O

OO0

OO0

OO0 4

. v(have)

v(defended) v(moral)

V(NN)

plural / singular

el Can a sequence LSTM
learn agreement??

some prominent figures in the history of philosophy who have
defended moral NN

A

plural or singular?

binary prediction task

A

Z
—
-

Can a sequence LSTM
learn agreement??

some prominent figures in the history of philosophy who have
defended moral NN

or singular?

vs)
C

=

ir Can a sequence LSTM
learn agreement??

some prominent in the history of philosophy who have

defended moral NN

or singular?

vs)
C

=

ir Can a sequence LSTM
learn agreement??

some prominent in the history of philosophy who have

defended moral NN

or singular?

el Can a sequence LSTM
learn agreement??

some prominent in the history of philosophy who have
defended moral NN

A

or singular?

in order to answer:
Need to learn the concept of number.

Need to identity the subject (ignoring irrelevant words)

-

Somewhat Harder Task

A

Z
—
-

Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject

Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

some prominent figures in the history of philosophy who have
defended moral NN is plato and immanuel kant .

choose a verb with a subject
and flip its number.

Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant . V

some prominent figures in the history of philosophy who have
defended moral NN is plato and immanuel kant . X

can the LSTM learn to
distinguish good from bad sentences?

QO 00O

OO0

OO0

OO0 4

. Vv(boy)

v(kicks)

v(the)

v(ball)

4
QOO0

QO 00O

OO0

OO0

OO0 4

. Vv(boy)

v(kick)

v(the)

v(ball)

4
QOO0

Can a sequence LSTM
learn agreement??

predicts number wi

...but most examp

th 99% accuracy.
es are very easy

(look at last noun).

Can a sequence LSTM
learn agreement?

predicts number with 99% accuracy.

...but most examples are very easy

50 1 (look at last noun).
40% -

2

G 30% -

S 200 -

LLI
10% -
0% — .—.—.—.—.—.".'.'.-._.—._"

| | | | | | |
2 4 o6 8 10 12 14

Distance (no intervening nouns)

Can a sequence LSTM
learn agreement??

predicts number wi

...but most examp

th 99% accuracy.
es are very easy

(look at last noun).

when restricted to cases
of at least one intervening noun:

97% accuracy

Can a sequence LSTM
learn agreement??

0.8 -

things
06 tickstrsonality
04 swles WG orger
survivalclosure
erpine commigilivealth
0-2- P " SokHendkeaeslians estate

HEREHRe 1d)a , .
advartagkide _ J sing Wire quantity

0.0 - o el €55 W”ést ion _
' imil S EsEans - vista “rev idtentcgation

o Si B ik
O I’BH o) '.' ators | nawﬂ%%k
AP Iy word

Stfarge] leaf patch classification
A filegccusations Ioozggevré{rtising1 _ liai
0.4 books ¢Rko, religion
marria unepapke es\(:opeDrOJeCt
ges
—0.6 - iny&tHhlngt
-0.8- relationship

_1.0 l | | | | | | | | |
-20 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
PC1

Can a sequence LSTM
learn agreement??

more errors as the number of intervening nouns
Of opposite number iINncreases

Can a sequence LSTM
learn agreement??

Error rate

100%

80%

60%

40%

20%

0%

Baseline
(common
nouns)

Majority class

Number
prediction

0

| | |
1 2 3

Count of attractors

|
4

Can a sequence LSTM
learn agreement?

100% - |
Baseline

80% — (common
nouns)

60% -

Error rate

40% -
Majority class

20% - Number

prediction

| | | | but < 16% err

oot 28 for 4 misleading
Count of attractors
NOoOuns...

0% —

Can a sequence LSTM
learn agreement??

but we trained it on the agreement task.

does a language model learn agreement?

Can a sequence LSTM
learn agreement??

does a language model learn agreement?

100% —

80% —

Language modeling
60% -

Error rate

40% - .
’ Majority class

Grammaticality
Number prediction
Verb inflection

20% -

0% -

| | | |
0 1 2 3 4

Count of attractors

(0.9)

A

Can a sequence LSTM
learn agreement??

does a language model learn agreement?

what if we used the best LM in the world?

Error rate

Can a sequence LSTM

learn agreement??

does a language model learn agreement?

100%

80%

60%

40%

20%

0%

Majority

Google LM

0 1 2 3 4

Count of attractors

Verb inflecti

Clele]e
does

but st

e's beast LM
netter than ours

I struggles

considerably.

Can a sequence LSTM
learn agreement??

does a language model learn agreement?

LSTM-LM does not learn agreement.
Explicit error signal is required.

but with explicit signal,
LSTMs can learn agreement very well.

(0.9)

A

Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

IN many and diverse cases.

but we did manage to find some common trends.

(0.9)

A

Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

noun compounds can be tricky

Conservation refugees live in a world col-
ored 1n shades of gray; limbo.

Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

Relative clauses are hard.

The landmarks rhar this article lists here
are also run-of-the-mill and not notable.

Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

Reduced relative clauses are harder.

