
T. Sørevik et al. (Eds.): PARA 2000, LNCS 1947, pp. 268-278, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Experiments in Separating Computational Algorithm
from Program Distribution and Communication
Shortened version - Full version available at http://shekel.jct.ac.il/~rafi

R.B. Yehezkael
1
(Formerly Haskell), Y. Wiseman

1,2
,

H.G. Mendelbaum
1,3

, and I.L. Gordin
1

1

Jerusalem College of Technology, Computer Eng. Dept.,
POB 16031, Jerusalem 91160, Israel

E-mail: rafi@mail.jct.ac.il, Fax: 009722-6751-200
2
University Bar-Ilan, Math. and Computer Sc. Dept., Ramat-Gan 52900, Israel

3
 Univ. Paris V, Institut Universitaire de Technologie,

143-av. Versailles, Paris 75016, France

Abstract. Our proposal has the following key features:
1) The separation of a distributed program into a pure algorithm (PurAl) and a
distribution/communication declaration (DUAL). This yields flexible programs
capable of handling different kinds of data/program distribution with no change
to the pure algorithm.
2) Implicit or automatic handling of communication via externally mapped vari-
ables and generalizations of assignment and reference to these variables. This
provides unified device independent view and processing of internal data and
external distributed data at the user programming language level.
3) Programs need only know of the direct binds with distributed correspondents
(mailbox driver, file manager, remote task, window manager etc.). This avoids
the need for a central description of all the interconnections.
The main short-range benefits of this proposal are to facilitate parallel computa-
tions. Parallel programming is a fundamental challenge in computer science,
nowadays. Improving these techniques will lead to simplify the programming,
eliminate the communication statements, and unify the various communication
by using an implicit method for the transfer of data which is becoming essential
with the proliferation of distributed networked environment. We present 2 ex-
periments of separation between PurAl and DUAL, using a preprocessor or an
object-type library. This new approach might be of interest to both academic and
industrial researchers.

1 Introduction

In many cases the same algorithm can take various forms depending on the location of
the data and the distribution of the code. The programmer is obliged to take into ac
count the configuration of the distributed system and modify the algorithm in conse-
quence in order to introduce explicit communication requests. In a previous paper[21],

Experiments in Separating Computational Algorithm 269

we proposed to develop implicit communication and program distribution on the net-
work, here we present two experiments in this field.
Aim. We want to use any "pure" algorithm written as if its data were in a local virtual
memory, and run it either with local or remote data without changing the source code.
1) This will simplify the programming stage, abstracting the concept of data location
and access mode.
2) This will eliminate the communication statements since the algorithm is written as
if the data were in local virtual memory.
3) This will unify the various kinds of communication by using a single implicit
method for transfer of data in various execution contexts: concurrently executing
programs in the same computer, or programs on several network nodes, or between a
program and remote/local file manager, etc.
For example, the programmer would write something like: x := y + 1;
where y can be "read" from a local true memory (simple variable), or from a file, or
from an edit-field of a Man-Machine-Interface (for example, WINDOWS/DIALOG
BOX), or through communication with another parallel task, or through a network
communication with another memory in another computer. In the same way, x can be
"assigned" a value (simple local variable) or "recorded" in a file, or "written" in a
window, or "sent" to another computer, or "pipe-lined" to another process in the same
computer.

2 Proposal

We propose to separate a program into a pure algorithm and a declarative description
of the links with the external data.
1) the "pure algorithm" (PurAl) would be written in any procedural language without
using I/O statements.
2) A "Distribution, Use, Access, and Linking" declarative description (DUAL decla-
ration) is used to describe the way the external data are linked to the variables of the
pure algorithm. (i.e. some of the variables of the pure algorithm are externally
mapped.) The DUAL declaration is also used to describe the distribution of the pro-
grams.
To summarize in the spirit of Wirth [20] :
Program = Pure Algorithm + DUAL declarations of external data distribution/access.

