
DIMINISHING FLIGHT DATA RECORDER SIZE
Yair Wiseman and Alon Barkai, Bar-Ilan University, Ramat-Gan, Israel

wiseman@cs.biu.ac.il

Abstract

Flight Data Recorders produce data that is stored
on an embedded memory device. A widespread
problem with these devices is that the embedded
memory device runs out of space. The concern of
getting to this problematic situation causes the
software of the flight data recorder to work in a
careful manner - it constantly makes efforts to
minimize the used memory space; otherwise a
larger flight data recorder will be required that will
also cost more money. In this paper we propose
using a compressed file system with the aim of
having a better cost-effective memory usage. The
main significant disadvantage that sometimes
prevents flight data recorders from using
compressed file systems is the intense overload of
data compression when writing the data to the
memory device, which puts an intolerable
overburden on the processor and as a result it harms
the system performance. This paper proposes a file
system that instantaneously compresses the data of
the flight data recorder while taking care that the
other tasks' response time will not be harmed.

1. Introduction
A Flight Data Recorder is a small embedded

computer device employed in aircraft. Its function
is recording any instructions sent to any electronic
systems on the aircraft. It is unofficially referred to
as a "black box". Flight Data Recorders are
designed to be small and thoroughly fabricated to
withstand the influence of a high speed and the heat
of an extreme temperature.

An ordinary difficulty is that Flight Data
Recorders run out of space in our hard disk. Our
concern of getting into this difficulty leads us to act
in a careful manner, a constant attempt to reduce the
used data space [1]. In addition, working with
nearly full disk causes the allocation of new file
blocks to be distributed across multiple platters.
Working with files scattered around the hard disk
drive is slow and very demanding on the read/write
head with unnecessary overhead [2].

However, unlike Flight Data Recorders, in
regular desktops the vast majority of disks are not
overloaded and so it is better to keep old versions of
important files on the disk even though in most
cases we will not be using the old versions [3].

Signals are often processed by embedded
systems. Unlike the controversy in the personal
computers world, in the embedded computing world
and especially in Flight Data Recorders everyone
agrees that the problem is significant. Storage area
is hundreds of times less than storage space
available on desktop computers. In a common
embedded computer system there is an electronic
card with a simple processor that supports a small
Solid State Device which gives us barely 1-4GB of
space for the system files. Usually it is not possible
to add additional storage space such as Hard Disk
Drive or even SD reader because of hardware
constraints, system constraints, size constraints, and
power consumption constraints [4].

As we know, we cannot install a full operation
system environment which includes a compilation
chain (Tool Chain), GUI (X Server) in such a small
storage space. For the purpose of illustration, a
basic installation of Gentoo Linux distribution with
a command line user interface, a stage-3
compilation tool chain, and its Portage package
manager, without any graphical interface or other
packages, occupies 1.5 GB. While installing
window operation system takes much more than
that.

The easiest solution for this is removing features,
installing only the essentials, and developing lighter
applications for the embedded cards of Flight Data
Recorders.

More profitable solutions would be the use of
disk data compression [5,6]. Other Embedded
devices can use compression of rarely used data, or
compression of all data, and uncompressing it when
needed in run time; whereas Flight Data Recorder
can assume all the data as rarely used. Compressing
the data will directly give us more storage space,
without losing any information. But of course it has

a serious impact on system performance, especially
when a relatively small process is located on the
same electronic card that needs to simultaneously
compress the file being written to the disk while
continuing running the other applications without
compromising them. For this reason embedded
developers usually do not use file system
compression in order not to harm valuable system
performance.

With the aim of solving this problem and get the
best of both worlds – we offer a decision algorithm
which decides at runtime, according to current
available system resources, if a file should be
compressed and if so which method of compression
will be used when saving this file to disk. How does
it work? In runtime, the file system decides whether
to compress the file or not and if so then which
compression algorithm and strength to use
according to available system resources at that
moment. So only in the worst case that the system is
very loaded none of the new files will be
compressed. However, in most cases that is not the
situation and on average most files will be
compressed using either weak or strong
compression algorithm.

Given a file system like this, there is no reason
not to use it. Since the worst case is the case that
you have today, when no files are being compressed
at all. This means, using this new file system can
only improve today's Flight Data Recorders!