The landmarks this article lists here are
also run-of-the-mill and not notable.

wo)
-

A

Z
-

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

Error
No relative clause 3.2%
Overt relative clause 9.9%

Reduced Relative clause 25%

Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

Error
No relative clause 3.2%
Overt relative clause 9.9%
Reduced Relative clause 25%

humans also fail much more on reduced relatives.

P [he agreement experiment:

recap

* WWe wanted to show LSTMs can't learn hierarchy.
e --> We sort-of failed.
| STMs learn to cope with natural-language

patterns that exhibit hierarchy, based on minimal
and indirect supervision.

 But some sort of relevant supervision is required.

What happens

pbeyond English?

* English is a simple language.
* We started exploring more interesting ones.

* |f you want to collaborate on cool agreement
patterns in your favorite language, let's discuss!

Story so far:

* RNNs are very flexible sequence encoders.

e \We can train them to encode rather intricate
syntactic structures.

Story so far:

* RNNs are very flexible sequence encoders.

e \We can train them to encode rather intricate
syntactic structures.

* Can we use them for parsing?

Parsing with LSTMs, Take 1

Easy-First Dependency Parsing with Hierarchical Tree LSTMs

Eliyahu Kiperwasser Yoav Goldberg
Computer Science Department Computer Science Department
Bar-Ilan University Bar-Ilan University
Ramat-Gan, Israel Ramat-Gan, Israel

elikip@gmail.com yvoav.goldbergldgmail.com

Core |dea

 LSTMs are SOTA at modeling seqguences.
* Encode sequence of modifiers as an LSTM.
« Combine in a recursive mannet.

> great for dependency trees.

Core Idea

Mtw

t.lg t.lg t.ll t.?“l t.?“g t.?“g t.”l“4

enc(t.ls) enc(t.lz) enc(t.lq) /\ enc(t.r1) enc(t.r2) enc(t.r3) enc(t.ra)

V' N
L [« L |« L R R R ~ R
\C‘OTLCT/

7

enc(t)

Two LSTMs

nead + Left modifiers encoded w/ LSTM-L

nead + Right modifiers encoded w/ LSTM-R
The Left and Right end states are concatenated

Core Idea

Mtw

t.lg t.lg t.ll t.?“l t.?“g t.?“3 t.”l“4

t.w
enc(t.ls) enc(t.lz) enc(t.lq) /\ enc(t.r1) enc(t.r2) enc(t.r3) enc(t.ra)
R

S U
Lt y
concat

T

enc(t)

Two LSTMs

nead + Left modifiers encoded w/ LSTM-L

nead + Right modifiers encoded w/ LSTM-R
The Left and Right end states are concatenated

Core |ldea

Mtw

t.lg t.lg t.ll t.?“l t.?“g t.?“3 t.”l“4

taw

enc(t.ls) enc(t.lz) enc(t.lq) /\ enc(t.r1) enc(t.r2) enc(t.rz) enc(t.ra;

Ve N
L+~—L[~—L R—R—R— R+
\C‘ma .

o

enc(t)

Two LSTMs
nead + Left modifiers encoded w/ LSTM-L

nead + Right modifiers encoded w/ LSTM-R

The Left and Right end states are concatenated

Core Idea

Mtw

t.lg t.lg t.ll t.?“l t.?“g t.?“3 t.”l“4

t.w

enc(t.ls) enc(t.lz) enc(t.lq) /\ enc(t.r1) enc(t.r2) enc(t.r3) enc(t.ra)

ST T 1T

enc(t)

Two LSTMs
nead + Left modifiers encoded w/ LSTM-L

nead + Right modifiers encoded w/ LSTM-R

The Left and Right end states are concatenated

the black fox who really likes apples did not jump over a lazy dog yesterday

7] 1]
L L] L] L]
the black fox who really likes apples did not Jumpr,
[R] R} R
foxp who really likes apples JUMpPR over a lazy dog yesterday
[R] R
whor, whog really likes apples @ R
overy, overg a lazy dog
L] L LR L (L] (L]

the bmc foxr, reallyé likesp} flikesr gtpples | | a é lazy é dog,} tdogr
O \ AV A J

the black fox who really likes apples did not jump over a lazy dog yesterday

the black fox who really likes apples did not jump over a lazy dog yesterday

L] LS
the black fox who really likes apples did not Jumpr,

R
R] [R] R
foxp who really likes apples JumpRr over a lazy dog yesterday
O
[R] R
whoy, whopr really likes apples @ R
overy, overg a lazy dog

L L] @

L
black foxr, really likesy, likesg apples a lazy dogr, dogr
O O
}

the black who really likes apples i jump over lazy dog yesterday

w

the black fox who really likes apples did not jump over a lazy dog yesterday

7] 1]
L L] L]
the black fox who really likes apples did not
R} R
foxp who really likes apples jumpR over a lazy dog yesterday
m
- L][R] R
whoy, whopr really likes apples
overy, overg a lazy dog
L L] L Lf—L][RF— (L] (L]
the black foxr, really likesy, likesr apples lazy dogr, dogr
/ I -
the black fox who really likes apples did not jump over lazy dog yesterday

