
Accumulative Versioning File System Moraine and Its
Application to Metrics Environment MAME

Tetsuo Yamamoto
Graduate School of

Engineering Science
Osaka University

t-yamamt @ ics.es.osaka-
u.ac.jp

Makoto Matsushita
Graduate School of
Engineering Science

Osaka University

mat usita @ ics.es.osaka-
u.ac.jp

Katsuro Inoue
Graduate School of

Engineering Science
Osaka University,

Graduate School of
Information Science

Nara Institute of Science and
Technology

inoue @ ics.es.osaka-
u.ac.jp

ABSTRACT
It is essential to manage versions of software products created dur-
ing software development. There are various versioning tools ac-
tually used in these days, although most of them require the devel-
opers to issue management commands for consistent versioning.
In this paper, we present a novel versioning file system Moraine,
which accumulatively and automatically collects all files created
or modified. Those files are versioned and stored as compressed
forms. The older versions are easily retrieved from Moraine by the
time-stamps or tags if required.

Using Moraine system, we have developed a metrics (measure-
ment) environment called MAME (Moraine As a Metrics Environ-
ment). MAME can collect various metrics data for on-going or past
projects, since its basis, Moraine, is able to retrieve all versions of
all products (files).

Both Moraine and MAME have been implemented. Using these
systems, we have evaluated the performance of Moraine and MAME
with various test data and student project data. The result shows
that disk space required by this approach is several times larger
than ordinary approaches; however, it is acceptable at the current
tendency of disk price decrease. By this approach, an ideal met-
rics environment has been easily established by developing simple
data-collection tools for version files.

1. INTRODUCTION
Software systems are becoming large and complex, and managing
software development projects are getting hard and difficult. One
of important issues in the management works is controlling product
versions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on sewers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT 2000 (FSE-8) 11/00 San Diego, CA, USA
© 2000 ACM ISBN 1-58113-205-0/00/0011 ...$5.00

In many software development organizations, there are specific man.
agers who are responsible to the product configuration and ver-
sions. Through the configuration manager, the proper versions of
products are kept in the storage, and past versions are retrieved
from it in consistent manner. For this purpose, configuration man-
agement tools RCS[21] and CVS[4] have been widely used. These
tools are very convenient; however, we have to properly learn their
proprietary configuration models to keep consistent versions. Also,
we need to issue configuration commands at proper timing.

In this paper, we present a versioning file system named Moraine[23]
which is designated to support evolution activities in software de-
velopment. Moraine accumulatively records the history of all files;
i.e., every file once created is preserved and each update to the files
is recorded in the file system. The user of Moraine does not need to
worry about the management commands for versioning activities
such as check-in and check-out. The system automatically records
an updated file as the newest version associated with old versions,
and it provides the newest version as a current file. Number of ver-
sions are stored as compressed forms, using the difference of two
subsequent versions. Stored versions are retrieved by the version
numbers, time stamps, or user-defined tags.

The file system in VMS[14] operating system records file changes
automatically. VMS saves all of the contents of newly saved file,
and these saved contents are identified by a special suffix of file-
name. Our file system differ from VMS file system in several re-
spects. Our file system is that the actual version management part
is separated from the file system part.

Through several experiments, we are confident that Moraine is very
practical to various software development projects under current
tendency of drastic decrease of disk price and increase of CPU
power. It is very practical to assume that each software developer
can use large amount of disk space with high-speed CPU.

Moraine system alone works fine for managing versions of soft-
ware products. In this paper, we also consider an application of
Moraine to software metrics environment. Software Metrics are
extending its importance to software project success. In these days,
many software development projects in the large use quality frame-
works such as CMM[18], ISO-900018], and SPICE[9]. In these

80

quality frameworks, quantitative data collection is essential as the
bases of project evaluation and management. For projects in the
small, importance of quantitive data is also emphasized in the con-
text of individual capability improvement, such as Personal Soft-
ware Process[7].

It is very important to plan the collection strategy before projects
start. For example, GQM paradigm[2] requires setting the goals for
project evaluation and identifying approaches to the goals as ques-
tions. After determining the goals and questions, the metrics to be
collected are selected. This top down approach for data collection
would work fine if we are able to the design project structure well
before the project starts. We can initiate metrics data collection
from the beginning of the project.

However, there would be a lot of cases where we would notice the
need of new software metrics data during project running or even
after project termination. In such cases, it is difficult in general to
get the metrics data for the past period of the project. Collecting
data for deleted products and terminated processes is infeasible in
currently available software development environments.