2. Related Work
This chapter describes the research and

development related to compression in embedded
systems for memory and file systems. Both memory
and file systems have a similar problem of always
being too small because of attempts to reduce
product's cost and size. Several aspects were
investigated where real-time compression can
provide a significant improvement:

• hardware based memory compression, and
software based memory compression. These
improve system performance by reducing
the use of I / O means of storage and
increasing the amount of memory available
to applications.

• Compression of the file system itself, read-
only or read-write, in which the main goal is

to reduce the consumption of storage media
capacity and reduce the consumption of I / O
transfer of compressed data.

2.1 Hardware Based Memory Compression
Benini and Bruni [5] proposed to introduce a

compression / decompression element between the
RAM and the Cache, so that any information in the
RAM would be saved at a compressed format and
all data in the cache would be non-compressed.

Kjelso, Gooch and Jones [7,8] proposed a
hardware-based compression for memory. Their
algorithm X-match, using a dictionary of words that
were used recently, is designed for hardware
implementation.

2.2 Software Based Memory Compression
Yang, Dick, Lekatsas and Chakradhar [9]

showed that using On-Line compression to
compress memory pages that were moved to the
storage device (to the Swap) in Embedded systems
significantly improves the size of usable memory
(about 200%) almost without compromising
performance or power consumption (about 10% .)

Swap Compression [10,11,12] compresses pages
that were evacuated from the memory and keeps
them in compact form in software cache which is
also located in RAM.

Cortes, Eles, and Peng [12] also investigated the
implementation of the Swap Compression
mechanism in the Linux kernel to improve
performance and reduce memory requirements.
Swap Compression can also alleviate thrashing
effects in overloaded system [13].

It seems natural to assume that if the
compression of the swap pages which are saved in a
storage device gives a significant improvement
then, for similar considerations, so would the
compression of the rest of the files in the storage
device.

2.3 Read Only File Systems
In embedded Linux environments, there are

several options for a compressed file system that
offer a solution to the problem of the small storage
space that exists in these small systems. Most of the

compressed file systems are read-only for the ease
of implementation, and the high performance cost
of run-time data compression which might hurt the
performance of the applications in low-resource
cases. Typically two file systems are used, one for
read only files which are not going to be changed,
and a second uncompressed read-write file system
for the files that do change. The user should create
beforehand a compressed image of the file system
and only then he can use it.

CramFS [14] is a read-only compressed Linux
file system. It uses Zlib compression for each page
separately of each file and so it allows random
access to data. The meta-data is not compressed but
effectively kept smaller to reduce the space
consumed.

SquashFS [15] is a famous compressed file
system in Linux environment. It uses the GZIP or
LZMA algorithms for compression. But the
drawback is that it Read-Only and so it is not
intended for routine work with its files but it is
mostly for archiving purposes.

Cloop [16] is a Linux module that allows a
compressed file system to be supported by a
Loopback Device [17]. This module allows
transparent decompression at run-time when an
application is accessing the data without the
knowledge of how files are saved in practice.

CBD [18] is a Linux kernel patch that adds
support for Compressed Block Device designed to
reduce volumes of file systems. CBD is also read-
only and works with a Block Device as in Cloop.
Data written to the device is saved in memory and
never being sent to the physical device. It uses the
Zlib compression algorithm.

2.4 Compressed Read Write File Systems
Implementation of a compressed file system with

the ability for random-access write is much more
complicated and difficult. We show some examples
of such file systems:

ZFS is a file system made by Sun Microsystems.
ZFS is used under Solaris operating system, and is
also supported in other operating systems such as
Linux, Mac OS X Server, and FreeDSD. ZFS is
known for its ability to support high capacity,
integrating concepts from file management and

partitioning management, innovative disk structure,
and a simple storage management. ZFS is an open
source project [19].

One of its features is that it supports transparent
compression. The compression algorithm is
configurable by the user. It can be one of the
following: LZJB or GZIP, or no compression.[20]
Both of these algorithms are fixed and
deterministic. They do not depend on the
characteristics of system resources available only
during the compression-only file content. The
choice of which algorithm to use or the option not
to use compression at all is decided by the system
administrator in advance and this choice is used in
all cases.

