
Virtual Memory Systems Should use Larger Pages

Pinchas Weisberg and Yair Wiseman,1

1 Computer Science Department, Bar-Ilan University, Ramat-Gan 52900, Israel

wiseman@cs.biu.ac.il

Abstract. Choosing the best page size for Virtual Memory requires considering
several factors. A smaller page size reduces the amount of internal
fragmentation. On the other hand, a larger page needs smaller page
tables. However, this paper argues that the main reason to prefer a larger page
is to increase the virtual to physical translation speed i.e. because the size of a
TLB is limited, to facilitate increasing of TLB coverage we have to use larger
pages.

Keywords: Memory Management, Virtual memory, Memory Pages.

1 Introduction

Over the history of memory management units (MMUs) of processors, their
hardware has employed page size of 0.5KB to 8KB. E.g. VAX developed by Digital
Equipment Corporation (DEC) in the mid-1970s used 512 bytes page size [1]. In the
mid-1990s Digital Equipment Corporation decided to upgrade its processors and
replace the old VAX by the DEC Alpha. The page size of DEC Alpha was
considerably increased to 8KB [2]. Sun 1 manufactured by Sun Microsystems and
launched in 1982 has a 2K bytes page size [3]. IA-32/x86 has been making use of
4KB page size since the mid-1980s [4] and even when they moved to x86-64 at 2003
the 4KB page size was remained [5].

Essentially, a 4KB page size has been employed for Virtual Memory since the
1960s. What's more, nowadays, the most widespread page size is still 4KB. Selecting
a page size is actually compromising between a number of concerns and issues taken
into account.

From one point of view, a larger page size will cause more fragmentation;
therefore selecting a smaller page size will save some memory space. Indeed, when
the physical memory is quite small, such a consideration is very significant because
too much load on a small memory can cause a Thrashing [6,7]. However, nowadays
computer hardware usually has abundance of memory which is usually much more
than a conventional user needs, so the trashing issue is usually less important and
frequently inconsiderable.

In addition, when several processes share memory, the sharing is always of full
pages [8]. Therefore, if the page size is larger, the resolution will be poorer.

On the other side, selecting a larger page will enlarge the TLB coverage and as a
result will reduce the TLB misses and the necessity to read page tables in the main
memory.

Over the years when many processors have used the traditional 4KB; however, the
memory size has been upgraded from some hundreds of Kilobytes to several
Gigabytes, therefore we can forfeit some memory space so as to obtain higher
performance [9].

The most important motivation for have a preference of larger page is making the
translation time of virtual addresses to physical addresses better. In a virtual memory
scheme, the memory management unit (MMU) hardware translates each virtual
address generated by the CPU into a physical address. The page tables of all the
processes containing all the physical addresses for the possible virtual addresses are
stored in the main memory. This means that each access to a memory address will be
doubled, because an extra access for the translation will be needed. To facilitate a
shorter virtual to physical address translation time, the most recently used addresses
are stored in a Translation Lookaside Buffer (TLB). TLB is a high-speed access cache
implemented by a dedicated registers.

Some processors have just one level of TLB cache; whereas some processors like
Itanium 2 have two levels of TLB cache [10]. In the first level of the TLB memory,
Itanium 2 has 32 entries Instruction TLB cache and 32 entries Data TLB cache. In
addition, Itanium 2 has 128 entries Instruction TLB cache and 128 entries Data TLB
cache in the second level of the TLB memory.

If a TLB miss occurs at the first level, the second level is accessed. The penalty for
such a miss is just 2 clock cycles for a miss in the Instruction TLB and 4 clock cycles
in the Data TLB; however, if s miss occurs at the second level, an access to the main
memory is required because the physical address must be looked for in the original
page table in the main memory and then the physical address have to be loaded into
the appropriate TLB. Because an access to each of the TLBs must take only very
short time, the TLBs are built with only a small number of entries.

The term "TLB coverage" refers to the total amount of memory mapped by all of
the TLBs. Let us assume TLBs with 256 entries and a standard page size of 4KB. In
such a case the TLB coverage is only one megabyte of memory. Because the size of
the TLBs is constrained, to facilitate enlargement of TLB coverage, larger pages are
required. A different way for better performance can be an improvement of the
Memory Management Unit cache system [11].

