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Abstract 

The latest fatal accidents of autonomous vehicle happened because of undetected peer 

vehicles or persons. These fatal accidents call attention to the rangefinder devices which 

are a very significant component of every autonomous vehicle. The rangefinder is the 

starting point for the decision whether the vehicle should continue to go, to stop, or 

bypassing an object. In this paper an ultrasonic based rangefinder device for autonomous 

vehicles is presented. The device can be used as an ancillary system in addition to 

standard LIDAR system used by almost all the autonomous vehicles, with the aim of 

overcoming the obstructions of conventional LIDAR systems. 
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1. Introduction 

Using an ultrasonic device for range finding in an autonomous vehicle [1] has 

been suggested in the part years [2]. The method has been also prevalently 

implemented in regular vehicles for parking sensors [3]. There are also security 

implementations for this technology [4]. 

LIDAR range sensors [5] have a critical obstruction. A LIDAR beam is narrow 

[6]. This quality can be an advantage for some aspects; however, a narrow beam is 

also a significant disadvantage because the beam will be prone to disregard narrow 

objects like for example lampposts; therefore, the autonomous vehicle will have to 

take a lot of readings when scanning its surrounding using a LIDAR based 

rangefinder, because the more readings per revolution, the better the chance of 

picking up narrow objects [7]; hence ultrasonic devices for rang finding in 

autonomous vehicles are suggested at least for a backup for the LIDAR rangefinder. 

 

2. Ultrasonic Rangefinder 

The concept of ultrasonic devices is to emit acoustic pulses. After that, the device 

measuring the time it took for the reflected signal to be detected. The speed of 

sound is a known number, but it is affected by temperature, humidity and air 

pressure [8]; however, typically the speed of sound is 700 MPH to 800 MPH. The 

distance is time multiplied by speed so accordingly the device can calculate 

distances of objects in its surroundings. The inaccuracy of the result because of the 

differences in the speeds of sound is ignored, because autonomous vehicles anyway 

take a safety factor when taking their decisions [9]. 

The range of common parking sensors is usually about 10 feet [10] because there 

is no need in parking sensors to detect farer objects [11, 12]. There are also some 

parking sensors with long-lasting signals even for 70 feet [13]; however, in a range 

finder for autonomous vehicles, it is necessary to detect much farer objects. 
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Particularly, in a high-speed highway, the vehicle will not be able to come to a full 

stop in 10 feet, so there is a necessity to send a stronger signal, so the signal can be 

detected even after a long distance. 

The safe stopping distance is the sum of the reaction distance and the braking 

distance [14]. The average reaction time of a regular driver is approximately 3/4 

seconds [15]; however, the reaction time of an autonomous vehicle is almost zero 

and actually this time is neglected in the braking time and accordingly the reaction 

distance is also neglected. 

Braking distance [16] i.e., the distance that the vehicle goes from the start of the 

braking system operation until the vehicle will come to a full stop depends on 

several various factors:  

  The speed of the vehicle [17]. 

  The weather [18]. 

  The condition of the vehicle and its tires and brakes [19, 20, 21]. 

  The road condition [22]. 

  The intensity of the press on the brake pedal by the driver [23]. 

It should be also noted that the braking distance is not increased in linear to the 

increase in speed, but increased in square to the increase in speed. For example, if 

the speed of a certain vehicle increases twofold, the braking distance will be four 

times longer. 

Vehicle's velocity can significantly vary from a vehicle creeping forward in a 

traffic jam [24, 25, 26] or a vehicle goes in an empty highway. The distance for a 

vehicle goes in 75 MPH to come to a full stop is approximately 250 feet; hence our 

system was designed to send strong enough signals that can last for more than 300 

feet. 

 

3. Implementation 

The ultrasonic rangefinder consists of a control unit, an ultrasonic transmitter, an 

ultrasonic receiver and an asynchronous counter. They are connected as is depicted 

in Figure 1. 

Like the implementation of many other Intelligent Transportation Systems 

[27,28], The control unit of the rangefinder device has been designed as a Moore 

state machine [29]. The control unit has just 3 states. The output lines of the state 

machine go to the counter and to the ultrasonic transmitter. 

In the first state the control unit instructs the counter to start the counting. In 

addition, in this state the control unit instructs the ultrasonic transmitter to emit its 

signal. 

Next, the state machine goes into a wait state. The state machine wait s for a 

return signal from a possible object. 

If a signal is detected, the machine goes to another state where the machine 

outputs the value of the counter. 
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Figure 1. The Ultrasonic Rangefinder 

If the counter returns to zero, the machine will understand that no object has been 

detected and the therefore the machine will return to the first step, where the 

machine instructs the counter to start counting and instructs the ultrasonic 

transmitter to emit its signal. 

A description of the state machine is shown in Figure 2. 

Given that the control unit has 3 states, it contains 2 flip-flops according to the 

formula: 

Number of flip-flops = log 2 (number of states) 

Let us denote the flip-flops as FF1, FF0. We also denote the input from the 

ultrasonic receiver as US and the overflow of the counter (i.e. when the counter 

passes the value of 511) as CO.  