Moraine, which keeps fine-grain versions of all files, equips very
good features as a software metrics environment. The Moraine
system automatically stores all versions of all files without extra
human management. We can restore any version of any file if it
once existed in the system. Therefore, we are able to start collect-
ing metrics data even after the project initiation.

In this paper, we show a metrics environment named MAME (Moraine
As a Metrics Environment), as an application of Moraine. Since
Moraine is implemented as a transparent file system, we can easily
built MAME above Moraine.

There are a lot of metrics environments proposed and actually im-
plemented[3, 13, 20, 22]. However, most of those are proprietary
environments, where a pre-designed metrics collection policy is to
be determined. For MAME, on the other hand, we can determine
the policy even after project initiation.

MAME has been actually applied to a student project of complier
construction. Several metrics data have been collected after the
project, and the characteristics of the student activities have been
detected. Although this experiment is limited in the sense of pro-
gram size and development period, we would think that MAME is
very applicable to various fields requiring software metrics.

Contributions of this paper are proposal of MAME, a new architec-
ture for metrics environment, as well as its base system Moraine,
an accumulative file versioning file system. Also, we will present
practicability of this approach through the experiments.

This paper is organized as follows. In Section 2, we briefly describe
the overview of an accumulative versioning file system Moraine.
Section 3 shows evaluation results of Moraine. Section 4 presents
the approach of using Moraine as a metrics environment MAME.
An experiment of applying MAME to the student project is shown
in Section 5, and we discuss on the approach of Moraine and MAME
in Section 6. Section 7 concludes our discussions with several re-
marks.

2. OVERVIEW OF VERSIONING FILE SYS-
TEM MORAINE

In this section, we present Moraine, which is an accumulative soft-
ware development environment based on a versioning file system.

2.1 Design Policy
As we notice day after day, the price of hard disks is getting lower
and lower, and the power of consumer-level CPU is getting higher
and higher. We would hope a development environment such that
all of the developers activities to the development environment are
recorded to a storage, and that any past data could be retrieved eas-
ily from the storage if needed.

Such development environment records all versions of all files we
have created. We do not need to care about preserving versions of
files, and we can delete files from the environment if it is currently
needless. The deleted files are retrieved by specifying time stamps
or configuration tags given by the user.

Based on these observations, we have established the following de-
sign policies of Moraine.

• Easy operation: the users are not required to learn how to use
Moraine. Usual file read/write operations are automatically
hooked, and versioning works are performed by Moraine with-
out user's hand.

* Open structure: Moraine should not have proprietary struc-
ture of data repository or versioning tools, and it is easily
ported to many systems.

Based on these concepts, we have designed the system as a sin-
gle virtual file system of UNIX environment with system call hook
mechanisms. With this approach, the users are not necessary to
recognize the versioning operations; they simply issue file read and
write system calls to the kernel. In other words, they develop a
software without the concept of repository and workspace. Also
since the system is designed as a virtual file system, we can easily
separate the implementation issues from this architecture, and can
port to other machine environments.

2.2 Architecture of Moraine
Figure 1 shows the architecture of Moraine we propose. The core
part of the system is called VCFS (Version Control File System),
which contains several components, VFS (Virtual File System),
VCD (Version Control Daemon), RCS (Revision Control System)J21]
as an available versioning sub-system, and several control com-
mand tools.

In VCFS, operations to a file (read and write) are automatically
mapped into activities of version management; engineers do not
consider what should be done to manage the product versions. There
are no difference between the operations to usual file system and
VCFS file system from a viewpoint of users' processes.

VCFS manages the versions of regular files (symbolic link, special
file, socket, and named-pipe are out of our scope). A new version
of a file is created and checked-in fully automatically iff a file is
created or an existing file is changed. Checking-out the latest ver-
sion is done with simply reading the file. VCFS also supports a
file locking mechanism. Before a check-in operation is completed,
other processes can only check-out the file.

81

User i K e r n e l i ,.U.L°,r, , _ ,V.CE~

i - - ' ~ - - ~ , ' ~ ~Version Managt nent
i ~ ~- . . .~-~\ i | ; _ -S~b~W~m

i ii
if '

Figure 1: Architecture of Moraine

User's surface view
.

