
Yoav Goldberg
DepLing 2017

B I U

N L P

Capturing Dependency Syntax
with "Deep" Sequential Models

Yoav Goldberg
DepLing 2017

B I U

N L P

Capturing Dependency Syntax
with "Deep" Sequential Models

Yoav Goldberg
DepLing 2017

B I U

N L P

Capturing Dependency Syntax
with "Deep" Sequential Models

Eva's talk: "deep" sentential structure

Deep Learning
B I U

N L P

Deep Learning

IT LEARNS ON ITS OWN.

IT WORKS LIKE THE BRAIN.

IT CAN DO ANYTHING.

B I U

N L P

My experience
with Deep Learning for Language

``I'm sorry Dave,
I'm afraid I can't do that.''

(not in the scary sense)

B I U

N L P

My experience
with Deep Learning for Language
• With proper tools, easy to produce "innovative" models.

• Not so easy to get good results.
• With Feed-forward nets, hard to beat linear models w/

human engineered feature combinations.

• On 20-newsgroups, NaiveBayes+TfIdf wins over deep
Feed-forward-nets and ConvNets.

• Semi-sup learning sort-of easy with word-embeddings.

• RNNs (in particular LSTMs) are really really cool.

B I U

N L P

My experience
with Deep Learning for Language
• With proper tools, easy to produce "innovative" models.

• Not so easy to get good results.
• With Feed-forward nets, hard to beat linear models w/

human engineered feature combinations.

• On 20-newsgroups, NaiveBayes+TfIdf wins over deep
Feed-forward-nets and ConvNets.

• Semi-sup learning sort-of easy with word-embeddings.

• RNNs (in particular LSTMs) are really really cool.

B I U

N L P

word2vec

word2vec

I dog
I cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler,

mixed-breed, doberman, pig
I sheep

I cattle, goats, cows, chickens, sheeps, hogs, donkeys,
herds, shorthorn, livestock

I november
I october, december, april, june, february, july, september,

january, august, march
I jerusalem

I tiberias, jaffa, haifa, israel, palestine, nablus, damascus
katamon, ramla, safed

I teva
I pfizer, schering-plough, novartis, astrazeneca,

glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme,
pharmacia

B I U

N L P

My experience
with Deep Learning for Language
• With proper tools, easy to produce "innovative" models.

• Not so easy to get good results.
• With Feed-forward nets, hard to beat linear models w/

human engineered feature combinations.

• On 20-newsgroups, NaiveBayes+TfIdf wins over deep
Feed-forward-nets and ConvNets.

• Semi-sup learning sort-of easy with word-embeddings.

• RNNs (in particular LSTMs) are really really cool.

B I U

N L P

My experience
with Deep Learning for Language
• With proper tools, easy to produce "innovative" models.

• Not so easy to get good results.
• With Feed-forward nets, hard to beat linear models w/

human engineered feature combinations.

• On 20-newsgroups, NaiveBayes+TfIdf wins over deep
Feed-forward-nets and ConvNets.

• Semi-sup learning sort-of easy with word-embeddings.

• RNNs (in particular LSTMs) are really really cool.

B I U

N L P

Doing stuff with LSTMs

Goal: derive a representation from unannotated data that is predictive of
preposition-sense.

Ambiguity differs between languages:
“What action will it take to defuse the crisis and tension in the region?”

French: dans
“These are only available in English, which is totally unacceptable”

French: en

A representation that is predictive of the preposition's translation is likely to be
predictive also of its sense.

Extracting training data
Data in 12 languages from Europarl corpus: Bulgarian, Czech, Danish, German,
Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.

Training example: (The vote will take place tomorrow at 12 p.m. , at, à)

Encode the context as a concatenation of two LSTMs:

Context vector is fed into a language specific MLP for predicting the
target preposition:

Train the context-encoder with all languages together.
The context-encoder and the word embeddings are shared across languages.

Improving Preposition Sense Disambiguation
with Representations Learned from Multilingual Data

Hila Gonen and Yoav Goldberg

Prepositions are very common, very ambiguous and tend to carry different
meanings in different contexts.

Preposition-sense disambiguation is a task of assigning a category to a
preposition in context:

“You should book a room for 2 nights” Duration
“For some reason, he is not here yet” Explanation
“I went there to get a present for my mother” Beneficiary

- Can we improve performance by using unannotated data?
- Are translations of prepositions to other languages predictive for this task?
- How can we use multilingual corpora for learning a representation of the

context that can be used for sense-disambiguation?

ݕ = argmaxܮܯ ௦ܲ௦(߶ ,ݏ ݅)[݆]

hilagonen87@gmail.com yoav.goldberg@gmail.com

The vote will take place tomorrow at 12 p.m.

Le vote aura lieu demain à 12 heures.

1.Motivation

4. Multilingual data

5. Learning a context representation

Concatenate the representation obtained from the context encoder to the
features vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder
߶ ,ݏ ݅ - the features vector

The error back-propagates also to the context-encoder and to the word
embeddings.

6. Using the representation for sense classification

̂ = argmaxܮܯ ܲ(ܿݔݐ ,ݏ ݅)[݆]

,s)ݔݐܿ i) = (ଵ:ିଵݓ)ܯܶܵܮ ∘ (:ାଵݓ)ܯܶܵܮ

ݕ = argmaxܮܯ ௦ܲ௦(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅)[݆]

The multilingual representation improves accuracy by 1.53 points:

External word embeddings do not improve results:

7. Results

model accuracy

base 74.75 (73.76-75.88)

+context 74.73 (73.88-75.65)

+context(multilingual) 76.28 (75.65-77.18)

model deps bow none

+context 74.87 (73.65-75.76) 73.91 (72.82-74.47) 74.73 (73.88-75.65)

+context(multilingual) 76.38 (74.82-77.06) 74.71 (73.06-75.41) 76.28 (75.65-77.18)

2. Full Model

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based model for preposition classification

Abstract

Improving Sequence to Sequence Learning for
Morphological Inflection Generation
Roee Aharoni and Yoav Goldberg Yonatan Belinkov

Bar Ilan University NLP Lab MIT CSAIL

The factored sequence to sequence approach (Faruqui et. al., 2016)

• Above two baselines:
the shared task
baseline system (ST-
Base) and an
implementation
similar to the factored
model from (Faruqui
et. al., 2016) (Fact.)

• Got the 2nd/3rd
place (depending on
which language) in
the sigmorphon 2016
shared task out of 8
participating teams

п е т ь<w> </w>

pos=V
mood=IMPER
num=PL
aspect=IPFV

f

п е

<w>

f f f f f f f f f

</w>step п step е step

step п т step e step

f f

step

0,0 1,0 1,1 3,4 4,4 4,5 5,5

о й т

о й step т

step о й step

2,1 2,2 2,3 3,3

t a r j m a<w> </w>

f

<w>

t a r j a m a ! ! ! !!
f f f f f f f f f f f

</w>

it u 0 1 2 3 i 5 ā n

f

a

pos=V

mood=IND

tense=PRS/FUT

gender=FEM

person=3

it u t a r j i m ā n

it u 0 1 2 3 i 5 ā n

Our first approach, the Bi-Directional Sequence to Sequence model (BS2S):

4. MS2S Network Architecture

2. Previous Work

Morpho-Syntactic Attribute
Embeddings allows us to train
joint models over examples that
share only the part of speech
rather than all the attributes

3. Novel Methods

pos=V

mood=IND

tense=PRS/FUT

gender=FEM

person=3

voice=ACT

num=DU

aspect=IPFV/PFV

f

M o r p h o l o g i c a l Te m p l a t e s
Instead of training the network to
predict only a specific character at
each step, we train the network to
either predict a character or copy a
character at a given position in the
input

Bi-Directional Input Character
Representation adds more
focused context when the
ne twork p red ic ts the nex t
inflection output

Neural Discriminative String
Transducer a NN architecture
maintaining an input pointer
variable which is dynamically
p romoted accord ing to the
network’s decision to “step”
forward to the next input character

it u t a r j i m ā n

it u 0 1 2 3 i 5 ā n

a

о й step т

step о й step

2,1 2,2 2,3 3,3

6. Results

1. The Task

writing written→past, passive+

سيأكلأكلوا future, singular + past, plural← +

מתורגמתתרגם feminine, present, passive, singular← +

5. NDST Network Architecture

Our second approach, the Neural Discriminative String Transducer (NDST):

Our first approach, the Morphological Sequence to Sequence architecture (MS2S):

4

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

VP

VB

cut

NP

PRP$

their

NNS

risks

VP

VB

take

NP

NNS

profits

R

VP

VB

cut

cut
V

B
V

P R

L

VP

R

NP

PRP$

their

their
PR

P$
N

P R V
P L

VP

L

NP

NNS

risks

risks
N

N
S

N
P L V
P

R

VP

VB

take

take
V

B
V

P R
L

VP

NP

NNS

profits

profits
N

N
S

N
P

V
P L

Euclidean Distance

Figure 2: Illustration of the symmetry scoring component that takes into account the conjuncts syntactic structures. Each conjunct
tree is decomposed into paths that are fed into the path-LSTMs (squares). The resulting vectors are fed into the symmetry LSTM
function (circles). The outcome vectors (blue circles) are then fed into the euclidean distance function.

Given two spans of lengths k and m with cor-
responding vector sequences u1:k and v1:m we en-
code each sequences using an LSTM, and take the
euclidean distance between the resulting representa-
tions:

Sym(u1:k, v1:m) = ||LSTM(u1:k)� LSTM(v1:m)||

The network is trained such that the distance is min-
imized for compatible spans and large for incompat-
ible ones in order to learn that vectors that represents
correct conjuncts are closer than vectors that do not
represent conjuncts.

What are the elements in the sequences to be com-
pared? One choice is to take the vectors u

i

to cor-
respond to embeddings of the ith POS in the span.
This approach works reasonably well, but does not
consider the conjuncts’ syntactic structure, which
may be useful as symmetry often occurs on a higher
level than POS tags. For example, in:

NP

NP

NN

tomorrow

PP

IN

at

CD

16:00

CC

or

NP

NP

NP

the day

PP

after tomorrow

PP

IN

at

CD

12:00

the similarity is more substantial in the third level of
the tree than in the POS level.

A way to allow the model access to higher levels
of syntactic symmetry is to represent each word as
the projection of the grammatical functions from the
word to the root.3 For example, the projections for
the first conjunct in Figure 2 are:

3We also experimented with tree-encoders based on recur-
sive networks, which did not work as well.

VP

VB

cut

VP

NP

PRP$

their

VP

NP

NNS

risks

This decomposition captures the syntactic context
of each word, but does not uniquely determine the
structure of the tree. To remedy this, we add to
the paths special symbols, R and L, which marks
the lowest common ancestors with the right and left
words respectively. These are added to the path
above the corresponding nodes. For example con-
sider the following paths which corresponds to the
above syntactic structure:

R

VP

VB

cut

L

VP

R

NP

PRP$

their

VP

L

NP

NNS

risks

The lowest common ancestor of “their” and “risks”
is NP. Thus, R is added after NP in the path of
“their” and L is added after NP in the path of
“risks”. Similarly, L and R are added after the VP
in the “their” and “cut” paths.

The path for each word is encoded using an
LSTM receiving vector embeddings of the elements
in the path from the word to the root. We then use the
resulting encodings instead of the POS-tag embed-
dings as input to the LSTMs in the similarity func-
tion. Figure 2 depicts the complete process for the
spans “cut their risks” and “take profits”.

Using syntactic projections requires the syntactic
structures of the conjuncts. This is obtained by run-
ning the Berkeley parser over the sentence and tak-
ing the subtree with the highest probability from the

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

X/NOUN/dobj/>define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

Path LSTM Term-pair Classifier

~o

p

average
pooling

~v

wx

(x, y)
classification

(softmax)

~v

wy

~v

xy

Embeddings:
lemma
POS
dependency label
direction

Figure 2: An illustration of term-pair classification. Each term-pair is represented by several paths. Each path is a sequence of
edges, and each edge consists of four components: lemma, POS, dependency label and dependency direction. Each edge vector
is fed in sequence into the LSTM, resulting in a path embedding vector ~o

p

. The averaged path vector becomes the term-pair’s
feature vector, used for classification. The dashed ~v

w

x

, ~v

w

y

vectors refer to the integrated network described in Section 3.2.

Term-Pair Classification Each (x, y) term-pair
is represented by the multiset of lexico-syntactic
paths that connected x and y in the corpus, de-
noted as paths(x, y), while the supervision is
given for the term pairs. We represent each (x, y)
term-pair as the weighted-average of its path vec-
tors, by applying average pooling on its path vec-
tors, as follows:

~v
xy

= ~v
paths(x,y) =

P
p2paths(x,y) fp,(x,y)· ~opP
p2paths(x,y) fp,(x,y)

(1)

where f
p,(x,y) is the frequency of p in paths(x, y).

We then feed this path vector to a single-layer net-
work that performs binary classification to decide
whether y is a hypernym of x.

c = softmax(W · ~v
xy

) (2)

c is a 2-dimensional vector whose components
sum to 1, and we classify a pair as positive if
c[1] > 0.5.

Implementation Details To train the network,
we used PyCNN.3 We minimize the cross en-
tropy loss using gradient-based optimization, with
mini-batches of size 10 and the Adam update rule
(Kingma and Ba, 2014). Regularization is applied
by a dropout on each of the components’ embed-
dings. We tuned the hyper-parameters (learning
rate and dropout rate) on the validation set (see the
appendix for the hyper-parameters values).

We initialized the lemma embeddings with the
pre-trained GloVe word embeddings (Pennington
et al., 2014), trained on Wikipedia. We tried both

3https://github.com/clab/cnn

the 50-dimensional and 100-dimensional embed-
ding vectors and selected the ones that yield bet-
ter performance on the validation set.4 The other
embeddings, as well as out-of-vocabulary lemmas,
are initialized randomly. We update all embedding
vectors during training.

3.2 Integrated Network

The network presented in Section 3.1 classifies
each (x, y) term-pair based on the paths that con-
nect x and y in the corpus. Our goal was to im-
prove upon previous path-based methods for hy-
pernymy detection, and we show in Section 6
that our network indeed outperforms them. Yet,
as path-based and distributional methods are con-
sidered complementary, we present a simple way
to integrate distributional features in the network,
yielding improved performance.

We extended the network to take into account
distributional information on each term. In-
spired by the supervised distributional concatena-
tion method (Baroni et al., 2012), we simply con-
catenate x and y word embeddings to the (x, y)
feature vector, redefining ~v

xy

:

~v
xy

= [~v
w

x

,~v
paths(x,y), ~v

w

y

] (3)

where ~v
w

x

and ~v
w

y

are x and y’s word embed-
dings, respectively, and ~v

paths(x,y) is the averaged
path vector defined in equation 1. This way, each
(x, y) pair is represented using both the distribu-
tional features of x and y, and their path-based
features.

4Higher-dimensional embeddings seem not to improve
performance, while hurting the training runtime.

phologically complex (Rayner et al., 2012). These
are also words that are likely to be replaced with
simpler ones in sentence simplification, but it is not
clear that they are words that would necessarily be
removed in the context of sentence compression.

Demberg and Keller (2008) show that syntac-
tic complexity (measured as dependency locality) is
also an important predictor of reading time. Phrases
that are often removed in sentence compression—
like fronted phrases, parentheticals, floating quanti-
fiers, etc.—are often associated with non-local de-
pendencies. Also, there is evidence that people are
more likely to fixate on the first word in a con-
stituent than on its second word (Hyönä and Pol-
latsek, 2000). Being able to identify constituent
borders is important for sentence compression, and
reading fixation data may help our model learn a rep-
resentation of our data that makes it easy to identify
constituent boundaries.

In the experiments below, we learn models to pre-
dict the first pass duration of word fixations and the
total duration of regressions to a word. These two
measures constitute a perfect separation of the to-
tal reading time of each word split between the first
pass and subsequent passes. Both measures are de-
scribed below. They are both discretized into six
bins as follows with only non-zero values contribut-
ing to the calculation of the standard deviation (SD):

0: measure = 0 or
1: measure < 1 SD below reader’s average or
2: measure < .5 SD below reader’s average or
3: measure < .5 above reader’s average or
4: measure > .5 SD above reader’s average or
5: measure > 1 SD above reader’s average

First pass duration measures the total time spent
reading a word first time it is fixated, including
any immediately following re-fixations of the same
word. This measure correlates with word length, fre-
quency and ambiguity because long words are likely
to attract several fixations in a row unless they are
particularly easily predicted or recognized. This ef-
fect arises because long words are less likely to fit
inside the fovea of the eye. Note that for this mea-
sure the value 0 indicates that the word was not fix-
ated by this reader.

Words FIRST PASS REGRESSIONS

Are 4 4
tourists 2 0
enticed 3 0
by 4 0
these 2 0
attractions 3 0
threatening 3 3
their 5 0
very 3 3
existence 3 5
? 3 5

Figure 1: Example sentence from the Dundee Corpus

Regression duration measures the total time
spent fixating a word after the gaze has already left
it once. This measure belongs to the group of late
measures, i.e., measures that are sensitive to the later
cognitive processing stages including interpretation
and integration of already decoded words. Since
the reader by definition has already had a chance to
recognize the word, regressions are associated with
semantic confusion and contradiction, incongruence
and syntactic complexity, as famously experienced
in garden path sentences. For this measure the value
0 indicates that the word was read at most once by
this reader.

See Table 1 for an example of first pass duration
and regression duration annotations for one reader
and sentence.

Figure 2: Multitask and cascaded bi-LSTMs for sentence com-
pression. Layer L�1 contain pre-trained embeddings. Gaze
prediction and CCG-tag prediction are auxiliary training tasks,
and loss on all tasks are propagated back to layer L0.

Simple and Accurate Dependency Parsing

Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser and Yoav Goldberg

BiLSTMs are State-of-the-art Works for both

Simple & Effective Parsing Accuracies Graph-based & Transition-based

Feature Extractors with Minimal Effort Parsing

Dependency Parsing

The soup , which I expected to be good , was bad

subj

acompdet

rcmod

rel

subj

xcomp

aux acomp

root

Dependency parsing is the task of extracting a dependency tree for a given sentence.

Dependency tree is a directed tree where each word modifies (i.e. modifier) the parent’s

word (i.e. head).

Context Rich Feature
MANY Hand-Crafted Features:

posi, posi+1, posj�1, posj

posi�1, posi, posj�1, posj

posi, posi+1, posj, posj+1

posi�1, posi, posj, posj+1
.

.

.

+
Few Context Rich, Learned,
BiLSTM Features.