The next state functions of the control unit's flip-flops are described in Karnaugh 

maps [30] in Figure 3 and Figure 4. Accordingly, the next state functions for both of 

the flip-flops are: 

Next FF1 = COUSFF 0  

Next FF0 = COUSFFFFFF  001  
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Figure 2. Diagram of the State Machine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Karnaugh Map for Next State of FF1 
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Figure 4. Karnaugh Map for Next State of FF1 

Consequently, the circuits of the next values of flip-flops are shown in Figure 5 

(Next FF1) and Figure 6 (Next FF0). 

 

 

 

 

 

 

Figure 5. Next FF1 Circuit 

 

 

 

 

 

 
 
 

Figure 6. Next FF0 Circuit 

4. The Rangefinder Counter 

An asynchronous counter consists of JK flip-flops or T flip-flops whose inputs 

are connected to a voltage that represent the logical value of "1" [31]. The "1" input 

causes the current output of the flip-flops to be the inverse of its previous output. 

Each flip-flop stores one bit, so it can count from 0 to 2n-1 where n is the number of 
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the flip-flops in the counter, before the counter's value returns to 0. Actually an 

overflow occurs, but it is ignored. 

The number stored in the first flip-flop will change in each clock cycle; therefore, 

it will take two clock cycles until the first flip-flop returns to its original value. In 

each clock cycle the flip-flop's value will change from 0 to 1 or from 1 to 0, so as a 

result, the output of the first flip-flop creates a new clock whose length is the same 

as the two cycles of the original clock, that is, the frequency of this new clock is 

half the frequency of the original clock. This new clock is connected as a clock 

signal to a second flip-flop. The second flip-flop will be, like the first flip-flop, a 

one-bit counter, but its pace will be half the speed of the first unit. The output of the 

second flip-flop is connected as a clock to a third flip-flip that its pace will be half 

the speed of the second flip-flop.  

 

Figure 7. Nine Bits Asynchronous Counter 
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A combination of several flip-flops together will generate a several bit counter, as 

can be seen in Figure 7. Particularly, the counter in Figure 7 consists of nine flip-

flops where Bit 0 is the first flip-flop which inverses the fastest and Bit 8 is the last 

flip-flop which inverses the slowest. 

The use of the flip-flops output as a clock causes time discrepancies between the 

bits of the counter, because when the counter value is modified, the flip-flop that 

stores Bit 0 is modified first and it takes time until a possible modification is 

propagated to the rest of the flip-flops [32]. 

As a result, such a counter is not suitable for use in regular synchronous circles 

where all components are modified at the same time by a single clock signal and a 

short modification time is imperative. A modification that propagates  in linear time 

to the number of the flip-flops can be too slow for several implementations; 

however, in the implementation of this paper, anyway the clock cycle is quite long, 

so such a long modification time will not be a problem.  

We made use of a maximum range of 300 feet which the sound should go twice 

(back and forth). In the speed of sound going 300 feet will take about half a second. 

We designed a counter of 9 bits which represents a resolution of 512 options. This 

led us to adjust the clock of the counter to be 1KHZ, which will be able to count to 

0.511 seconds. 

 

5. The Clock  

The clock we used is actually a kind of an electronic oscillator [33]. This 

electronic circuit produces a periodic, oscillating electronic signal as a square wave 

by converting direct current (DC) from a power supply to a square wave signal. 

The electronic oscillator is described in Figure 8. Let us suppose CapacitorL is 

discharged whereas CapacitorR is charged. In that case, an electric current will flow 

through CapacitorL which will continue to the base of TransistorR. This electric 

current will continue to the 0V through the emitter of Transistor R. This electric 

current will make TransistorR being almost a zero resistance; hence the output 

voltage will be almost 0V. 

While this happens, CapacitorR discharges its voltage through TransistorR and 

CapacitorL is charged by the electric current flows through it, so the Capacitors 

switch roles. The electric current flows through CapacitorR, while CapacitorL 

discharges its voltage through TransistorL. 

The resistors RL is very important when TransistorL has a significant electric 

current flow from the base to the emitter and it actually becomes almost  a zero 

resistance. In such a case a short circuit will be formed if resistor RL was not placed 

there. Similarly, RR eliminates a short circuit in a case where a significant electric 

current flow from the base to the emitter of TransistorR. 

This constant switching roles cause the voltage output to be as described in the 

bottom of Figure 8.  
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Figure 8. Square Wave Clock 

6. Conclusions 

The suggested incorporated system of a LIDAR rangefinder and an ultrasonic 

ranger finder can be implemented in autonomous vehicles with a significantly better 

ability of object detection, for the reason that the suggested device can help in 

overcoming the obstructions of conventional LIDAR systems. 

This better ability is an important advantage in avoiding vehicle accidents [34, 

35, 36, 37], because undetected objects or wrong range estimation may possibly lead 

to a collision and a fatal accident might occur [38, 39], so the rangefinder should be 

as faultless as possible so as to save lives. 
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