• r ~ R~ead/W~t~ ") i

' T °'°' I -I : i io; !
L ~ ' ~ Newer

I Vere'°n"°p°s't°

Figure 2: Mapping files between VCFS and actual file system

VCFS internally employs "check-in/cheek-out model"[5] which was
used by RCS; however, it is not mandatory. We can change the
models if needed.

VCFS is implemented as a stackable file system through VFS com-
ponent, i.e., all files handled by VCFS are stored not directly to the
UNIX raw file system, but indirectly via VFS which write finally
to the UNIX file system.

Each user file consists of two actual files; one is the latest version,
and another is the version repository (Figure 2).

Usually VCFS shows the latest version of the file to the user. For
example, we assume that a file system/versiondb is mounted to
/proj by VCFS. Now the user creates a file/proj/foo. VCFS creates
"/versiondb/foo, a'" as the latest version of filefoo (/proj/foo itself)
and "/versiondb/foo, v" (if RCS is used as a version management
sub-system), for the version repository. Note that/versiondb/foo, v
is invisible from the user surface with ordinary operations (we need
version management operations to get older versions).

VCFS always keeps the latest version of every file (/versiondb/foo, a
in the previous example) for fast file read/write to the latest ver-
sion. When a UNIX process opens a file in read-only mode, VCFS
behaves as the same as NULL file system[19](which simply passes
the operations to the raw file system without modification). When a
process opens a file in write-only or read-write mode, VCFS hooks
close0 system call and performs a check-in operation to a file. The
check-in operation is activated by VCD.

A stackable file system doesn't do a change inside the existent file
system. Moreover, the output of the file system is done as a file in
file system which becomes the lower layer, and it isn't done directly
by hard disks and so on. It doesn't need to write the code which it
deals with a storage device and a network with, and is a portability.

VCD is a daemon process which acts as a bridge between the ker-
nel and the version management sub-system. VCD dispatches the
requests from the kernel to the version management sub-system.

The version management sub-system is the actual version manage-
ment part of VCFS. In general, version management sub-system
consists of a set of tools. VCFS employs external version man-
agement systems as the sub-systems, and we can change the sub-
systems to use. Current prototype of VCFS has two kinds of ver-
sion management sub-systems, RCS and VCS. VCS is a simple ver-
sion management system. VCS saves all versions as-is, and does
not calculate the delta between versions. No version derivation is
allowed, however, registering a new version is faster than the RCS
sub-system.

Control command tools help to control system behavior. Exam-
ples of commands include, retrieving previous versions, making a
branch, showing a delta between versions, and so on.

Current prototype of Moraine runs on FrceBSD 3.0-RELEASE[6],
a BSD UNIX[12, 15] variants. VCFS is written in C and about
5000 lines in total.

3. E V A L U A T I O N O F MORAINE
In this section, we discusses Moraine from viewpoints of the sys-
tem performance and stored data size. It is important to know that
the system has acceptable performance for software development
environment. Therefore we have measured the performance of the
file system about reading and writing files•

We use UNIX file system (denoted UFS) and NULL file system
(NULLFS) to compare with our Moraine (VCFS). All experiments
were made on a machine with 166MHz Pentium CPU and 48MB
RAM running FreeBSD 3.0-RELEASE.

3.1 P e r f o r m a n c e o f F i l e R e a d a n d Write
At first, we measured an elapsed time for a UNIX process to read
different IMB files repeatedly. "An elapsed time" means time be-
tween process initiation and process termination. Be aware that
the elapsed time includes an overhead of typical UNIX processes
(process initialization, etc).

Figure 3 shows the results of the reading test of VCFS, UFS, and
NULLFS. "VCFS" represents VCFS using RCS as the version man-
agement sub-system. The vertical axis shows the elapsed time, and
the horizontal axis shows the number of read operations.

This graph shows that VCFS and NULLFS take almost the same
time, and they are a little slower than UFS. This is because both
VCFS and NULLFS contain the overhead for the implementation
of the stackable file system, which slightly reduces the system per-
formance. However, the difference is small and limited.

We also measured elapsed time to write files, similar to the file
reading test described above• Figure 4 shows the results of writing
test. "VCFS+" represents VCFS using VCS as the version manage-
ment sub-system. "VCFS+" indicates the elapsed time including

82

I I I I I I I I | I

8 - . . 4 - - NULLFS h _
, _ 7 - - - ~ - - - - U F S _ . , 6 ~ , ~ " *

- f ° ° ° ° 6 -o - ' ' °

Pl

I I I I I I I I I I

1 2 3 4 5 6 7 8 9 10
Number of Reading

Figure 3: Performance of File Read

30

~20 ,.....,

10

0

I I I I I I] I I I

- ~ VCFS+
- - - , ~ - - - vcFs
- - o - - ~.~J_~s / -

I I I ! I I I I I I
1 2 3 4 5 6 7 8 9 10

Number of Writing

Figure 4: Performance of File Write

time for synchronization between VCD and RCS (i.e., waiting the
completion of the file write operations). In the case of VCFS, we
do not wait for the termination of RCS.