Graph-based Parsing Algorithm (Global Optimization)

Inference
parse(sent) = argmax

t2Trees(sent)
score(sent, t)

score(sent, t) ⇡
X

(h,m)2t

���!
score(sent, h,m)

Score Function
���!
score(sent, h,m) = MLP (vh � vm)

vi = BiLSTM(x1:n, i)

Cost Augmented Loss
max(0,1 + score(x, y)�

max

y0 6=y

X

(h,m)2y0

(

���!
score(x, h,m) + I(h,m) 62y

))

First-Order Neural Parser

LSTM

f

x

the

concat

y

f

1

s

f

0

LSTM

f

x

brown

concat

y

f

2

s

f

1

LSTM

f

x

fox

concat

y

f

3

s

f

2

LSTM

f

x

jumped

concat

y

f

4

s

f

3

LSTM

f

x⇤

concat

y

f

5

s

f

4

s

f

5

LSTM

b s

0

s

b

0

y

b

1

LSTM

b s

1

s

b

1

y

b

2

LSTM

b s

2

s

b

2

y

b

3

LSTM

b s

3

s

b

3

y

b

4

LSTM

b s

4

s

b

4

y

b

5

s

b

5

V

the

V

brown

V

fox

V

jumped

V⇤

MLP MLP MLP MLP

+

Transition-based Parsing Algorithm (Greedy Optimization)

Shift

S0 S1 S2 B0 B1

S0 S1 S2 B0 B1

Left Arc
S0 S1 S2 B0 B1

S1S0 B0

S2

B1

Right Arc
S0 S1 S2 B0 B1

S0 S1

S2

B0 B1

Arc-Hybrid Neural Parser

LSTM

f

x

the

concat

y

f

1

s

f

0

LSTM

f

x

brown

concat

y

f

2

s

f

1

LSTM

f

x

fox

concat

y

f

3

s

f

2

LSTM

f

x

jumped

concat

y

f

4

s

f

3

LSTM

f

x

over

concat

y

f

5

s

f

4

LSTM

f

x

the

concat

y

f

6

s

f

5

LSTM

f

x

lazy

concat

y

f

7

s

f

6

LSTM

f

x

dog

concat

y

f

8

s

f

7

s

f

8

LSTM

b s

0

s

b

0

y

b

1

LSTM

b s

1

s

b

1

y

b

2

LSTM

b s

2

s

b

2

y

b

3

LSTM

b s

3

s

b

3

y

b

4

LSTM

b s

4

s

b

4

y

b

5

LSTM

b s

5

s

b

5

y

b

6

LSTM

b s

6

s

b

6

y

b

7

LSTM

b s

7

s

b

7

y

b

8

s

b

8

V

the

V

brown

V

fox

V

jumped

V

over

V

the

V

lazy

V

dog

MLP

(ScoreLeftArc, ScoreRightArc, ScoreShift)

the jumped over the lazy dog

fox

brown

Results

System Method Representation Emb PTB-YM PTB-SD CTB

UAS UAS LAS UAS LAS

This work graph, 1st order 2 BiLSTM vectors – – 93.2 91.0 86.9 85.3

This work transition (greedy) 4 BiLSTM vectors – – 92.9 90.7 86.2 84.5

This work transition (greedy) 11 BiLSTM vectors – – 93.2 91.1 86.6 85.0

ZhangNivre11 transition (beam) large feature set (sparse) – 92.9 – – 86.0 84.4

Martins13 (TurboParser) graph, 3rd order+ large feature set (sparse) – 92.8 93.1 – – –

Pei15 graph, 2nd order large feature set (dense) – 93.0 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition – – 92.4 90.0 85.7 84.1

This work graph, 1st order 2 BiLSTM vectors YES – 93.1 90.6 86.3 84.7

This work transition (greedy) 4 BiLSTM vectors YES – 93.5 91.4 87.6 86.1

This work transition (greedy) 11 BiLSTM vectors YES – 93.9 91.9 87.7 86.1

Weiss15 transition (greedy) large feature set (dense) YES – 93.2 91.2 – –

Weiss15 transition (beam) large feature set (dense) YES – 94.0 92.0 – –

Pei15 graph, 2nd order large feature set (dense) YES 93.3 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition YES – 93.1 90.9 87.1 85.5

LeZuidema14 reranking /blend inside-outside recursive net YES 93.1 93.8 91.5 – –

Zhu15 reranking /blend recursive conv-net YES 93.8 – – 85.7 –

Graph based parser:

• State-of-the-art results without external resources

• First order parer competitive with higher order

• No feature engineering

Transition based parser:

• State-of-the-art results

• Competitive with beam parsers

• Minimal feature engineering

B I U

N L P

Doing stuff with LSTMs

Goal: derive a representation from unannotated data that is predictive of
preposition-sense.

Ambiguity differs between languages:
“What action will it take to defuse the crisis and tension in the region?”

French: dans
“These are only available in English, which is totally unacceptable”

French: en

A representation that is predictive of the preposition's translation is likely to be
predictive also of its sense.

Extracting training data
Data in 12 languages from Europarl corpus: Bulgarian, Czech, Danish, German,
Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.

Training example: (The vote will take place tomorrow at 12 p.m. , at, à)

Encode the context as a concatenation of two LSTMs:

Context vector is fed into a language specific MLP for predicting the
target preposition:

Train the context-encoder with all languages together.
The context-encoder and the word embeddings are shared across languages.

Improving Preposition Sense Disambiguation
with Representations Learned from Multilingual Data

Hila Gonen and Yoav Goldberg

Prepositions are very common, very ambiguous and tend to carry different
meanings in different contexts.

Preposition-sense disambiguation is a task of assigning a category to a
preposition in context:

“You should book a room for 2 nights” Duration
“For some reason, he is not here yet” Explanation
“I went there to get a present for my mother” Beneficiary

- Can we improve performance by using unannotated data?
- Are translations of prepositions to other languages predictive for this task?
- How can we use multilingual corpora for learning a representation of the

context that can be used for sense-disambiguation?

ݕ = argmaxܮܯ ௦ܲ௦(߶ ,ݏ ݅)[݆]

hilagonen87@gmail.com yoav.goldberg@gmail.com

The vote will take place tomorrow at 12 p.m.

Le vote aura lieu demain à 12 heures.

1.Motivation

4. Multilingual data

5. Learning a context representation

Concatenate the representation obtained from the context encoder to the
features vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder
߶ ,ݏ ݅ - the features vector

The error back-propagates also to the context-encoder and to the word
embeddings.

6. Using the representation for sense classification

̂ = argmaxܮܯ ܲ(ܿݔݐ ,ݏ ݅)[݆]

,s)ݔݐܿ i) = (ଵ:ିଵݓ)ܯܶܵܮ ∘ (:ାଵݓ)ܯܶܵܮ

ݕ = argmaxܮܯ ௦ܲ௦(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅)[݆]

The multilingual representation improves accuracy by 1.53 points:

External word embeddings do not improve results:

7. Results

model accuracy

base 74.75 (73.76-75.88)

+context 74.73 (73.88-75.65)

+context(multilingual) 76.28 (75.65-77.18)

model deps bow none

+context 74.87 (73.65-75.76) 73.91 (72.82-74.47) 74.73 (73.88-75.65)

+context(multilingual) 76.38 (74.82-77.06) 74.71 (73.06-75.41) 76.28 (75.65-77.18)

2. Full Model

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based model for preposition classification

Abstract

Improving Sequence to Sequence Learning for
Morphological Inflection Generation
Roee Aharoni and Yoav Goldberg Yonatan Belinkov

Bar Ilan University NLP Lab MIT CSAIL

The factored sequence to sequence approach (Faruqui et. al., 2016)

• Above two baselines:
the shared task
baseline system (ST-
Base) and an
implementation
similar to the factored
model from (Faruqui
et. al., 2016) (Fact.)

• Got the 2nd/3rd
place (depending on
which language) in
the sigmorphon 2016
shared task out of 8
participating teams

п е т ь<w> </w>

pos=V
mood=IMPER
num=PL
aspect=IPFV

f

п е

<w>

f f f f f f f f f

</w>step п step е step

step п т step e step

f f

step

0,0 1,0 1,1 3,4 4,4 4,5 5,5

о й т

о й step т

step о й step

2,1 2,2 2,3 3,3

t a r j m a<w> </w>

f

<w>

t a r j a m a ! ! ! !!
f f f f f f f f f f f

</w>

it u 0 1 2 3 i 5 ā n

f

a

pos=V

mood=IND

tense=PRS/FUT

gender=FEM

person=3

it u t a r j i m ā n

it u 0 1 2 3 i 5 ā n

Our first approach, the Bi-Directional Sequence to Sequence model (BS2S):

4. MS2S Network Architecture

2. Previous Work

Morpho-Syntactic Attribute
Embeddings allows us to train
joint models over examples that
share only the part of speech
rather than all the attributes

3. Novel Methods

pos=V

mood=IND

tense=PRS/FUT

gender=FEM

person=3

voice=ACT

num=DU

aspect=IPFV/PFV

f

M o r p h o l o g i c a l Te m p l a t e s
Instead of training the network to
predict only a specific character at
each step, we train the network to
either predict a character or copy a
character at a given position in the
input

Bi-Directional Input Character
Representation adds more
focused context when the
ne twork p red ic ts the nex t
inflection output

Neural Discriminative String
Transducer a NN architecture
maintaining an input pointer
variable which is dynamically
p romoted accord ing to the
network’s decision to “step”
forward to the next input character

it u t a r j i m ā n

it u 0 1 2 3 i 5 ā n

a

о й step т

step о й step

2,1 2,2 2,3 3,3

6. Results

1. The Task

writing written→past, passive+

سيأكلأكلوا future, singular + past, plural← +

מתורגמתתרגם feminine, present, passive, singular← +

5. NDST Network Architecture

Our second approach, the Neural Discriminative String Transducer (NDST):

Our first approach, the Morphological Sequence to Sequence architecture (MS2S):

4

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

VP

VB

cut

NP

PRP$

their

NNS

risks

VP

VB

take

NP

NNS

profits

R

VP

VB

cut

cut
V

B
V

P R

L

VP

R

NP

PRP$

their

their
PR

P$
N

P R V
P L

VP

L

NP

NNS

risks

risks
N

N
S

N
P L V
P

R

VP

VB

take

take
V

B
V

P R
L

VP

NP

NNS

profits

profits
N

N
S

N
P

V
P L

Euclidean Distance

Figure 2: Illustration of the symmetry scoring component that takes into account the conjuncts syntactic structures. Each conjunct
tree is decomposed into paths that are fed into the path-LSTMs (squares). The resulting vectors are fed into the symmetry LSTM
function (circles). The outcome vectors (blue circles) are then fed into the euclidean distance function.

Given two spans of lengths k and m with cor-
responding vector sequences u1:k and v1:m we en-
code each sequences using an LSTM, and take the
euclidean distance between the resulting representa-
tions:

Sym(u1:k, v1:m) = ||LSTM(u1:k)� LSTM(v1:m)||

The network is trained such that the distance is min-
imized for compatible spans and large for incompat-
ible ones in order to learn that vectors that represents
correct conjuncts are closer than vectors that do not
represent conjuncts.

What are the elements in the sequences to be com-
pared? One choice is to take the vectors u

i

to cor-
respond to embeddings of the ith POS in the span.
This approach works reasonably well, but does not
consider the conjuncts’ syntactic structure, which
may be useful as symmetry often occurs on a higher
level than POS tags. For example, in:

NP

NP

NN

tomorrow

PP

IN

at

CD

16:00

CC

or

NP

NP

NP

the day

PP

after tomorrow

PP

IN

at

CD

12:00

the similarity is more substantial in the third level of
the tree than in the POS level.

A way to allow the model access to higher levels
of syntactic symmetry is to represent each word as
the projection of the grammatical functions from the
word to the root.3 For example, the projections for
the first conjunct in Figure 2 are:

3We also experimented with tree-encoders based on recur-
sive networks, which did not work as well.

VP

VB

cut

VP

NP

PRP$

their

VP

NP

NNS

risks

This decomposition captures the syntactic context
of each word, but does not uniquely determine the
structure of the tree. To remedy this, we add to
the paths special symbols, R and L, which marks
the lowest common ancestors with the right and left
words respectively. These are added to the path
above the corresponding nodes. For example con-
sider the following paths which corresponds to the
above syntactic structure:

R

VP

VB

cut

L

VP

R

NP

PRP$

their

VP

L

NP

NNS

risks

The lowest common ancestor of “their” and “risks”
is NP. Thus, R is added after NP in the path of
“their” and L is added after NP in the path of
“risks”. Similarly, L and R are added after the VP
in the “their” and “cut” paths.

The path for each word is encoded using an
LSTM receiving vector embeddings of the elements
in the path from the word to the root. We then use the
resulting encodings instead of the POS-tag embed-
dings as input to the LSTMs in the similarity func-
tion. Figure 2 depicts the complete process for the
spans “cut their risks” and “take profits”.

Using syntactic projections requires the syntactic
structures of the conjuncts. This is obtained by run-
ning the Berkeley parser over the sentence and tak-
ing the subtree with the highest probability from the

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

X/NOUN/dobj/>define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

Path LSTM Term-pair Classifier

~o

p

average
pooling

~v

wx

(x, y)
classification

(softmax)

~v

wy

~v

xy

Embeddings:
lemma
POS
dependency label
direction

Figure 2: An illustration of term-pair classification. Each term-pair is represented by several paths. Each path is a sequence of
edges, and each edge consists of four components: lemma, POS, dependency label and dependency direction. Each edge vector
is fed in sequence into the LSTM, resulting in a path embedding vector ~o

p

. The averaged path vector becomes the term-pair’s
feature vector, used for classification. The dashed ~v

w

x

, ~v

w

y

vectors refer to the integrated network described in Section 3.2.

Term-Pair Classification Each (x, y) term-pair
is represented by the multiset of lexico-syntactic
paths that connected x and y in the corpus, de-
noted as paths(x, y), while the supervision is
given for the term pairs. We represent each (x, y)
term-pair as the weighted-average of its path vec-
tors, by applying average pooling on its path vec-
tors, as follows:

~v
xy

= ~v
paths(x,y) =

P
p2paths(x,y) fp,(x,y)· ~opP
p2paths(x,y) fp,(x,y)

(1)

where f
p,(x,y) is the frequency of p in paths(x, y).

We then feed this path vector to a single-layer net-
work that performs binary classification to decide
whether y is a hypernym of x.

c = softmax(W · ~v
xy

) (2)

c is a 2-dimensional vector whose components
sum to 1, and we classify a pair as positive if
c[1] > 0.5.

Implementation Details To train the network,
we used PyCNN.3 We minimize the cross en-
tropy loss using gradient-based optimization, with
mini-batches of size 10 and the Adam update rule
(Kingma and Ba, 2014). Regularization is applied
by a dropout on each of the components’ embed-
dings. We tuned the hyper-parameters (learning
rate and dropout rate) on the validation set (see the
appendix for the hyper-parameters values).

We initialized the lemma embeddings with the
pre-trained GloVe word embeddings (Pennington
et al., 2014), trained on Wikipedia. We tried both

3https://github.com/clab/cnn

the 50-dimensional and 100-dimensional embed-
ding vectors and selected the ones that yield bet-
ter performance on the validation set.4 The other
embeddings, as well as out-of-vocabulary lemmas,
are initialized randomly. We update all embedding
vectors during training.

3.2 Integrated Network

The network presented in Section 3.1 classifies
each (x, y) term-pair based on the paths that con-
nect x and y in the corpus. Our goal was to im-
prove upon previous path-based methods for hy-
pernymy detection, and we show in Section 6
that our network indeed outperforms them. Yet,
as path-based and distributional methods are con-
sidered complementary, we present a simple way
to integrate distributional features in the network,
yielding improved performance.

We extended the network to take into account
distributional information on each term. In-
spired by the supervised distributional concatena-
tion method (Baroni et al., 2012), we simply con-
catenate x and y word embeddings to the (x, y)
feature vector, redefining ~v

xy

:

~v
xy

= [~v
w

x

,~v
paths(x,y), ~v

w

y

] (3)

where ~v
w

x

and ~v
w

y

are x and y’s word embed-
dings, respectively, and ~v

paths(x,y) is the averaged
path vector defined in equation 1. This way, each
(x, y) pair is represented using both the distribu-
tional features of x and y, and their path-based
features.

4Higher-dimensional embeddings seem not to improve
performance, while hurting the training runtime.

phologically complex (Rayner et al., 2012). These
are also words that are likely to be replaced with
simpler ones in sentence simplification, but it is not
clear that they are words that would necessarily be
removed in the context of sentence compression.

Demberg and Keller (2008) show that syntac-
tic complexity (measured as dependency locality) is
also an important predictor of reading time. Phrases
that are often removed in sentence compression—
like fronted phrases, parentheticals, floating quanti-
fiers, etc.—are often associated with non-local de-
pendencies. Also, there is evidence that people are
more likely to fixate on the first word in a con-
stituent than on its second word (Hyönä and Pol-
latsek, 2000). Being able to identify constituent
borders is important for sentence compression, and
reading fixation data may help our model learn a rep-
resentation of our data that makes it easy to identify
constituent boundaries.

In the experiments below, we learn models to pre-
dict the first pass duration of word fixations and the
total duration of regressions to a word. These two
measures constitute a perfect separation of the to-
tal reading time of each word split between the first
pass and subsequent passes. Both measures are de-
scribed below. They are both discretized into six
bins as follows with only non-zero values contribut-
ing to the calculation of the standard deviation (SD):

0: measure = 0 or
1: measure < 1 SD below reader’s average or
2: measure < .5 SD below reader’s average or
3: measure < .5 above reader’s average or
4: measure > .5 SD above reader’s average or
5: measure > 1 SD above reader’s average

First pass duration measures the total time spent
reading a word first time it is fixated, including
any immediately following re-fixations of the same
word. This measure correlates with word length, fre-
quency and ambiguity because long words are likely
to attract several fixations in a row unless they are
particularly easily predicted or recognized. This ef-
fect arises because long words are less likely to fit
inside the fovea of the eye. Note that for this mea-
sure the value 0 indicates that the word was not fix-
ated by this reader.

Words FIRST PASS REGRESSIONS

Are 4 4
tourists 2 0
enticed 3 0
by 4 0
these 2 0
attractions 3 0
threatening 3 3
their 5 0
very 3 3
existence 3 5
? 3 5

Figure 1: Example sentence from the Dundee Corpus

Regression duration measures the total time
spent fixating a word after the gaze has already left
it once. This measure belongs to the group of late
measures, i.e., measures that are sensitive to the later
cognitive processing stages including interpretation
and integration of already decoded words. Since
the reader by definition has already had a chance to
recognize the word, regressions are associated with
semantic confusion and contradiction, incongruence
and syntactic complexity, as famously experienced
in garden path sentences. For this measure the value
0 indicates that the word was read at most once by
this reader.

See Table 1 for an example of first pass duration
and regression duration annotations for one reader
and sentence.

Figure 2: Multitask and cascaded bi-LSTMs for sentence com-
pression. Layer L�1 contain pre-trained embeddings. Gaze
prediction and CCG-tag prediction are auxiliary training tasks,
and loss on all tasks are propagated back to layer L0.

Simple and Accurate Dependency Parsing

Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser and Yoav Goldberg

BiLSTMs are State-of-the-art Works for both

Simple & Effective Parsing Accuracies Graph-based & Transition-based

Feature Extractors with Minimal Effort Parsing

Dependency Parsing

The soup , which I expected to be good , was bad

subj

acompdet

rcmod

rel

subj

xcomp

aux acomp

root

Dependency parsing is the task of extracting a dependency tree for a given sentence.

Dependency tree is a directed tree where each word modifies (i.e. modifier) the parent’s

word (i.e. head).

Context Rich Feature
MANY Hand-Crafted Features:

posi, posi+1, posj�1, posj

posi�1, posi, posj�1, posj

posi, posi+1, posj, posj+1

posi�1, posi, posj, posj+1
.