the black fox who really likes apples did not jump over a lazy dog yesterday

7] 1]
L L] L] L]
the black fox who really likes apples did not Jumpr,
[R}F— [R] R} R
foxp who really likes apples JUMpPR over a lazy dog yesterday
[R] R
whoy, whopr really likes apples @ R
overy, overgr a lazy dog
L] L Lf—L][RF— L L] (L]

the blac foxy reall likesy} flikesr gpples | | a é lazy é dog} Fdogr
oo \/ VoA Y VooV \/

the black fox who really likes apples did not jump over a lazy dog yesterday

the black fox who really likes apples did not jump over a lazy dog yesterday

7] 1]
L L] L] L]
the black fox who really likes apples did not Jumpr,
[R] R} R
foxp who really likes apples JUMpPR over a lazy dog yesterday
[R] R
whor, whog really likes apples @ R
overy, overg a lazy dog
L] L LR L (L] (L]

the bmc foxr, reallyé likesp} flikesr gtpples | | a é lazy (l dog,} tdogr
O \ AV Vo J

the black fox who really likes apples did not jump over a lazy dog yesterday

Hierarchical Tree LSTM (Example)

[Ay

the brown fox jumped with joy over the fence

12

Hierarchical Tree LSTM (Example)

[Ay

the brown fox jumped with joy over the fence

[

the brown

LeftChildren(LSTM) RightChildren(LSTM

//_-)
w

AN the brown

12

Hierarchical Tree LSTM (Example)

[Ay

the brown fox jumped with joy over the fence

e —

the brown joy

Sub Tree (with)
LeftChildren(LSTM) RightChildren(LSTM)
joy

LeftChildren(LSTM) RightChildren(LSTM)

7

\ the brown

12

Hierarchical Tree LSTM (Example)

[Ay

the brown fox jumped with joy over the fence

e — W

the brown joy over the

Sub Tree (fox) Sub Tree (with) Sub Tree (over)

LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM)

\ the brown over over the /

joy

12

Hierarchical Tree LSTM (Example)

[Ay

the brown fox jumped with joy over the fence

Sub Tree (jumped)

RightChildren(LSTM)

[4

LeftChildren(LSTM)

the brown fox | jumped jumped with joy | over the fence

e — W

the brown joy over the

Sub Tree (fox) Sub Tree (with) Sub Tree (over)

LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM)

\ the | brown over over the /

joy

12

Hierarchical Tree LSTM (Example)

[Ay

the brown fox jumped with joy over the fence

Sub Tree (jumped)

RightChildren(LSTM)

[4

LeftChildren(LSTM)

the brown fox | jumped jumped with joy | over the fence

e — W

the brown joy over the

Sub Tree (fox) Sub Tree (with) Sub Tree (over)

LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM)

\ the brown over over the /

joy

12

Hierarchical Tree LSTM (Example)

[Ay

the brown fox jumped with joy over the fence

Sub Tree (jumped)

RightChildren(LSTM)

[4

LeftChildren(LSTM)

the brown fox | jumped jumped |with joy | over the fence

e — W

the brown joy over the

Sub Tree (fox) Sub Tree (with) Sub Tree (over)

LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM)

\ the | brown over over the /

joy

12

Hierarchical Tree LSTM (Example)

[Ay

the brown fox jumped with joy over the fence

Sub Tree (jumped)

RightChildren(LSTM)

[4

LeftChildren(LSTM)

the brown fox | jumped jumped with joy | over the fence

e — W

the brown joy over the

Sub Tree (fox) Sub Tree (with) Sub Tree (over)

LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM)

\ the | brown over over the /

joy

12

How Do We Capture Leafs?

[Ay

the brown fox jumped with joy over the fence

Sub Tree (jumped)

RightChildren(LSTM)

[4

LeftChildren(LSTM)

the brown fox | jumped jumped with joy | over the fence

e — W

the brown joy over the

Sub Tree (fox) Sub Tree (with) Sub Tree (over)

LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM) LeftChildren(LSTM) RightChildren(LSTM)

\ the brown over over the /

joy

12

Easy-First Parsing (Score Function)

SubTree(the) SubTree(fox) SubTree(jumped) SubTree(with)
A

18

Easy-First Parsing (Score Function)

SubTree(the) SubTree(fox) SubTree(jumped)

SubTree(with)

| | | |

[| [| [|

. . SattachLeft

K (SVPL S "tea, A

L 4 Y " V :‘. y
X 4
o the *s. o fox *, Jumpeds
. . . oy ! N
'0 ® 4 ..a P “ 2
A E E EEEEEEEENRN rs ‘. N |] EEE -4‘} ----------
Y . SattachRight
l' “
.’brown .

18

Easy-First Parsing (Score Function)

(SAttachLefta SAttachRight)

SubTree(the) SubTree(fox) SubTree(jumped) SubTree(with)

| | | |
[| [| [|
. . SattachLeft
s ” "o,
R el
X 4
o the *s. o fox *, Jumpeds
. . . oy ! .
'O ® 4 ..a P “ 2
A E E EEEEEEEENRN rs ‘. N |] EEE -4‘} ----------
0 . SattachRight
' 4 “
.’brown .

18

Easy-First Parsing (Score Function)

(SAttachLefta SAttachRight)

SubTree(the) SubTree(fox) SubTree(jumped) SubTree(with)

How do we efficiently compute the Hierarchical Tree LSTM

representation for each pending sub-tree?

