
Operating Systems on a Master-Slave Mode

Yair Wiseman

Computer Science Department

Bar-Ilan University

Ramat-Gan 52900

Israel

wiseman@cs.biu.ac.il

Keywords: Operating Systems, Process Scheduling.

ABSTRACT

Master-Slave mode has been known in operating systems for many years. It refers to one

processor which is the master that controls other processors which are the slaves. However, the

terminology of Master-Slave is also known for cores within one processor or even merely one

process that runs on one core in one processor and controls the other processes in the same core.

Sometimes, the terminology also refers to other devices within the computer. In this paper we

give attention to the term Master-Slave in the multi-processor setting.

1. INTRODUCTION

Master-Slave Operating Systems [1] are designated for systems containing a cluster of

computers. In such systems, there is one "master" computer, whereas the others are "slaves". The

"master" sets the processes' scheduling of the "slaves". In such a manner most of the scheduling

activity is done by the "master". However, the "slaves" also have an important responsibility.

They inform the "master" about the nature of the running jobs. Based on these reports, the

"master" can decide more efficiently about the scheduling resolution.

Distributed and parallel computing machines put forward enhanced processing ability for

their consumer by enabling the employment of several processors for each of an application'

jobs. The global performance of such parallel/distributed systems is typically gauged by their job

throughput, response time, and job wait time.

It is obvious that parallel systems strive to make the most of their resources, to augment

throughput and to reduce response times. The various jobs are different in their computing

resource consumption; therefore, the order in which the jobs are scheduled by the operating

system and the manner they consume the system resources, have an effect on the overall

functioning of the computing system.

The scheduler is a function of the operating system that admits jobs to the processors.

The operating system also assigns other required computing resources for the jobs by other

functions. The algorithms employed by the operating system with the intention of making a

decision how to assign jobs to the system’s processors influence the performance of the system.

When this issue is discussed with regard to super-computers, the challenge becomes even

more intense. The price of a super-computer is usually very high, so a purchaser of such a system

strives to obtain the best possible performance. Each additional job which the system is capable

to execute is of advantage to the system purchaser.

 Finding the optimal scheduling is impossible, because the operating system cannot know

in advance what the needs of the processes will be. Gang scheduling [2] is a scheduling

algorithm that strives for a better performance of parallel and distributed systems. The Gang

Scheduling algorithm facilitates simultaneous scheduling of multiples jobs on the system’s

processors. Afterward, the group of the executed jobs will be switched after predefined time

slices.

These activities, needless to say, put in additional computational and resource overheads

on the operating system, that in charge of the general system’s resources [3]. With the aim of

making the Gang Scheduling algorithm applicable, systems must pay attention to these concerns.

Consequently, several enhancements have been developed over the years. The enhancements

come into being either by a deeper examination of the jobs’ characteristics or by accompanying

the fundamental algorithm with supplementary scheduling functions.

2. PAIRED GANG SCHEDULING

As has been mentioned one of the most important components in the operating system is

the scheduler. The role of the scheduler is determining which process the CPU serves at any

time. Asymmetric Operating Systems are designated for systems which contain a cluster of

computers. There are several ways to implement the operating system scheduler. In this section

we will introduce our scheduler.

When a computer cluster is used to run several parallel jobs concurrently, there are well-

known performance benefits to be obtained if the process scheduling is coordinated so that all

the processes of each parallel job run at the same time. Currently one of the most popular

schemes for coordinated scheduling is Gang Scheduling. Gang scheduling enables processes in

the same job to run at the same time. This usually yields better performance for communicating

processes; however, there are many problems associated with conventional gang scheduling,

such as wastefulness in resource employment and job performance, which have slowed down its

widespread embracing.

Usually, using gang scheduling provides better performance for compute-bound

communicating processes; however, I/O-bound processes bring about the CPUs to be unoccupied

at a significant percent of the time, whereas there are other processes that yearn for being

executed. At one fell swoop, the influence on the disk behavior is the reverse: I/O-bound

processes retain the disks full of activity, whereas compute-bound processes make the disk idle.

As a matter of fact, it is not easy to keep upright the balanced use of the CPUs and the disks in

applications that have large computation and I/O needs [4].

The focal point of Gang Scheduling is assigning as many processors to an application as

are required at the same time. If this assignment is succeeded, it will allow the application to

prevent processes from being blocked while they are waiting for the communications with other

processes to come to an end, since it is assured that the looked-for process is running and making

progress, so it is reasonable to wait for this process and since there is nothing else to be executed

on the processor because all the job's processes are assigned.

Essentially, if the scheduler assigns two or more processes to each processor, it may

cause circumstances where one process has to wait for another process to be rescheduled,

because it is not currently being executed. Therefore, Gang Scheduling does its best to get the

most out of processors for the current job, at a potential sacrifice of global system performance

demotion.