.

.

+
Few Context Rich, Learned,
BiLSTM Features.

Graph-based Parsing Algorithm (Global Optimization)

Inference
parse(sent) = argmax

t2Trees(sent)
score(sent, t)

score(sent, t) ⇡
X

(h,m)2t

���!
score(sent, h,m)

Score Function
���!
score(sent, h,m) = MLP (vh � vm)

vi = BiLSTM(x1:n, i)

Cost Augmented Loss
max(0,1 + score(x, y)�

max

y0 6=y

X

(h,m)2y0

(

���!
score(x, h,m) + I(h,m) 62y

))

First-Order Neural Parser

LSTM

f

x

the

concat

y

f

1

s

f

0

LSTM

f

x

brown

concat

y

f

2

s

f

1

LSTM

f

x

fox

concat

y

f

3

s

f

2

LSTM

f

x

jumped

concat

y

f

4

s

f

3

LSTM

f

x⇤

concat

y

f

5

s

f

4

s

f

5

LSTM

b s

0

s

b

0

y

b

1

LSTM

b s

1

s

b

1

y

b

2

LSTM

b s

2

s

b

2

y

b

3

LSTM

b s

3

s

b

3

y

b

4

LSTM

b s

4

s

b

4

y

b

5

s

b

5

V

the

V

brown

V

fox

V

jumped

V⇤

MLP MLP MLP MLP

+

Transition-based Parsing Algorithm (Greedy Optimization)

Shift

S0 S1 S2 B0 B1

S0 S1 S2 B0 B1

Left Arc
S0 S1 S2 B0 B1

S1S0 B0

S2

B1

Right Arc
S0 S1 S2 B0 B1

S0 S1

S2

B0 B1

Arc-Hybrid Neural Parser

LSTM

f

x

the

concat

y

f

1

s

f

0

LSTM

f

x

brown

concat

y

f

2

s

f

1

LSTM

f

x

fox

concat

y

f

3

s

f

2

LSTM

f

x

jumped

concat

y

f

4

s

f

3

LSTM

f

x

over

concat

y

f

5

s

f

4

LSTM

f

x

the

concat

y

f

6

s

f

5

LSTM

f

x

lazy

concat

y

f

7

s

f

6

LSTM

f

x

dog

concat

y

f

8

s

f

7

s

f

8

LSTM

b s

0

s

b

0

y

b

1

LSTM

b s

1

s

b

1

y

b

2

LSTM

b s

2

s

b

2

y

b

3

LSTM

b s

3

s

b

3

y

b

4

LSTM

b s

4

s

b

4

y

b

5

LSTM

b s

5

s

b

5

y

b

6

LSTM

b s

6

s

b

6

y

b

7

LSTM

b s

7

s

b

7

y

b

8

s

b

8

V

the

V

brown

V

fox

V

jumped

V

over

V

the

V

lazy

V

dog

MLP

(ScoreLeftArc, ScoreRightArc, ScoreShift)

the jumped over the lazy dog

fox

brown

Results

System Method Representation Emb PTB-YM PTB-SD CTB

UAS UAS LAS UAS LAS

This work graph, 1st order 2 BiLSTM vectors – – 93.2 91.0 86.9 85.3

This work transition (greedy) 4 BiLSTM vectors – – 92.9 90.7 86.2 84.5

This work transition (greedy) 11 BiLSTM vectors – – 93.2 91.1 86.6 85.0

ZhangNivre11 transition (beam) large feature set (sparse) – 92.9 – – 86.0 84.4

Martins13 (TurboParser) graph, 3rd order+ large feature set (sparse) – 92.8 93.1 – – –

Pei15 graph, 2nd order large feature set (dense) – 93.0 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition – – 92.4 90.0 85.7 84.1

This work graph, 1st order 2 BiLSTM vectors YES – 93.1 90.6 86.3 84.7

This work transition (greedy) 4 BiLSTM vectors YES – 93.5 91.4 87.6 86.1

This work transition (greedy) 11 BiLSTM vectors YES – 93.9 91.9 87.7 86.1

Weiss15 transition (greedy) large feature set (dense) YES – 93.2 91.2 – –

Weiss15 transition (beam) large feature set (dense) YES – 94.0 92.0 – –

Pei15 graph, 2nd order large feature set (dense) YES 93.3 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition YES – 93.1 90.9 87.1 85.5

LeZuidema14 reranking /blend inside-outside recursive net YES 93.1 93.8 91.5 – –

Zhu15 reranking /blend recursive conv-net YES 93.8 – – 85.7 –

Graph based parser:

• State-of-the-art results without external resources

• First order parer competitive with higher order

• No feature engineering

Transition based parser:

• State-of-the-art results

• Competitive with beam parsers

• Minimal feature engineering

B I U

N L P

RNNS/LSTMs
and Syntax

B I U

N L P

Brief intro to RNNs

B I U

N L P

Recurrent Neural Networks

• Very strong models of sequential data.

• Function from n vectors to a single vector.

B I U

N L P

Recurrent Neural Networks

• Very strong models of sequential data.

• Function from n vectors to a single vector.

v(what) v(is) v(your) v(name)

B I U

N L P

Recurrent Neural Networks

• Very strong models of sequential data.

• Function from n vectors to a single vector.

v(what) v(is) v(your) v(name) ????

B I U

N L P

Recurrent Neural Networks

• Very strong models of sequential data.

• Function from n vectors to a single vector.

v(what) v(is) v(your) v(name) v(beer)
?

B I U

N L P

Recurrent Neural Networks

• Very strong models of sequential data.

• Function from n vectors to a single vector.

v(what) v(is) v(your) v(name) enc(what is your name)

B I U

N L P

Recurrent Neural Networks

• Very strong models of sequential data.

• Trainable function from n vectors to a single vector.

v(what) v(is) v(your) v(name) enc(what is your name)

B I U

N L P

Recurrent Neural Networks

• There are different variants (implementations).

• We'll focus on the interface level.

B I U

N L P

Recurrent Neural Networks

• Very strong models of sequential data.

• Trainable function from n vectors to a single vector.

v(what) v(is) v(your) v(name) enc(what is your name)

B I U

N L P

Recurrent Neural Networks
RNN(s0,x1:n) = sn,yn

xi 2 Rd
in , yi 2 Rd

out , si 2 Rf(d
out

)

• Very strong models of sequential data.

• Trainable function from n vectors to a single* vector.

B I U

N L P

Recurrent Neural Networks

• Think of as "memory".

• The output vector depends on all inputs x1:iyi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

si• Input vectors , output vector x1:i yi

B I U

N L P

Recurrent Neural Networks

RNN(s0,x1:n) = sn,yn

xi 2 Rd
in , yi 2 Rd

out , si 2 Rf(d
out

)

RNN(s0,x1:n) = sn,yn

si = R(si�1,xi)

yi = O(si)

• Recursively defined.

• There's a vector for every prefix x1:iyi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

B I U

N L P

Recurrent Neural Networks
• What are the vectors good for?yi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing.

B I U

N L P

Recurrent Neural Networks
• What are the vectors good for?yi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing.

• But we can train them.

B I U

N L P

Recurrent Neural Networks
• What are the vectors good for?yi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing.

• But we can train them.
define function form
define loss

B I U

N L P

Recurrent Neural Networks
• What are the vectors good for?yi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing.

• But we can train them.

trained parameters.

define function form
define loss

B I U

N L P

Recurrent Neural Networks
• What are the vectors good for?yi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing.

• But we can train them.

trained parameters.

RSRNN (s
i�1

,x
i

) = tanh(Ws · s
i�1

+W

x · x
i

)

looks simple.
theoretically powerful.
practically, not so much.

SimpleRNN:

define function form
define loss

RLSTM (s
j�1

,x
j

) =[c
j

;h
j

]

c

j

=c

j�1

� f + g � i

h

j

=tanh(c
j

)� o

i =�(Wxi · x
j

+W

hi · h
j�1

)

f =�(Wxf · x
j

+W

hf · h
j�1

)

o =�(Wxo · x
j

+W

ho · h
j�1

)

g =tanh(Wxg · x
j

+W

hg · h
j�1

)

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing.

• But we can train them.

trained parameters.

looks complex, and is.
very strong in practice.

LSTM:

define function form
define loss

Recurrent Neural Networks
• What are the vectors good for?yi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing.

• But we can train them.
define function form
define loss

B I U

N L P

Recurrent Neural Networks
Defining the loss.

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of y

n

= O(s
n

), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.

R,O

x
1

s
0

R,O

x
2

s
1

R,O

x
3

s
2

R,O

x
4

s
3

R,O

x
5

s
4

predict &

calc loss

y
5

loss

Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, y

n

. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector y

n

summarizing the entire document. Then, y
n

will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal L

local

(ŷ
i

,y
i

)
for each of the outputs ŷ

i

based on a true label y
i

. The loss for unrolled sequence will
then be: L(ˆy

1:n

,y
1:n

) =
P

n

i=1

L
local

(ŷ
i

,y
i

), or using another combination rather than a
sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take x

i:n

to be feature representations for the
n words of a sentence, and y

i

as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x

1:i

is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

Acceptor: predict something from end state.
Backprop the error all the way back.
Train the network to capture meaningful information

B I U

N L P

Recurrent Neural Networks
Defining the loss.

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of y

n

= O(s
n

), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.

R,O

x
1

s
0

R,O

x
2

s
1

R,O

x
3

s
2

R,O

x
4

s
3

R,O

x
5

s
4

predict &

calc loss

y
5

loss

Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, y

n

. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector y

n

summarizing the entire document. Then, y
n

will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal L

local

(ŷ
i

,y
i

)
for each of the outputs ŷ

i

based on a true label y
i

. The loss for unrolled sequence will
then be: L(ˆy

1:n

,y
1:n

) =
P

n

i=1

L
local

(ŷ
i

,y
i

), or using another combination rather than a
sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take x

i:n

to be feature representations for the
n words of a sentence, and y

i

as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x

1:i

is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

Acceptor: predict something from end state.
Backprop the error all the way back.
Train the network to capture meaningful information

the final vector is a good
"summary" of the sequence

B I U

N L P

Recurrent Neural Networks
• What are the vectors good for?yi

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of y

n

= O(s
n

), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.

R,O

x
1

s
0

R,O

x
2

s
1

R,O

x
3

s
2

R,O

x
4

s
3

R,O

x
5

s
4

predict &

calc loss

y
5

loss

Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, y

n

. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector y

n

summarizing the entire document. Then, y
n

will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal L

local

(ŷ
i

,y
i

)
for each of the outputs ŷ

i

based on a true label y
i

. The loss for unrolled sequence will
then be: L(ˆy

1:n

,y
1:n

) =
P

n

i=1

L
local

(ŷ
i

,y
i

), or using another combination rather than a
sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take x

i:n

to be feature representations for the
n words of a sentence, and y

i

as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x

1:i

is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

Acceptor: predict something from end state.
Backprop the error all the way back.
Train the network to capture meaningful information

• Predict sentiment of the sentence based on all words.

• Predict word i based on words 1,...,i-1.

the final vector is a good
"summary" of the sequence

Recurrent Neural Networks
• What are the vectors good for?yi

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of y

n

= O(s
n

), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.

R,O

x
1

s
0

R,O

x
2

s
1

R,O

x
3

s
2

R,O

x
4

s
3

R,O

x
5

s
4

predict &

calc loss

y
5

loss

Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, y

n

. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector y

n

summarizing the entire document. Then, y
n

will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal L

local

(ŷ
i

,y
i

)
for each of the outputs ŷ

i

based on a true label y
i

. The loss for unrolled sequence will
then be: L(ˆy

1:n

,y
1:n

) =
P

n

i=1

L
local

(ŷ
i

,y
i

), or using another combination rather than a
sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take x

i:n

to be feature representations for the
n words of a sentence, and y

i

as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x

1:i

is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

Acceptor: predict something from end state.
Backprop the error all the way back.
Train the network to capture meaningful information

• Predict sentiment of the sentence based on all words.

• Predict word i based on words 1,...,i-1.

the final vector is a good
"summary" of the sequence

Recurrent Neural Networks

Transducer: predict something from each state.
Backprop the sum of errors all the way back.
Train the network to capture meaningful information

R,O

x
1

s
0

predict &

calc loss

y
1

R,O

x
2

s
1

predict &

calc loss

y
2

R,O

x
3

s
2

predict &

calc loss

y
3

R,O

x
4

s
3

predict &

calc loss

y
4

R,O

x
5

s
4

predict &

calc loss

y
5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation y

n

, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation y

n

, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as y

n

. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that x

n

corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t

1

, . . . , t
n

, an encoder RNN is first used to encode the sentence x
1:n

into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x

1:n

to predict the label t
i

at each position i. This approach

50

B I U

N L P

"Deep RNNs"

RNN can be stacked
deeper is better!

(better how?)

R
1

,O
1

R
2

,O
2

y1

1

s1
0

R
3

,O
3

y2

1

s2
0

s3
0

x
1

y
1

y3

1

R
1

,O
1

R
2

,O
2

y1

2

s1
1

R
3

,O
3

y2

2

s2
1

s3
1

x
2

y
2

y3

2

R
1

,O
1

R
2

,O
2

y1

3

s1
2

R
3

,O
3

y2

3

s2
2

s3
2

x
3

y
3

y3

3

R
1

,O
1

R
2

,O
2

y1

4

s1
3

R
3

,O
3

y2

4

s2
3

s3
3

x
4

y
4

y3

4

R
1

,O
1

R
2

,O
2

y1

5

s1
4

R
3

,O
3

y2

5

s2
4

s3
4

x
5

y
5

y3

5

s1
5

s2
5

s3
5

Figure 10: A 3-layer (“deep”) RNN architecture.

10.4 BI-RNN

A useful elaboration of an RNN is a bidirectional-RNN (BI-RNN) (Schuster & Paliwal, 1997;
Graves, 2008).31 Consider the task of sequence tagging over a sentence x

1

, . . . , x
n

. An RNN
allows us to compute a function of the ith word x

i

based on the past – the words x
1:i

up
to and including it. However, the following words x

i:n

may also be useful for prediction, as
is evident by the common sliding-window approach in which the focus word is categorized
based on a window of k words surrounding it. Much like the RNN relaxes the Markov
assumption and allows looking arbitrarily back into the past, the BI-RNN relaxes the fixed
window size assumption, allowing to look arbitrarily far at both the past and the future.

Consider an input sequence x
1:n

. The BI-RNN works by maintaining two separate
states, sf

i

and sb
i

for each input position i. The forward state sf
i

is based on x
1

,x
2

, . . . ,x
i

,
while the backward state sb

i

is based on x
n

,x
n�1

, . . . ,x
i

. The forward and backward states
are generated by two di↵erent RNNs. The first RNN (Rf , Of) is fed the input sequence
x
1:n

as is, while the second RNN (Rb, Ob) is fed the input sequence in reverse. The state
representation s

i

is then composed of both the forward and backward states.

The output at position i is based on the concatenation of the two output vectors
y
i

= [yf

i

;yb

i

] = [Of (sf
i

);Ob(sb
i

)], taking into account both the past and the future. The
vector y

i

can then be used directly for prediction, or fed as part of the input to a more
complex network. While the two RNNs are run independently of each other, the error gra-
dients at position i will flow both forward and backward through the two RNNs. A visual
representation of the BI-RNN architecture is given in Figure 11.

The use of BI-RNNs for sequence tagging was introduced to the NLP community by
Irsoy and Cardie (2014).

10.5 RNNs for Representing Stacks

Some algorithms in language processing, including those for transition-based parsing (Nivre,
2008), require performing feature extraction over a stack. Instead of being confined to

31. When used with a specific RNN architecture such as an LSTM, the model is called BI-LSTM.

52

B I U

N L P

Story so far:
• There is a thing called a (deep) RNN.

• We can feed it a list of vectors.

• Each vector represents a word.

• At the end it spits out a vector summarizing the list
of vectors.

• We influence the summarization with training.

B I U

N L P

Story so far:
• There is a thing called a (deep) RNN.

• We can feed it a list of vectors.

• Each vector represents a word.

• At the end it spits out a vector summarizing the list
of vectors.

• We influence the summarization with training.

Sequence in, vector out.

But human language is not (only) a sequence!

B I U

N L P

B I U

N L P

Can RNNs learn hierarchy?

(joint work with Tal Linzen and Emmanuel Dupoux)
Can RNNs learn hierarchy?

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen1,2 Emmanuel Dupoux1

LSCP1 & IJN2, CNRS,
EHESS and ENS, PSL Research University

{tal.linzen,
emmanuel.dupoux}@ens.fr

Yoav Goldberg
Computer Science Department

Bar Ilan University
yoav.goldberg@gmail.com

Abstract

The success of long short-term memory
(LSTM) neural networks in language process-
ing is typically attributed to their ability to
capture long-distance statistical regularities.
Linguistic regularities are often sensitive to
syntactic structure; can such dependencies be
captured by LSTMs, which do not have ex-
plicit structural representations? We begin ad-
dressing this question using number agreement
in English subject-verb dependencies. We
probe the architecture’s grammatical compe-
tence both using training objectives with an
explicit grammatical target (number prediction,
grammaticality judgments) and using language
models. In the strongly supervised settings,
the LSTM achieved very high overall accu-
racy (less than 1% errors), but errors increased
when sequential and structural information con-
flicted. The frequency of such errors rose
sharply in the language-modeling setting. We
conclude that LSTMs can capture a non-trivial
amount of grammatical structure given targeted
supervision, but stronger architectures may be
required to further reduce errors; furthermore,
the language modeling signal is insufficient
for capturing syntax-sensitive dependencies,
and should be supplemented with more direct
supervision if such dependencies need to be
captured.

1 Introduction

Recurrent neural networks (RNNs) are highly effec-
tive models of sequential data (Elman, 1990). The
rapid adoption of RNNs in NLP systems in recent
years, in particular of RNNs with gating mecha-
nisms such as long short-term memory (LSTM) units

(Hochreiter and Schmidhuber, 1997) or gated recur-
rent units (GRU) (Cho et al., 2014), has led to sig-
nificant gains in language modeling (Mikolov et al.,
2010; Sundermeyer et al., 2012), parsing (Vinyals
et al., 2015; Kiperwasser and Goldberg, 2016; Dyer
et al., 2016), machine translation (Bahdanau et al.,
2015) and other tasks.

The effectiveness of RNNs1 is attributed to their
ability to capture statistical contingencies that may
span an arbitrary number of words. The word France,
for example, is more likely to occur somewhere in
a sentence that begins with Paris than in a sentence
that begins with Penguins. The fact that an arbitrary
number of words can intervene between the mutually
predictive words implies that they cannot be captured
by models with a fixed window such as n-gram mod-
els, but can in principle be captured by RNNs, which
do not have an architecturally fixed limit on depen-
dency length.

RNNs are sequence models: they do not explicitly
incorporate syntactic structure. Indeed, many word
co-occurrence statistics can be captured by treating
the sentence as an unstructured list of words (Paris-
France); it is therefore unsurprising that RNNs can
learn them well. Other dependencies, however, are
sensitive to the syntactic structure of the sentence
(Chomsky, 1965; Everaert et al., 2015). To what
extent can RNNs learn to model such phenomena
based only on sequential cues?