2.1 The Producer Consumer Example and Variations

Pure Algorithm 1:
#include “external_types.h”
void c ()
{vec seq1; // vec is defined in external_types.h
 for (int i=1; ; i++)

{try { data_processing (seq1 [i]); } // A

270 R.B. Yehezkael et al.

catch (out_of_range_error ce) {break;};
}// when up-bound exception on seq1, i.e. end of data

} //end c

Informal example of Separate DUAL declarations for c : declarations of Distribution,
Use, Access, and Linking, (see two different concrete implementation in section 3)
c’site is on computer1; c.seq1’site is on mailbox2;
c.seq1’access is of type IN with sequential_increasing_subscript;
c.seq1’locking policy is gradual;

Pure Algorithm 2:
#include “external_types.h”
void p ()
{vec seq2; // vec is defined in external_types.h
 for (int j=1; ; j++)

{ if (exit_condition) break;
 seq2 [j]: = <expression>; } // B

} // end p

Informal example of Separate DUAL declarations for p : declarations of Distribution,
Use, Access, and Linking, (see two different concrete implementation in section 5)
p'site is on computer2; p.seq2'site is on mailbox2;
p.seq2'access is of type OUT with sequential_increasing_subscript;
p.seq2'locking policy is gradual;

Some Comments on the above Programs
The first two algorithms are written at the user programmer level and we have hidden
the details of the communication in the package "external_types.h". Local declarations
are used inside a loop to define which elements of a vector, are being processed. The
variables seq1 and seq2 are externally mapped by the DUAL declarations. The type
vec is for a vector of characters of undefined length: this means that externally the
vector is unconstrained, but internally the bounds, which are given by the local current
value of "i or j", define which elements are being processed. The exception mecha-
nism is used to detect the "end of data" condition ("out_of_range_error").
In the line marked "// A " of the function c, seq1[i] is referenced and this causes a
value to be fetched from outside, according to the DUAL declaration where c.seq1'site
indicates the location of the vector, a mailbox. Also c.seq1'access indicates the way of
accessing the data, "IN sequential_increasing_subscript" means that seq1 is read from
outside in sequential manner using a sequentially increasing subscript. Similarly in
the line marked "// B " of the function p, the vector seq2[j] is assigned and this causes
a value to be sent outside the program according to the DUAL declaration where
p.seq2'site indicates the location of the vector, a mailbox. Also regarding
p.seq2'access, "OUT sequential_increasing_subscript" means that seq2 is written out-
side in sequential manner using a sequentially increasing subscript.

Experiments in Separating Computational Algorithm 271

With the previous DUAL declarations, for seq1 and seq2, the programs will behave as
a producer/consumer when run concurrently.
Other distributed use of the same algorithms are possible by only modifying the
DUAL declarations.

3 Examples of Implementation Prototypes

The DUAL syntax need not to be exactly as it was shown in the section 2.1, it depends
on the system where it is realized. To implement the idea of separating the algorithm
description and the distribution/communication declarations, we tried two ways :
building a C- preprocessor for Unix, or building a C++ object-type library.

3.1 C-Unix-Preprocessor Experiment

In this case the DUAL declarations will be sentences put at the beginning of the pro-
gram or at the beginning of a bloc. For this method we wrote a preprocessor that reads
the DUAL distribution/communication declarations and adds the synchronization,
distribution and I/O statements to the pure algorithm (PurAl) according to these
DUAL declarations. It fits to static declaration of data and program distribution before
execution.
Let’s take the classical merge_sort algorithm, the PurAl is written as if the sources and
the target were in a virtual local memory without I/O and without explicit distribution
calls. Using DUAL declarations, we define separately the two sources and the target
as external_types. Furthermore, using a DUAL declaration, we can also define the
parallelism of some functions separately from the algorithm, so that the algorithm is
written purely as if it was sequential.
Please see below this specific DUAL syntax in this case :