FuseCompress [21] is a Linux file system
environment which has transparent compression to
compress the file's content when they are being
written to the storage device and decompress the
data when it is being read from the device. This is
being done in a transparent way so the application
doesn't know how the files were really saved, and
so it can work with any application transparently.
Compression is being executed On-The-Fly, and
currently supports 4 compression algorithms: lzo,
zlib, bzip2, lzma. The missing feature is the choice
of which algorithm is the best one to use at the
moment of compression need. The algorithm is
selected by the user in advance when mounting the
file system.

In NTFS of Microsoft for Windows environment
there is an option to compress selected files so that
application will still be able to access and use them
while their data is transparently decompressed when
needed. This option is not automatic and the user
must give a specific command and select the files
that he wants to keep in a compressed format. There
is only one algorithm in use for all compressed files
and it is LZ77. There are only 2 options for a file:
with or without compression [22].

DriveSpace (initially known as DoubleSpace) is
a disk compression utility supplied with MS-DOS
starting from version 6.0. The purpose of
DriveSpace is to increase the amount of data the
user could store on disks, by transparently
compressing and decompressing data on-the-fly. It
is primarily intended for use with hard drives, but
use for floppy disks is also supported. However,
DriveSpace belongs to the past since FAT32 is not

supported by DriveSpace tools and NTFS has its
own compression technology ("compact") native to
Windows NT-based operating systems instead of
DriveSpace [23].

Finally, Sun Microsystems has a patent about file
system compression using a concept of "holes". A
mapping table in a file system maps the logical
blocks of a file to actual physical blocks on disk
where the data is stored. Blocks may be arranged in
units of a cluster, and the file may be compressed
cluster-by-cluster. Holes are used within a cluster to
indicate not only that a cluster has been
compressed, but also the compression algorithm
used. Different clusters within a file may be
compressed with different compression algorithms
[24].

3. Adaptive Compressed File System
We propose to improve space utilization by

adding adaptive compression features to ZFS,
FuseCompress or others. If good results were
obtained for memory pages that are saved in the
storage device in compressed format then we would
expect similar results when other files are also
saved in a compressed format.

Our file system ACFS (Adaptive Compressed
File System) which is being suggested here will
show better performance in low resources or loaded
system than any other file system. Its superior
performance is attributed to features that existing
file systems do not take into account, in particular
the ability to dynamically decide at runtime whether
to compress the file data and which algorithm is the
best one to use considering the available resources
of the system at that particular moment. To our
knowledge, no currently existing file system takes
into account current system characteristics while
saving a file.

The ACFS Algorithm can be described as follow:

Let us denote a compression type as C.

For example, known algorithms which can be
used [5]:

Czip-fastest, Czip-best, Crar-fast, Crar-good,
Clzw, Cnone

We refer to different compression levels as
different compressions.

We use only lossless compression algorithms
[25,26].

Let us denote a group of compression algorithms
as X.

For example: X={Czip-best, Czip-fast, Cnone}

The number of compression algorithms in a
group is |X|.

For example, we can select a group X, where
|X|=3, which contains:

1. A strong compression algorithm which can
highly compress the data, however, it takes a
lot of CPU power and memory while
compressing, like BWT [27].

2. A weak compression algorithm which uses
less system resources while compressing, but
it also less effective in the compression rate
of the data like Huffman [28].

3. An identity algorithm which does not
compress at all, it will produce the exact
same output as input, as so it will not take
any resources while compressing.

When there are no resources available while
compressing, we will want to use the 3rd algorithm.
When the system is not doing anything else (idle)
we will want to use the 1st algorithm (the strongest
one). And when the system is doing some other
things but there are still available resources, we will
want to use the 2nd lighter algorithm.

Let us denote by R the total available system
resources, as percentages, when R=[0-100].

By the value of R, we will choose which
compression algorithm to use. The value R will be
calculated based on resources available at runtime,
at the moment that the compression algorithm has
to be chosen.

However, how can we calculate this R value?
There are many different properties which can
affect the R values. For example: Available CPU,
available RAM, available disk space, and available
DMA.