Previous research has shown that RNNs (in particu-
lar LSTMs) can learn artificial context-free languages
(Gers and Schmidhuber, 2001) as well as nesting and

1In this work we use the term RNN to refer to the entire
class of sequential recurrent neural networks. Instances of the
class include long short-term memory networks (LSTM) and the
Simple Recurrent Network (SRN) due to Elman (1990).

ar
X

iv
:1

61
1.

01
36

8v
1

 [c
s.C

L]
 4

 N
ov

 2
01

6

B I U

N L P

The case for Syntax

the boy kicks the ball
the boys kick the ball

• Some natural-language phenomena  
 are indicative of hierarchical structure.

• For example, subject verb agreement.

B I U

N L P

The case for Syntax

the boy with the white shirt with the blue collar kicks the ball
the boys with the white shirts with the blue collars kick the ball

B I U

N L P

• Some natural-language phenomena  
 are indicative of hierarchical structure.

• For example, subject verb agreement.

The case for Syntax

the boy (with the white shirt (with the blue collar)) kicks the ball
the boys (with the white shirts (with the blue collars)) kick the ball

B I U

N L P

• Some natural-language phenomena  
 are indicative of hierarchical structure.

• For example, subject verb agreement.

The case for Syntax

the boy (with the white shirt (with the blue collar)) kicks the ball
the boys (with the white shirts (with the blue collars)) kick the ball

nsubj

B I U

N L P

• Some natural-language phenomena  
 are indicative of hierarchical structure.

• For example, subject verb agreement.

Can a sequence LSTM
learn agreement?

B I U

N L P

Can a sequence LSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral rationalism are plato and immanuel kant .

B I U

N L P

Can a sequence LSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

replace rare words with their POS

B I U

N L P

Can a sequence LSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject

B I U

N L P

Can a sequence LSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN ____

cut the sentence at the verb

B I U

N L P

Can a sequence LSTM
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have
defended moral NN ____

binary prediction task

B I U

N L P

v(have) v(defended) v(moral) v(NN)...

predict

plural / singular

B I U

N L P

Can a sequence LSTM
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have
defended moral NN ____

binary prediction task

B I U

N L P

Can a sequence LSTM
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have
defended moral NN ____

B I U

N L P

Can a sequence LSTM
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have
defended moral NN ____

B I U

N L P

Can a sequence LSTM
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have
defended moral NN ____

B I U

N L P

Can a sequence LSTM
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have
defended moral NN ____

Need to learn the concept of number.
in order to answer:

Need to identify the subject (ignoring irrelevant words)

B I U

N L P

Somewhat Harder Task
B I U

N L P

Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject

B I U

N L P

Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject

some prominent figures in the history of philosophy who have
defended moral NN is plato and immanuel kant .

and flip its number.

B I U

N L P

Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

some prominent figures in the history of philosophy who have
defended moral NN is plato and immanuel kant .

V

X

can the LSTM learn to
distinguish good from bad sentences?

B I U

N L P

v(boy) v(kicks) v(the) v(ball)...

predict

V

B I U

N L P

v(boy) v(kick) v(the) v(ball)...

predict

X

B I U

N L P

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy

(look at last noun).

B I U

N L P

(a) (b) (c)

(d) (e) (f)

Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy

(look at last noun).

B I U

N L P

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy

(look at last noun).

when restricted to cases
of at least one intervening noun:

97% accuracy

B I U

N L P

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

learns number of nouns

5

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

EMNLP 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

Figure 3: Embeddings of singular nouns (in red) and
plural nouns (in blue) in the LSTM number predic-
tion network, projected onto the first two principal
components of the embedding space.

Figure 4

Figure 5: Targeted training: last intervening (note
that the “none” category is missing – all dependencies
had at least one intervening noun).

4 Targeted training

The network’s degraded performance on dependen-
cies with agreement attractors showed that it did not
extract the correct generalization from the training
data. At the same time, its overall accuracy was very
high. This suggests that most dependencies in the
test set do not contain attractors that can trip up the
network. An analysis of the corpus confirms this hy-
pothesis: the majority of dependencies in language
do not have any attractors at all, and there is a very
small number of dependencies that have multiple at-
tractors (Figure 4). As such, the network can achieve
high performance using heuristics that break in diffi-
cult cases.

The most natural training regime includes sentence
types in the training set in proportion to their fre-
quency in the language, as we did in our first exper-
iments and as is the case when an RNN language
model is trained on a corpus. Given the skew in the
distribution, however, we repeated our verb number
prediction experiment, this time training the model
only on dependencies that had at least one noun that
intervened between the subject and the verb (either
an agreement attractor or a noun with the same num-
ber as the subject). Our methodology was identical,
with the exception of doubling the proportion of train-
ing sentences in the split, since the full corpus was
smaller (226K dependencies).

The overall error rate was low, but higher than
before (2.5% compared to 0.9%). Figure 5 shows
that the errors are more balanced between attractors

B I U

N L P

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

more errors as the number of intervening nouns
of opposite number increases

B I U

N L P

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy

(look at last noun).

when restricted to cases
of at least one intervening noun:

~97% accuracy

(a) (b) (c)

(d) (e) (f)

Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.

B I U

N L P

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy

(look at last noun).

when restricted to cases
of at least one intervening noun:

~97% accuracy

(a) (b) (c)

(d) (e) (f)

Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.

but < 16% err
for 4 misleading

nouns...

B I U

N L P

Can a sequence LSTM
learn agreement?

LSTMs learn agreement remarkably well.

but we trained it on the agreement task.

does a language model learn agreement?

B I U

N L P

Can a sequence LSTM
learn agreement?

does a language model learn agreement?
(a) (b)

(c) (d) (e)

.
Figure 4: Alternative tasks and additional experiments: (a) overall error rate across tasks (note that the y-axis
ends in 10%); (b) effect of count of attractors in homogeneous dependencies across training objectives; (c)
comparison of the Google LM (Jozefowicz et al., 2016) to our LM and one of our supervised verb inflection
systems, on a sample of sentences; (d) number prediction: effect of count of attractors using SRNs with
standard training or LSTM with targeted training; (e) number prediction: difference in error rate between
singular and plural subjects across RNN cell types. Error bars represent binomial 95% confidence intervals.

made eight times as many errors as the original num-
ber prediction network (6.78% compared to 0.83%),
and did substantially worse than the noun-only base-
lines (though recall that the noun-only baselines were
still explicitly trained to predict verb number).

The differences across the networks are more strik-
ing when we focus on dependencies with agreement
attractors (Figure 4b). Here, the language model
does worse than chance in the most difficult cases,
and only slightly better than the noun-only baselines.
The worse-than-chance performance suggests that
attractors actively confuse the networks rather than
cause them to make a random decision. The other
models degrade more gracefully with the number
of agreement attractors; overall, the grammaticality
judgment objective is somewhat more difficult than
the number prediction and verb inflection ones. In
summary, we conclude that while the LSTM is capa-
ble of learning syntax-sensitive agreement dependen-
cies under various objectives, the language-modeling
objective alone is not sufficient for learning such de-
pendencies, and a more direct form of training signal

is required.

Comparison to a large-scale language model:
One objection to our language modeling result is
that our LM faced a much harder objective than
our other models—predicting a distribution over
10,000 vocabulary items is certainly harder than bi-
nary classification—but was equipped with the same
capacity (50-dimensional hidden state and word vec-
tors). Would the performance gap between the LM
and the explicitly supervised models close if we in-
creased the capacity of the LM?

We address this question using a very large pub-
licly available LM (Jozefowicz et al., 2016), which
we refer to as the Google LM.12 The Google LM rep-
resent the current state-of-the-art in language mod-
eling: it is trained on a billion-word corpus (Chelba
et al., 2013), with a vocabulary of 800,000 words.
It is based on a two-layer LSTM with 8192 units in
each layer, or more than 300 times as many units
as our LM; at 1.04 billion parameters it has almost

12
https://github.com/tensorflow/models/

tree/master/lm_1b

B I U

N L P

Can a sequence LSTM
learn agreement?

does a language model learn agreement?

what if we used the best LM in the world?

B I U

N L P

Can a sequence LSTM
learn agreement?

does a language model learn agreement?

(a) (b)

(c) (d) (e)

.
Figure 4: Alternative tasks and additional experiments: (a) overall error rate across tasks (note that the y-axis
ends in 10%); (b) effect of count of attractors in homogeneous dependencies across training objectives; (c)
comparison of the Google LM (Jozefowicz et al., 2016) to our LM and one of our supervised verb inflection
systems, on a sample of sentences; (d) number prediction: effect of count of attractors using SRNs with
standard training or LSTM with targeted training; (e) number prediction: difference in error rate between
singular and plural subjects across RNN cell types. Error bars represent binomial 95% confidence intervals.

made eight times as many errors as the original num-
ber prediction network (6.78% compared to 0.83%),
and did substantially worse than the noun-only base-
lines (though recall that the noun-only baselines were
still explicitly trained to predict verb number).

The differences across the networks are more strik-
ing when we focus on dependencies with agreement
attractors (Figure 4b). Here, the language model
does worse than chance in the most difficult cases,
and only slightly better than the noun-only baselines.
The worse-than-chance performance suggests that
attractors actively confuse the networks rather than
cause them to make a random decision. The other
models degrade more gracefully with the number
of agreement attractors; overall, the grammaticality
judgment objective is somewhat more difficult than
the number prediction and verb inflection ones. In
summary, we conclude that while the LSTM is capa-
ble of learning syntax-sensitive agreement dependen-
cies under various objectives, the language-modeling
objective alone is not sufficient for learning such de-
pendencies, and a more direct form of training signal

is required.

Comparison to a large-scale language model:
One objection to our language modeling result is
that our LM faced a much harder objective than
our other models—predicting a distribution over
10,000 vocabulary items is certainly harder than bi-
nary classification—but was equipped with the same
capacity (50-dimensional hidden state and word vec-
tors). Would the performance gap between the LM
and the explicitly supervised models close if we in-
creased the capacity of the LM?

We address this question using a very large pub-
licly available LM (Jozefowicz et al., 2016), which
we refer to as the Google LM.12 The Google LM rep-
resent the current state-of-the-art in language mod-
eling: it is trained on a billion-word corpus (Chelba
et al., 2013), with a vocabulary of 800,000 words.
It is based on a two-layer LSTM with 8192 units in
each layer, or more than 300 times as many units
as our LM; at 1.04 billion parameters it has almost

12
https://github.com/tensorflow/models/

tree/master/lm_1b

Google's beast LM
does better than ours
but still struggles
considerably.

B I U

N L P

Can a sequence LSTM
learn agreement?

does a language model learn agreement?

LSTM-LM does not learn agreement.

Explicit error signal is required.

but with explicit signal,
LSTMs can learn agreement very well.

B I U

N L P

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

in many and diverse cases.

but we did manage to find some common trends.

B I U

N L P

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

noun compounds can be tricky

reaches 60% (Figure 4e).

Qualitative analysis: We manually examined a
sample of 200 cases in which the majority of the
20 runs of the number prediction network made the
wrong prediction. There were only 8890 such depen-
dencies (about 0.6%). Many of those were straight-
forward agreement attraction errors; others were dif-
ficult to interpret. We mention here three classes of
errors that can motivate future experiments.

The networks often misidentified the heads of
noun-noun compounds. In (17), for example, the
models predict a singular verb even though the num-
ber of the subject conservation refugees should be
determined by its head refugees. This suggests that
the networks didn’t master the structure of English
noun-noun compounds.14

(17) Conservation refugees live in a world col-
ored in shades of gray; limbo.

(18) Information technology (IT) assets com-
monly hold large volumes of confidential
data.

Some verbs that are ambiguous with plural nouns
seem to have been misanalyzed as plural nouns and
consequently act as attractors. The models predicted
a plural verb in the following two sentences even
though neither of them has any plural nouns, possibly
because of the ambiguous verbs drives and lands:

(19) The ship that the player drives has a very
high speed.

(20) It was also to be used to learn if the area
where the lander lands is typical of the sur-
rounding terrain.

Other errors appear to be due to difficulty not in
identifying the subject but in determining whether it
is plural or singular. In Example (22), in particular,
there is very little information in the left context of
the subject 5 paragraphs suggesting that the writer
considers it to be singular:

(21) Rabaul-based Japanese aircraft make three
dive-bombing attacks.

14The dependencies are presented as they appeared in the
corpus; the predicted number was the opposite of the correct one
(e.g., singular in (17), where the original is plural).

(22) The lead is also rather long; 5 paragraphs
is pretty lengthy for a 62 kilobyte article.

The last errors point to a limitation of the number
prediction task, which jointly evaluates the model’s
ability to identify the subject and its ability to assign
the correct number to noun phrases.

8 Related Work

The majority of NLP work on neural networks eval-
uates them on their performance in a task such as
language modeling or machine translation (Sunder-
meyer et al., 2012; Bahdanau et al., 2015). These
evaluation setups average over many different syn-
tactic constructions, making it difficult to isolate the
network’s syntactic capabilities.

Other studies have tested the capabilities of RNNs
to learn simple artificial languages. Gers and Schmid-
huber (2001) showed that LSTMs can learn the
context-free language anbn, generalizing to ns as
high as 1000 even when trained only on n 2
{1, . . . , 10}. Simple recurrent networks struggled
with this language (Rodriguez et al., 1999; Rodriguez,
2001). These results have been recently replicated
and extended by Joulin and Mikolov (2015).

Elman (1991) tested an SRN on a miniature lan-
guage that simulated English relative clauses, and
found that the network was only able to learn the
language under highly specific circumstances (El-
man, 1993), though later work has called some of his
conclusions into question (Rohde and Plaut, 1999;
Cartling, 2008). Frank et al. (2013) studied the ac-
quisition of anaphora coreference by SRNs, again
in a miniature language. Recently, Bowman et al.
(2015) tested the ability of LSTMs to learn an artifi-
cial language based on propositional logic. As in our
study, the performance of the network degraded as
the complexity of the test sentences increased.

Karpathy et al. (2016) present analyses and visual-
ization methods for character-level RNNs. Kádár et
al. (2016) and Li et al. (2016) suggest visualization
techniques for word-level RNNs trained to perform
tasks that aren’t explicitly syntactic (image caption-
ing and sentiment analysis).

Early work that used neural networks to model
grammaticality judgments includes Allen and Sei-
denberg (1999) and Lawrence et al. (1996). More re-
cently, the connection between grammaticality judg-

B I U

N L P

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

Relative clauses are hard.

Relative clauses: We now look in greater detail
into the network’s performance when the words that
intervened between the subject and verb contained
a relative clause. Relative clauses with attractors
are likely to be fairly challenging, for several rea-
sons. They typically contain a verb that agrees with
the attractor, reinforcing the misleading cue to noun
number. The attractor is often itself a subject of an
irrelevant verb, making a potential “agree with the
most recent subject” strategy unreliable. Finally, the
existence of a relative clause is sometimes not overtly
indicated by a function word (relativizer), as in (11)
(for comparison, see the minimally different (12)):

(11) The landmarks this article lists here are
also run-of-the-mill and not notable.

(12) The landmarks that this article lists here
are also run-of-the-mill and not notable.

For data sparsity reasons we restricted our attention
to dependencies with a single attractor and no other
intervening nouns. As Figure 2d shows, attraction
errors were more frequent in dependencies with an
overt relative clause (9.9% errors) than in dependen-
cies without a relative clause (3.2%), and consider-
ably more frequent when the relative clause was not
introduced by an overt relativizer (25%). As in the
case of multiple attractors, however, while the model
struggled with the more difficult dependencies, its
performance was much better than random guessing,
and slightly better than a majority-class strategy.

Word representations: We explored the 50-
dimensional word representations acquired by the
model by performing a principal component anal-
ysis. We assigned a part-of-speech (POS) to each
word based on the word’s most common POS in the
corpus. We only considered relatively ambiguous
words, in which a single POS accounted for more
than 90% of the word’s occurrences in the corpus.
Figure 2f shows that the first principal component
corresponded almost perfectly to the expected num-
ber of the noun, suggesting that the model learned
the number of specific words very well; recall that
the model did not have access during training to noun
number annotations or to morphological suffixes such
as -s that could be used to identify plurals.

Visualizing the network’s activations: We start
investigating the inner workings of the number pre-
diction network by analyzing its activation in re-
sponse to particular syntactic constructions. To sim-
plify the analysis, we deviate from our practice in the
rest of this paper and use constructed sentences.

We first constructed sets of sentence prefixes based
on the following patterns:

(13) PP: The toy(s) of the boy(s)...

(14) RC: The toy(s) that the boy(s)...

These patterns differ by exactly one function word,
which determines the type of the modifier of the main
clause subject: a prepositional phrase (PP) in the first
sentence and a relative clause (RC) in the second. In
PP sentences the correct number of the upcoming
verb is determined by the main clause subject toy(s);
in RC sentences it is determined by the embedded
subject boy(s).

We generated all four versions of each pattern, and
repeated the process ten times with different lexical
items (the house(s) of/that the girl(s), the computer(s)
of/that the student(s), etc.), for a total of 80 sentences.
The network made correct number predictions for all
40 PP sentences, but made three errors in RC sen-
tences. We averaged the word-by-word activations
across all sets of ten sentences that had the same com-
bination of modifier (PP or RC), first noun number
and second noun number. Plots of the activation of
all 50 units are provided in the Appendix (Figure
5). Figure 3a highlights a unit (Unit 1) that shows
a particularly clear pattern: it tracks the number of
the main clause subject throughout the PP modifier,
resets when it reaches the relativizer that which intro-
duces the RC modifier, and then switches to tracking
the number of the embedded subject.

To explore how the network deals with dependen-
cies spanning a larger number of words, we tracked
its activation during the processing of the following
two sentences:9

(15) The houses of/that the man from the office
across the street...

The network made the correct prediction for the PP
9We simplified this experiment in light of the relative robust-

ness of the first experiment to lexical items and to whether each
of the nouns was singular or plural.

B I U

N L P

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

Reduced relative clauses are harder.

Relative clauses: We now look in greater detail
into the network’s performance when the words that
intervened between the subject and verb contained
a relative clause. Relative clauses with attractors
are likely to be fairly challenging, for several rea-
sons. They typically contain a verb that agrees with
the attractor, reinforcing the misleading cue to noun
number. The attractor is often itself a subject of an
irrelevant verb, making a potential “agree with the
most recent subject” strategy unreliable. Finally, the
existence of a relative clause is sometimes not overtly
indicated by a function word (relativizer), as in (11)
(for comparison, see the minimally different (12)):

(11) The landmarks this article lists here are
also run-of-the-mill and not notable.

(12) The landmarks that this article lists here
are also run-of-the-mill and not notable.

For data sparsity reasons we restricted our attention
to dependencies with a single attractor and no other
intervening nouns. As Figure 2d shows, attraction
errors were more frequent in dependencies with an
overt relative clause (9.9% errors) than in dependen-
cies without a relative clause (3.2%), and consider-
ably more frequent when the relative clause was not
introduced by an overt relativizer (25%). As in the
case of multiple attractors, however, while the model
struggled with the more difficult dependencies, its
performance was much better than random guessing,
and slightly better than a majority-class strategy.