18

Bottom-Up Tree Representation Building

19

Bottom-Up Tree Representation Building

jumped with

\7’\/\/\/

brown

19

Bottom-Up Tree Representation Building

19

Bottom-Up Tree Representation Building

fox jumped with

/\/\/\/

the brown

19

Bottom-Up Tree Representation Building

! \
Ilm\\
l=\
o
_l
-
()
(¢
—_
D
VX
| N
\ !
\ /

LeftChildren(LSTM) RightChildren(LSTM)

/4

brown fox fox

19

Bottom-Up Tree Representation Building

! \
Ilm\\
l=\
o
_l
-
()
(¢
—_
D
VX
| N
\ !
\ /

LeftChildren(LSTM) RightChildren(LSTM)

/4

brown fox fox

19

Bottom-Up Tree Representation Building

! \
Ilm\\
l=\
o
_l
-
()
(¢
—_
D
VX
| N
\ !
\ /

LeftChildren(LSTM) RightChildren(LSTM)

/4

LeftChildren(LSTM) RightChildren(LSTM)

/4

brown fox fox the brown fox fox

19

Bottom-Up Tree Representation Building

the o fox *, jumped

¢ O QD \
y N N
L 4 “ > ~ , . n
o fox e jumped S ith~ _ Joy
g \ /\) /
o g N
Y 4
P . =
'o / “) > ~ ®
’ ‘. S
J.the brown s
" Sub Tree (foxj \i) [:/ Sub Tree (foxi - K
LeftChildren(LSTM) RightChildren(LSTM) — LeftChildren(LSTM) RightChildren(LSTM)
brown fox fox the brown fox fox

19

Easy-First Parsing (Continued)

r)
umpe
OXV
// \ fox with
e rown

joy - = 20

-

casy First Parsing with
Hierarchical Tree LSTMs

* |t works! We get nice results.

e But.

* Jurns out can actually do something much simpler.

Parsing with LSTMs, Take 2

Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser Yoav Goldberg
Computer Science Department Computer Science Department
Bar-Ilan University Bar-Ilan University
Ramat-Gan, Israel Ramat-Gan, Israel

elikip@gmail.com voav.goldberg@gmail.com

Parsing with LSTMs, Take 2

Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser Yoav Goldberg
Computer Science Department Computer Science Department
Bar-Ilan University Bar-Ilan University
Ramat-Gan, Israel Ramat-Gan, Israel
elikip@gmail.com voav.goldberg@gmail.com

. - . -.7‘
= 4

=

-

Bi-directional RNNS

RNNs so tar:

—

/ predict & predict & . predict & . predict & 7 predict &
| | | | |
‘. calcloss . ' calcloss . calcloss . calcloss . calcloss

S0 RO ' RO 2. RO 2.0 RO —*. RO
X1 X2 X3 X4 X5

Each state encodes the entire history up to that state.
This is not bad. But what about the future?

Bidirectional RNNsS

Lo--

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

Bidirectional RNNsS

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

Bidirectional RNNsS

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

NLP an infinite window

B ‘ _ R N N S around the word.

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

L p an infinite window

B ‘ _ R N N S around the word.

I rTcTTTTTT [TTTTSTT FTTETSTSE ST TTTTTTS
1 1
so — Lrwp — Lrwp ——> Lrwp — Lrwbp Rrgy «~—— Rgrev ~—— Rrev ~——— Rgrgv +«— So
| I _‘_ ________ ‘_ ________ ‘_ ________ ‘_ ________ ‘_ ________ ‘_ ________ ‘_ ________ ‘_ —_— = d
Xth Xbrown Xfox Xjumped Xjumped X Xth Xdog
1 2 3 4 4 5 6 7

BiRNN (x1.7,4) = [y4; ¥4
One RNN runs left to right. ya = RNNp(x1.4)

Another runs right to left. ya = RNNg(x7.4)
Encode both future and history of a word.

Deep BI-RNNS

Ythe

BI;

Ybrown

Yfox

BI;

BI,

BI,

BI;

Yjumped

yOVGI‘

BI;

BI;

Xthe

BI,

BI,

BI,

BI;

Xbrown

BI;

Xfox

BI,

BI,

Xjumped

BI-RNN can also be stacked

BI;

Xover

(Deep) BI-KNNs

provide an "infinite" window around a focus word.
learn to extract what's important.

easy to train!

very effective for sequence tagging.

(Great as feature extractors!

Parsing with LSTMs, Take 2

Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser Yoav Goldberg
Computer Science Department Computer Science Department
Bar-Ilan University Bar-Ilan University
Ramat-Gan, Israel Ramat-Gan, Israel
elikip@gmail.com voav.goldberg@gmail.com

. - . -.7‘
= 4

=

Parsing Background

There are two main frameworks for parsing:

@ Graph-based:

e Global inference
e Score factorized over parts
e There are first, second & third order parsers.

@ Ilransition-based:

o Greedy local inference
e Score relies on current configuration, which is dependent on all
previous transitions

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Parsing Background

There are two main frameworks for parsing:

@ (Graph-based:)
e Global inference

e Score factorized over parts
e There are second & third order parsers.