Another option for scheduling rather than Gang Scheduling can be using the local

scheduling autonomously on each processor of the cluster. The local scheduler can be any

algorithm such as Round Robin, or a priority-based algorithm such as the LINUX scheduler or

UNIX scheduler. If this alternative is chosen, a process that has to wait for another process

should be blocked, because the awaited process is most likely not being executed and the

processor has more important tasks to execute rather than keeping itself executes loops of busy

wait.

Practically, local scheduling prioritizes global system performance, at the potential price

tag of harming the performance of jobs that execute many communication operations; however,

the added context switches induced by the fine grain communication may cause an extra

overhead and an improper use of the processors [3].

If the scheduler is able to identify the behavior of every gang, this information can be

utilized to facilitate a balance between the CPU-bound processes and the I/O-bound processes

and keeping both the CPU and the disks busy.

ASOSI implements the scheme of matching pairs of gangs, a compute-bound gang and an

I/O-bound gang. The motivation for such a matching is that such gangs will almost not interfere

with each other's resource consumption, as they make use of different devices; hence, these

gangs will be of the opinion that they are unaccompaniedly executed in the system. If the I/O

execution time is not negligible in the processor time, an overlap of the I/O execution along with

the processor activity may produce a better functioning [5].

Paired gang scheduling endeavors to find the middle ground between the scheme of gang

scheduling and the scheme of local scheduling, with the purpose of make the most of the system

resources without causing meddling with the processes of different jobs. It meets both of the

schemes halfway. On one hand the processes will not wait a long time because a process

requiring the processor during most of its execution will be matched with a process that in most

of its execution requires an I/O device, so they will not meddle with each other's needs. On the

other hand, the processor and the I/O devices will be kept busy if there are jobs that are

necessitated to be executed.

3. PARALLEL JPEG DECOMPRESSION

Another implementation that was developed on the ASOSI framework is the parallel

JPEG decompression system.

JPEG[6] is a lossy image compression method. JPEG compresses the images in several

steps. In a first step, the picture is split into a sequence of blocks of size 8X8 pixels. Each block

is then compressed by the following sequence of transformations:

 Applying a Discrete Cosine Transform (DCT) [7] to the set of 64 values of the pixels in

the block.

 Applying Quantization to the DCT coefficients; thereby producing a set of 64 smaller

integers. This step causes a loss of information but makes the data more compressible.

 Applying an entropy encoder to the quantized DCT coefficients. Baseline JPEG uses

Huffman [8] coding in this step, but the JPEG standard specifies also the arithmetic

coding [9] as a possible alternative.

The decompression process simply reverses the procedure and its order. It first applies

Huffman decoding, then dequantizes the coefficients and finally uses an inverse DCT to obtain

the original set of values. Because of the quantization step, the reconstructed image includes only

approximated values.

An original model on how to split the decompression task of JPEG images was

suggested. The results of the model compare between sequential decompression and parallel

decompression. We start by splitting the image into several portions and assigning different

processors, each working on a different portion of the image. The synchronization problems

appear sometimes even more harshly. Not only the beginning of the block to be decoded by a

specific processor unnecessarily corresponds with the beginning of a Huffman codeword, but

even if it begins, synchronization is not guaranteed, because the block boundary could be located

within the codeword representing the length of the DC coefficient or the block boundary could

be located within the stored DC value at the beginning or the block boundary could be located

within a codeword representing a pair used for the AC coefficients or the block boundary could

be located at the beginning or within a stored AC value. Just if the block starts with a codeword

for the length of the stored DC value, the block will be correctly decoded.

The processor would attempt to recognize a Huffman codeword representing the length

of a DC value and would thus probably erroneously interpret the first bits; however, as can be

seen in [Error! Bookmark not defined.], the first few decoded elements are usually wrong, but

typically a synchronization point is found almost immediately, after which the decoded items are

correct.

This idea can be implemented in a cluster of computers. In [Error! Bookmark not

defined.] some tests on an SMP machine are presented. SMP machines obviously have a fast

connection and a connection between all the processors is provided; however, actually, our

algorithm does not require a connection between all the computers and some weaker topologies

can be applied too.

The results can be also executed on ASOSI and any other cluster with faster

communication cards. We can change the Operating System, so the topology of the cluster will

be actually different. Also, another issue that has been coped with is the large amount of data that

is read to the memory for each JPEG chunk calculation. Therefore, we have used Super-Pages.

Super-Pages are a development of the famous paging notion. Super-Page is larger page that is

pointed to by the TLB [10]. Multimedia applications like the parallel JPEG decompression

application frequently have large chunks of memory that are clustered in few areas. Such an

application can benefit Super-Paging very much [11].

We suggested the AMSQM algorithm [12] for handling the Super-Pages. This algorithm

employs a reservation-based technique, in which segments are reserved for a super-page at the

page fault time and a promotion is made whenever the number of the base pages within a super-

page arrives at a predefined promotion threshold. The algorithm strives to have the possibility for

a partially populated super-page to be promoted, so the pronouncement of a super-page

candidate's reservation preemption or a swapping out a super-page candidate's base-pages is

made as a result of the super-page "recency" in the page lists and not as a result of the number of

resident base-pages that the super-page is currently consisting of. This feature makes AMSQM

accomplishing a higher TLB coverage and in addition a better page fault ratio.