NULLFS is about 10% slower than UFS, very similar to the read-
ing test. Writing a file in VCFS requires a new version registration
overhead which is not required by the reading; thus VCFS con-
sumes 30% or more extra time compared with UFS.

VCFS+ is several times slower than UFS, NULLFS, and VCFS.
This is because VCFS+ count for time of computing file difference.
However, this time consuming process is usually performed as a
background job and the users do not need to wait for it. The users
can get prompt from the system with the waiting time of VCFS, not
VCFS+.

Finally, a sequence of file read and write based on practical set-
ting has been performed. We have compiled several UNIX appli-
cation tools using provided "make" files. Two applications, "tar"
and "dump" bundled with FreeBSD have been compiled on VCFS
(Moraine), NULLFS, and UFS. Table 1 shows the total lines of
source codes and the total number of source files of those applica-
tions. The results of elapsed time for completing "make" programs
of those applications are shown in Table 2.

The procedure of compiling an application includes reading opera-

dump
tar

Table 1: Data of Applications
Total lines ofcodes Total number offiles

15123 25
3705 9

Table 2: Compile an Application (Sec.)
dump tar

VCFS 12.79 33.46
NULLFS 11.3 32.01

UFS 10.9 28.27

tions of the source codes and writing operations of the object codes
repeatedly. As a result, VCFS is about 20% slower than UFS; how-
ever we consider that this overhead is not a serious problem as a
practical software development environment.

3.2 Stored Data Size
We applied Moraine to the student project of Osaka University,
where each student develops a compiler for Pascal-like language in
C. Table 3 shows various characteristics of the development. The
total lines of codes shows the number of all lines in the C source
files with the latest version numbers. The total number of files is
the number of distinct files without counting the versions. The to-
tal number of versions is the number of all versions for all files
including C source files, object files, and others. The value in the
parenthesis is the number of versions for C source files only. For
example, student 2 created finely 4067 lines of C code, and he made
20 different files which have 249 versions all together including 147
versions of C source files.

Table 4 shows disk space usages under UFS and VCFS. (NULLFS
is the same as UFS.) Note that all object files and executable files
once created are also stored in the disk.

The results of UFS show actual sizes of final versions of products.
The disk space requirements for VCFS are 6-8 times greater than
those of UFS. However, it is only 1.4 MBytes even for the largest
case, which is fairly small amount under huge disk space currently
available with moderate prices.

4. USING M O R A I N E AS A M E T R I C S EN-
V I R O N M E N T

In this section, we introduce some requirements for metrics envi-
ronment which supports development activities driven with quan-
titive measurement. Metrics environment is an infrastructure for
quantitive process and/or product measurement of ordinary soft-
ware development activities.

Metrics environments collect some quantitive (not subjective) met-
rics data from activities of engineers. The environments also store
the data, and provide facilities to analyse the data. Also, metrics en-
vironments are used as a back-end for software process assessment
tools.

4.1 Requirements to Metrics Environments
We think there are four essential requirements of metrics environ-
ments as follows:

83

studentl
student2
student3

Table 3: Characteristics of Project
Total lines of codes Total number of files Total number of versions (source files)

9339 45 533 (311)
4067 20 249 (147)
2543 18 357 (247)

Table 4: Total Disk Space Usage (K bytes)
UFS VCFS

studentl 225 1388
i student2 117 546
i student3 73 604

1.

2.

3.

4.

No extra burden should be imposed to the developers. It is
not pleasant that the developer is forced to do special activi-
ties for data collection such as "please use our special tool",
"please do pre-defined activity, and do not do others". We
have to consider psychological overhead of those activities.
Moreover, imposing such activities to the developer would
cause potentially problems of the quality of the collected
data.

Various kinds of metrics data should be easily collected. We
might built a tool collection composed of a bit of small tools.
However, we would have more generic infrastructure to col-
lect lots of metrics; we would like "environment" (rather than
a tool-set).