Word representations: We explored the 50-
dimensional word representations acquired by the
model by performing a principal component anal-
ysis. We assigned a part-of-speech (POS) to each
word based on the word’s most common POS in the
corpus. We only considered relatively ambiguous
words, in which a single POS accounted for more
than 90% of the word’s occurrences in the corpus.
Figure 2f shows that the first principal component
corresponded almost perfectly to the expected num-
ber of the noun, suggesting that the model learned
the number of specific words very well; recall that
the model did not have access during training to noun
number annotations or to morphological suffixes such
as -s that could be used to identify plurals.

Visualizing the network’s activations: We start
investigating the inner workings of the number pre-
diction network by analyzing its activation in re-
sponse to particular syntactic constructions. To sim-
plify the analysis, we deviate from our practice in the
rest of this paper and use constructed sentences.

We first constructed sets of sentence prefixes based
on the following patterns:

(13) PP: The toy(s) of the boy(s)...

(14) RC: The toy(s) that the boy(s)...

These patterns differ by exactly one function word,
which determines the type of the modifier of the main
clause subject: a prepositional phrase (PP) in the first
sentence and a relative clause (RC) in the second. In
PP sentences the correct number of the upcoming
verb is determined by the main clause subject toy(s);
in RC sentences it is determined by the embedded
subject boy(s).

We generated all four versions of each pattern, and
repeated the process ten times with different lexical
items (the house(s) of/that the girl(s), the computer(s)
of/that the student(s), etc.), for a total of 80 sentences.
The network made correct number predictions for all
40 PP sentences, but made three errors in RC sen-
tences. We averaged the word-by-word activations
across all sets of ten sentences that had the same com-
bination of modifier (PP or RC), first noun number
and second noun number. Plots of the activation of
all 50 units are provided in the Appendix (Figure
5). Figure 3a highlights a unit (Unit 1) that shows
a particularly clear pattern: it tracks the number of
the main clause subject throughout the PP modifier,
resets when it reaches the relativizer that which intro-
duces the RC modifier, and then switches to tracking
the number of the embedded subject.

To explore how the network deals with dependen-
cies spanning a larger number of words, we tracked
its activation during the processing of the following
two sentences:9

(15) The houses of/that the man from the office
across the street...

The network made the correct prediction for the PP
9We simplified this experiment in light of the relative robust-

ness of the first experiment to lexical items and to whether each
of the nouns was singular or plural.

B I U

N L P

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

No relative clause
Overt relative clause
Reduced Relative clause

Error
3.2%
9.9%
25%

B I U

N L P

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

No relative clause
Overt relative clause
Reduced Relative clause

Error
3.2%
9.9%
25%

humans also fail much more on reduced relatives.

B I U

N L P

The agreement experiment:
recap

• We wanted to show LSTMs can't learn hierarchy.

• --> We sort-of failed.

• LSTMs learn to cope with natural-language
patterns that exhibit hierarchy, based on minimal
and indirect supervision.

• But some sort of relevant supervision is required.

B I U

N L P

What happens  
beyond English?

• English is a simple language.

• We started exploring more interesting ones.

• If you want to collaborate on cool agreement
patterns in your favorite language, let's discuss!

B I U

N L P

Story so far:

• RNNs are very flexible sequence encoders.

• We can train them to encode rather intricate
syntactic structures.

• Can we use them for parsing?

B I U

N L P

Story so far:

• RNNs are very flexible sequence encoders.

• We can train them to encode rather intricate
syntactic structures.

• Can we use them for parsing?

B I U

N L P

Parsing with LSTMs, Take 1
B I U

N L P

Easy-First Dependency Parsing with Hierarchical Tree LSTMs

Eliyahu Kiperwasser
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

elikip@gmail.com

Yoav Goldberg
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

yoav.goldberg@gmail.com

Abstract

We suggest a compositional vector represen-
tation of parse trees that relies on a recursive
combination of recurrent-neural network en-
coders. To demonstrate its effectiveness, we
use the representation as the backbone of a
greedy, bottom-up dependency parser, achiev-
ing very strong accuracies for English and
Chinese, without relying on external word
embeddings. The parser’s implementation is
available for download at the first author’s
webpage.

1 Introduction

Dependency-based syntactic representations of sen-
tences are central to many language processing tasks
(Kübler et al., 2009). Dependency parse-trees en-
code not only the syntactic structure of a sentence
but also many aspects of its semantics.

A recent trend in NLP is concerned with encod-
ing sentences as vectors (“sentence embeddings”),
which can then be used for further prediction tasks.
Recurrent neural networks (RNNs) (Elman, 1990),
and in particular methods based on the LSTM archi-
tecture (Hochreiter and Schmidhuber, 1997), work
very well for modeling sequences, and constantly
obtain state-of-the-art results on both language-
modeling and prediction tasks (see, e.g. (Mikolov
et al., 2010)).

Several works attempt to extend recurrent neu-
ral networks to work on trees (see Section 8 for a
brief overview), giving rise to the so-called recursive
neural networks (Goller and Kuchler, 1996; Socher
et al., 2010). However, recursive neural networks

do not cope well with trees with arbitrary branch-
ing factors – most work require the encoded trees to
be binary-branching, or have a fixed maximum arity.
Other attempts allow arbitrary branching factors, at
the expense of ignoring the order of the modifiers.

In contrast, we propose a tree-encoding that nat-
urally supports trees with arbitrary branching fac-
tors, making it particularly appealing for depen-
dency trees. Our tree encoder uses recurrent neural
networks as a building block: we model the left and
right sequences of modifiers using RNNs, which are
composed in a recursive manner to form a tree (Sec-
tion 3). We use our tree representation for encoding
the partially-built parse trees in a greedy, bottom-up
dependency parser which is based on the easy-first
transition-system of Goldberg and Elhadad (2010).

Using the Hierarchical Tree LSTM representa-
tion, and without using any external embeddings,
our parser achieves parsing accuracies of 92.6 UAS
and 90.2 LAS on the PTB (Stanford dependencies)
and 86.1 UAS and 84.4 LAS on the Chinese tree-
bank, while relying on greedy decoding.

To the best of our knowledge, this is the first work
to demonstrate competitive parsing accuracies for
full-scale parsing while relying solely on recursive,
compositional tree representations, and without us-
ing a reranking framework. We discuss related work
in Section 8.

While the parsing experiments demonstrate the
suitability of our representation for capturing the
structural elements in the parse tree that are useful
for predicting parsing decisions, we are interested in
exploring the use of the RNN-based compositional
vector representation of parse trees also for seman-

445

Transactions of the Association for Computational Linguistics, vol. 4, pp. 445–461, 2016. Action Editor: Noah Smith.
Submission batch: 11/2015; Revision batch: 2/2016; Published 8/2016.

c�2016 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

• LSTMs are SOTA at modeling sequences.

• Encode sequence of modifiers as an LSTM.

• Combine in a recursive manner.

 great for dependency trees.

B I U

N L P Core Idea

Core Idea

• Two LSTMs
• head + Left modifiers encoded w/ LSTM-L
• head + Right modifiers encoded w/ LSTM-R
• The Left and Right end states are concatenated

t

t.r1 t.r2 t.r3 t.r4t.l1t.l2t.l3

enc(t.r1)

R

enc(t.r2)

R

enc(t.r3)

R

enc(t.r4)

R

enc(t.l1)

L

enc(t.l2)

L

enc(t.l3)

L

t.w

L R

concat

enc(t)

B I U

N L P

• Two LSTMs
• head + Left modifiers encoded w/ LSTM-L
• head + Right modifiers encoded w/ LSTM-R
• The Left and Right end states are concatenated

t

t.r1 t.r2 t.r3 t.r4t.l1t.l2t.l3

enc(t.r1)

R

enc(t.r2)

R

enc(t.r3)

R

enc(t.r4)

R

enc(t.l1)

L

enc(t.l2)

L

enc(t.l3)

L

t.w

L R

concat

enc(t)

Core Idea
B I U

N L P

• Two LSTMs
• head + Left modifiers encoded w/ LSTM-L
• head + Right modifiers encoded w/ LSTM-R
• The Left and Right end states are concatenated

t

t.r1 t.r2 t.r3 t.r4t.l1t.l2t.l3

enc(t.r1)

R

enc(t.r2)

R

enc(t.r3)

R

enc(t.r4)

R

enc(t.l1)

L

enc(t.l2)

L

enc(t.l3)

L

t.w

L R

concat

enc(t)

Core IdeaCore Idea
B I U

N L P

• Two LSTMs
• head + Left modifiers encoded w/ LSTM-L
• head + Right modifiers encoded w/ LSTM-R
• The Left and Right end states are concatenated

t

t.r1 t.r2 t.r3 t.r4t.l1t.l2t.l3

enc(t.r1)

R

enc(t.r2)

R

enc(t.r3)

R

enc(t.r4)

R

enc(t.l1)

L

enc(t.l2)

L

enc(t.l3)

L

t.w

L R

concat

enc(t)

Core Idea
B I U

N L P

the black fox who

really

likes

apples

did

not

jump

over a

lazy dog yesterday

L R L R L R L R L R L R L R L R L R

L L L L LRL R

RL R

R

L

R

L

L R

RL R

R

L

R R

L L

the black

reallyfoxL

foxR

whoL whoR

likesL likesR

jumpL

jumpR

overL overR

dogL dogR

the black fox who really likes apples

who really likes apples

really likes apples

over a lazy dog

apples

a lazy dog

did

not

a

lazy

yesterday

the black fox who really likes apples did not jump over a lazy dog yesterday

B I U

N L P

the black fox who

really

likes

apples

did

not

jump

over a

lazy dog yesterday

L R L R L R L R L R L R L R L R L R

L L L L LRL R

RL R

R

L

R

L

L R

RL R

R

L

R R

L L

the black

reallyfoxL

foxR

whoL whoR

likesL likesR

jumpL

jumpR

overL overR

dogL dogR

the black fox who really likes apples

who really likes apples

really likes apples

over a lazy dog

apples

a lazy dog

did

not

a

lazy

yesterday

the black fox who really likes apples did not jump over a lazy dog yesterday

B I U

N L P

the black fox who

really

likes

apples

did

not

jump

over a

lazy dog yesterday

L R L R L R L R L R L R L R L R L R

L L L L LRL R

RL R

R

L

R

L

L R

RL R

R

L

R R

L L

the black

reallyfoxL

foxR

whoL whoR

likesL likesR

jumpL

jumpR

overL overR

dogL dogR

the black fox who really likes apples

who really likes apples

really likes apples

over a lazy dog

apples

a lazy dog

did

not

a

lazy

yesterday

the black fox who really likes apples did not jump over a lazy dog yesterday

B I U

N L P

the black fox who

really

likes

apples

did

not

jump

over a

lazy dog yesterday

L R L R L R L R L R L R L R L R L R

L L L R L LL R

RL R

R

L

R

L

L R

RL R

R

L

R R

L L

the black

reallyfoxL

foxR

whoL whoR

likesL likesR

jumpL

jumpR

overL overR

dogL dogR

the black fox who really likes apples

who really likes apples

really likes apples

over a lazy dog

apples

a lazy dog

did

not

a

lazy

yesterday

the black fox who really likes apples did not jump over a lazy dog yesterday

B I U

N L P

the black fox who

really

likes

apples

did

not

jump

over a

lazy dog yesterday

L R L R L R L R L R L R L R L RL R

L L L L LRL R

RL R

R

L

R

L

L R

RL R

R

L

R R

L L

the black

reallyfoxL

foxR

whoL whoR

likesL likesR

jumpL

jumpR

overL overR

dogL dogR

the black fox who really likes apples

who really likes apples

really likes apples

over a lazy dog

apples

a lazy dog

did

not

a

lazy

yesterday

the black fox who really likes apples did not jump over a lazy dog yesterday

B I U

N L P

Hierarchical Tree LSTM (Example)

the brown fox jumped with joy over the fence

root

LeftChildren(LSTM)
 ��������������

RightChildren(LSTM)
���������������!

Sub Tree (jumped)

the brown fox with joy over the fence

LeftChildren(LSTM)
 ��������������

RightChildren(LSTM)
���������������!

RightChildren(LSTM)
���������������!

LeftChildren(LSTM)
 ��������������

RightChildren(LSTM)
���������������!

LeftChildren(LSTM)
 ��������������

12

Hierarchical Tree LSTM (Example)

the brown fox jumped with joy over the fence

root

jumped

LeftChildren(LSTM)
 ��������������

jumped with joy over the fence

RightChildren(LSTM)
���������������!

Sub Tree (jumped)

the brown fox

with joy over the fence

the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

with joy

RightChildren(LSTM)
���������������!

with

LeftChildren(LSTM)
 ��������������

over the fence

RightChildren(LSTM)
���������������!

over

LeftChildren(LSTM)
 ��������������

12

Hierarchical Tree LSTM (Example)

the brown fox jumped with joy over the fence

root

jumped

LeftChildren(LSTM)
 ��������������

jumped with joy over the fence

RightChildren(LSTM)
���������������!

Sub Tree (jumped)

the brown fox with joy

over the fence

the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

with joy

RightChildren(LSTM)
���������������!

with

LeftChildren(LSTM)
 ��������������

Sub Tree (with)

over the fence

RightChildren(LSTM)
���������������!

over

LeftChildren(LSTM)
 ��������������

12

Hierarchical Tree LSTM (Example)

the brown fox jumped with joy over the fence

root

jumped

LeftChildren(LSTM)
 ��������������

jumped with joy over the fence

RightChildren(LSTM)
���������������!

Sub Tree (jumped)

the brown fox with joy over the fence

the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

with joy

RightChildren(LSTM)
���������������!

with

LeftChildren(LSTM)
 ��������������

Sub Tree (with)

over the fence

RightChildren(LSTM)
���������������!

over

LeftChildren(LSTM)
 ��������������

Sub Tree (over)

12

Hierarchical Tree LSTM (Example)

the brown fox jumped with joy over the fence

root

the brown fox jumped

LeftChildren(LSTM)
 ��������������

jumped with joy over the fence

RightChildren(LSTM)
���������������!

Sub Tree (jumped)

the brown fox with joy over the fence

the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

with joy

RightChildren(LSTM)
���������������!

with

LeftChildren(LSTM)
 ��������������

Sub Tree (with)

over the fence

RightChildren(LSTM)
���������������!

over

LeftChildren(LSTM)
 ��������������

Sub Tree (over)

12

Hierarchical Tree LSTM (Example)

the brown fox jumped with joy over the fence

root

the brown fox jumped

LeftChildren(LSTM)
 ��������������

jumped with joy over the fence

RightChildren(LSTM)
���������������!

Sub Tree (jumped)

the brown fox with joy over the fence

the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

with joy

RightChildren(LSTM)
���������������!

with

LeftChildren(LSTM)
 ��������������

Sub Tree (with)

over the fence

RightChildren(LSTM)
���������������!

over

LeftChildren(LSTM)
 ��������������

Sub Tree (over)

12

Hierarchical Tree LSTM (Example)

the brown fox jumped with joy over the fence

root

the brown fox jumped

LeftChildren(LSTM)
 ��������������

jumped with joy over the fence

RightChildren(LSTM)
���������������!

Sub Tree (jumped)

the brown fox with joy over the fence

the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

with joy

RightChildren(LSTM)
���������������!

with

LeftChildren(LSTM)
 ��������������

Sub Tree (with)Sub Tree (with)

over the fence

RightChildren(LSTM)
���������������!

over

LeftChildren(LSTM)
 ��������������

Sub Tree (over)

12

Hierarchical Tree LSTM (Example)

the brown fox jumped with joy over the fence

root

the brown fox jumped

LeftChildren(LSTM)
 ��������������

jumped with joy over the fence

RightChildren(LSTM)
���������������!

Sub Tree (jumped)

the brown fox with joy over the fence

the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

with joy

RightChildren(LSTM)
���������������!

with

LeftChildren(LSTM)
 ��������������

Sub Tree (with)

over the fence

RightChildren(LSTM)
���������������!

over

LeftChildren(LSTM)
 ��������������

Sub Tree (over)Sub Tree (over)

12

How Do We Capture Leafs?

the brown fox jumped with joy over the fence

root

the brown fox jumped

LeftChildren(LSTM)
 ��������������

jumped with joy over the fence

RightChildren(LSTM)
���������������!

Sub Tree (jumped)

the brown fox with joy over the fence

the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

with joy

RightChildren(LSTM)
���������������!

with

LeftChildren(LSTM)
 ��������������

Sub Tree (with)

over the fence

RightChildren(LSTM)
���������������!

over

LeftChildren(LSTM)
 ��������������

Sub Tree (over)

12

Easy-First Parsing (Score Function)

the fox jumped

SAttachLeft

SAttachRight

with joy

brown

SubTree(fox)SubTree(the) SubTree(jumped) SubTree(with)

MLP

(SAttachLeft,SAttachRight)

How do we e�ciently compute the Hierarchical Tree LSTM

representation for each pending sub-tree?

18

Easy-First Parsing (Score Function)

the fox jumped

SAttachLeft

SAttachRight

with joy

brown

SubTree(fox)SubTree(the) SubTree(jumped) SubTree(with)

MLP

(SAttachLeft,SAttachRight)

How do we e�ciently compute the Hierarchical Tree LSTM

representation for each pending sub-tree?

18

Easy-First Parsing (Score Function)

the fox jumped

SAttachLeft

SAttachRight

with joy

brown

SubTree(fox)SubTree(the) SubTree(jumped) SubTree(with)

MLP

(SAttachLeft,SAttachRight)

How do we e�ciently compute the Hierarchical Tree LSTM

representation for each pending sub-tree?

18

Easy-First Parsing (Score Function)

the fox jumped

SAttachLeft

SAttachRight

with joy

brown

SubTree(fox)SubTree(the) SubTree(jumped) SubTree(with)

MLP

(SAttachLeft,SAttachRight)

How do we e�ciently compute the Hierarchical Tree LSTM

representation for each pending sub-tree?

18

Bottom-Up Tree Representation Building

the fox jumped with joy

brown

+

fox jumped with joy

brownthe

brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

)
the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

19

Bottom-Up Tree Representation Building

the fox jumped with joy

brown

+

fox jumped with joy

brownthe

brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

)
the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

19

Bottom-Up Tree Representation Building

the fox jumped with joy

brown

+

fox jumped with joy

brownthe

brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

)
the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

19

Bottom-Up Tree Representation Building

the fox jumped with joy

brown

+

fox jumped with joy

brownthe

brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

)
the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

19

Bottom-Up Tree Representation Building

the fox jumped with joy

brown

+

fox jumped with joy

brownthe

brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

)
the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

19

Bottom-Up Tree Representation Building

the fox jumped with joy

brown

+

fox jumped with joy

brownthe

brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

)

the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

19

Bottom-Up Tree Representation Building

the fox jumped with joy

brown

+

fox jumped with joy

brownthe

brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

)
the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

19

Bottom-Up Tree Representation Building

the fox jumped with joy

brown

+

fox jumped with joy

brownthe

brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

)
the brown fox

LeftChildren(LSTM)
 ��������������

fox

RightChildren(LSTM)
���������������!

Sub Tree (fox)

19

Constant Time!