4. SCALABLE PARALLEL COLLISION DETECTION

The ASOSI was also a framework for a parallel collision detection application. A number

of implementations for parallel collision detection have been developed over the years [13,14].

The implementations typically completely depend on the parallel infrastructure. Minimizing the

dependency will significantly increase the scalability of the implementation [15]. Also, the

dependency can harm the portability of the simulation. Thus, we implemented a scalable and

portable parallel algorithm for collision detection simulation that will be suitable to any

infrastructure, even with a small support for parallelism [16].

The focal point of the proposed implementation is keeping the scalability approach while

not leaving behind the locality principle and the load balancing of the cluster.

A common algorithm for Bounding Volumes hierarchy can be employed for testing out

of an intersection of two models or a collision. Let us call the minimum "work unit" for one

course of action e.g. collision detection of a complex geometry model or one course of action of

two complex geometry models.

As a matter of fact, the proposed implementation employed a low-grade split into bigger

units unlike the author of [17] has suggested; however, the execution time of one "work unit"

that we propose is still not big, even if the geometry model is multifarious. Experiments show

that if the implementation splits the geometry models into overly tiny units, too much overhead

can be generated.

Let us call "processing unit" for one process that gets some portions of the collision

detection course of action and sends back the outcome to the master process. Any process in

ASOSI can migrate from one processor to an alternative processor in the same SMP or migrate

from one node to an alternative node in the same cluster.

The algorithm employs the Vector Space technique [18] to discover similarity of

scenarios ("work units") and processors ("processing units") like the technique of queries in

document sets in the Information Retrieval research area.

For any specified complex geometry models, the implementation can become aware of an

intersection in a short execution time. The proposed implementation reduces the preliminary

overhead of a parallel collision check between complicated geometries on a computer cluster like

ASOSI. The overhead is reduced by minimizing the dependency of data transfer augmentation

and by reducing the number of processing units in the cluster. Consequently, the suggested

implementation scales up in a good way in respect to the cluster size and the geometries size,

whereas standard implementations do not succeed to scale up suitably. Decreasing the number of

clients' memory allocation is another advantage of the proposed implementation. This reduction

lets the implementation have the possibility of being put into operation on many various parallel

infrastructures and ASOSI is just a case in point.

Our work about compressing the transferred information in the communication channel

[19] and about pipelining [20] can be also integrated into this project in order to facilitate a

reduced transfer time.

5. DISTRIBUTED SHARE MEMORY

A more general application that was developed on the ASOSI framework is a common

support for distributed shared memory. Many researches about Distributed shared memory [21]

has been published and many changes for the better have been made over the years [22]. E.g. in

[23] the author suggests a way for several Distributed Shared Memory applications to run their

Distributed Shared Memory functions in 10%-30% of PVM run time.

Unexpectedly, using Distributed Shared Memories in clusters is not as widespread as it

we would have anticipated. Besides the explanations listed in [24], the requirement from

programmers to study a new Distributed Share Memory scheme for each Distributed Shared

Memory system and the intricacy of revision of SMP applications into Distributed Shared

Memory programs have caused this neglection.

 An analogous concern has come about in electronic mail systems. Many standards had

been wandered around before the MIME format [25] was accepted as standard. After the

acceptation of the MIME standard, email usage was significantly greater than before.

In ASOSI we propose a technique of prevailing over the difficulty of nonstandard

Distributed Shared Memory by making the same inter-process communication interfaces that the

programmers are familiar with on SMP machines available.

Several techniques for easier remote objects like semaphores have been introduced e.g.

[26]. However, those techniques keep distributed applications very similar to the original

application. In ASOSI we suggest that each IPC will be autonomous, i.e. not bundled within

other IPCs like scores of existing Distributed Shared Memory systems use to do. This autonomy

is of the essence because IPCs are employed not only for a safe shared memory use, but also for

other synchronization tasks, as they are employed in SMPs.

As was mention below, scores of implementations of Distributed Shared Memories have

been built up over the years. All the implementations take into consideration, the performance

concerns of Distributed Shared Memory more than other concerns and specially neglect the

portability of applications and standard API. All the Distributed Shared Memory systems have

APIs that suit only a particular system and require that the programmer will familiarize himself

to these particular APIs.

Nowadays, a migration of an application from one system to another will require a

significant amendment of the application. Furthermore, applications that have been written for

SMPs need to be rewritten to facilitate a scale up of the application from an SMP to a cluster of

computers. The ASOSI framework shows a conception of a distributed system, in which an API

for any IPC system will be indistinguishable or at least very similar to the standard SMP’s API.

This concept can habituate programmers to distributed systems straightforwardly and in addition

this concept will get better the integration of current SMP applications to clusters.