@ Ilransition-based:

o Greedy local inference
e Score relies on current configuration, which is dependent on all
previous transitions

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Structured Prediction Recipe

predict(x) = arg max score(o(p))

ye)Y(x) ey

 Decompose structure to local tactors.
* Assign a score to each factor.
* Structure score = sum of local scores.

* [ook for highest scoring structure.

Graph-based Parsing

(They ate the pizza with anchovies)

Score

[[\ [

SCOfe(They ate)—I—SCOI’G(ate pizza)+Score(the pizza)_I_

[[

Score(pizza with)—I—SCOI’G(with anchovies)

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Graph-based Parsing (Inference)

Input Sentence: " They ate pizza”

root

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Graph-based Parsing (Inference)

Score(pizza— they)

Score(they — pizza)

Spanning tree with maximal score

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Structured Prediction Recipe

predict(x) = arg max score(o(p))

ye)Y(x) =

e feature function extracts useful signals from parts.

 most work goes into this component.

Arc Score Function

SCOI’G(modifier head) _ 7

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Arc Score Function

Score(Medher head Y — F(¢(modifier, head; sentence))

@ Similar story for transition-based parser

@ The choice of features is very important

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

First-order features

(from Ryan McDonald's PhD thesis)

Words and POS of Head and Mod.
Words and POS of neighbors of Head and Mod.
POS between Head and Modifier.

Distance between Head and Modifier.
Direction between Head and Moditier.

Many, many combination features.

First-order features

(from Ryan McDonald's PhD thesis)

b)

Basic Uni-gram Features

Basic Bi-gram Features

x ;-word, T ; -pos

x;-word, T ;-pos, x i -word, = j -pos

In Between POS Features

x ;-word

X ;-pos, x j-word, x ;-pos

X ; -pos, b-pos, x ; -pos

X ;-pos

x;-word, j -word, x ;-pos

Surrounding Word POS Features

X -word, = j -pos

x;-word, x ;-pos, x ;-Pos

X ;-pos, T ;-pos+l, x ;-pos-1, x ;-pos

T -word

x;-word, x ; -pos, x ;-word

X ;-pos-1, x;-pos, x ;-pos-1, x ;-pos

T j -pos

x;-word, x j-word

X ;-pos, T ;-pos+l, x ;-pos, T ;-pos+1

X ;-POS, T j-poOs

x ;-pos-1, x;-pos, T ;-pos, x ; -pos+1

Table 3.1: Features used by system, f (i, j), where z; is the head and x; the modifier in
the dependency relation. x;-word: word of head in dependency edge. x;-word: word of
modifier. x;-pos: POS of head. x;-pos: POS of modifier. z;-pos+1: POS to the right of
head in sentence. x;-pos-1: POS to the left of head. z;-pos+1: POS to the right of modifier.
x;-pos-1: POS to the left of modifier. b-pos: POS of a word in between head and modifier.

Manual Feature Templates

Core Features +
Feature Combinations

As McGwire neared . fans went wild
[went] [VBD] [As] [ADP] [went]
[VERB] [As] [IN] [went, VBD] [As, ADP]
[went, As] [VBD, ADP] [went, VERB] [As, IN] [went, As]
[VERB, IN] [VBD, As, ADP] [went, As, ADP] [went, VBD, ADP] [went, VBD, As]
[ADJ. *. ADP] [VBD, *, ADP] [VBD, ADJ. ADP) [VBD. ADJ, *] [NNS, *. ADP]
[NNS, VBD, ADP] [NNS, VBD. *] [ADJ, ADP, NNP] [VBD, ADP, NNP] [VBD, ADJ, NNP]
[NNS. ADP, NNP] [NNS, VBD, NNP] [went, left, 5] [VBD, left, 5] [As, left, 5]
[ADP, left, 5] [VERB, As, IN] [went, As, IN] [went, VERB, IN] [went, VERB, As]
[4J, =, IN] [VERB. *. IN] [VERB, JJ. IN] [VERB, JJ, *] [NOUN, *, IN]
[NOUN, VERB, IN] [NOUN, VERB, *] [JJ. IN, NOUN] [VERB, IN, NOUN] [VERB. JJ, NOUN]
[NOUN, IN, NOUN] [NOUN, VERB, NOUN] [went, left, 5] [VERB, left, 5] [As, left, 5]
[IN, left, 5] [went, VBD, As, ADP] [VBD, ADJ, *, ADP] [NNS, VBD, *, ADP) [VBD, ADJ, ADP, NNP]
[NNS, VBD, ADP, NNP] [went, VBD, left, 5] [As, ADP, left, 5] [went, As, left, 5] [VBD, ADP, left, 5]
[went, VERB, As, IN] [VERB, JJ, *, IN] [NOUN, VERB, *, IN] [VERB, JJ, IN, NOUN] [NOUN, VERB, IN, NOUN]
[went, VERB, left, 5] [As, IN, left, 5] [went, As, left, 5] [VERB, IN, left, 5] [VBD, As, ADP, left, 5]
[went, As, ADP, left, 5] [went, VBD, ADP, left, 5] [went, VBD, As, left, 5] [ADJ, *. ADP, left, 5] [VBD, *, ADP, left, 5]
[VBD, ADJ. ADP, left, 5] [VBD, ADJ. *, left, 5] [NNS, *, ADP. left, 5] [NNS, VBD, ADP, left, 5] [NNS, VBD, *, left, 5]
[ADJ, ADP, NNP, left, 5] [VBD, ADP, NNP, left, 5] [VBD, ADJ, NNP, left, 5] [NNS, ADP, NNP, left, 5] [NNS, VBD, NNP, left, 5]
[VERB, As, IN, left, 5] [went, As, IN, left, 5] [went, VERB, IN, left, 5] [went, VERB, As, left, 5] [JJ. *, IN, left, 5]
[VERB, *, IN, left, 5] [VERB, JJ, IN, left, 5] [VERB, JJ, *, left, 5] [NOUN, *, IN, left, 5] [NOUN, VERB, IN, left, 5]