Easy-First Parsing (Continued)

fox jumped with joy

brownthe

fox jumped with

brownthe joy

fox jumped

brownthe with

joy

jumped

fox

brownthe

with

joy

20

Easy First Parsing with
Hierarchical Tree LSTMs

• It works! We get nice results.

• But.

• Turns out can actually do something much simpler.

B I U

N L P

Parsing with LSTMs, Take 2
Simple and Accurate Dependency Parsing

Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

elikip@gmail.com

Yoav Goldberg
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

yoav.goldberg@gmail.com

Abstract

We present a simple and effective scheme
for dependency parsing which is based on
bidirectional-LSTMs (BiLSTMs). Each sen-
tence token is associated with a BiLSTM vec-
tor representing the token in its sentential con-
text, and feature vectors are constructed by
concatenating a few BiLSTM vectors. The
BiLSTM is trained jointly with the parser ob-
jective, resulting in very effective feature ex-
tractors for parsing. We demonstrate the ef-
fectiveness of the approach by applying it to
a greedy transition based parser as well as to
a globally optimized graph-based parser. The
resulting parsers have very simple architec-
tures, and match or surpass the state-of-the-art
accuracies on English and Chinese.

1 Introduction
The focus of this paper is on feature represen-
tation for dependency parsing, using recent tech-
niques from the neural-networks (“deep learning”)
literature. Modern approaches to dependency pars-
ing can be broadly categorized into graph-based
and transition-based parsers (Kübler et al., 2008).
Graph-based parsers (McDonald, 2006) treat pars-
ing as a search-based structured prediction prob-
lem in which the goal is learning a scoring func-
tion over dependency trees such that the correct tree
is scored above all other trees. Transition-based
parsers (Nivre, 2004; Nivre, 2008) treat parsing as
a sequence of actions that produce a parse tree, and
a classifier is trained to score the possible actions at
each stage of the process and guide the parsing pro-
cess. Perhaps the simplest graph-based parsers are

arc-factored (first order) models (McDonald, 2006),
in which the scoring function for a tree decomposes
over the individual arcs of the tree. More elaborate
models look at larger (overlapping) parts, requiring
more sophisticated inference and training algorithms
(Martins et al., 2009; Koo and Collins, 2010). The
basic transition-based parsers work in a greedy man-
ner, performing a series of locally-optimal decisions,
and boast very fast parsing speeds. More advanced
transition-based parsers introduce some search into
the process using a beam (Zhang and Clark, 2008)
or dynamic programming (Huang and Sagae, 2010).

Regardless of the details of the parsing framework
being used, a crucial step in parser design is choos-
ing the right feature function for the underlying sta-
tistical model. Recent work (see Section 2.2 for an
overview) attempt to alleviate parts of the feature
function design problem by moving from linear to
non-linear models, enabling the modeler to focus on
a small set of “core” features and leaving it up to the
machine-learning machinery to come up with good
feature combinations (Chen and Manning, 2014; Pei
et al., 2015; Lei et al., 2014; Taub-Tabib et al.,
2015). However, the need to carefully define a set
of core features remains. For example, the work
of (Chen and Manning, 2014) uses 18 different el-
ements in its feature function, while the work of
(Pei et al., 2015) uses 21 different elements. Other
works, notably (Dyer et al., 2015; Le and Zuidema,
2014), propose more sophisticated feature represen-
tations, in which the feature engineering is replaced
with architecture engineering.

In this work, we suggest an approach which is
much simpler in terms of both feature engineering

B I U

N L P

Parsing with LSTMs, Take 2
Simple and Accurate Dependency Parsing

Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

elikip@gmail.com

Yoav Goldberg
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

yoav.goldberg@gmail.com

Abstract

We present a simple and effective scheme
for dependency parsing which is based on
bidirectional-LSTMs (BiLSTMs). Each sen-
tence token is associated with a BiLSTM vec-
tor representing the token in its sentential con-
text, and feature vectors are constructed by
concatenating a few BiLSTM vectors. The
BiLSTM is trained jointly with the parser ob-
jective, resulting in very effective feature ex-
tractors for parsing. We demonstrate the ef-
fectiveness of the approach by applying it to
a greedy transition based parser as well as to
a globally optimized graph-based parser. The
resulting parsers have very simple architec-
tures, and match or surpass the state-of-the-art
accuracies on English and Chinese.

1 Introduction
The focus of this paper is on feature represen-
tation for dependency parsing, using recent tech-
niques from the neural-networks (“deep learning”)
literature. Modern approaches to dependency pars-
ing can be broadly categorized into graph-based
and transition-based parsers (Kübler et al., 2008).
Graph-based parsers (McDonald, 2006) treat pars-
ing as a search-based structured prediction prob-
lem in which the goal is learning a scoring func-
tion over dependency trees such that the correct tree
is scored above all other trees. Transition-based
parsers (Nivre, 2004; Nivre, 2008) treat parsing as
a sequence of actions that produce a parse tree, and
a classifier is trained to score the possible actions at
each stage of the process and guide the parsing pro-
cess. Perhaps the simplest graph-based parsers are

arc-factored (first order) models (McDonald, 2006),
in which the scoring function for a tree decomposes
over the individual arcs of the tree. More elaborate
models look at larger (overlapping) parts, requiring
more sophisticated inference and training algorithms
(Martins et al., 2009; Koo and Collins, 2010). The
basic transition-based parsers work in a greedy man-
ner, performing a series of locally-optimal decisions,
and boast very fast parsing speeds. More advanced
transition-based parsers introduce some search into
the process using a beam (Zhang and Clark, 2008)
or dynamic programming (Huang and Sagae, 2010).

Regardless of the details of the parsing framework
being used, a crucial step in parser design is choos-
ing the right feature function for the underlying sta-
tistical model. Recent work (see Section 2.2 for an
overview) attempt to alleviate parts of the feature
function design problem by moving from linear to
non-linear models, enabling the modeler to focus on
a small set of “core” features and leaving it up to the
machine-learning machinery to come up with good
feature combinations (Chen and Manning, 2014; Pei
et al., 2015; Lei et al., 2014; Taub-Tabib et al.,
2015). However, the need to carefully define a set
of core features remains. For example, the work
of (Chen and Manning, 2014) uses 18 different el-
ements in its feature function, while the work of
(Pei et al., 2015) uses 21 different elements. Other
works, notably (Dyer et al., 2015; Le and Zuidema,
2014), propose more sophisticated feature represen-
tations, in which the feature engineering is replaced
with architecture engineering.

In this work, we suggest an approach which is
much simpler in terms of both feature engineering

B I U

N L P

Bi-directional RNNs

B I U

N L P

RNNs so far:

R,O

x
1

s
0

predict &

calc loss

y
1

R,O

x
2

s
1

predict &

calc loss

y
2

R,O

x
3

s
2

predict &

calc loss

y
3

R,O

x
4

s
3

predict &

calc loss

y
4

R,O

x
5

s
4

predict &

calc loss

y
5

sum

loss

Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation y

n

, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation y

n

, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as y

n

. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that x

n

corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t

1

, . . . , t
n

, an encoder RNN is first used to encode the sentence x
1:n

into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x

1:n

to predict the label t
i

at each position i. This approach

50

Each state encodes the entire history up to that state.
This is not bad. But what about the future?

B I U

N L P

Bidirectional RNNs

One RNN runs left to right.  
Another runs right to left.
Encode both future and history of a word.

Rf ,Of

x
the

concat

yf

1

sf
0

Rf ,Of

x
brown

concat

yf

2

sf
1

Rf ,Of

x
fox

concat

yf

3

sf
2

Rf ,Of

x
jumped

concat

yf

4

sf
3

Rf ,Of

x⇤

concat

yf

5

sf
4

sf
5

Rb,Ob

s
0

sb
0

yb

1

Rb,Ob

s
1

sb
1

yb

2

Rb,Ob

s
2

sb
2

yb

3

Rb,Ob

s
3

sb
3

yb

4

Rb,Ob

s
4

sb
4

yb

5

sb
5

y
the

y
brown

y
fox

y
jumped

y⇤

Figure 11: BI-RNN over the sentence “the brown fox jumped .”.

looking at the k top-most elements of the stack, the RNN framework can be used to provide
a fixed-sized vector encoding of the entire stack.

The main intuition is that a stack is essentially a sequence, and so the stack state can be
represented by taking the stack elements and feeding them in order into an RNN, resulting
in a final encoding of the entire stack. In order to do this computation e�ciently (without
performing an O(n) stack encoding operation each time the stack changes), the RNN state
is maintained together with the stack state. If the stack was push-only, this would be
trivial: whenever a new element x is pushed into the stack, the corresponding vector x
will be used together with the RNN state s

i

in order to obtain a new state s
i+1

. Dealing
with pop operation is more challenging, but can be solved by using the persistent-stack
data-structure (Okasaki, 1999; Goldberg, Zhao, & Huang, 2013). Persistent, or immutable,
data-structures keep old versions of themselves intact when modified. The persistent stack
construction represents a stack as a pointer to the head of a linked list. An empty stack is
the empty list. The push operation appends an element to the list, returning the new head.
The pop operation then returns the parent of the head, but keeping the original list intact.
From the point of view of someone who held a pointer to the previous head, the stack did
not change. A subsequent push operation will add a new child to the same node. Applying
this procedure throughout the lifetime of the stack results in a tree, where the root is an
empty stack and each path from a node to the root represents an intermediary stack state.
Figure 12 provides an example of such a tree. The same process can be applied in the
computation graph construction, creating an RNN with a tree structure instead of a chain
structure. Backpropagating the error from a given node will then a↵ect all the elements
that participated in the stack when the node was created, in order. Figure 13 shows the
computation graph for the stack-RNN corresponding to the last state in Figure 12. This
modeling approach was proposed independently by Dyer et al and Watanabe et al (Dyer
et al., 2015; Watanabe & Sumita, 2015) for transition-based dependency parsing.

53

B I U

N L P

Bidirectional RNNs

One RNN runs left to right.  
Another runs right to left.
Encode both future and history of a word.

Rf ,Of

x
the

concat

yf

1

sf
0

Rf ,Of

x
brown

concat

yf

2

sf
1

Rf ,Of

x
fox

concat

yf

3

sf
2

Rf ,Of

x
jumped

concat

yf

4

sf
3

Rf ,Of

x⇤

concat

yf

5

sf
4

sf
5

Rb,Ob

s
0

sb
0

yb

1

Rb,Ob

s
1

sb
1

yb

2

Rb,Ob

s
2

sb
2

yb

3

Rb,Ob

s
3

sb
3

yb

4

Rb,Ob

s
4

sb
4

yb

5

sb
5

y
the

y
brown

y
fox

y
jumped

y⇤

Figure 11: BI-RNN over the sentence “the brown fox jumped .”.

looking at the k top-most elements of the stack, the RNN framework can be used to provide
a fixed-sized vector encoding of the entire stack.

The main intuition is that a stack is essentially a sequence, and so the stack state can be
represented by taking the stack elements and feeding them in order into an RNN, resulting
in a final encoding of the entire stack. In order to do this computation e�ciently (without
performing an O(n) stack encoding operation each time the stack changes), the RNN state
is maintained together with the stack state. If the stack was push-only, this would be
trivial: whenever a new element x is pushed into the stack, the corresponding vector x
will be used together with the RNN state s

i

in order to obtain a new state s
i+1

. Dealing
with pop operation is more challenging, but can be solved by using the persistent-stack
data-structure (Okasaki, 1999; Goldberg, Zhao, & Huang, 2013). Persistent, or immutable,
data-structures keep old versions of themselves intact when modified. The persistent stack
construction represents a stack as a pointer to the head of a linked list. An empty stack is
the empty list. The push operation appends an element to the list, returning the new head.
The pop operation then returns the parent of the head, but keeping the original list intact.
From the point of view of someone who held a pointer to the previous head, the stack did
not change. A subsequent push operation will add a new child to the same node. Applying
this procedure throughout the lifetime of the stack results in a tree, where the root is an
empty stack and each path from a node to the root represents an intermediary stack state.
Figure 12 provides an example of such a tree. The same process can be applied in the
computation graph construction, creating an RNN with a tree structure instead of a chain
structure. Backpropagating the error from a given node will then a↵ect all the elements
that participated in the stack when the node was created, in order. Figure 13 shows the
computation graph for the stack-RNN corresponding to the last state in Figure 12. This
modeling approach was proposed independently by Dyer et al and Watanabe et al (Dyer
et al., 2015; Watanabe & Sumita, 2015) for transition-based dependency parsing.

53

B I U

N L P

Bidirectional RNNs

One RNN runs left to right.  
Another runs right to left.
Encode both future and history of a word.

Rf ,Of

x
the

concat

yf

1

sf
0

Rf ,Of

x
brown

concat

yf

2

sf
1

Rf ,Of

x
fox

concat

yf

3

sf
2

Rf ,Of

x
jumped

concat

yf

4

sf
3

Rf ,Of

x⇤

concat

yf

5

sf
4

sf
5

Rb,Ob

s
0

sb
0

yb

1

Rb,Ob

s
1

sb
1

yb

2

Rb,Ob

s
2

sb
2

yb

3

Rb,Ob

s
3

sb
3

yb

4

Rb,Ob

s
4

sb
4

yb

5

sb
5

y
the

y
brown

y
fox

y
jumped

y⇤

Figure 11: BI-RNN over the sentence “the brown fox jumped .”.

looking at the k top-most elements of the stack, the RNN framework can be used to provide
a fixed-sized vector encoding of the entire stack.

The main intuition is that a stack is essentially a sequence, and so the stack state can be
represented by taking the stack elements and feeding them in order into an RNN, resulting
in a final encoding of the entire stack. In order to do this computation e�ciently (without
performing an O(n) stack encoding operation each time the stack changes), the RNN state
is maintained together with the stack state. If the stack was push-only, this would be
trivial: whenever a new element x is pushed into the stack, the corresponding vector x
will be used together with the RNN state s

i

in order to obtain a new state s
i+1

. Dealing
with pop operation is more challenging, but can be solved by using the persistent-stack
data-structure (Okasaki, 1999; Goldberg, Zhao, & Huang, 2013). Persistent, or immutable,
data-structures keep old versions of themselves intact when modified. The persistent stack
construction represents a stack as a pointer to the head of a linked list. An empty stack is
the empty list. The push operation appends an element to the list, returning the new head.
The pop operation then returns the parent of the head, but keeping the original list intact.
From the point of view of someone who held a pointer to the previous head, the stack did
not change. A subsequent push operation will add a new child to the same node. Applying
this procedure throughout the lifetime of the stack results in a tree, where the root is an
empty stack and each path from a node to the root represents an intermediary stack state.
Figure 12 provides an example of such a tree. The same process can be applied in the
computation graph construction, creating an RNN with a tree structure instead of a chain
structure. Backpropagating the error from a given node will then a↵ect all the elements
that participated in the stack when the node was created, in order. Figure 13 shows the
computation graph for the stack-RNN corresponding to the last state in Figure 12. This
modeling approach was proposed independently by Dyer et al and Watanabe et al (Dyer
et al., 2015; Watanabe & Sumita, 2015) for transition-based dependency parsing.

53

B I U

N L P

BI-RNNs

One RNN runs left to right.  
Another runs right to left.
Encode both future and history of a word.

Rf ,Of

x
the

concat

yf

1

sf
0

Rf ,Of

x
brown

concat

yf

2

sf
1

Rf ,Of

x
fox

concat

yf

3

sf
2

Rf ,Of

x
jumped

concat

yf

4

sf
3

Rf ,Of

x⇤

concat

yf

5

sf
4

sf
5

Rb,Ob

s
0

sb
0

yb

1

Rb,Ob

s
1

sb
1

yb

2

Rb,Ob

s
2

sb
2

yb

3

Rb,Ob

s
3

sb
3

yb

4

Rb,Ob

s
4

sb
4

yb

5

sb
5

y
the

y
brown

y
fox

y
jumped

y⇤

Figure 11: BI-RNN over the sentence “the brown fox jumped .”.

looking at the k top-most elements of the stack, the RNN framework can be used to provide
a fixed-sized vector encoding of the entire stack.

The main intuition is that a stack is essentially a sequence, and so the stack state can be
represented by taking the stack elements and feeding them in order into an RNN, resulting
in a final encoding of the entire stack. In order to do this computation e�ciently (without
performing an O(n) stack encoding operation each time the stack changes), the RNN state
is maintained together with the stack state. If the stack was push-only, this would be
trivial: whenever a new element x is pushed into the stack, the corresponding vector x
will be used together with the RNN state s

i

in order to obtain a new state s
i+1

. Dealing
with pop operation is more challenging, but can be solved by using the persistent-stack
data-structure (Okasaki, 1999; Goldberg, Zhao, & Huang, 2013). Persistent, or immutable,
data-structures keep old versions of themselves intact when modified. The persistent stack
construction represents a stack as a pointer to the head of a linked list. An empty stack is
the empty list. The push operation appends an element to the list, returning the new head.
The pop operation then returns the parent of the head, but keeping the original list intact.
From the point of view of someone who held a pointer to the previous head, the stack did
not change. A subsequent push operation will add a new child to the same node. Applying
this procedure throughout the lifetime of the stack results in a tree, where the root is an
empty stack and each path from a node to the root represents an intermediary stack state.
Figure 12 provides an example of such a tree. The same process can be applied in the
computation graph construction, creating an RNN with a tree structure instead of a chain
structure. Backpropagating the error from a given node will then a↵ect all the elements
that participated in the stack when the node was created, in order. Figure 13 shows the
computation graph for the stack-RNN corresponding to the last state in Figure 12. This
modeling approach was proposed independently by Dyer et al and Watanabe et al (Dyer
et al., 2015; Watanabe & Sumita, 2015) for transition-based dependency parsing.

53

an infinite window
 around the word.

B I U

N L P

BI-RNNs

One RNN runs left to right.  
Another runs right to left.
Encode both future and history of a word.

an infinite window
 around the word.

s

0

LFWD

x

the

1

LFWD

x

brown

2

LFWD

x

fox

3

LFWD

x

jumped

4

y

f

4

RREV

x

jumped

4

y

r

4

RREV

x

over

5

RREV

x

the

6

RREV

x

dog

7

s

0

concat

BiRNN(x1:7, 4) = [yF
4 ;y

R
4]

y

F
4 = RNNF (x1:4)

y

R
4 = RNNR(x7:4)

B I U

N L P

Deep BI-RNNs

BI1

BI2

BI3

x

the

y

the

BI1

BI2

BI3

x

brown

y

brown

BI1

BI2

BI3

x

fox

y

fox

BI1

BI2

BI3

x

jumped

y

jumped

BI1

BI2

BI3

x

over

y

over

BI-RNN can also be stacked

B I U

N L P

(Deep) BI-RNNs
• provide an "infinite" window around a focus word.

• learn to extract what's important.

• easy to train!

• very effective for sequence tagging.

• Great as feature extractors!

B I U

N L P

Parsing with LSTMs, Take 2
Simple and Accurate Dependency Parsing

Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

elikip@gmail.com

Yoav Goldberg
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

yoav.goldberg@gmail.com

Abstract

We present a simple and effective scheme
for dependency parsing which is based on
bidirectional-LSTMs (BiLSTMs). Each sen-
tence token is associated with a BiLSTM vec-
tor representing the token in its sentential con-
text, and feature vectors are constructed by
concatenating a few BiLSTM vectors. The
BiLSTM is trained jointly with the parser ob-
jective, resulting in very effective feature ex-
tractors for parsing. We demonstrate the ef-
fectiveness of the approach by applying it to
a greedy transition based parser as well as to
a globally optimized graph-based parser. The
resulting parsers have very simple architec-
tures, and match or surpass the state-of-the-art
accuracies on English and Chinese.