Various granularity data should be easily collected. Soft-
ware development activities should have lots of aspects, such
as engineers, managers, and so on. Since we can consider
various granularity levels to a single metrics, environments
should provide a facility to show from detailed to abstracted
view of the metrics.

Data format of collected metrics should be no proprietary
and widely applicable. Recently, open-source movement[11]
is wide-spreaded. Software architecture, design, and imple-
mentation which used to be hidden, become open to all of
us. In such situations, using a commonly-used data format
to store collected metrics data is very important requirement
for metrics environment. It brings a chance to enhance the
metrics environments.

4.2 Design of MAME Architecture
Figure 5 shows the architecture of MAME (Moraine As a Metrics
Environment). Development environment is put on Moraine, and
all accesses to files within the development environment are pro-
cessed by Moraine. Engineers can also retrieve the results of de-
velopment activities from Moraine with metrics tools such as data
presentation tool, data analyzation, etc.

Note that we do not need to change the development environment.
It is simply on Moraine, and the developer is not necessary to to be
aware re of MAME.

Various kinds of metrics tools can be included in MAME. Current
implementation provides several size metrics tools written in Peri.
We easily combine these metrics data. These tools provide also the
number of versions, a modified date of a version, the author of a
version and a file list of the directory.

Figure 6 shows a screen image of Version Viewer, accessed through

Developer
Development ~ ~ "q~nalysys data feed back
act iv i t i es =MAME . ,.

Devel°pmentji I'Metrics T°°ls ~i I Envir°nment Ii ~,Version Viewer
Rea V.te F,es t E l Get " .,, ~, = V e r s i o n F i l es

i Moraine li
[............................... i

Figure 5: MAME architecture

a Web browser. The left-most column of this table shows the ver-
sion numbers from the initial version 1.1 to the latest version. A
row of each version consists of the version number, the date of
the file update, the author name who updateded the file, the num-
ber of added/deleted lines, a bar graph of the number of lines, and
optional tag for identifying this version. A change of file can be
viewed visually using this tool.

4.3 Features of M A M E
MAME has sufficient features to cover the requirements of metrics
environments. The following are major features of MAME assorted
by the requirements mentioned above.

1. In MAME, engineers can use their own environment as they
used. MAME does not change engineers working environ-
ment. MAME co-exists those environments and works as
metrics environment. Also, engineers can get information of
the current status of the development from MAME.

2. MAME collects data of most activities on the environment.
We assumes that most activities of software development are
summarized as operations of files. MAME collects all file
operations such as changing file contents, and creating a new
file. These operations includes various types of activities of
software development.

3. MAME provides fine-grain data and can be abstracted. The
data which is collected by MAME are the results of primi-
tive operations. It can be used as fine-grain data without any
processing. Also, these data can be considered as a series of
file operation. We would abstract the the data of MAME to
be able to fit high-level software development models.

4. MAME does not employ a proprietary data format. MAME
uses other external tools to record data, and MAME does not

84

" ~ . F ~

~,~.~,~.~ , - , . j w ~ ,~,~ i ~

Figure 6: Version Viewer

2oi

15

° B

LI.

~ 1 0
.Q

E - !

Z
5 /

I
o

w

r

| i

/

I i I I
50 . 100

Number of version

I

I
15o

Figure 7: Changes of Number of Files (Student 2)

have its own proprietary data format. We can use familiar
data manipulation tool to process MAME data.

5. EXPERIMENT OF USING MAME
5.1 Overview of Experiment
We have applied MAME to the same student project of the compiler
construction presented in Section 3. In Table 3, we had shown the
total lines of codes of the last versions, the total number of files, the
total number of created versions (including the number of C source
files).

The data collection was performed after the project termination.
MAME extended the compressed diff files to the original forms,
and computed several metrics values. Here, we computed three
metrics to know the behaviour of the students during the project.
In this experiment, we have collected the number of files (exsisting
at that time), total lines of codes in the files, and the number of C
functions in the program files.

Figure 7, Figure 8, and Figure 9 show those metrics values for
student 2, respectively. The horizontal axis for each graph is the
cumulative number of versions for C source files(totally 147 ver-
sions). This metrics is used here as the elapsed time of the student
project. This value would be better for the student than the calen-
der time, since students usually work sporadically and the calender
time would be no use.

5.2 Interpretations of Metrics Data
From Figure 7 and Figure 8, we could guess that the project pro-
gressed fairly smoothly without serious troubles, since the graphs
almost grow monotonically. Between version number 20 - 50,
there are no increase of all graphs. This would indicate the student
mostly did minor modifications in the files.