Example from slides of Rush and Petrov (2012)

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Core Features + Feature Combinations

replace feature combinations with non-linear learner

Figure from Chen and Manning (2014)
Similiar approach in Pei et al, Weiss et al, Andor et al

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Core Features + Non-Linear Classifier

replace feature combinations with non-linear learner

but still need
to define
good features.

Figure from Chen and Manning (2014)
Similiar approach in Pei et al, Weiss et al, Andor et al

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

-

Our take on It

Let's just use a Bidirectional LSTM

v

A

b(x, jumped, fox)
—| BI |.—| BI —| BI |.—| BI |.—| BI —| BI |—| BI BI BI |~

score(h,m,x) = M LP(¢p(x,h,m))
¢(x,h,m) = |BIRNN(xz,h); BIRNN (x,m)

v

A

SCore
MLP(é(z, jumped, fozx))
| BI .| BI |.—| BI |-—| BI |-—| BI |.—| BI || BI BI BI |-

score(h,m,x) = M LP(¢p(x,h,m))
¢(x,h,m) = |BIRNN(xz,h); BIRNN (x,m)

v

A

b(x, jumped, fox)
—| BI |.—| BI —| BI |.—| BI |.—| BI —| BI |—| BI BI BI |~

score(h,m,x) = M LP(¢p(x,h,m))
¢(x,h,m) = |BIRNN(xz,h); BIRNN (x,m)

v

A

ty
oy
o
oy
e
oy
o]
oy
e
oy
o
oy
o

score(h,m,x) = M LP(¢p(x,h,m))
o(x, h,m) =

fy

BIRNN(z,h); BIRNN (xz,m)]

v

A

o(x, over, fox)
ﬁ@rJl@: j
~| BI —| BI . BI — BI BI |- BI |—| BI —| BI BI |-»

score(h,m,x) = M LP(¢p(x,h,m))
¢(x,h,m) = |BIRNN(xz,h); BIRNN (x,m)

v

A

ty
oy
e
oy
e
oy
e
oy
e
oy
e
oy
e
oy
e
oy
e
oy
e

fy

score(h,m,x) = M LP(¢p(x,h,m))
¢(x,h,m) = |BIRNN(xz,h); BIRNN (x,m)

the two BI-RNN vectors give us:
infinite window around head
infinite window around mod
distance between head and mod
content between head and mod

/"\ and more”?
BI —+ BI [

| BI |.—| BI |-—| BI [-—| BI |-—| BI |-—| BI

fy

t

BI |—

o

fox/N jumped/V

N A N

score(h,m,x) = M LP(¢p(x,h,m))
¢(x,h,m)=|BIRNN (x,h); BIRNN (z,m)]

Arc Score (Intuition)

@ The BILSTM encoding of a word holds information about its
attachment preferences

@ The score is dependent on the BILSTM encoding which in turn
depends on the entire sentence

@ Therefore, the score function focused on a specific arc is considering
also the entire sentence attachement preferences

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Tree Score

SCOI’G(They ate the pizza with anchovies) _
TR
Vthey ate Vthe plzza Vwith Vanchovies

Concat Concat Concat Concat concat concat
A~ A~ A~ A~))

A A A A A A

_____ - — - T i T i T i T i T i

| LSTMP ~—— [STMP =—— L[STMP =~—— L[STMP =~——— L[STMP =~—— LSTMP -

A A A A A A

= LSTMf —|— LSTM' —|— LSTM' —|—= [STM' +—|—= L[STM' +—|—= LSTM'

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Large Margin Objective

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Training Objective
Gold tree should score a margin above all other trees

> MLP(¢(x.h,m)) — » MLP(¢(x,h,m)) > 1

(h,m)ey (h,m)ey’#y

¢(x,h,m)=|BIRNN (x,h); BIRNN (x,m)]

Backdrop all 1 the way back through the BI LST

Graph-based Parsing (More Details)

@ Cost Augmentation: Make non-gold attachments more attractive in
training by adding a constant to their score

@ Multi-Task Learning: Learning the label on the same BILSTM
representation helps both in terms of accuracy and performance.

@ For Speed: Simple algebric “trick” reduces the number of matrix
multiplication significantly.