1 Introduction
The focus of this paper is on feature represen-
tation for dependency parsing, using recent tech-
niques from the neural-networks (“deep learning”)
literature. Modern approaches to dependency pars-
ing can be broadly categorized into graph-based
and transition-based parsers (Kübler et al., 2008).
Graph-based parsers (McDonald, 2006) treat pars-
ing as a search-based structured prediction prob-
lem in which the goal is learning a scoring func-
tion over dependency trees such that the correct tree
is scored above all other trees. Transition-based
parsers (Nivre, 2004; Nivre, 2008) treat parsing as
a sequence of actions that produce a parse tree, and
a classifier is trained to score the possible actions at
each stage of the process and guide the parsing pro-
cess. Perhaps the simplest graph-based parsers are

arc-factored (first order) models (McDonald, 2006),
in which the scoring function for a tree decomposes
over the individual arcs of the tree. More elaborate
models look at larger (overlapping) parts, requiring
more sophisticated inference and training algorithms
(Martins et al., 2009; Koo and Collins, 2010). The
basic transition-based parsers work in a greedy man-
ner, performing a series of locally-optimal decisions,
and boast very fast parsing speeds. More advanced
transition-based parsers introduce some search into
the process using a beam (Zhang and Clark, 2008)
or dynamic programming (Huang and Sagae, 2010).

Regardless of the details of the parsing framework
being used, a crucial step in parser design is choos-
ing the right feature function for the underlying sta-
tistical model. Recent work (see Section 2.2 for an
overview) attempt to alleviate parts of the feature
function design problem by moving from linear to
non-linear models, enabling the modeler to focus on
a small set of “core” features and leaving it up to the
machine-learning machinery to come up with good
feature combinations (Chen and Manning, 2014; Pei
et al., 2015; Lei et al., 2014; Taub-Tabib et al.,
2015). However, the need to carefully define a set
of core features remains. For example, the work
of (Chen and Manning, 2014) uses 18 different el-
ements in its feature function, while the work of
(Pei et al., 2015) uses 21 different elements. Other
works, notably (Dyer et al., 2015; Le and Zuidema,
2014), propose more sophisticated feature represen-
tations, in which the feature engineering is replaced
with architecture engineering.

In this work, we suggest an approach which is
much simpler in terms of both feature engineering

B I U

N L P

Logo-BIU.png

Parsing Background

There are two main frameworks for parsing:

Graph-based:

Global inference
Score factorized over parts
There are first, second & third order parsers.

Transition-based:

Greedy local inference
Score relies on current configuration, which is dependent on all
previous transitions

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 4 / 42

Logo-BIU.png

Parsing Background

There are two main frameworks for parsing:

Graph-based:

Global inference
Score factorized over parts
There are first, second & third order parsers.

Transition-based:

Greedy local inference
Score relies on current configuration, which is dependent on all
previous transitions

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 4 / 42

Structured Prediction Recipe

• Decompose structure to local factors.

• Assign a score to each factor.

• Structure score = sum of local scores.

• Look for highest scoring structure.

predict(x) = arg max

y2Y(x)

X

p2y

score(�(p))

Logo-BIU.png

Graph-based Parsing

Score(They ate the pizza with anchovies

nsubj prep

dobj

det nsubj

) =

Score(They ate

nsubj

) + Score(ate pizza

dobj

) + Score(the pizza

det

) +

Score(pizza with

prep

) + Score(with anchovies

nsubj

)

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 5 / 42

Logo-BIU.png

Graph-based Parsing (Inference)

Input Sentence: ”They ate pizza”

root

ate

they pizza

S

c

o

r

e

(

r

o

o

t!
a

t

e

)

S

c

o

r

e

(

r

o

o

t!
p

i

z

z

a

)

S
c
o
r
e
(
r
o
o
t
!

t
h
e
y
)

S

c

o

r

e

(

a

t

e

!
t

h

e

y

)

S

c

o

r

e

(

t

h

e

y

!
a

t

e

)

S

c

o

r

e

(

a

t

e!
p

i

z

z

a

)

S

c

o

r

e

(

p

i

z

z

a!
a

t

e

)

Score(pizza!they)

Score(they!pizza)

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 6 / 42

Logo-BIU.png

Graph-based Parsing (Inference)

root

ate

they pizza

S

c

o

r

e

(

r

o

o

t!
a

t

e

)

S

c

o

r

e

(

r

o

o

t!
p

i

z

z

a

)

S
c
o
r
e
(
r
o
o
t
!

t
h
e
y
)

S

c

o

r

e

(

a

t

e

!
t

h

e

y

)

S

c

o

r

e

(

t

h

e

y

!
a

t

e

)

S

c

o

r

e

(

a

t

e!
p

i

z

z

a

)

S

c

o

r

e

(

p

i

z

z

a!
a

t

e

)

Score(pizza!they)

Score(they!pizza)

Spanning tree with maximal score

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 7 / 42

Structured Prediction Recipe

• feature function extracts useful signals from parts.

• most work goes into this component.

predict(x) = arg max

y2Y(x)

X

p2y

score(�(p))predict(x) = arg max

y2Y(x)

X

p2y

score(�(p))

Logo-BIU.png

Arc Score Function

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 8 / 42

Score(modifier head) = ?

Logo-BIU.png

Arc Score Function

Similar story for transition-based parser

The choice of features is very important

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 9 / 42

Score(modifier head) = F (�(modifier , head ; sentence))

First-order features
(from Ryan McDonald's PhD thesis)

• Words and POS of Head and Mod.

• Words and POS of neighbors of Head and Mod.

• POS between Head and Modifier.

• Distance between Head and Modifier.

• Direction between Head and Modifier.

• Many, many combination features.

B I U

N L P

First-order features

a)

Basic Uni-gram Features
xi-word, xi-pos
xi-word
xi-pos
xj -word, xj -pos
xj -word
xj -pos

b)

Basic Bi-gram Features
xi-word, xi-pos, xj -word, xj -pos
xi-pos, xj -word, xj -pos
xi-word, xj -word, xj -pos
xi-word, xi-pos, xj -pos
xi-word, xi-pos, xj -word
xi-word, xj -word
xi-pos, xj -pos

c)

In Between POS Features
xi-pos, b-pos, xj -pos
SurroundingWord POS Features
xi-pos, xi-pos+1, xj -pos-1, xj -pos
xi-pos-1, xi-pos, xj -pos-1, xj -pos
xi-pos, xi-pos+1, xj -pos, xj -pos+1
xi-pos-1, xi-pos, xj -pos, xj -pos+1

d)

Second-order Features
xi-pos, xk-pos, xj -pos
xk-pos, xj -pos
xk-word, xj -word
xk-word, xj -pos
xk-pos, xj -word

Table 3.1: Features used by system, f(i, j), where xi is the head and xj the modifier in
the dependency relation. xi-word: word of head in dependency edge. xj-word: word of
modifier. xi-pos: POS of head. xj-pos: POS of modifier. xi-pos+1: POS to the right of
head in sentence. xi-pos-1: POS to the left of head. xj-pos+1: POS to the right of modifier.
xj-pos-1: POS to the left of modifier. b-pos: POS of a word in between head and modifier.

configuration. The second class of additional features represents the local context of the

attachment, that is, the words before and after the head-modifier pair. These features take

the form of POS 4-grams: The POS of the head, modifier, word before/after head and word

before/after modifier. We also include back-off features to trigrams where one of the local

context POS tags was removed.

These new features can be efficiently added since they are given as part of the input

and do not rely on knowledge of dependency decisions outside the current edge under

consideration. Adding these features resulted in a large improvement in performance and

brought the system to state-of-the-art accuracy. For illustrative purposes Appendix B shows

the feature representation for our example sentence over the edge (hit,with) for the example

sentence in Figure 1.2.

As mentioned earlier, all of the runtime analysis relied on the fact that the calculation

of s(i, j) was O(1), when in fact it is really linear in the number of features that are active

for each edge. Table 3.1 shows that for each edge there are only a handful of bigram and

unigram features as well as context POS features. More troubling are the POS features for

all the words in-between the two words in the edge - this in fact makes the calculation of

s(i, j) at leastO(n)making the projective parsing algorithmsO(n4) and the non-projective

parsing algorithm O(n3). However, a feature can be active at most once for each distinct

POS, e.g., if there are two proper nouns (NNP) between xi and xj , the feature is active only

52

a)

Basic Uni-gram Features
xi-word, xi-pos
xi-word
xi-pos
xj -word, xj -pos
xj -word
xj -pos

b)

Basic Bi-gram Features
xi-word, xi-pos, xj -word, xj -pos
xi-pos, xj -word, xj -pos
xi-word, xj -word, xj -pos
xi-word, xi-pos, xj -pos
xi-word, xi-pos, xj -word
xi-word, xj -word
xi-pos, xj -pos

c)

In Between POS Features
xi-pos, b-pos, xj -pos
SurroundingWord POS Features
xi-pos, xi-pos+1, xj -pos-1, xj -pos
xi-pos-1, xi-pos, xj -pos-1, xj -pos
xi-pos, xi-pos+1, xj -pos, xj -pos+1
xi-pos-1, xi-pos, xj -pos, xj -pos+1

d)

Second-order Features
xi-pos, xk-pos, xj -pos
xk-pos, xj -pos
xk-word, xj -word
xk-word, xj -pos
xk-pos, xj -word

Table 3.1: Features used by system, f(i, j), where xi is the head and xj the modifier in
the dependency relation. xi-word: word of head in dependency edge. xj-word: word of
modifier. xi-pos: POS of head. xj-pos: POS of modifier. xi-pos+1: POS to the right of
head in sentence. xi-pos-1: POS to the left of head. xj-pos+1: POS to the right of modifier.
xj-pos-1: POS to the left of modifier. b-pos: POS of a word in between head and modifier.

configuration. The second class of additional features represents the local context of the

attachment, that is, the words before and after the head-modifier pair. These features take

the form of POS 4-grams: The POS of the head, modifier, word before/after head and word

before/after modifier. We also include back-off features to trigrams where one of the local

context POS tags was removed.

These new features can be efficiently added since they are given as part of the input

and do not rely on knowledge of dependency decisions outside the current edge under

consideration. Adding these features resulted in a large improvement in performance and

brought the system to state-of-the-art accuracy. For illustrative purposes Appendix B shows

the feature representation for our example sentence over the edge (hit,with) for the example

sentence in Figure 1.2.

As mentioned earlier, all of the runtime analysis relied on the fact that the calculation

of s(i, j) was O(1), when in fact it is really linear in the number of features that are active

for each edge. Table 3.1 shows that for each edge there are only a handful of bigram and

unigram features as well as context POS features. More troubling are the POS features for

all the words in-between the two words in the edge - this in fact makes the calculation of

s(i, j) at leastO(n)making the projective parsing algorithmsO(n4) and the non-projective

parsing algorithm O(n3). However, a feature can be active at most once for each distinct

POS, e.g., if there are two proper nouns (NNP) between xi and xj , the feature is active only

52

(from Ryan McDonald's PhD thesis)

B I U

N L P

Logo-BIU.png

Manual Feature Templates

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 11 / 42

Logo-BIU.png

Core Features + Feature Combinations

Figure from Chen and Manning (2014)
Similiar approach in Pei et al, Weiss et al, Andor et al

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 12 / 42

replace feature combinations with non-linear learner

Logo-BIU.png

Core Features + Non-Linear Classifier

Figure from Chen and Manning (2014)
Similiar approach in Pei et al, Weiss et al, Andor et al

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 12 / 42

replace feature combinations with non-linear learner
but still need

to define
good features.

Our take on it

Let's just use a Bidirectional LSTM

B I U

N L P

the/D

BI

fox/N

BI

who/P

BI

likes/V

BI

apples/N

BI

jumped/V

BI

over/P

BI

a/D

BI

dog/N

BI

fox/N jumped/V

concat

�(x, jumped, fox)

score(h,m, x) = MLP (�(x, h,m))

�(x, h,m) = [BIRNN(x, h);BIRNN(x,m)]

B I U

N L P

the/D

BI

fox/N

BI

who/P

BI

likes/V

BI

apples/N

BI

jumped/V

BI

over/P

BI

a/D

BI

dog/N

BI

fox/N jumped/V

concat

�(x, jumped, fox)

score(h,m, x) = MLP (�(x, h,m))

�(x, h,m) = [BIRNN(x, h);BIRNN(x,m)]

MLP()

score

B I U

N L P

the/D

BI

fox/N

BI

who/P

BI

likes/V

BI

apples/N

BI

jumped/V

BI

over/P

BI

a/D

BI

dog/N

BI

fox/N jumped/V

concat

�(x, jumped, fox)

score(h,m, x) = MLP (�(x, h,m))

�(x, h,m) = [BIRNN(x, h);BIRNN(x,m)]

B I U

N L P

the/D

BI

fox/N

BI

who/P

BI

likes/V

BI

apples/N

BI

jumped/V

BI

over/P

BI

a/D

BI

dog/N

BI

fox/N jumped/V

concat

�(x, fox, jumped)

score(h,m, x) = MLP (�(x, h,m))

�(x, h,m) = [BIRNN(x, h);BIRNN(x,m)]

B I U

N L P

the/D

BI

fox/N

BI

who/P

BI

likes/V

BI

apples/N

BI

jumped/V

BI

over/P

BI

a/D

BI

dog/N

BI

fox/N over/P

concat

�(x, over, fox)

score(h,m, x) = MLP (�(x, h,m))

�(x, h,m) = [BIRNN(x, h);BIRNN(x,m)]

B I U

N L P

score(h,m, x) = MLP (�(x, h,m))

�(x, h,m) = [BIRNN(x, h);BIRNN(x,m)]

the/D

BI

fox/N

BI

who/P

BI

likes/V

BI

apples/N

BI

jumped/V

BI

over/P

BI

a/D

BI

dog/N

BI

jumped/N over/P

concat

�(x, over, jumped)

B I U

N L P

score(h,m, x) = MLP (�(x, h,m))

�(x, h,m) = [BIRNN(x, h);BIRNN(x,m)]

the/D

BI

fox/N

BI

who/P

BI

likes/V

BI

apples/N

BI

jumped/V

BI

over/P

BI

a/D

BI

dog/N

BI

fox/N jumped/V

concat

infinite window around head
infinite window around mod
distance between head and mod
content between head and mod

and more?

the two BI-RNN vectors give us:

Logo-BIU.png

Arc Score (Intuition)

The BiLSTM encoding of a word holds information about its
attachment preferences

The score is dependent on the BiLSTM encoding which in turn
depends on the entire sentence

Therefore, the score function focused on a specific arc is considering
also the entire sentence attachement preferences

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 21 / 42

Logo-BIU.png

Tree Score

Score(They ate the pizza with anchovies

nsubj prep

dobj

det nsubj

) =

LSTM

f

xthey

concat

LSTM

f

xate

concat

LSTM

f

xthe

concat

LSTM

f

xpizza

concat

LSTM

f

xwith

concat

LSTM

f

xanchovies

concat

LSTM

b

s0
LSTM

b

s1
LSTM

b

s2
LSTM

b

s3
LSTM

b

s4
LSTM

b

s5

Vthey Vate Vthe Vpizza Vwith Vanchovies

MLP MLP MLP MLP MLP

+

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 22 / 42

Logo-BIU.png

Large Margin Objective

max(0, 1� +)

LSTM

f

xthey

concat

LSTM

f

xate

concat

LSTM

f

xthe

concat

LSTM

f

xpizza

concat

LSTM

f

xwith

concat

LSTM

f

xanchovies

concat

LSTM

b

LSTM

b

LSTM

b

LSTM

b

LSTM

b

LSTM

b

Vthey Vate Vthe Vpizza Vwith Vanchovies

MLP MLP MLP MLP MLP

+

LSTM

f

xthey

concat

LSTM

f

xate

concat

LSTM

f

xthe

concat

LSTM

f

xpizza

concat

LSTM

f

xwith

concat

LSTM

f

xanchovies

concat

LSTM

b

LSTM

b

LSTM

b

LSTM

b

LSTM

b

LSTM

b

Vthey Vate Vthe Vpizza Vwith Vanchovies

MLP MLP MLP MLP MLP

+

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 23 / 42

Training Objective
Gold tree should score a margin above all other trees

X

(h,m)2y

MLP (�(x, h,m)) �
X

(h,m)2y0 6=y

MLP (�(x, h,m)) > 1

�(x, h,m) = [BIRNN(x, h);BIRNN(x,m)]

Backdrop all the way back through the BI-LSTM

Logo-BIU.png

Graph-based Parsing (More Details)

Cost Augmentation: Make non-gold attachments more attractive in
training by adding a constant to their score

Multi-Task Learning: Learning the label on the same BiLSTM
representation helps both in terms of accuracy and performance.

For Speed: Simple algebric “trick” reduces the number of matrix
multiplication significantly.

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 24 / 42

Logo-BIU.png

Graph-based Parsing (More Details)

Cost Augmentation: Make non-gold attachments more attractive in
training by adding a constant to their score

Multi-Task Learning: Learning the label on the same BiLSTM
representation helps both in terms of accuracy and performance.

For Speed: Simple algebric “trick” reduces the number of matrix
multiplication significantly.

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 24 / 42

Logo-BIU.png

Arc Labels (Multi-Task Learning)

They ate the pizza with anchovies

nsubj prep

dobj

det nsubj

The arc labels hold important additional syntactic information

The labels contribute information useful for the unlabeled case too

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 26 / 42

Logo-BIU.png

Arc Labels (Multi-Task Learning)

LSTM

f

xw1

concat

LSTM

f

xmodifier

concat

LSTM

f

xw3

concat

LSTM

f

xhead

concat

LSTM

f

xw5

concat

LSTM

b

LSTM

b

LSTM

b

LSTM

b

LSTM

b

Vw1 Vmodifier Vw3 Vhead Vw5

MLP

lblDi↵erent MLP

Same BiLSTM

nsubj

prep

dobj de
t

re
l

au
x

Enrich BiLSTM representation by learning labels
Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 27 / 42

Logo-BIU.png

Arc Labels (Multi-Task Learning)

LSTM

f

xw1

concat

LSTM

f

xmodifier

concat

LSTM

f

xw3

concat

LSTM

f

xhead

concat

LSTM

f

xw5

concat

LSTM

b

LSTM

b

LSTM

b

LSTM

b

LSTM

b

Vw1 Vmodifier Vw3 Vhead Vw5

MLP

lblDi↵erent MLP

Same BiLSTM

nsubj

prep

dobj de
t

re
l

au
x

Enrich BiLSTM representation by learning labels
Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 27 / 42

In parsing time

• Run (deep) BI-LSTM over words+POS.
• this gives us a vector vi for each word.

• Compute scores for each arc (h,m) via
• Decode using arc scores.

MLP ([vh;vm])

B I U

N L P

Logo-BIU.png

Graph-based Parsing

and this works:

93.2 UAS with two features,

first-order parser,

without external embeddings.