Another option for increasing the TLB coverage is by making use of super-pages
[12,13]. Many contemporary CPU architectures provide a support for super-pages,
Such an architecture allows the Operating System to make use of a number of page
sizes. Super-paging mechanism enables selecting a suitable page size for any
allocation.

A small page size will be selected for a small spatial locality with the purpose of
saving memory and a large page size will be selected for a large spatial locality with
the purpose of enlargement of the TLB coverage. The spatial locality of an
information segment can be analyzed as we suggested at [14].

 E.g. very large pages are suitable for allocations of non-paged memory, such as
for mapping frame buffers or for the fixed pieces of the operating system kernel;
whereas small page size can be suitable for the kernel stack [15]. When super-pages

are used for paging the code segment and data segment of a user process, an
intermediate sized page should be selected. The average unused memory space
produced by internal fragmentation with too large pages might be substantial. Writing
even just one byte to such a page can be costly, because there is only one dirty bit and
there is a need to update the entire page.

Most of the modern Operating systems do not employ Super-pages, even though
most of the CPU architectures support Super-Pages [16]. So in point of fact only the
4KB page size has been employed for Virtual Memory systems in most of the
architectures since the 1960s. Actually, nowadays, the most frequent page size is still
4KB. It should be noted that Linux running on SGI Altix systems uses a fixed page
size of 16 KB for all processes, using the 16KB super-page of SGI Altix [17]; rather
than using the usual 4KB pages that supported as base pages by SGI Altix.

Over the years, the factors that have an effect on the page size have been changed.
The common memory size of standard computers has been increased from some
hundreds of Kilobytes to several Gigabytes. Consequently, standard TLBs cover only
a small portion of a common memory of contemporary computers. In addition, access
times of standard contemporary disks have not kept up with throughput augments. In
last years, usual throughput has been enhanced by a factor of 100; though, access time
has enhanced by just a factor of 3 [18]. Therefore, transferring of larger pages from
and to a disk has become more reasonable.

2 Selecting Page Size Range Results

With the intention of assessing the best page size for virtual memory systems,
several benchmarks from the SPEC suite [19] have been run. The TLB misses have
been counted so as to observe the differences between the memory usages of a variety
of benchmarks employing various page sizes. The most acceptable preference for a
page size is when there will be a substantial reduction in TLB misses but with almost
no enlargement in memory space usage.

When making use of super-paging, many operating systems (E. g. HP, IRIX and
Solaris) employ the Allocation method i.e. the operating system kernel allocates a
large enough page when the first page fault occurs. These operating systems use this
method because it is simpler to allocate and map the entire superpage when the
operating system accesses the page at the first time and because not enough research
has been done about the possible advantages of the other complex methods [20]. In
this paper this scheme for employing super-paging is implemented.

Many processors supporting super-pages have a range of page sizes. In spite of
this, as mentioned above, there is no established strategy for the operating system
kernel to select the most appropriate size. Therefore in this paper a basic super-paging
scheme is assumed in which just one of two page sizes are selected, either the base
page size or a super-page size. According to this scheme, the strategy of the operating
system kernel is allocating a fixed large page only if the memory object is large
enough and also there is enough memory space for this memory object. When running
the SPEC benchmark suite we observed that dTLB misses decrease just with larger

pages. This can be of help for us on the way of deciding about the large page size
appropriate for substantial data segments.

With the aim of counting the TLB misses and analyzing the memory usage of a
variety of page sizes, 12 applications from the SPEC suite have been simulated. Such
simulations of SPEC benchmarks in reality take a long time to come to an end,
therefore we traced each benchmark for only its first 48 hours. The hardware used for
these experiments was a 3.66GHz Intel(R) Xeon(TM) CPU. This hardware was
dedicated to these benchmark simulations. We used "valgrind" which is a suite of
simulations based debugging and profiling tools for the Linux operating system. One
of "valgrind"'s tools called "Lackey" was adjusted to produce a trace of memory
references. The output of the adjusted tool incorporates a trace of page references for
all the page size that are power of 2 multiples from 4KB up to 256KB.