Pure Algorithm 3 : Merge_sort with its DUAL declarations:
DUAL parallel merging in one_level; // declaration for the parallelization of the
#define N 10 // algorithmic function 'merging' located in the function 'one_level'
void main ()
{ DUAL devin source_data "./data"; // declare : the 'source_data' variable is external

 // and is linked to the input sequential file "./data"
 DUAL devout target "/dev/tty"; // declaration : the 'target' variable is external

// and is linked to the output screen "/dev/tty "
 int i; char x[N]; // local memory vector x to perform the sort

strncpy (x , source_data , N); // 'source_data' is copied to local memory x
msort (x , N); // performing the sort on the local memory vector x
strncpy (target , x , N); // the sorted vector x is copied to the target screen

} //end main--
void msort (char *x, int n)

// the merge sort algorithm will sort x using split subvectors aux

272 R.B. Yehezkael et al.

{ DUAL share aux;
// declaration : all the split subvectors aux will share the same memory

 int i, size=1; // initial size of the subvectors
while (size < n)
{ one_level (x, aux, n , size);

// prepares the subvectors merges at this level of size
strncpy (x , aux , n);

// copy back the sorted subvectors aux to vector x
size*=2; // growing the size of the subvectors

}
}//end msort---
void one_level (char *x, char *aux, int n , int size)
 //prepares the subvectors to merge
{// 1st vector : lb1, ub1=low and up bounds;
 // 2nd vector : lb2, ub2=low and up bounds;
 // lb3 = low bound of the 3rd (merged) vector
 int lb1=0, ub1, lb2, ub2, lb3=0, i;

while (lb1+size < n)
{ lb2=lb1+size; ub1=lb2-1;

if (ub1+size >= n) ub2=n -1;
else ub2=ub1+size;
merging (x, aux, lb1, lb2, lb3, ub1, ub2);

// can be done sequentially or in parallel
lb1=ub2+1; lb3+=size*2;

}
i=lb1; while (lb3 < n) aux[lb3++]=x[i++]; //copy the rest of the vector

}//end one_level--
void merging (char *x, char *aux, int lb1, int lb2, int lb3, int ub1, int ub2)

//performs the real merge
{int I=lb1, j=lb2, k=lb3; // of one subvector

while ((i <= ub1) && (j <= ub2))
if (x[i] < x[j]) aux[k++]=x[i++];
else aux[k++]=x[j++];

while (i <= ub1) aux[k++]=x[i++];
while (j <= ub2) aux[k++]=x[j++];

}// end merging

Explanations. The above text of the Pure Algorithm 3 is preprocessed before C-
compiling. The preprocessor detects the DUAL declarations and inserts, in the text of
the algorithm, the explicit I/O, parallelization and synchronization statements, corre-
sponding to a Unix environment.
a) DUAL for implicit communication (implicit references to I/O variables) :
For instance, when the preprocessor finds : DUAL devin source_data "./data";
it will replace it with the following UNIX compatible text