6. CONCLUSION

A Master-Slave operating system infrastructure has been presented. Such an operating

system supports many applications in a wide spectrum of parallel and distributed disciplines. The

paper shows the important aspects of such an operating system for the various applications. We

believe that such an operating system can be very beneficial for many more applications;

especially for applications with massive parallelism and extensive computing requirements.

7. REFERENCES

[1] S. Muir and J. Smith "AsyMOS - An Asymmetric Multiprocessor Operating System'', Proceedings of IEEE

Conference on Open Architectures and Network Programming, pp. 25–34, 1998.

[2] J.K. Ousterhout, “Scheduling techniques for concurrent systems”. In 3rd Intl. Conf. Distributed Comput. Syst.,

pp 22-30, Oct 1982.

[3] A. Hori, H. Tezuka, and Y. Ishikawa. Overhead Analysis of Preemptive Gang Scheduling. Job Scheduling

Strategies for Parallel Processing, LNCS 1459:217-230, 1998.

[4] Rosti E., Serazzi G., Smirni E., and Squillante M. S., Models of Parallel Applications with Large Computation

and I/O Requirements, IEEE Transactions on Software Engineering, Mar 2002.

[5] Rosti E., Serazzi G., Smirni E. and Squillante M. S., The Impact of I/O on Program Behavior and Parallel

Scheduling SIGMETRICS Conference of Measurement and Modeling of Comput. Systems, pp. 56-65, 1998.

[6] Wallace G.K., The JPEG Still Picture Compression Standard, Communication of the ACM Vol. 34 pp. 30-44,

1991.

[7] Rao K.R. and Yip P., Discrete Cosine Transform Algorithms, Advatages, Applications, Academic Press Inc.,

London, 1990.

[8] Huffman D., A Method for the Construction of Minimum Redundancy Codes, it Proc. of the IRE, Vol. 40 pp.

1098-1101, 1952.

[9] Witten I.H., Neal R.M. and Cleary J.G., Arithmetic Coding for Data Compression, Comm. of the ACM, Vol. 30,

pp. 520-540, 1987.

[10] Y. A. Khalidi, M. Talluri, M. N. Nelson and D. Williams. Virtual memory support for multiple page sizes. In

Proceedings of the Fourth IEEE Workshop on Workstation Operating Systems, Napa, California, October 1993.
[11] Abouaissa H., Delpeyroux E., Wack M. and Deschizeaux P., "Modelling and integration of resource

communication in multimedia applications with high constraints using hierarchical Petri nets", Proceedings of IEEE

International Conference on Systems, Man, and Cybernetics (SMC-99), pp. 220-225, vol. 5, Tokyo, Japan, 1999.

[12] M. Itshak & Y. Wiseman, "AMSQM: Adaptive Multiple SuperPage Queue Management", Proc. IEEE

Conference on Information Reuse and Integration (IEEE IRI-2008), Las Vegas, Nevada, 2008.

[13] P. Jiménez, F. Thomas, and C. Torras, "3d Collision Detection: A Survey", Computers and Graphics, Vol.

25(2), pp. 269-285, 2001.

[14] S. Brown, S. Attaway, S. Plimpton, and B. Hendrickson, "Parallel Strategies for Crash and Impact Simulations"

Computer Methods in Applied Mechanics and Engineering, Vol. 184, pp. 375-390, 2000.

[15] Yehezkael R. B., Wiseman Y., Mendelbaum H. G. & Gordin I.L., "Experiments in Separating Computational

Algorithm from Program Distribution and Communication", LNCS of Springer Verlag Vol. 1947, pp. 268-278,

2001.

[16] Grinberg I. & Wiseman Y., "Scalable Parallel Collision Detection Simulation", Proc. Signal and Image

Processing (SIP-2007), Honolulu, Hawaii, pp. 380-385, 2007.

[17] M. Figueiredo and T. Fernando. "An Efficient Parallel Collision Detection Algorithm for Virtual Prototype

Environments". Proc. ICPADS'04, Newport Beach, California, USA, pp. 249-256, July 2004.

[18] Salton, G., Wong, A., and Yang, C. S.. "A Vector Space Model for Automatic Indexing". Commun. ACM vol.

18(11), pp. 613-620, Nov. 1975.

[19] Y. Wiseman, K. Schwan & P. Widener, "Efficient End to End Data Exchange Using Configurable

Compression", Proc. The 24th IEEE Conference on Distributed Computing Systems (ICDCS 2004), Tokyo, Japan,

pp. 228-235, 2004.

[20] Y. Wiseman, "A Pipeline Chip for Quasi Arithmetic Coding", IEICE Journal - Trans. Fundamentals, Tokyo,

Japan, Vol. E84-A No.4, pp. 1034-1041, 2001.

[21] Li K., Hudak P., Memory Coherence in Shared Virtual Memory Systems, Proc. of the Fifth Annual ACM

Symposium on Princiles of Distributed Computing, pp. 229-239, Calgary, Alberta, Canada, August 1986,

[22] H. Lu, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. Message passing versus distributed shared memory on

networks of workstations. Proc. SuperComputing '95, December 1995.