These properties do not have to be only available
resources properties, they can also be more subtle
properties like the number of I/O requests at the
recent time, or estimation of compression of a
certain file type which we are about to compress
(we do not wish to use much system resources for

trying to heavily compress a file which is already
compressed in its nature).

We start by identifying the properties we want to
take in account.

Each one of these properties will be presented on
a scale of percentages between 0, which means not
available, to 100 which means it is completely
available.

There are two options to consider: 1) each time
we need to make a choice, we recalculate each of
these properties' values. 2) Recalculate only when a
certain amount of time has passed since the last
calculation, to minimize hurting the system
resources. Property information is received in 2-
dimensions (each property has its value) and
we need to convert it to a single dimension value.
This can be done by several different ways; the
simplest is choosing the worst property. That means
we select our compression algorithm in relation
to the least available resource, as apparently it is the
bottleneck.

Other ways could be calculating the average of
all values using weights of the importance of each
property. Or, a smarter choice that calculates the
desired compressing level by taking into account
the results of past decisions. At the end of the
process we get a single value R indicating how
much resources are available and this value will be
used in selecting the strength of the compression
algorithm that we will use to compress the data.

Figure 1. The Compression-Available Resource

Function

We define a function F that for each instance of a
group of X will give a value Y from the range 0 to
100. This Y value is the minimum value of free

resources that are needed so that we can use this
compression. This function does not need to be
linear, but it must be a monotonically increasing
function. To do so we will sort the group X by its
Y values from smallest to the largest, when Cnone
(no compress) will always get the value of 0. This
function is depicted at Figure 1.

We define the Select function as follows:

C = Select(X,F,R)

Which will get the compressions group that we
would like to use X, the available resources
required for every compression function F, the
currently available resources R, and will return the
selected compression algorithm to use C.

This is done by simply choosing the best match
respecting minimal resources required for each
given compression algorithm.

In theory, the S function basically just has to
perform a binary search of R in F because F is a
monotonic increasing function. However, in
practice |X| is very small, so a simple run on F
searching for the first value Y which is equal or
greater than R could be much faster than a binary
search and so we could say the complexity is O(1).

Calculating the R values of the different
properties will take O(n), but because of the
small number of properties and that it is not
depended on the size of data being compressed, we
may say this time is constant. Only the time of
running the selected compression algorithm and
actually writing the compressed information to the
storage device is substantial.

We will show later that the decompressing time
is not really an issue, and most of the time it is even
better than reading the uncompressed data from the
storage device.

There exist some special lossless compressions
designed for better compression of certain file types
and that perform better than general compression
algorithms. For example PNG compression for
BMP files.

Moreover, one can tweak some general purpose
algorithms to be more effective by a change of
parameters to get better results. For example, telling
it that this file is a video or a text file. In addition to
selecting the compressing algorithm by available

resources, we could extend the ACFS algorithm and
select the compression by file type too. We could
define some general file types like: Text,
Executable, Graphics, Other. For every file type we
will define a group of compression algorithms X
and an F function of its own. For example: Xtext,
Ftext. For each file, we will analyze the file for file
type (by [29] or [30]), and with this information in
hand we will call the Select function with the X and
F that are related to this file type. If the file type is
unknown it will fall into the Other group.

In most systems the resources are not always
taken, sometimes they are less available and
sometimes they are more available. Because of the
ability to measure availability of resources, we
could go back and compress, using a stronger and
better compression algorithm, files or file parts
which had been compressed using a lighter
compressing because at the time they were written
to the storage device there were no available
resources.

This way we can turn the ACFS to a file system
with delayed compression which will take
advantage of the idle times of the system for
compressing the quickly saved data at busy system
times. This dynamic reassessment will maximize
the space usage of the storage device since once all
data is compressed using the strongest compression
available then there is no way to achieve better data
per space rate.

An additional feature of ACFS is that it can
increase efficiency by adding frequency of file
usage to decision parameters. We can easily monitor
the number of recent accesses to a file. When we
detect a file that is more frequently accessed than
other files, we can lower its compression
complexity to a lower compression algorithm in the
same group X.

Putting together both expansions above, delayed
compression and lowering the compression
complexity for commonly used files, we achieve a
file system that will dynamically increase or lower
the compression complexity of files in idle times by
the history of their usage.