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Graph-based Parsing (More Details)

@ Cost Augmentation: Make non-gold attachments more attractive in
training by adding a constant to their score

o [Multi-Task Learning: Learning the label on the same BiLSTM
[epresentation helps both in terms of accuracy and performance.

~

J

@ For Speed: Simple algebric “trick” reduces the number of matrix
multiplication significantly.

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Arc Labels (Multi-Task Learning)

nsubj

They ate the pizza with anchovies

@ The arc labels hold important additional syntactic information

@ [he labels contribute information useful for the unlabeled case too

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Arc Labels (Multi-Task Learning)

le Vmodifier VW3 Vhead Vw5

A A A A A
A A

4

Same BiLSTM ‘ ‘ ‘ ‘ ‘

S | S | S| S | S

S| S| S | S | - - o = o= o=

xW1 Xmodifier XW3 Xhead XW5

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Arc Labels (Multi-Task Learning)

Different MLP

le Vmodifier VW3 Vhead Vw5

A A A A A
A A

A A

Same BiLSTM ‘ ________ ‘ ________ ‘ ________ ‘ ________ ‘

i LSTMP :<—|: [STMP :<—i [STMP u—i [STMP .<—i [STMb

S | S | S| S | S

S| S| S | S | - - o = o= o=

Enrich BILSTM representation by learning labels

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

N parsing time

* Run (deep) BI-LSTM over words+POS.

* this gives us a vector v; for each word.
 Compute scores for each arc (h,m) via MLP([vih; vm])
* Decode using arc scores.

Graph-based Parsing

and this works:

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

Graph-based Parsing

and this works:
03.2 UAS with two features,
first-order parser,

without external embeddings.

Eliyahu Kiperwasser (Bar-llan University) Simple and Accurate Dependency Parsing

v

A

This is remarkably effective!

(0.9)

A

We can use same trick also
for Transition based parsing

Transition-based Parsing (Oracle)

Configuration:
S? S1 S0 bo by bs b3
the jumped over the lazy dog ROOT
'
/
brown
Scoring:

(ScoreLeftAra Scor €RightArc Scor eShift)

Pt

Vthe

concat
_/

Vbrown

concat
p

Xbrown

Eliyahu Kiperwasser (Bar-llan University)

Vfox

concat
p

Vjumped

concat
p

Vover

concat
—

Vthe

concat
)

Simple and Accurate Dependency Parsing

Vlazy

concat
_/

Vdog

concat
_/

—_——— - ——

VRooT

concat
_/

also worth noting:

Incremental Parsing with Minimal Features Using Bi-Directional LSTM

James Cross and Liang Huang
School of Electrical Engineering and Computer Science
Oregon State University
Corvallis, Oregon, USA

{crossj,liang.huang}@Qoregonstate.edu

Constituency Parsing
Transition-based

also worth noting:

Fast(er) Exact Decoding and Global Training for Transition-Based
Dependency Parsing via a Minimal Feature Set

Tianze Shi Liang Huang Lillian Lee
Cornell University Oregon State University Cornell University
tianzeldcs.cornell.edu liang.huang.sh@gmail.com lleelcs.cornell.edu

Dependency Parsing
Transition-based + Dynamic Programming

also worth noting:

Transition-Based Dependency Parsing with Stack Long Short-Term Memory

Chris Dyer®*® Miguel Ballesteros® Wang Ling® Austin Matthews® Noah A. Smith®
*Marianas Labs “NLP Group, Pompeu Fabra University *Carnegie Mellon University
chris@marianaslabs.com, miguel.ballesteros@upf.edu,
{lingwang, austinma, nasmith}@cs.cmu.edu

in retrospect
"Stack LSTM" parser is very similar to the biLSTM
(but does have extra compositionality)

(0.9)

A

But let's get back to the
1st-order Graph Parser

1st order Decomposition

'S Incredibly Nailve

(They ate the pizza with anchovieS)

Score

[[[

SCOI’G(They ate)—I—SCOI’G(ate pizza)—I—SCOI’G(the pizza)_I_

[[

Score(pizza with)—I—SCOI’G(with anchovies)

And yet...

RBG Parser (Lei et al, 2014), 1st order:

TurboPasrer (Mart

=
=
Bi

STM (
STM (

STM (

&G, 20°
&G, 20°

&G, 20°

ins et al, 2013), 3rd order:

6), 1st order:
6), + embeddings:
6), + emb, bug fix:

Dozat and Manning 2017:

91.7
93.1
93.2
Q2.7

\J

\J

\J

\J

AS
AS
AS
AS

94.0 UAS

DEEP BIAFFINE ATTENTION FOR NEURAL
DEPENDENCY PARSING

Timothy Dozat Christopher D. Manning
Stanford University Stanford University
tdozat@stanford.edu manning@dstanford.edu

ty

BI |—

—

BI |—

SCore

! M LP(|birnn(h); birnn(m)])

MLP(¢(z, jumped, fox))

|

fox/N

BI |—

|

—

BI |.—| BI |—

BI |—

]

|

jumped/V

N

K&G 2016

BI |—

BI |—

BI

ty

ty

BI |—

BI |—

fox/N

Dozat and Manning, 2017

-l BI —

BI |—

-l BI —

BI |—

BI

ty

.
N o & o AN @
Uy O

8l jumped, for) birnn(h) M birnn(m)

ty

| BI || BI .—| BI . BI | BI | BI | BI .~ BI |-
fox/N jumped/V

Dozat and Manning, 2017

ty

birnn(h)

¢($7 jumpeda fOiE)

Dozat and Manning, 2017

o
kAN
TTONN

M birn

n

(m)

And yet...