[23] Beguelin A., Dongarra J. J., Geist A., Otto S., Walpole J., PVM: Experiences, Current Status and Future

Direction, Proc. Supercomputing '93, pp. 765-766, November 1993.

[24] John B. Carter, Dilip Khandekar, and Linus Kamb. Distributed shared memory: Where we are and where we

should be headed. Proc of the Fifth Workshop on Hot Topics in Operating Systems, pp. 119-122, May 1995.

[25] Borenstein, N., Implications of MIME for Internet Mail Gateways, RFC 1344, Bellcore, June 1992.

[26] Aldrich J., Dooley J., Mandelsohn S., and Rifkin A., Providing Easier Access to Remote Objects in Client

Server Systems. In Thirty-first Hawaii International Conference on System Sciences, Hawaii, January 1998.

[27] Wiseman Y., (2020), "Autonomous Vehicles", Encyclopedia of Information Science and Technology, Fifth

Edition, Vol. 1, Chapter 1, pp. 1-11.

[28] Wiseman, Y., (2018), "In an era of autonomous vehicles, rails are obsolete", International Journal of Control

and Automation, Vol. 11, No. 2, pp. 151-160.

[29] Wiseman, Y., (2021), "Intelligent Transportation Systems along with the COVID-19 Pandemic will

Significantly Change the Transportation Market", The Open Transportation Journal, Vol. 15, No. 1, pp. 11-15.

[30] Wiseman Y., (2018), "Vehicle identification by OCR, RFID and Bluetooth for toll roads", International Journal

of Control and Automation, Vol. 11, No. 9, pp. 67-76.

[31] Wiseman Y., (2020), "Conjoint Vehicle License Plate Identification System", The Open Transportation Journal,

Vol. 14, No. 1, pp. 164-173.

[32] Wiseman, Y., (2021), "COVID-19 Along with Autonomous Vehicles will Put an End to Rail Systems in

Isolated Territories", In IEEE Intelligent Transportation Systems, Vol. 13, No. 3, pp. 6-12, doi:

10.1109/MITS.2021.3049409.

[33] Wiseman, Y. (2019), "Driverless cars will make union stations obsolete", The Open Transportation Journal,

Vol. 13, No. 1, pp. 109b 115.

[34] Wiseman Y., (2017, May). "Real-time monitoring of traffic congestions" In proceedings of 2017 IEEE

International Conference on Electro Information Technology (EIT-2017, Lincoln, Nebraska, USA, pp. 501-505.

[35] Wiseman, Y., (2017), "Tool for online observing of traffic congestions", International Journal of Control and

Automation, Vol. 10, No. 6, pp. 27-34.

[36] Wiseman Y., (2017), "Computerized traffic congestion detection system". International Journal of

Transportation and Logistics Management, Vol. 1, No.1, pp. 1-8.

[37] Wiseman Y., (2018)., "Efficient Embedded Computing Component for Anti-Lock Braking System",

International Journal of Control and Automation, Vol. 11, No. 12, pp. 1-10.

[38] Wiseman Y., (2018), "Ancillary ultrasonic rangefinder for autonomous vehicles", International Journal of

Security and its Applications", Vol. 12, No. 5, pp. 49-58.

[39] Wiseman, Y. (2019), "Driverless cars will make passenger rail obsolete [opinion

[40] Wiseman Y., (2017), "Self-Driving Car - A Computer will Park for You", International Journal of Engineering

& Technology for Automobile Security, Vol. 1, No. 1, pp. 9-16.

[41] Wiseman Y., (2017), "Remote Parking for Autonomous Vehicles", International Journal of Hybrid Information

Technology, Vol. 10, No. 1, pp. 313-324.

[42] Wiseman Y., (2014), "Device for Detection of Fuselage Defective Parts", Information Journal, Tokyo, Japan,

Vol. 17(9(A)), pp. 4189-4194.

[43] Wiseman Y., (2013), "Fuselage Damage Locator System", Advanced Science and Technology Letters, Vol. 37,

pp. 1-4.

[44] Wiseman Y., (2010), "Take a Picture of Your Tire!", Proc. IEEE Conference on Vehicular Electronics and

Safety (IEEE ICVES-2010) Qingdao, ShanDong, China, pp. 151-156.

[45] Wiseman Y., (2013), "The Effectiveness of JPEG Images Produced By a Standard Digital Camera to Detect

Damaged Tyres", World Review of Intermodal Transportation Research, Vol. 4, No. 1, pp. 23-36.

[46] Wiseman Y., (2013), "Camera That Takes Pictures of Aircraft and Ground Vehicle Tires Can Save Lives",

Journal of Electronic Imaging, Vol. 22, No. 4, 041104.

[47] Wiseman Y., (2017), "Safety Mechanism for SkyTran Tracks", International Journal of Control and

Automation, Vol. 10, No. 7, pp. 51-60.