We added a third extension - different
compression groups for different file types. This
allows increasing or lowering the selected

compression algorithm within the compression
algorithms group relevant to this specific file type.

A file system with these properties will be very
efficient because it will change itself according to
the usage of the system. It will adapt to the system
and will provide close to both maximum
compression and maximum performance at the
same time!

4. Implementation
We do not need to implement a whole new file

system from the grounds up. Instead we could take
an existing open source compressed file system,
understand it, and improve it by changing it to
dynamic selection of compressing algorithms while
evaluating available resources at run time.

For this work we have chosen the FuseCompress
file system that was described in the related work
section. This file system compresses all files
(except file types that are already in compressed
format) using a previously defined compressing
algorithm. It comes with four different compression
algorithms that the user can choose from: lzo, zlib,
bzip2, lzma. This file system is a good start for us
and can provide the basic start for our needs. We
implement our changes on top of this file system.

All of the files' operating system APIs will be
redirected to our user-space application which will
actually do the requested operation. It could be
anything, but in this case it will return the
information of the real files when browsing the
directory and if some application reads data from a
file in this folder we will return the uncompressed
version of the data to this read API. Copying files
into the virtual mount point, creating or changing
file there will cause the data to get compressed on-
the-fly and saved at the real directory as
compressed files, while being shown at the virtual
directory as uncompressed. Reading files from the
virtual directory will cause on-the-fly
decompression and return the uncompressed
original data to the reader application.

That way any application can work with the
compressed file system exactly as a normal file
system without knowing about the compression. It
will work on the virtual directory without knowing
that actions are actually made on the real folder
which holds the compressed versions of the files.

5. Evaluation
Our test set for this evaluation was the /lib

directory of a standard Ubuntu 10.10 installation.
Size: 233MB. The computer was with CPU: Intel
Core i7 950 @ 3.07GHz (8 Cores, so host processes
will not interfere with the tests), RAM: 6 GB,
Operation System: Windows 7 64bit with Virtual
machine of Ubuntu 10.10 32bit, Hard Disk: 60 GB
Flash SSD (For OS) + 1 TB WDC SATA III (For
Data). The Virtual machine can help us to virtually
have just one CPU when needed. A parallel
approach can be also applied as we suggested at
[31,32].

Firstly, we executed a normal folder copy
command "cp -r" to copy the test-set from its
original location to a different location which is not
inside a compressed file system mount point and it
took 17 seconds. Then we executed the same
command but the destination location is in the
compressed file system virtual folder. And it took
53 seconds. That is 312% of the original time
because heavy compression calculation had taken
place while writing the files to the destination
directory.

Figure 2. Compression Ratio in logarithmic

scale.

To evaluate the decompression time we copy the
files from the compressed location to uncompressed
location. Thus, reading the files to make the
decompression happen. The copying time reduced
from 17 seconds to 14 seconds. That is 82% or the
original time. It happened because less data has to

be read from the slow hard disk. That shows
another benefit of using a compressed file system –
less I/O is involved! Faster reads from the disks,
which makes out of the added decompression
calculations time when reading the files.

5.1 Real-Time File System Compression
We evaluated the effectiveness of a real-time file

system compression. We used the same collection
of files that were used in the previous test. The size
was reduced from 233 MB to 105 MB that is 45%
of the original size. Figure 2 shows the results in
logarithmic scale. Bright Bars – Original folders,
Dark Bars – Compressed Folders.

Then we test the effect on system resources
while compressing. When a Compression was
invoked the CPU was loaded 96.0% in user mode,
4.0% in kernel mode and 0.0% idle. The memory
usage was 502196k used. When no compression
was invoked the CPU was loaded 2.0% in user
mode, 1.0% in kernel mode and 97.0% idle. The
memory usage was 498720k.

Also, while compressing we can see that a new
user-mode process appears to handle the
compression which takes 94.9% CPU and 2.2%
memory.

We can see that while compressing, the
compression process is taking nearly all of the CPU
power, while it has almost no effect on the memory
usage.