Experiments in Separating Computational Algorithm 273

char * source_data=(_devinp[_devin_i]=fopen ("./data" , "r"), fgets ((char *)
malloc (BUFSIZ) , BUFSIZ , _devinp[_devin_i++]));
 In the same manner, when the preprocessor finds DUAL devout target "/dev/tty";
it will replace it with the following UNIX compatible text
char *s=(_devoutp[_devout_i++]=fopen ("/dev/tty","w"), (char *) malloc(BUFSIZ));
 And when source_data or target are used in the algorithm, the preprocessor will
insert the necessary I/O statements, for instance at the end of the main, it will add the
UNIX compatible text : fputs (target , _devoutp[--_devout_i]); free (target); fclose
(_devoutp[_devout_i]);
free (source_data); fclose (_devinp[--_devin_i]);
b) DUAL for implicit use of shared local memory :
For instance, when the preprocessor finds : DUAL share aux;
it will replace it with the following UNIX compatible text
char * aux=(char *)shmat (_shmid[_share_i++]=shmget(IPC_PRIVATE , BUFSIZ
,0600) , 0, 0600) ;
And at the end of the same bloc, the preprocessor will add
shmdt (aux); shmctl (_shmid[--_share_i] , IPC_RMID , 0);
c) DUAL for implicit use of parallelism and synchronization :
For instance, when the preprocessor finds the text DUAL parallel merging in
one_level;
it will add at the beginning of the one_level function, the following text
int parallels=parallel[++parallelI]=0; //prepares the necessary set of parallel branches
Then, the preprocessor will add the parallelization UNIX statement ’fork’ before call-
ing the merging functions
_parallel[_parallel_i]++; if (fork() == 0) { merging(x, aux, lb1, lb2, lb3, ub1, ub2);
exit (0); }
Finally, at the end of the one_level function, the preprocessor will add the synchroni-
zation UNIX statement wait according to the number of parallel branches
for (;_parallel[_parallel_i]>0;_parallel[_parallel_i]--) wait(&_parallel_s); _parallel_i--
;

See appendix I, giving the beginning of the C-program generated after preprocessing
this Pure Algorithm 3 .

3.2 C++ Object-Type Library Experiment

In this case the DUAL declarations will be variables declarations (using predefined
"external_types") put at the beginning of the program or at the beginning of a block.
For this method, we wrote a C++ Object-type library which handles the distributed
variables, implements and masks all the devices declarations and I/O statements, using
the C++ possibility of overloading the operators. It fits well to dynamic external vari-
able linking, but not to program distribution. Ravid [22] has also made such an ex-
periment in her thesis. Please see below this specific DUAL syntax in this case :

274 R.B. Yehezkael et al.

Pure algorithm 4 of sorting elements by the increment index method.
#include "External_types.h" // C++ Object-type library (see below appendix II)
//DUAL declarations to handle the variables linked to implicit communications :
DUALext_float a(in_out,file,"aa",ran); DUALext_float b(in_out,file,"bb",ran);
DUALext_float t(in_out,file,"tt",ran); DUALext_float keyboard(in,console);
DUALext_float screenFloat(out,console); DUALext_char screenChar(out,console);
void main()

{ int n , i, j; // local variables
 screenChar =" Enter number of elements:\n ";// sends message to the ’screen’
 n = keyboard; // reads the number of elements to sort from the ’keyboard’

// and puts it in the local variable ’n ’
 screenChar =" Enter your elements:\n "; // sends message to the ’screen’
 for(i=0;i<n ;i++) a[i]=keyboard[i]; // reads, from the ’keyboard’,

//the elements to sort and stores them in the file a
 for(i=0;i<n ;i++) // algorithm
 for(j =0;j < n ;j++) // sorts vector a[i] using the indexes vector t[i]

if (a[i]>a[j]) t[i]=t[i]+1;
 for (i=0;i<n ;i++) b[t[i]]=a[i]; // stores the sorted elements in the file ’b’
 for (i=0;i<n ;i++) {screenChar=’\n ’; screenFloat[i]=b[i];}

//prints sorted file ’b’
}

Explanations. We have written a package " External_types.h " which contains a set of
class-types "DUALext_float" "DUALext_int" "DUALext_char" "DUALext_double"
etc… which permits to declare variables that can be linked to various devices with
various access modes : when you declare an external variable, in a Pure Algorithm,
you invoke the constructor of the corresponding class and indicate through the pa-
rameters the type of link you desire, the device, the access mode etc… In the above
text of the Pure Algorithm 4, there are some DUAL declarations. For instance,
DUALext_float a (in_out,file,"aa",ran); declares a variable 'a' of type float, which
is linked to a random (direct-access) file named "aa" which can be read or written.
DUALext_float keyboard (in,console); declares a variable ' keyboard ' of type
float, which is linked to the input device of the console.
DUALext_float screen (out,console); declares a variable ' screen ' of type float,
which is linked to the output device of the console.