RBG Parser (Lei et al, 2014), 1st order: 91.7 UAS
TurboPasrer (Martins et al, 2013), 3rd order: 93.1 UAS
BILSTM (K&G, 2016), 1st order: 93.2 UAS
BILSTM (K&G, 2016), + embeddings: 92.7 UAS
BiLSTM (K&G, 2016), + emb, bug fix: 94.0 UAS
Dozat and Manning 2017: 95.7 UAS

(BILSTM. First Order)

B | U
==
NLP

CoNLL 2017 Shared Task

CoNLL 2017 Shared Task

Results: Unlabeled Attachment Score (UAS)

All treebanks
1. Stanford (Stanford) softwarel 81.30
2. C2L2 (Ithaca) software5 80.35
3. IMS (Stuttgart) software? 79.90
4, HIT-SCIR (Harbin) software4 77.81
5. LATTICE (Paris) software? 76.75
6. NAIST SATO (Nara) softwarel 76.35
7. UParse (Edinburgh) softwarel 75.49
8. Koc¢ University (Istanbul) software3 75.44
9. UFAL — UDPipe 1.2 (Praha) softwarel 75.39
1@. Orange - Deskin (Lannion) softwarel 75.11
11. RACAI (Bucuresti) softwarel 74.67
17 | vS=-FASTPARSF (A Coruna)d softwares 74 47

CoNLL 2017 Shared Task

Results: Unlabeled Attachment Score (UAS)

Dozat and Manning

All treebanks biLSTM + graph + tuning
(first-order features)
1. Stanford (Stanford) sottwarel 81.30
2. C2L2 (Ithaca) software5 80.35
3. IMS (Stuttgart) software’ 79.90
4, HIT-SCIR (Harbin) software4 77.81
5. LATTICE (Paris) software? 76.75
6. NAIST SATO (Nara) softwarel 76.35
7. UParse (Edinburgh) softwarel 75.49
8. Koc¢ University (Istanbul) software3 75.44
9. UFAL — UDPipe 1.2 (Praha) softwarel 75.39
1@. Orange - Deskin (Lannion) softwarel 75.11
11. RACAI (Bucuresti) softwarel 74.67

I wS=-FASTPARSF (A Coruna)d <softwaresS 74 47

Y
™)

CoNLL 2017 Shared Task

Results: Unlabeled Attachment Score (UAS)

Dozat and Manning
All treebanks biLSTM + graph + tuning

(first-order features)
. Stanford (Stanford) sottwarel 81.30

. C2L2 (Ithaca) softwareS 80.35

. IMS (Stuttgart) - 79.90
HIT-SCIR (Harbi MOdel of Shi, Huang and Lee 77.81

. LATTICE CParis) BILSTM + transition + DP 76.75

. NAIST SATO (Nar : 76.35
. UParse (Edinbur_ (first-order features) 75.49

. Koc¢ University (Istanbul) software3 75.44
. UFAL - UDPipe 1.2 (Praha) softwarel 75.39
. Orange - Deskin (Lannion) softwarel 75.11
. RACAI (Bucuresti) softwarel 74.67
I wS=-FASTPARSFEF (A Coruna)d <softwaresS 74 47

0O 0 ~NOY Ul & W N =

e =
N =

CoNLL 2017 Shared Task

Results: Unlabeled Attachment Score (UAS)

Dozat and Manning

All treebanks biLSTM + graph + tuning
(first-order features)
1. Stanford (Stanford) sottwarel 81.30
2. C2L2 (Ithaca) softwareS 80 .35
3. IMS (Stuttgart) - 79.90
4. HIT-SCIR (Harbi Model of Shi, Huang and Lee 77.81
5. LATTICE (Paris) BILSTM + transition + DP 76.75
6. NAIST SATO (Nar : 76.35
7. UParse (Edinbur (first-order features) 75.49
8. Koc¢ University (Istanbul) software3 75.44
9. UFAL - UDPipe 1.2 (Praha) softwarel 75.39
ﬁ’ (both used also character-level LSTMS for words) 5;

17 | v§- FASTPARSE (A Coruna) softwar‘eS 74 47

-

Ihe best parsers
N the world today
are pased on

1st-order decomposition
over a BILSTM

-

Ihe best parsers
N the world today
are pased on
1st-order decomposition
over a BILSTM

| find this remarkable

e

Take home guestions

Why does it work?
What is encoded in these vectors?
Where does it fail”?

How can we improve? (in an interesting way)?

morphology? pre-training”? multi-tasking? composition?

e

Take home guestions

Why does it work?
What is encoded in these vectors?
Where does it fail”?

How can we improve? (in an interesting way)?

morphology? pre-training”? multi-tasking? composition?

thanks for listening!