The traced output includes enormous data. Therefore, if this output was saved into
a file, it would swiftly enlarge to several gigabytes. To facilitate a solution for this
constraint, we have used an on-the-fly simulation. The traced output of "valgrind" was
redirected to another process via a pipe. The other process analyzed the data and
generated the results.

This analyzing process actually simulated an LRU based TLB and counted the
TLB misses for every page sizes. The simulated TLB of this process was a fully
associative TLB. It has been assumed that the TLB havs 64 entries for instructions
and 64 entries for data.

It has been also assumed that the TLB is dedicated to only the benchmark i.e. it has
been assumed that the operating system kernel or other processes that usually can take
entries in the TLB do not take these entries. As was mentioned above, the operating
system kernel can use large pages and therefore usually take a small number of entries
in the TLB. For that reason, there is typically just an insignificant effect of a running
operating system kernel on the TLB performance.

In the analyzing process, the pages allocated to every process have been counted.
For every page size, the total sum of memory space allocations of the process during
its execution has been calculated. a large volume of physical memory with no need of
swapping has been presumed.

The benchmarks crafty and parser have produced similar results – The iTLB
misses slightly decrease when using 16KB pages. Actually, these two benchmarks
characterize 10 out of the 12 benchmarks that have been run in our experiments. The
relative iTLB miss percentage is negligible for nearly every benchmark when
employing 16KB pages.

It can also be noticed that the relative increase in memory space usage for crafty
and parser is less than 25%. The additional memory utilization is certainly worth the
performance boost. Nowadays computer hardware has abundance of memory which is
usually much more than a conventional user needs, so utilizing more memory for
performance improvement looks like a quite good deal.

Even when looking at the benchmarks with the poorest memory space usage results
apsi and vpr, the iTLB decreases to approximately 1/3 and the memory space usage
increases by approximately 2/3 at 16KB page size. Such results appear to be
acceptable considering today’s computer hardware which usually have large quantity
of memory.

3 Conclusions

It can be concluded that the traditional 4KB page size is not suitable for modern
computer hardware. 16KB base page is much more suitable size for the allocation of
code segments. 16KB base page almost eliminates iTLB misses for a large amount of
applications without bring upon the computer hardware a high memory price tag.
Allocating larger pages however, is not advisable because for nearly all applications it
barely decreases iTLB misses but for several applications, it can significantly increase
the required memory space.

Regarding the data of crafty and parser, the dTLB misses slightly decrease just
when using 256KB pages. These are the results of nearly all applications; however it
should be noted that the dTLB misses of vpr and gcc become low at 32KB pages and
on the contrary the dTLB misses of apsi do not become low even at 256KB.
Regarding memory space usage for data, the space will be almost constant when
increasing the page size.

The ending conclusion of this paper is that for large data objects, the operating
system is supposed to allocate 256KB pages. On the other hand, for small data objects
and for code segments, the operating system is supposed to allocate smaller pages in
size of 16KB. For that reason, it is advised that new base page size of the new
architectures will be 16KB.

References

1. D. W. Clark and J. S. Emer, "Performance of the VAX-11/780 Translation Buffer:

Simulation and Measurement", ACM Transactions on Computer Systems (TOCS) Vol. 3(1),
pp. 31-62, 1985.

2. J. H. Edmondson, P. I. Rubinfeld, P. J. Bannon, B. J. Benschneider, D. Bernstein, R. W.
Castelino, E. M. Cooper, D. E. Dever, D. R. Donchin, T. C. Fischer, A. K. Jain, S. Mehta, J.
E. Meyer, R. P. Preston, V. Rajagopalan, C. Somanathan, S. A. Taylor, G. M. Wolrich,
"Internal Organization of The Alpha 21164, A 300-MHz 64-Bit Quad-Issue CMOS RISC
Microprocessor", Digital Technical Journal Vol. 7(1), 1995.