If the CPU is needed for other assignments, these
assignments will have poorer performance. With the
ACFS we overcome this problem by selecting and
switching compression algorithms on the fly
according to available CPU power in order to avoid
a performance decline. A possible performance
decline is the main drawback of using compressed
file systems as default in all computer systems. If
we can eliminate this possible performance decline
by actively monitoring and avoiding it, dynamically
selecting different levels of compression
algorithms, or even choosing not to compress at all,
then we will have no problem using a compressed
file system in every computers systems. We can
only attain the benefits of a compressed file system
without the drawbacks.

Another test we made was conducted by
implementing a CPU-Eater process. This process
had a loop that executed a very small constant set of
instructions. We call this constant set of instructions
"Frame". The process counted the number of frames
that had been executed and each second prints how
many frames it could execute in that second.
Obviously, if any other program takes the CPU, it
will harm the performance by decreasing the
number of loops.

We compared 3 scenarios. In the test #1 we
invoked the CPU-Eater test process alone, when no
other operation takes place in the system. In test #2
we checked the performance of our innocent
application (the CPU-Eater process) while an on-
the-fly compression takes place for the copied files.
In test #3 we copy files without performing any
compression. In this last test since there is an
application running in the background which takes
high amounts of CPU (> 90%) ACFS will decide
not to use compression at all, just like normal file
copying operation.

We measured the performance by the average
FPS (Frames Per Second) the innocent application
(the CPU-Eater process) generates and by average
%CPU. The results are an average of 50 executions
and are shown in Figures 3 and 4.

Figure 3. Average of FPS

Figure 4. %CPU of the CPU-Eater process

Test #1 is a reference case; since no file
operation was taken place in the time of the test it
means these values cannot get any higher. In test #2
the FPS reduced to 33.3% and the %CPU reduced
by half while the compression algorithm takes the
other half. Test #3 shows that a normal file copy
operation barely harms the performance of
processes whereas the CPU consumption of the
compression operation heavily harms the
performance of other running processes.

This is the main reason why users do not use
compressed file systems at all. Our goal is creating
a file system that does not harm the performance of
the other processes.

We can see that the %CPU of the innocent
application noticeably reduced when compressing
was used to compress the files on the on-the-fly
compressed file system, whereas it got back to
normal when copying files with no compression.

This means that by using ACFS applications will
not suffer from less available CPU because of file
system compression operations. If the CPU is busy,
the compression strength will be automatically
reduced or even completely turned off, so it will not
consume more CPU cycles than the available idle
CPU cycles.

Optimally, if a process uses a certain amount of
CPU cycles (e.g. 50%), while a compression does

not take place we will attempt to continue using the
same amount of CPU cycles at the same
performance and the compression process will only
use the idle resources. (Then, the compression
algorithm itself can be chosen according to
available idle CPU resource).

5.2 Priorities
We also tested different priorities on both the

user's process and the compression process. The
user task for this test is the CPUEater program from
the previous tests. This program takes as much as
available CPU (~100%) and shows its actual
performance as FPS value.

In this test we invoked long copy operations into
a compressed file system while the user process is
running. We executed this test multiple times with
different nice values and we took the average of
each nice value. The results are shown in Table 1.

User Task's
Nice Level

%CPU
User Task

%CPU
Compression

FPS

0 25% 70% 1000

-5 40% 55% 1800

-10 65% 30% 2850

-15 85% 11% 3600

-20 95% 3% 4150

Table 1. Priority effect on FPS and %CPU

In these results we can clearly see that the
division of the CPU cycles between the user's
process and the compression process is strongly
affected by the nice level setting. This means that
the priority setting does have an effect on how
much impact the user task will have when a
compression is taking place. Actually, the operating
system scheduler increases or decreases the time
slice of the processes according to the nice value, so
this explains why the %CPU is nearly linear in the
nice value.

We can also learn from these results that there
exists a setting (-20) that a user's task will have
almost no reduction of performance. Although in
this setting a compression will be very long, but in

these situations the file system should select a
lighter compression method or no compression
when writing files.

Changing the priority of the compression process
however, has no effect on the results. Setting the
compression process nice level to any priority with
each of the different user process nice levels gives
almost the same results. Unlike the user's process,
the compression process adapts itself to employ
only free CPU cycles.

On the previous tests we employed a 100%-CPU
intensive process because this is the worst case
scenario, but this is not how an embedded system
normally operates.

