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Abstract. Choosing the best page size for Virtual Memory requires considering 
several factors. A smaller page size reduces the amount of internal 
fragmentation. On the other hand, a larger page needs smaller page 
tables. However, this paper argues that the main reason to prefer a larger page 
is to increase the virtual to physical translation speed i.e. because the size of a 
TLB is limited, to facilitate increasing of TLB coverage we have to use larger 
pages. 
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1 Introduction 

Over the history of memory management units (MMUs) of processors, their 
hardware has employed page size of 0.5KB to 8KB. E.g. VAX developed by Digital 
Equipment Corporation (DEC) in the mid-1970s used 512 bytes page size [1]. In the 
mid-1990s Digital Equipment Corporation decided to upgrade its processors and 
replace the old VAX by the DEC Alpha. The page size of DEC Alpha was 
considerably increased to 8KB [2]. Sun 1 manufactured by Sun Microsystems and 
launched in 1982 has a 2K bytes page size [3]. IA-32/x86 has been making use of 
4KB page size since the mid-1980s [4] and even when they moved to x86-64 at 2003 
the 4KB page size was remained [5].  

Essentially, a 4KB page size has been employed for Virtual Memory since the 
1960s. What's more, nowadays, the most widespread page size is still 4KB. Selecting 
a page size is actually compromising between a number of concerns and issues taken 
into account.  

From one point of view, a larger page size will cause more fragmentation; 
therefore selecting a smaller page size will save some memory space. Indeed, when 
the physical memory is quite small, such a consideration is very significant because 
too much load on a small memory can cause a Thrashing [6,7]. However, nowadays 
computer hardware usually has abundance of memory which is usually much more 
than a conventional user needs, so the trashing issue is usually less important and 
frequently inconsiderable.  

In addition, when several processes share memory, the sharing is always of full 
pages [8]. Therefore, if the page size is larger, the resolution will be poorer.  

 
 



On the other side, selecting a larger page will enlarge the TLB coverage and as a 
result will reduce the TLB misses and the necessity to read page tables in the main 
memory. 

Over the years when many processors have used the traditional 4KB; however, the 
memory size has been upgraded from some hundreds of Kilobytes to several 
Gigabytes, therefore we can forfeit some memory space so as to obtain higher 
performance [9]. 

The most important motivation for have a preference of larger page is making the 
translation time of virtual addresses to physical addresses better. In a virtual memory 
scheme, the memory management unit (MMU) hardware translates each virtual 
address generated by the CPU into a physical address. The page tables of all the 
processes containing all the physical addresses for the possible virtual addresses are 
stored in the main memory. This means that each access to a memory address will be 
doubled, because an extra access for the translation will be needed. To facilitate a 
shorter virtual to physical address translation time, the most recently used addresses 
are stored in a Translation Lookaside Buffer (TLB). TLB is a high-speed access cache 
implemented by a dedicated registers. 

Some processors have just one level of TLB cache; whereas some processors like 
Itanium 2 have two levels of TLB cache [10]. In the first level of the TLB memory, 
Itanium 2 has 32 entries Instruction TLB cache and 32 entries Data TLB cache. In 
addition, Itanium 2 has 128 entries Instruction TLB cache and 128 entries Data TLB 
cache in the second level of the TLB memory. 

If a TLB miss occurs at the first level, the second level is accessed. The penalty for 
such a miss is just 2 clock cycles for a miss in the Instruction TLB and 4 clock cycles 
in the Data TLB; however, if s miss occurs at the second level, an access to the main 
memory is required because the physical address must be looked for in the original 
page table in the main memory and then the physical address have to be loaded into 
the appropriate TLB. Because an access to each of the TLBs must take only very 
short time, the TLBs are built with only a small number of entries.  

The term "TLB coverage" refers to the total amount of memory mapped by all of 
the TLBs. Let us assume TLBs with 256 entries and a standard page size of 4KB. In 
such a case the TLB coverage is only one megabyte of memory. Because the size of 
the TLBs is constrained, to facilitate enlargement of TLB coverage, larger pages are 
required. A different way for better performance can be an improvement of the 
Memory Management Unit cache system [11]. 

Another option for increasing the TLB coverage is by making use of super-pages 
[12,13]. Many contemporary CPU architectures provide a support for super-pages, 
Such an architecture allows the Operating System to make use of a number of page 
sizes. Super-paging mechanism enables selecting a suitable page size for any 
allocation.  

A small page size will be selected for a small spatial locality with the purpose of 
saving memory and a large page size will be selected for a large spatial locality with 
the purpose of enlargement of the TLB coverage. The spatial locality of an 
information segment can be analyzed as we suggested at [14]. 

 E.g. very large pages are suitable for allocations of non-paged memory, such as 
for mapping frame buffers or for the fixed pieces of the operating system kernel; 
whereas small page size can be suitable for the kernel stack [15]. When super-pages 



are used for paging the code segment and data segment of a user process, an 
intermediate sized page should be selected. The average unused memory space 
produced by internal fragmentation with too large pages might be substantial. Writing 
even just one byte to such a page can be costly, because there is only one dirty bit and 
there is a need to update the entire page. 

Most of the modern Operating systems do not employ Super-pages, even though 
most of the CPU architectures support Super-Pages [16]. So in point of fact only the 
4KB page size has been employed for Virtual Memory systems in most of the 
architectures since the 1960s. Actually, nowadays, the most frequent page size is still 
4KB. It should be noted that Linux running on SGI Altix systems uses a fixed page 
size of 16 KB for all processes, using the 16KB super-page of SGI Altix [17]; rather 
than using the usual 4KB pages that supported as base pages by SGI Altix. 