3. G. Larry, R. Lyon, L. Delzompo and B. Callaghan, "The Open Network Computing
Environment", In The Sun Technology Papers, pp. 3-12, Springer, New York, 1990.

4. E. Grochowski and K. Shoemaker, "Issues in the Implementation of the i486 Cache and
Bus", In IEEE International Conference on Computer Design: VLSI in Computers and
Processors, ICCD'89. Proceedings, pp. 193-198, 1989.

5. T. W. Barr, A. L. Cox and S. Rixner, "Translation Caching: Skip, Don't Walk (The Page
Table)", In ACM SIGARCH Computer Architecture News, Vol. 38(3), pp. 48-59, New
York, 2010.

6. M. Reuven and Y. Wiseman, "Medium-Term Scheduler as a Solution for the Thrashing
Effect", The Computer Journal, Oxford University Press, Swindon, UK, Vol. 49(3), pp. 297-
309, 2006.

7. M. Reuven and Y. Wiseman, "Reducing the Thrashing Effect Using Bin Packing" In
Proceedings of Modeling, Simulation, and Optimization Conference, MSO-2005,
Oranjestad, Aruba, pp. 5-10, 2005.

8. M. Geva and Y. Wiseman, "Distributed Shared Memory Integration", Proc. IEEE

Conference on Information Reuse and Integration (IEEE IRI-2007), Las Vegas, Nevada, pp.
146-151, 2007.

9. P. Weisberg and Y. Wiseman, "Using 4KB Page Size for Virtual Memory is Obsolete", Proc.
IEEE Conference on Information Reuse and Integration (IEEE IRI-2009), Las Vegas,
Nevada, pp. 262-265, 2009.

10. Intel, Intel Itanium 2 Processor Reference Manual – For Software Development and
Optimization, May 2004, Document-No.: 251110-003.

11. B. Abhishek, "Large-Reach Memory Management Unit Caches", In Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 383-394, Davis,
California, USA, 2013.

12. M. Itshak and Y. Wiseman, "AMSQM: Adaptive Multiple SuperPage Queue Management",
Special issue of the International Journal of Information and Decision Sciences (IJIDS) on
the best papers of IEEE Conference on Information Reuse and Integration (IEEE IRI-2008),
Vol. 1(3), pp. 323-341, 2009.

13. Y. Wiseman, "ARC Based SuperPaging", Operating Systems Review, Vol. 39(2), pp. 74-
78, 2005.

14. P. Weisberg and Y. Wiseman, "Efficient Memory Control for Avionics and Embedded
Systems", International Journal of Embedded Systems, Inderscience Publishers, Vol. 5, No.
4, pp. 225-238, 2013.

15. Y. Wiseman, J. Isaacson and E. Lubovsky, "Eliminating the Threat of Kernel Stack
Overflows", Proc. IEEE Conference on Information Reuse and Integration (IEEE IRI-2008),
Las Vegas, Nevada, pp. 116-121, 2008.

16. S. Yuki, B. Gerofi, and Y. Ishikawa, "Revisiting Virtual Memory for High Performance
Computing on Manycore Architectures: A Hybrid Segmentation Kernel Approach" In
Proceedings of the 4th ACM International Workshop on Runtime and Operating Systems for
Supercomputers, Article no. 3, 2014.

17. J. Guido, M. S. Müller, W. E. Nagel, and S. Pflüger, "Accessing Data on SGI ALTIX: An
Experience With Reality" In Proceedins of 4th Workshop on Memory Performance Issues,
(WMPI-2006), Austin, Texas, 2006.

18. P. Schmid, "15 Years Of Hard Drive History: Capacities Outran Performance", Tom's
Hardware, 2006.

19. J. L. Henning, "SPEC CPU2006 Benchmark Descriptions" ACM SIGARCH Computer
Architecture News, Vol. 34, no. 4, 1-17, 2006.

20. D. Yu, M. Zhou, B. R. Childers, D. Mossé and R. Melhem, "Supporting Superpages in
Non-Contiguous Physical Memory" In IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA-2015), pp. 223-234, San Francisco Bay,
California, USA , 2015.