Object-type library
Here, in the Appendix II , we give part of the class DUALext_float , one can see the
enum declarations and the constructor functions which permits to declare the device-
Name if the variable has to be linked with a console, a file, or a network port (through
com1 or com2). One can declare if he wants an input link (using the parameter in), an
output link (using the parameter out), or both (using in_out). If the link is with a file,
one has to declare the access mode using the parameter ran for random direct access
files, or seq for sequential access.

Experiments in Separating Computational Algorithm 275

When the external variable is used in the Pure Algorithm, it invokes automatically one
of the overloaded operators ’=’ to output automatically values to the desired device, or
the overloaded ’[] ’ for indexing I/O values, or the casting operator to provoke auto-
matic input of values from the desired device.
So in this type of implementation, there is no special compilation, the C++ compiler
translates as usual. The declarations and the implicit communications are done at run-
time.
The other classes DUALext_int, DUALext_char, DUALext_long etc.. are built on the
same principle.

4 Related Works and Discussion

Transparent Communication. Kramer et al. proposed to introduce interface lan-
guages (CONIC [14], REX [15], DARWIN [16], Magee and Dulay [17]) which al-
lows the user to describe centrally and in a declarative form the distribution of the
processes and data links on a network. But the algorithm of each process contain
explicit communication primitives.
Hayes et al [18] working on MLP (Mixed Language Programming) proposes using
remote procedure calls (RPC’s) by export/import of procedure names.
Purtilo [19] proposed a software bus system (Polylith) also allowing independence
between configuration (which he calls "Application structure") and algorithms (which
he calls "individual components"). The specification of how components or modules
communicate is claimed to be independent of the component writing, but the program
uses explicit calls to functions that can be remote (RPC) or local.
The Darwin, MLP, and Polylith are oriented towards a centralized description of an
application distributed on a dedicated network. So all the binds and instances of pro-
grams are defined initially at configuration time.
Our approach in DUAL is aimed towards a non dedicated network in which each
program knows only of the direct binds with its direct correspondents. Our claim is
that our approach is better suited to interconnected programs in a non dedicated net-
work.

Handling the Man Machine Interface Transparently. Separating the man machine
interface from the programming language has been extensively discussed over the
years[2] (Hurley and Sibert 1989)[11]. Some researchers considered the application
part as the controlling component and the user interface functions as the slave. Others
do the opposite: the user interface is viewed as the master and calls the application
when needed by the I/O process. Some works (Parnas 1969)[8] described the user
interface by means of state diagrams. Edmonds (1992)[9] reports that some research-
ers describe the user interface by means of a grammar. Some others presented an ex-
tension of existing languages, Lafuente and Gries (1989)[10].

276 R.B. Yehezkael et al.

5 Conclusion

In our approach, the user interface and the application are defined separately and the
link between them is explicitly but separately described. This approach is more gen-
eral in that the user interface is seen as one part of a unified mechanism in which ex-
ternal data are accessed, the other parts of this unified mechanism being file handling,
I/O, and network communication. This separation of the DUAL distribution declara-
tion makes the Pure Algorithm (PurAl) clearer, independent of a network configura-
tion, and versatile in the sense that it can be run in various contexts. The 2 experiments
we conduct, show that this idea is feasible and can help the easier development of
distributed applications.

References (available on the web at http://shekel.jct.ac.il/~rafi)

Appendix I (Beginning of the executable merge_sort for Unix)

C-program generated after preprocessing the Pure Algorithm 3
(in italic are the additions of the preprocessor to translate the DUALs)