Our objective is that a user's task will have
minimal reduced performance and our compression
algorithm will only use the remaining idle CPU
cycles. So we took another test with different levels
of CPU consumption. The CPU eater process from
the previous tests was slightly modified so it would
only use a certain amount of %CPU as can be
manually set. The change is actually that the
process sleeps a certain part of each second. All the
tests here run with a -20 nice setting so the user task
will have a minimal impact. The results are shown
in Table 1. In this figure "Alone" means when only
the user process is executed with no compression.
The values are average values.

Sleep
Setting

(In
mSec)

%CPU
Alone

FPS
Alone

%CPU of User
Task while
compressing

%CPU of
the

compression
itself

FPS while
compressing

0 98% 4300 96% 2% 4250

220 75% 3200 73% 20% 3100

500 50% 2100 47% 47% 2000

750 25% 1000 25% 70% 1000

table 2. Different levels of CPU consumption

We can clearly see here that on each and every
tested CPU consumption, there was nearly no
reduced performance of the innocent user's process
while copying files to a compressed file system, and
the compression algorithm used only unclaimed
CPU cycles.

6. Conclusions
Avionic Systems' memory should be handled

efficiently [33] despite the fact that the memory
device of embedded computer system is typically
small [34,35]. In particular, Flight Data Recorders
have small memory devices and in addition Flight
Data Recorders just write the memory device and
almost never read them; therefore a compression
can be beneficial for such systems.. The ACFS
suggests a way of using a compressed file system
while making sure that the innocent other tasks will
have no reduced performance. The compression
algorithm (whichever algorithm will be chosen by
the file system) will only use the available CPU
cycles.

The file system should select the compression
algorithm strength and whether to compress or not
at real time based on available CPU resource, so the
application that waits for the file operation to be
completed will not wait too long.

References
[1] Wu J. C., Banachowski S. and Brandt S. A.,
Hierarchical disk sharing for multimedia systems,
Proceedings of the international workshop on
Network and operating systems support for digital
audio and video, pp. 189-194, 2005.
[2] Ng, S.W., Advances in disk technology:
Performance issues, IEEE Computer, Vol. 31(5),
pp. 75-81, 1998.
[3] K. Muniswamy-Reddy, C. P. Wright, A.
Himmer and E. Zadok, A Versatile and User-
Oriented Versioning File System, in Proceedings of
the Third USENIX Conference on File and Storage
Technologies (FAST 2004), pp. 115-128, San
Francisco, California, March 31-April 2, 2004.
[4] Yaghmour K., Masters J., Gerum P. and Ben-
Yossef G., Building embedded linux systems,
O'Reilly Media, Inc., 2008.
[5] Benini, L., Bruni, D., Macii, A., and Macii, E.,
Hardware-assisted data compression for energy
minimization in systems with embedded processors.
In Proc. Design, Automation &Test in Europe
Conf., 2002.
[6] Roy, S., Kumar, R., and Prvulovic, M.,
Improving system performance with compressed
memory. In Proc. Parallel & Distributed Processing
Symp., 2001.