[48] Wiseman Y., (2017), "Automatic Persistent Inspection of SkyTran Track System",

http://u.cs.biu.ac.il/~wiseman/skytran1.pdf .

[49] Grinberg I. and Wiseman Y., (2013), "Scalable Parallel Simulator for Vehicular Collision Detection",

International Journal of Vehicle Systems Modelling and Testing, Inderscience Publication, Vol. 8, No. 2, pp. 119-

144.

[50] P. Weisberg and Wiseman Y., (2009), "Using 4KB Page Size for Virtual Memory is Obsolete", Proc. IEEE

Conference on Information Reuse and Integration (IEEE IRI-2009), Las Vegas, Nevada, pp. 262-265.

[51] P. Weisberg and Wiseman Y., (2015), "Virtual Memory Systems Should Use Larger Pages rather than the

Traditional 4KB Pages", International Journal of Hybrid Information Technology, Vol. 8(8), pp. 57-68.

[52] Wiseman Y., (2017), "Automatic Alert System for Worn Out Pipes in Autonomous Vehicles", International

Journal of Advanced Science and Technology, Vol. 107, pp. 73-84.

[53] Wiseman Y. and Grinberg I., (2016), "When an Inescapable Accident of Autonomous Vehicles is Looming",

International Journal of Control and Automation, Vol. 9 No. 6, pp. 297-308.

[54] Wiseman Y. and Grinberg I., (2016), "Autonomous Vehicles Should Not Collide Carelessly", Advanced

Science and Technology Letters, Vol. 133, pp. 223-228.

[55] Wiseman Y. and Grinberg I., (2016), "Circumspectly Crash of Autonomous Vehicles", Proceedings of IEEE

International Conference on Electro Information Technology (EIT 2016), Grand Forks, North Dakota, USA, pp.

382-386.

[56] Y. Wiseman, "Diminution of JPEG Error Effects", The Seventh International Conference on Future Generation

Information Technology, Vol. 117, pp. 6-9, (2015).

[57] Y. Wiseman, "Alleviation of JPEG Inaccuracy Appearance", International Journal of Multimedia and

Ubiquitous Engineering, Vol. 11(3), pp. 133-142, (2016).

[58] Y. Wiseman, "Enhancement of JPEG compression for GPS images", International Journal of Multimedia and

Ubiquitous Engineering, Vol. 10, No. 7, pp. 255-264, (2015).

[59] Y. Wiseman, "Improved JPEG Based GPS Picture Compression", Advanced Science and Technology Letters,

(2015).

[60] Y. Wiseman, "The still image lossy compression standard - JPEG", Encyclopedia of Information Science and

Technology, Third Edition, Vol. 1, Chapter 28, (2014).

[61] Y. Wiseman, "Burrows-Wheeler Based JPEG", Data Science Journal, Vol. 6, pp. 19-27, (2007).

[62] Y. Wiseman, "Efficient Embedded Images in Portable Document Format (PDF)", International Journal of

Advanced Science and Technology, Vol. 124, pp. 129-138, (2019).

[63] Y. Wiseman and E. Fredj, "Contour Extraction of Compressed JPEG Images", ACM - Journal of Graphic

Tools, Vol. 6, No. 3, pp. 37-43, (2001).

[64] E. Fredj and Y. Wiseman, "An O(n) Algorithm for Edge Detection in Photos Compressed by JPEG Format",

Proc. International Conference on Signal and Image Processing SIP-2001, Honolulu, Hawaii, pp. 304-308, (2001).

[65] Y. Wiseman, "Adjustable and Automatic Flush Toilet", International Journal of Control and Automation, Vol.

13, No. 4, pp. 1-10, (2020).

[66] D. Livshits and Y. Wiseman, "Cache Based Dynamic Memory Management for GPS", Proceedings of IEEE

Conference on Industrial Electronics (IEEE ICIT-2011), Auburn, Alabama, pp. 441-446, (2011).

[67] D. Livshits and Y. Wiseman, "The Next Generation GPS Memory Management", International Journal of

Vehicle Information and Communication Systems, Vol. 3(1), pp. 58-70, (2013).

[68] Y. Wiseman, "ARC Based SuperPaging", Operating Systems Review, Vol. 39(2), pp. 74-78, 2005.

[69] Y. Wiseman, "Advanced Non-Distributed Operating Systems Course", ACM - Computer Science Education,

Vol. 37(2), pp. 65-69, 2005.

[70] M. Reuven & Y. Wiseman, "Reducing the Thrashing Effect Using Bin Packing", Proc. IASTED Modeling,

Simulation, and Optimization Conference, MSO-2005, Oranjestad, Aruba, pp. 5-10, 2005.

[71] M. Reuven & Y. Wiseman, "Medium-Term Scheduler as a Solution for the Thrashing Effect", The Computer

Journal, Oxford University Press, Swindon, UK, Vol. 49(3), pp. 297-309, 2006.