Over the years, the factors that have an effect on the page size have been changed. 
The common memory size of standard computers has been increased from some 
hundreds of Kilobytes to several Gigabytes. Consequently, standard TLBs cover only 
a small portion of a common memory of contemporary computers. In addition, access 
times of standard contemporary disks have not kept up with throughput augments. In 
last years, usual throughput has been enhanced by a factor of 100; though, access time 
has enhanced by just a factor of 3 [18]. Therefore, transferring of larger pages from 
and to a disk has become more reasonable. 

2 Selecting Page Size Range Results 

With the intention of assessing the best page size for virtual memory systems, 
several benchmarks from the SPEC suite [19] have been run. The TLB misses have 
been counted so as to observe the differences between the memory usages of a variety 
of benchmarks employing various page sizes. The most acceptable preference for a 
page size is when there will be a substantial reduction in TLB misses but with almost 
no enlargement in memory space usage. 

When making use of super-paging, many operating systems (E. g. HP, IRIX and 
Solaris) employ the Allocation method i.e. the operating system kernel allocates a 
large enough page when the first page fault occurs. These operating systems use this 
method because it is simpler to allocate and map the entire superpage when the 
operating system accesses the page at the first time and because not enough research 
has been done about the possible advantages of the other complex methods [20]. In 
this paper this scheme for employing super-paging is implemented. 

Many processors supporting super-pages have a range of page sizes. In spite of 
this, as mentioned above, there is no established strategy for the operating system 
kernel to select the most appropriate size. Therefore in this paper a basic super-paging 
scheme is assumed in which just one of two page sizes are selected, either the base 
page size or a super-page size. According to this scheme, the strategy of the operating 
system kernel is allocating a fixed large page only if the memory object is large 
enough and also there is enough memory space for this memory object. When running 
the SPEC benchmark suite we observed that dTLB misses decrease just with larger 



pages. This can be of help for us on the way of deciding about the large page size 
appropriate for substantial data segments. 

With the aim of counting the TLB misses and analyzing the memory usage of a 
variety of page sizes, 12 applications from the SPEC suite have been simulated. Such 
simulations of SPEC benchmarks in reality take a long time to come to an end, 
therefore we traced each benchmark for only its first 48 hours. The hardware used for 
these experiments was a 3.66GHz Intel(R) Xeon(TM) CPU. This hardware was 
dedicated to these benchmark simulations.  We used "valgrind" which is a suite of 
simulations based debugging and profiling tools for the Linux operating system. One 
of "valgrind"'s tools called "Lackey" was adjusted to produce a trace of memory 
references. The output of the adjusted tool incorporates a trace of page references for 
all the page size that are power of 2 multiples from 4KB up to 256KB. 

The traced output includes enormous data. Therefore, if this output was saved into 
a file, it would swiftly enlarge to several gigabytes. To facilitate a solution for this 
constraint, we have used an on-the-fly simulation. The traced output of "valgrind" was 
redirected to another process via a pipe. The other process analyzed the data and 
generated the results. 

This analyzing process actually simulated an LRU based TLB and counted the 
TLB misses for every page sizes. The simulated TLB of this process was a fully 
associative TLB. It has been assumed that the TLB havs 64 entries for instructions 
and 64 entries for data.  

It has been also assumed that the TLB is dedicated to only the benchmark i.e. it has 
been assumed that the operating system kernel or other processes that usually can take 
entries in the TLB do not take these entries. As was mentioned above, the operating 
system kernel can use large pages and therefore usually take a small number of entries 
in the TLB. For that reason, there is typically just an insignificant effect of a running 
operating system kernel on the TLB performance. 

In the analyzing process, the pages allocated to every process have been counted.  
For every page size, the total sum of memory space allocations of the process during 
its execution has been calculated. a large volume of physical memory with no need of 
swapping has been presumed. 

The benchmarks crafty and parser have produced similar results – The iTLB 
misses slightly decrease when using 16KB pages. Actually, these two benchmarks 
characterize 10 out of the 12 benchmarks that have been run in our experiments. The 
relative iTLB miss percentage is negligible for nearly every benchmark when 
employing 16KB pages.  

It can also be noticed that the relative increase in memory space usage for crafty 
and parser is less than 25%. The additional memory utilization is certainly worth the 
performance boost. Nowadays computer hardware has abundance of memory which is 
usually much more than a conventional user needs, so utilizing more memory for 
performance improvement looks like a quite good deal. 

Even when looking at the benchmarks with the poorest memory space usage results 
apsi and vpr, the iTLB decreases to approximately 1/3 and the memory space usage 
increases by approximately 2/3 at 16KB page size. Such results appear to be 
acceptable considering today’s computer hardware which usually have large quantity 
of memory. 



3 Conclusions 

It can be concluded that the traditional 4KB page size is not suitable for modern 
computer hardware. 16KB base page is much more suitable size for the allocation of 
code segments. 16KB base page almost eliminates iTLB misses for a large amount of 
applications without bring upon the computer hardware a high memory price tag. 
Allocating larger pages however, is not advisable because for nearly all applications it 
barely decreases iTLB misses but for several applications, it can significantly increase 
the required memory space. 

Regarding the data of crafty and parser, the dTLB misses slightly decrease just 
when using 256KB pages. These are the results of nearly all applications; however it 
should be noted that the dTLB misses of vpr and gcc become low at 32KB pages and 
on the contrary the dTLB misses of apsi do not become low even at 256KB. 
Regarding memory space usage for data, the space will be almost constant when 
increasing the page size. 

The ending conclusion of this paper is that for large data objects, the operating 
system is supposed to allocate 256KB pages. On the other hand, for small data objects 
and for code segments, the operating system is supposed to allocate smaller pages in 
size of 16KB. For that reason, it is advised that new base page size of the new 
architectures will be 16KB. 
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