[7] Kjelso, M., Gooch, M., and Jones, S., Design
and performance of a main memory hardware data
compressor. In Proc. Euromicro Conf. 423–430.,
1996.
[8] Kjelso, M., Gooch, M., and Jones, S.,
Performance evaluation of computer architectures
with main memory data compression. In J. Systems
Architecture. Vol. 45. 571–590, 1999.
[9] Yang Lei, Dick Robert P., Lekatsas Haris and
Chakradhar Srimat, "Online memory compression
for embedded systems", ACM Transactions on
Embedded Computing Systems, volume 9(3), pp. 1-
29, 2010.
[10] Tuduce, I. C. and Gross, T., Adaptive main
memory compression. In Proc. USENIX
Conference, 2005.
[11] Rizzo, L.. A very fast algorithm for RAM
compression. Operating Systems Review 31, 2,
(Apr.), pp. 36–45, 1997.
[12] Cortes, T., Becerra, Y., and Cervera, R., Swap
compression: Resurrecting old ideas.Software-
Practice and Experience Journal 30 (June), 567–
587, 2000.
[13] Reuven M. and Wiseman Y., Medium-Term
Scheduler as a Solution for the Thrashing Effect,
The Computer Journal, Oxford University Press,
Swindon, UK, Vol. 49(3), pp. 297-309, 2006.
[14] Cramfs. Cramfs: Cram a filesystem onto a
small ROM. http://sourceforge.net/projects/cramfs
[15] SquashFS - http://squashfs.sourceforge.net
[16] Cloop. Cloop: Compressed loopback device.
http://www.knoppix.net/docs/index.php/cloop
[17] Lekatsas, H., Henkel, J., and Wolf, W., Code
compression for low power embedded system
design. In Proc. Design Automation Conf. 294–299.
2000.
[18] CBD. CBD compressed block device.
http://lwn.net/Articles/168725
[19] ZFS - http://en.wikipedia.org/wiki/ZFS
[20] Oracle Solaris ZFS Administration Guide.
Chapter 6 - Managing Oracle Solaris ZFS File
Systems.
http://docs.sun.com/app/docs/doc/819-
5461/gavwq?a=view
[21] FuseComress File System
http://miio.net/wordpress/projects/fusecompress
[22] T. Makatos, Y. Klonatos, M. Marazakis, M. D.
Flouris, and A. Bilas, “Using Transparent
Compression to Improve SSD-based I/O Caches.”,

ACM/SIGOPS European Conference on
ComputerSystems (EuroSys), 2010.
[23] Qualls, J. H., The PC Corner, BUSINESS
ECONOMICS, VOL 32; NUMBER 3, pp. 70-72,
1997.
[24] Madany; Peter W. (Fremont, CA), Nelson;
Michael N., (San Carlos, CA) Wong; Thomas K.
(Pleasanton, CA). Patent #5774715 - File system
level compression using holes. Application:
08/623,907, Assignee: Sun Microsystems, Inc.
(Palo Alto, CA). U.S Patent Documents: 5155484;
5237675; 5481701; 5551020; 5652857.
[25] Cai Suo Zhang, Design of Real-Time Lossless
Compression System Based on DSP and FPGA,
Materials Science and Information Technology,
4173-4177, 2012.
[26] Arnold, R., & Bell, T., A corpus for the
evaluation of lossless compression algorithms. In
Designs, Codes and Cryptography, pp. 201-210,
1997.
[27] Burrows, M. & Wheeler, D. Block sorting
Lossless Data Compression Algorithm, System
research center, research report 124, Digital System
Research Center, Palo Alto, CA, 1994.
[28] Huffman, D., A method for the Construction of
Minimum Redundancy Codes Proc. of the IRE Vol.
40, pp. 1098-1101, 1952.
[29] FileType – File-Type detection system, open
source project - http://pldaniels.com/filetype
[30] Mason McDaniel, M. Hossain Heydari,
"Content Based File Type Detection Algorithms,"
hicss, vol. 9, pp.332a, 36th Annual Hawaii
International Conference on System Sciences
(HICSS'03) - Track 9, 2003
http://www.computer.org/portal/web/csdl/doi/10.11
09/HICSS.2003.1174905.
[31] Shmuel T. Klein & Yair Wiseman, Parallel
Huffman Decoding with Applications to JPEG
Files, The Computer Journal, Oxford University
Press, Swindon, UK, Vol. 46(5), pp. 487-497, 2003.
[32] Shmuel T. Klein & Yair Wiseman, Parallel
Lempel Ziv Coding, Journal of Discrete Applied
Mathematics, Vol. 146(2), pp. 180-191, 2005.
[33] Weisberg P. and Wiseman Y., Efficient
Memory Control for Avionics and Embedded
Systems, To Appear, International Journal of
Embedded Systems, 2013.
[34] Yang, L., Dick, R. P., Lekatsas, H., and
Chakradhar, S., CRAMES: Compressed RAM for
embedded systems. In Proc. Int. Conf.

Hardware/Software Codesign and System
Synthesis. 2009.
[35] Xu, X. H., Clarke, C. T., and Jones, S. R., High
performance code compression architecture for the
embedded ARM/Thumb processor. In Proc. Conf.
Computing Frontiers. 451–456, 2004.