#define MAXEXVAR 100
int _share_i , _shmid[MAXEXVAR]; int _filed_i , _fd[MAXEXVAR];
struct stat _buf[1]; int _send_i , _smsqid[MAXEXVAR]; struct msgbuf _msgp[1];
char *_msgtext; int _rcv_i , _rmsqid[MAXEXVAR]; int _devout_i;
FILE *_devoutp[MAXEXVAR]; int _devin_i; FILE *_devinp[MAXEXVAR];
int _parallel_i=-1 , _parallel[MAXEXVAR];

void main() // translation of DUAL source_data and target
{char * source_data =(_devinp[_devin_i]=fopen ("./data" , "r") , fgets ((char *)
 malloc (BUFSIZ) , BUFSIZ , _devinp[_devin_i++]));
 char * target =(_devoutp[_devout_i++]=fopen ("/dev/tty" , "w") , (char *)
malloc (BUFSIZ)) ;
 int i; char x[10];

strncpy (x , source_data , 10); msort (x , 10);
strncpy (target , x , 10);

fputs (target , _devoutp[--_devout_i]);
free (target); fclose (_devoutp[_devout_i]); free(source_data);
fclose (_devinp[--_devin_i]);
}// end main---
void msort(char *x,int n) //translation of DUAL share
{ char * aux=(char *)shmat (_shmid[_share_i++]=shmget (IPC_PRIVATE, BUF-
SIZ, 0600) , 0 , 0600) ;

int i,size=1;

Experiments in Separating Computational Algorithm 277

while (size < n)
{ one_level (x, aux, n , size); strncpy (x , aux , n);

size*=2;}
shmdt (aux); shmctl (_shmid[--_share_i] , IPC_RMID , 0);

//end translation DUAL share
}// end msort---

Appendix II (Part of the external_types.h package for PC)

enum inout{in,out,in_out}; enum deviceName {console,file,com1,com2 };
enum AccessMode{seq,ran}; int init_com1 = 0 ,
class DUALext_float //--------EXTERNAL F L O A T TYPE----------
{inout IO; deviceName DEVICE; char* FileN; AccessMode AccessM; float Value;
long index;
 public: DUALext_float(inout, deviceName , char*, AccessMode); //constructors

DUALext_float(inout,deviceName);
~DUALext_float(); // destructor
void operator=(float);// overloading of operators for implicit communication
DUALext_float operator[](long);
operator float();

}; /// //CONSTRUCTOR for files
DUALext_float::DUALext_float(inout D, deviceName A,

char* FileName, AccessMode C)
{IO = D; DEVICE = A; FileN = FileName; AccessM = C; Value = 0;index=0; }
//---
DUALext_float:: DUALext_float(inout D, deviceName A)
{IO = D; DEVICE = A; //CONSTRUCTOR for console,com1,com2

if (DEVICE == com1)
{ if (!init_com1) open_net(); init_com1++;}

}//---
DUALext _float::~ DUALext _float() // DESTRUCTOR
{ if (DEVICE == com1){ init_com1--; if (!init_com1) close_net(); }
}//-----------------------------------//OVERLOADING OF operator ’[]’; for INDEXING
DUALext_float DUALext ext_float::operator[](long count){
{ if (DEVICE == file) count *=14;
 if (AccessM == seq && count < index){cerr <<"Error in sequential \n "; exit(1); }

 index = count ; return(*this);
}//---------------------------//OVERLOADING OF operator ’=’ ; OUTPUT OF VALUE
void DUALext DUALext _float::operator=(float value)
{ if (IO != in){ if (DEVICE == console) { cout << value;}

if (DEVICE == file){ ofstream to; to.open(Ch,ios::ate); to.seekp(index);
to.width(13); to << value <<’ ’; to.close(); }

if (DEVICE == com1) send_net(value);}
 return;

278 R.B. Yehezkael et al.

}//---------------------------//OVERLOADING OF CASTING : INPUT OF VALUE
DUALext_float::operator float()
{if (DEVICE == console) { cin >> Value; }
 if (DEVICE == file) {ifstream from; from.open(Ch,ios::ate); from.seekg(index);

from.width(13); from >> Value; from.close(); }
 if (DEVICE == com1 && IO == in)

{ if (something_in_net())Value = receive_net(); else Value = 0;}
return(Value);

}//---