[72] Y. Wiseman, "The Relative Efficiency of LZW and LZSS", Data Science Journal, Vol. 6, pp. 1-6, 2007.

[73] Y. Wiseman & I. Gefner, "Conjugation Based Compression for Hebrew Texts", ACM Transactions on Asian

Language Information Processing, Vol .6(1), article no. 4, 2007.

[74] Y. Wiseman, "ASOSI: Asymmetric Operating System Infrastructure", Proc. 21st Conference on Parallel and

Distributed Computing and Communication Systems, (PDCCS 2008), New Orleans, Louisiana, pp. 193-198, 2008.

[75] Y. Wiseman, J. Isaacson & E. Lubovsky, "Eliminating the Threat of Kernel Stack Overflows", Proc. IEEE

Conference on Information Reuse and Integration (IEEE IRI-2008), Las Vegas, Nevada, pp. 116-121, 2008.

[76] R. Ben Yehuda & Y. Wiseman, "The Offline Scheduler for Embedded Transportation Systems", Proc. IEEE

Conference on Industrial Electronics (IEEE ICIT-2011), Auburn, Alabama, pp. 449-454, 2011.

[77] Y. Wiseman & P. Weisberg, "Economical Memory Management for Avionics Systems", IEEE/AIAA 31st

Digital Avionics Systems Conference (DASC), 2013.

[78] Y. Wiseman & Alon Barkai, "Diminishing Flight Data Recorder Size", IEEE/AIAA 31st Digital Avionics

Systems Conference (DASC), 2013.

[79] R. Ben Yehuda & Y. Wiseman, "The Offline Scheduler for Embedded Vehicular Systems", International

Journal of Vehicle Information and Communication Systems, Vol. 3(1), pp. 44-57, 2013.

[80] Y. Wiseman & Alon Barkai, "Smaller Flight Data Recorders", Journal of Aviation Technology and

Engineering, Vol. 2(2), pp. 45-55, 2013.

[81] Y. Wiseman, "Enhancing the JPEG Image Compression by Employing the Burrows-Wheeler Transformation",

Technical Report, 2023.

[82] P. Weisberg & Y. Wiseman, "Efficient Memory Control for Avionics and Embedded Systems", International

Journal of Embedded Systems, Vol. 5(4), pp. 225-238, 2013.

[83] Y. Wiseman, "Steganography Based Seaport Security Communication System", Advanced Science and

Technology Letters, Vol. 46, pp. 302-306, 2014.

[84] P. Weisberg, Y. Wiseman & J. Isaacson, "Enhancing Transportation System Networks Reliability by Securer

Operating System", Open Journal of Information Security and Applications, Vol. 1(1), pp. 24-33, 2014.

[85] Y. Wiseman, "Noise Abatement at Ben-Gurion International Airport", Advanced Science and Technology

Letters, Vol. 67, pp. 84-87, 2014.

[86] Y. Wiseman, "Protecting Seaport Communication System by Steganography Based Procedures", International

Journal of Security and Its Applications, Sandy Bay, Tasmania, Australia, Vol. 8(4), pp. 25-36, 2014.

[87] Y. Wiseman, "Noise Abatement Solutions for Ben-Gurion International Airport", International Journal of U- &

E-Service, Science & Technology, Vol. 7(6), pp. 265-272, 2014.

[88] P. Weisberg & Y. Wiseman, "Virtual Memory Systems Should use Larger Pages", Advanced Science and

Technology Letters, Vol. 106, pp. 1-4, 2015.

[89] Y. Wiseman & Y. Giat, "Red Sea and Mediterranean Sea Land Bridge via Eilat", World Review of Intermodal

Transportation Research, Vol. 5(4), pp. 353-368, 2015.

[90] Y. Wiseman, "Can Flight Data Recorder Memory Be Stored on the Cloud?", Journal of Aviation Technology

and Engineering, Vol. 6(1), 16-24, 2016.

[91] Y. Wiseman & Y. Giat, "Multi-modal passenger security in Israel", Multimodal Security in Passenger and

Freight Transportation: Frameworks and Policy Applications, Edward Elgar Publishing Limited, Chapter 16, pp.

246-260, 2016.

[92] Y. Wiseman, "Traffic Light with Inductive Detector Loops and Diverse Time Periods", Contemporary Research

Trend of IT Convergence Technology, Vol. 4, pp. 166-170, 2016.

[93] Y. Wiseman, "Unlimited and Protected Memory for Flight Data Recorders", Aircraft Engineering and

Aerospace Technology, Vol. 88(6), pp. 866-872, 2016.

[94] Y. Wiseman, "Conceptual Design of Intelligent Traffic Light Controller", International Journal of Control and

Automation, Vol. 9(7), pp. 251-262, 2016.

[95] Y. Wiseman, "Compression Scheme for RFID Equipment", Proc. IEEE International Conference on Electro

Information Technology (EIT 2016), Grand Forks, North Dakota, USA, pp. 382-386, 2016.