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 28 / 42

Logo-BIU.png

Graph-based Parsing

and this works:

93.2 UAS with two features,

first-order parser,

without external embeddings.

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 28 / 42

This is remarkably effective!

B I U

N L P

We can use same trick also
for Transition based parsing

B I U

N L P

Logo-BIU.png

Transition-based Parsing (Oracle)

the

s2

jumped

s1

over

s0

the

b0

lazy

b1

dog

b2

ROOT

b3

fox

brown

Configuration:

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 31 / 42

Scoring:

LSTM

f

xthe

concat

LSTM

f

xbrown

concat

LSTM

f

xfox

concat

LSTM

f

xjumped

concat

LSTM

f

xover

concat

LSTM

f

xthe

concat

LSTM

f

xlazy

concat

LSTM

f

xdog

concat

LSTM

f

xROOT

concat

LSTM

b

s0
LSTM

b

s1
LSTM

b

s2
LSTM

b

s3
LSTM

b

s4
LSTM

b

s5
LSTM

b

s6
LSTM

b

s7
LSTM

b

s8

Vthe Vbrown Vfox Vjumped Vover Vthe Vlazy Vdog VROOT

MLP

(Score
LeftArc

, Score
RightArc

, Score
Shift

)

also worth noting:
B I U

N L P

Incremental Parsing with Minimal Features Using Bi-Directional LSTM

James Cross and Liang Huang
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, Oregon, USA

{crossj,liang.huang}@oregonstate.edu

Abstract

Recently, neural network approaches for
parsing have largely automated the combi-
nation of individual features, but still rely
on (often a larger number of) atomic fea-
tures created from human linguistic intu-
ition, and potentially omitting important
global context. To further reduce fea-
ture engineering to the bare minimum, we
use bi-directional LSTM sentence repre-
sentations to model a parser state with
only three sentence positions, which au-
tomatically identifies important aspects of
the entire sentence. This model achieves
state-of-the-art results among greedy de-
pendency parsers for English. We also in-
troduce a novel transition system for con-
stituency parsing which does not require
binarization, and together with the above
architecture, achieves state-of-the-art re-
sults among greedy parsers for both En-
glish and Chinese.

1 Introduction

Recently, neural network-based parsers have be-
come popular, with the promise of reducing the
burden of manual feature engineering. For ex-
ample, Chen and Manning (2014) and subsequent
work replace the huge amount of manual fea-
ture combinations in non-neural network efforts
(Nivre et al., 2006; Zhang and Nivre, 2011) by
vector embeddings of the atomic features. How-
ever, this approach has two related limitations.
First, it still depends on a large number of care-
fully designed atomic features. For example, Chen
and Manning (2014) and subsequent work such as
Weiss et al. (2015) use 48 atomic features from
Zhang and Nivre (2011), including select third-
order dependencies. More importantly, this ap-
proach inevitably leaves out some nonlocal in-
formation which could be useful. In particular,

though such a model can exploit similarities be-
tween words and other embedded categories, and
learn interactions among those atomic features, it
cannot exploit any other details of the text.

We aim to reduce the need for manual induction
of atomic features to the bare minimum, by us-
ing bi-directional recurrent neural networks to au-
tomatically learn context-sensitive representations
for each word in the sentence. This approach al-
lows the model to learn arbitrary patterns from the
entire sentence, effectively extending the general-
ization power of embedding individual words to
longer sequences. Since such a feature representa-
tion is less dependent on earlier parser decisions,
it is also more resilient to local mistakes.

With just three positional features we can build
a greedy shift-reduce dependency parser that is on
par with the most accurate parser in the published
literature for English Treebank. This effort is sim-
ilar in motivation to the stack-LSTM of Dyer et al.
(2015), but uses a much simpler architecture.

We also extend this model to predict phrase-
structure trees with a novel shift-promote-adjoin
system tailored to greedy constituency parsing,
and with just two more positional features (defin-
ing tree span) and nonterminal label embeddings
we achieve the most accurate greedy constituency
parser for both English and Chinese.

2 LSTM Position Features

f1;b1

w1;t1

f2;b2

w2;t2

f3;b3

w3;t3

f4;b4

w4;t4

f5;b5

w5;t5

Figure 1: The sentence is modeled with an LSTM
in each direction whose input vectors at each time
step are word and part-of-speech tag embeddings.

ar
X

iv
:1

60
6.

06
40

6v
1

 [c
s.C

L]
 2

1
Ju

n
20

16

Constituency Parsing 
Transition-based

also worth noting:
B I U

N L P

Fast(er) Exact Decoding and Global Training for Transition-Based
Dependency Parsing via a Minimal Feature Set

Tianze Shi
Cornell University

tianze@cs.cornell.edu

Liang Huang
Oregon State University

liang.huang.sh@gmail.com

Lillian Lee
Cornell University

llee@cs.cornell.edu

Publication venue: Proceedings of EMNLP 2017

Abstract

We first present a minimal feature set for
transition-based dependency parsing, con-
tinuing a recent trend started by Kiper-
wasser and Goldberg (2016a) and Cross
and Huang (2016a) of using bi-directional
LSTM features. We plug our minimal
feature set into the dynamic-programming
framework of Huang and Sagae (2010)
and Kuhlmann et al. (2011) to produce the
first implementation of worst-case Opn3q
exact decoders for arc-hybrid and arc-
eager transition systems. With our mini-
mal features, we also present Opn3q global
training methods. Finally, using ensem-
bles including our new parsers, we achieve
the best unlabeled attachment score re-
ported (to our knowledge) on the Chinese
Treebank and the “second-best-in-class”
result on the English Penn Treebank.

1 Introduction

It used to be the case that the most accurate de-
pendency parsers made global decisions and em-
ployed exact decoding. But transition-based de-
pendency parsers (TBDPs) have recently achieved
state-of-the-art performance, despite the fact that
for efficiency reasons, they are usually trained to
make local, rather than global, decisions and the
decoding process is done approximately, rather
than exactly (Weiss et al., 2015; Dyer et al., 2015;
Andor et al., 2016). The key efficiency issue for
decoding is as follows. In order to make accurate
(local) attachment decisions, historically, TBDPs
have required a large set of features in order to ac-
cess rich information about particular positions in
the stack and buffer of the current parser configu-
ration. But consulting many positions means that
although polynomial-time exact-decoding algo-

rithms do exist, having been introduced by Huang
and Sagae (2010) and Kuhlmann et al. (2011), un-
fortunately, they are prohibitively costly in prac-
tice, since the number of positions considered can
factor into the exponent of the running time. For
instance, Huang and Sagae employ a fairly re-
duced set of nine positions, but the worst-case run-
ning time for the exact-decoding version of their
algorithm is Opn6q (originally reported as Opn7q)
for a length-n sentence. As an extreme case, Dyer
et al. (2015) use an LSTM to summarize arbitrary
information on the stack, which completely rules
out dynamic programming.

Recently, Kiperwasser and Goldberg (2016a)
and Cross and Huang (2016a) applied bi-
directional long short-term memory networks
(Graves and Schmidhuber, 2005, bi-LSTMs) to
derive feature representations for parsing, because
these networks capture wide-window contextual
information well. Collectively, these two sets of
authors demonstrated that with bi-LSTMs, four
positional features suffice for the arc-hybrid pars-
ing system (K&G), and three suffice for arc-
standard (C&H).1

Inspired by their work, we arrive at a minimal
feature set for arc-hybrid and arc-eager: it con-
tains only two positional bi-LSTM vectors, suf-
fers almost no loss in performance in comparison
to larger sets, and out-performs a single position.
(Details regarding the situation with arc-standard
can be found in §2.)

Our minimal feature set plugs into Huang and
Sagae’s and Kuhlmann et al.’s dynamic program-

1We note that K&G were not focused on minimizing posi-
tions, although they explicitly noted the implications of doing
so: “While not explored in this work, [fewer positions] re-
sults in very compact state signatures, [which is] very appeal-
ing for use in transition-based parsers that employ dynamic-
programming search” (pg. 319). C&H also noted in their
follow-up (Cross and Huang, 2016b) the possibility of future
work using dynamic programming thanks to simple features.

Dependency Parsing 
Transition-based + Dynamic Programming

also worth noting:
B I U

N L P

Transition-Based Dependency Parsing with Stack Long Short-Term Memory

Chris Dyer|� Miguel Ballesteros}� Wang Ling� Austin Matthews� Noah A. Smith�

|Marianas Labs }NLP Group, Pompeu Fabra University �Carnegie Mellon University
chris@marianaslabs.com, miguel.ballesteros@upf.edu,

{lingwang,austinma,nasmith}@cs.cmu.edu

Abstract

We propose a technique for learning rep-
resentations of parser states in transition-
based dependency parsers. Our primary
innovation is a new control structure for
sequence-to-sequence neural networks—
the stack LSTM. Like the conventional
stack data structures used in transition-
based parsing, elements can be pushed to
or popped from the top of the stack in
constant time, but, in addition, an LSTM
maintains a continuous space embedding
of the stack contents. This lets us formu-
late an efficient parsing model that cap-
tures three facets of a parser’s state: (i)
unbounded look-ahead into the buffer of
incoming words, (ii) the complete history
of actions taken by the parser, and (iii) the
complete contents of the stack of partially
built tree fragments, including their inter-
nal structures. Standard backpropagation
techniques are used for training and yield
state-of-the-art parsing performance.

1 Introduction

Transition-based dependency parsing formalizes
the parsing problem as a series of decisions that
read words sequentially from a buffer and combine
them incrementally into syntactic structures (Ya-
mada and Matsumoto, 2003; Nivre, 2003; Nivre,
2004). This formalization is attractive since the
number of operations required to build any projec-
tive parse tree is linear in the length of the sen-
tence, making transition-based parsing computa-
tionally efficient relative to graph- and grammar-
based formalisms. The challenge in transition-
based parsing is modeling which action should be
taken in each of the unboundedly many states en-
countered as the parser progresses.

This challenge has been addressed by develop-
ment of alternative transition sets that simplify the
modeling problem by making better attachment

decisions (Nivre, 2007; Nivre, 2008; Nivre, 2009;
Choi and McCallum, 2013; Bohnet and Nivre,
2012), through feature engineering (Zhang and
Nivre, 2011; Ballesteros and Nivre, 2014; Chen et
al., 2014; Ballesteros and Bohnet, 2014) and more
recently using neural networks (Chen and Man-
ning, 2014; Stenetorp, 2013).

We extend this last line of work by learning
representations of the parser state that are sensi-
tive to the complete contents of the parser’s state:
that is, the complete input buffer, the complete
history of parser actions, and the complete con-
tents of the stack of partially constructed syn-
tactic structures. This “global” sensitivity to the
state contrasts with previous work in transition-
based dependency parsing that uses only a nar-
row view of the parsing state when constructing
representations (e.g., just the next few incoming
words, the head words of the top few positions
in the stack, etc.). Although our parser integrates
large amounts of information, the representation
used for prediction at each time step is constructed
incrementally, and therefore parsing and training
time remain linear in the length of the input sen-
tence. The technical innovation that lets us do this
is a variation of recurrent neural networks with
long short-term memory units (LSTMs) which we
call stack LSTMs (§2), and which support both
reading (pushing) and “forgetting” (popping) in-
puts.

Our parsing model uses three stack LSTMs: one
representing the input, one representing the stack
of partial syntactic trees, and one representing the
history of parse actions to encode parser states
(§3). Since the stack of partial syntactic trees may
contain both individual tokens and partial syntac-
tic structures, representations of individual tree
fragments are computed compositionally with re-
cursive (i.e., similar to Socher et al., 2014) neural
networks. The parameters are learned with back-
propagation (§4), and we obtain state-of-the-art re-
sults on Chinese and English dependency parsing
tasks (§5).

ar
X

iv
:1

50
5.

08
07

5v
1

 [c
s.C

L]
 2

9
M

ay
 2

01
5

in retrospect
"Stack LSTM" parser is very similar to the biLSTM

(but does have extra compositionality)

But let's get back to the
1st-order Graph Parser

B I U

N L P

Logo-BIU.png

Graph-based Parsing

Score(They ate the pizza with anchovies

nsubj prep

dobj

det nsubj

) =

Score(They ate

nsubj

) + Score(ate pizza

dobj

) + Score(the pizza

det

) +

Score(pizza with

prep

) + Score(with anchovies

nsubj

)

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 5 / 42

1st order Decomposition  
is Incredibly Naive

B I U

N L P

And yet...

RBG Parser (Lei et al, 2014), 1st order:
TurboPasrer (Martins et al, 2013), 3rd order:
BiLSTM (K&G, 2016), 1st order:
BiLSTM (K&G, 2016), + embeddings:
BiLSTM (K&G, 2016), + emb, bug fix:

B I U

N L P

91.7 UAS
93.1 UAS
93.2 UAS
92.7 UAS
94.0 UAS

Dozat and Manning 2017:

B I U

N L P

ar
X

iv
:1

61
1.

01
73

4v
3

 [c
s.C

L]
 1

0
M

ar
 2

01
7

Published as a conference paper at ICLR 2017

DEEP BIAFFINE ATTENTION FOR NEURAL

DEPENDENCY PARSING

Timothy Dozat
Stanford University
tdozat@stanford.edu

Christopher D. Manning
Stanford University
manning@stanford.edu

ABSTRACT

This paper builds off recent work from Kiperwasser & Goldberg (2016) using neu-
ral attention in a simple graph-based dependency parser. We use a larger but more
thoroughly regularized parser than other recent BiLSTM-based approaches, with
biaffine classifiers to predict arcs and labels. Our parser gets state of the art or
near state of the art performance on standard treebanks for six different languages,
achieving 95.7% UAS and 94.1% LAS on the most popular English PTB dataset.
This makes it the highest-performing graph-based parser on this benchmark—
outperforming Kiperwasser & Goldberg (2016) by 1.8% and 2.2%—and com-
parable to the highest performing transition-based parser (Kuncoro et al., 2016),
which achieves 95.8% UAS and 94.6% LAS. We also show which hyperparameter
choices had a significant effect on parsing accuracy, allowing us to achieve large
gains over other graph-based approaches.

1 INTRODUCTION

Dependency parsers—which annotate sentences in a way designed to be easy for humans and com-
puters alike to understand—have been found to be extremely useful for a sizable number of NLP
tasks, especially those involving natural language understanding in some way (Bowman et al., 2016;
Angeli et al., 2015; Levy & Goldberg, 2014; Toutanova et al., 2016; Parikh et al., 2015). However,
frequent incorrect parses can severely inhibit final performance, so improving the quality of depen-
dency parsers is needed for the improvement and success of these downstream tasks.

The current state-of-the-art transition-based neural dependency parser (Kuncoro et al., 2016) sub-
stantially outperforms many much simpler neural graph-based parsers. We modify the neural graph-
based approach first proposed by Kiperwasser & Goldberg (2016) in a few ways to achieve com-
petitive performance: we build a network that’s larger but uses more regularization; we replace the
traditional MLP-based attention mechanism and affine label classifier with biaffine ones; and rather
than using the top recurrent states of the LSTM in the biaffine transformations, we first put them
through MLP operations that reduce their dimensionality. Furthermore, we compare models trained
with different architectures and hyperparameters to motivate our approach empirically. The result-
ing parser maintains most of the simplicity of neural graph-based approaches while approaching the
performance of the SOTA transition-based one.

2 BACKGROUND AND RELATED WORK

Transition-based parsers—such as shift-reduce parsers—parse sentences from left to right, main-
taining a “buffer” of words that have not yet been parsed and a “stack” of words whose head has not
been seen or whose dependents have not all been fully parsed. At each step, transition-based parsers
can access and manipulate the stack and buffer and assign arcs from one word to another. One can
then train any multi-class machine learning classifier on features extracted from the stack, buffer,
and previous arc actions in order to predict the next action.

Chen & Manning (2014) make the first successful attempt at incorporating deep learning into a
transition-based dependency parser. At each step, the (feedforward) network assigns a probability
to each action the parser can take based on word, tag, and label embeddings from certain words

1

the/D

BI

fox/N

BI

who/P

BI

likes/V

BI

apples/N

BI

jumped/V

BI

over/P

BI

a/D

BI

dog/N

BI

fox/N jumped/V

concat

�(x, jumped, fox)MLP()

score

K&G 2016

B I U

N L P
MLP ([birnn(h); birnn(m)])

the/D

BI

fox/N

BI

who/P

BI

likes/V

BI

apples/N

BI

jumped/V

BI

over/P

BI

a/D

BI

dog/N

BI

fox/N jumped/V

concat

�(x, jumped, fox)

score

B I U

N L P
MLP ([birnn(h); birnn(m)])

Dozat and Manning, 2017

the/D

BI

fox/N

BI

who/P

BI

likes/V

BI

apples/N

BI

jumped/V

BI

over/P

BI

a/D

BI

dog/N

BI

fox/N jumped/V

concat

�(x, jumped, fox)

score

B I U

N L P

birnn(h) M birnn(m)
MLP ([birnn(h); birnn(m)])

Dozat and Manning, 2017

the/D

BI

fox/N

BI

who/P

BI

likes/V

BI

apples/N

BI

jumped/V

BI

over/P

BI

a/D

BI

dog/N

BI

fox/N jumped/V

concat

�(x, jumped, fox)

score

B I U

N L P

birnn(h) M birnn(m)
MLP ([birnn(h); birnn(m)])

Dozat and Manning, 2017

And yet...

RBG Parser (Lei et al, 2014), 1st order:
TurboPasrer (Martins et al, 2013), 3rd order:
BiLSTM (K&G, 2016), 1st order:
BiLSTM (K&G, 2016), + embeddings:
BiLSTM (K&G, 2016), + emb, bug fix:

B I U

N L P

91.7 UAS
93.1 UAS
93.2 UAS
92.7 UAS
94.0 UAS

Dozat and Manning 2017: 95.7 UAS
(BiLSTM. First Order)

CoNLL 2017 Shared Task
B I U

N L P

CoNLL 2017 Shared Task
B I U

N L P

CoNLL 2017 Shared Task
B I U

N L P

Dozat and Manning
biLSTM + graph + tuning

(first-order features)

CoNLL 2017 Shared Task
B I U

N L P

Dozat and Manning
biLSTM + graph + tuning

(first-order features)

model of Shi, Huang and Lee
biLSTM + transition + DP

(first-order features)

CoNLL 2017 Shared Task
B I U

N L P

Dozat and Manning
biLSTM + graph + tuning

(first-order features)

model of Shi, Huang and Lee
biLSTM + transition + DP

(first-order features)

(both used also character-level LSTMs for words)

The best parsers
in the world today

 are based on
1st-order decomposition

over a BiLSTM
I find this remarkable

B I U

N L P

The best parsers
in the world today

 are based on
1st-order decomposition

over a BiLSTM
I find this remarkable

B I U

N L P

Take home questions
• Why does it work?

• What is encoded in these vectors?

• Where does it fail?

• How can we improve? (in an interesting way)?

B I U

N L P

morphology? pre-training? multi-tasking? composition?

Take home questions
• Why does it work?

• What is encoded in these vectors?

• Where does it fail?

• How can we improve? (in an interesting way)?

thanks for listening!

B I U

N L P

morphology? pre-training? multi-tasking? composition?