[96] Y. Wiseman, "Efficient RFID Devices", Proc. The 42nd Annual Conference of IEEE Industrial Electronics

Society (IECON 2016), Firenze (Florence), Italy, pp. 4762-4766, 2016.

[97] Y. Wiseman and I. Grinberg, "The Trolley Problem Version of Autonomous Vehicles", The Open

Transportation Journal, Vol. 12, pp. 105-113, 2018.

[98] Y. Wiseman, "Compaction of RFID Devices using Data Compression", IEEE Journal of Radio Frequency

Identification, Vol. 1(3), pp. 202-207, 2018.

[99] Y. Wiseman, "High Occupancy Vehicle Lanes are an Expected Failure", International Journal of Control and

Automation, Vol. 12(11), pp. 21-32, 2019.

[100] Y. Wiseman, "Israel Complementary International Airport", International Journal of Control and Automation,

Vol. 12(7), pp. 1-10, 2019.

[101] Y. Wiseman, "Adjusted JPEG Quantization Tables in Support of GPS Maps", Journal of Mobile Multimedia,

Vol. 17(4), pp. 637-656, 2021.

[102] Y. Wiseman, "Blaumilch Canal on Ayalon Highway", Daaton, 2015, Available online at:

http://www.daaton.co.il/Article.aspx?id=3290

[103] Y. Wiseman, "Revisiting the Anti-Lock Braking System", Technical Report, 2021.

[104] Y. Wiseman, "Isolated Territories and Infrastructure development: A case for land transportation investment

in Madagascar", Interdisciplinary Approaches to the Future of Africa and Policy Development, IGI Global

Publishing, Chapter 5, pp. 78-97, 2022.

[105] Y. Wiseman, J. Isaacson, "Safer Operating System for Vehicle Telematics", technical report, 2010.

[106] Y. Wiseman, J. Isaacson, E. Lubovsky and P. Weisberg, "Kernel Stack Overflows Elimination", Advanced

Operating Systems and Kernel Applications: Techniques and Technologies, pp. 1-14, IGI Global, 2010.

[107] Y. Wiseman "Airport in Dothan Valley is Ideal", Technical Report, 2020.

[108] M. Itshak and Y. Wiseman, "Enhancing the Efficiency of Memory Management in a Super-Paging

Environment by AMSQM", Advanced Operating Systems and Kernel Applications: Techniques and Technologies,

pp. 276-293, IGI Global, 2010.

[109] Y. Wiseman, "Conjoint Reliable Vehicle License Plate Identification System", Technical Report, 2020.

[110] M. Reuven and Y. Wiseman, "Alleviating the Thrashing by Adding Medium-Term Scheduler", Advanced

Operating Systems and Kernel Applications: Techniques and Technologies, pp. 118-136, IGI Global, 2010.

[111] Y. Wiseman, "Controlling Dynamic Traffic by Road Expansion Can be Accomplished by Double Decker

Roads - Case Study", Technical Report, 2022.

[112] Y. Wiseman, "Rail in Islands is an Expected Failure", Technical Report, 2020.

[113] Y. Wiseman, "Road Planners should not Look Just Right and Left But Rather Should Also Look Up",

Technical Report, 2022.

[114] Y. Wiseman "Can a Flight Data Recorder be Situated in a Cloud?", Technical Report, 2016.

[115] Y. Wiseman, "JPEG Quantization Tables for GPS Maps", Automatic Control and Computer Sciences, Vol.

55(6), 2021.

[116] Y. Wiseman, "Intelligent Transportation Systems along with the COVID-19 Guidelines will Significantly

Change the Transportation Market", Techical Report, 2021.

[117] Y. Wiseman, "Cracked Pipes Alert System for Autonomous Vehicles", Technical Report, 2017.

[118] Y. Wiseman, "EPC Compression", Technical Report, 2016.

[119] Y. Wiseman, "Warning System for Cracked Pipes in Autonomous Vehicles", Advances of Machine Learning

in Clean Energy and Transportation Industry, Chapter 9, pp. 261-276, 2021.

[120] Y. Wiseman, "Madagascar had better invest in a single land transportation infrastructure", Interdisciplinary

Approaches to the Future of Africa and Policy Development, IGI Global Publishing, 2021.

[121] Y. Wiseman, "Teaching Research of Operating Systems", Technical Report, 2022.

[122] Y. Wiseman, "Improving the Super-Paging Swapping Algorithm", Technical Report, 2022.

[123] Y. Wiseman, "Evaluation of Different Lempel-Ziv Compression Algorithms", Technical Report, 2022.

[124] M. Dreyfuss and Y. Giat, "Optimal spares allocation to an exchangeable-item repair system with tolerable

wait", European Journal of Operational Research 261 (2), pp. 584-594, 2017.

[125] Y. Giat, "The effects of output growth on preventive investment policy", American Journal of Operations

Research 3 (06), pp. 474-486, 2013.