Figure 9 shows a rapid increase at very early stage (around version
number 20) and following long stable period. This would show
that the student first created the skeleton of necessary functions,
then he filled the contents of the functions. Also, the student added
many functions at late stage (around version number 100) of the
development.

These observations have been easily obtained from the output of
MAME.

6. DISCUSSIONS
6.1 Moraine
The architecture of Moraine is quite unique one as a versioning
tools for software development. All created versions of all flies
are automatically collected by the hidden process, and the develop-
ers are not necessary identify the versioning mechanisms or com-
mands.

As a versioning tool, the features of Moraine is sufficient in the
sense that we can store and retrieve any versions of files effectively.
Adding explicit tags to versions would ease the searching efforts of
specific versions.

Moraine does not have configuration management mechanisms as
CVS[4] and RCS[21] have. A configuration of a set of files have
to be managed by hand, or by creating configuration files. How-
ever, it is not difficult to develop, as an application on Moraine, a
configuration management environment on Moraine.

Current implementation of Moraine provides retrieval features based
on time-stamps or annotated tags. These are almost the same as
CVS and RCS features. However, the granularity of the versions
stored in Moraine is generally finer than those in CVS and RCS.
Therefore, we would need more sophisticated mechanisms to search
a past version out of fairly large number of versions.

Moraine collects automatically and accumulatively all versions of
all files as a non proprietary system. Although there is no same sys-
tem as Moraine, there are related commercial tools such as ClearCase[1],
PVCS[16] and Visual Source Safe[17]. These tools can collect ver-
sions of objects in various granularity levels. However, the engi-
neers have to recognize the system and to issue check-in/check-out
commands for the version management. Also there is a tool such as
3-D file system[10]. 3-D Filesystem is implemented as a modified
file system of UNIX System V release 3. Merging version manage-
ment features to native file system makes a tool-free operation for
extracting any version; however, registering a new version requires

85

4000

I

3000

2000

1000

I w | i

/ -
I a I I I

0 5 0 1 0 0
Number of Version

I
150

Figure 8: Changes of Lines of Code (Student 2)

1 0 0

8 0
t -
O

E
- - I

z
20

I I

0

9

I ' I y-

I ~ I = I t I
0 . 5 0 . . . 1QO 150

NumDer ot ve rs ion

Figure 9: Changes of Number of Fanetions (Student 2)

some supporting tool associated with the file system. On the other
hand, Moraine fully automates the version store operations through
file write operations. This would be a substantial difference.

Performance of Moraine is acceptable as a base of software devel-
opment platforms. The performance decrease by keeping every ver-
sion is limited. Although the system load factor would be increased
by computing file difference, this computation job is performed in
the background and we do not need to wait the computation.

Moraine would be able to be a foundation of new software develop-
ment environment models. Current software development environ-
ments require a lot of management operations on file, product, or
object names. We have to keep all necessary files in the system, and
this is fairly complicated and troublesome works. Using Moraine,
we can delete files which are currently unnecessary. The files which
might be needed in the future can delete from the surface of the sys-
tem (but Moraine keeps i0. By using versions retrieval features in
the version space, we would recover the necessary file to the surface
of the system.

6.2 MAME
MAME has been constructed as an application of Moraine, a fine-
grain versioning file system. It has a novel architecture for software
metrics environment. MAME system would meet the requirements
for metrics environment shown in Section 4. There are no specific
enforcement to the developers. The management overhead for col-
lecting metrics data is very limited, where all versions of all files are
automatically preserved in the system. Those versions are restored
when we gather metrics data. Various tools for computing various
metrics data are executed for the restored version files. The system
is fairly transparent since the data store is created as a virtual file
system, and the metrics tools and viewer are located beside the in-
teraction between the developer and the development environment.

The extreme nature of MAME is that we can gather metrics data for
past versions or deleted files. Thus, we can set up or change data
collection policy during the project or after the project. Ordinary
metrics environments require predetermined data collection policy.

This nature is established by recording all versions once created in
the system. The experiment data shown in Section 3 and Section 5
indicate practicability of this approach. The disk space requirement
is greater than the usual file systems but still affordable.

By using MAME, we can gather product data fairly easily, although
performing the process data collection would require more sophis-
ticated ways. With current implementation of MAME, we would
analyze the command history files for getting process data, or we
would construct process data from the product data which are fully
available by Moraine. The latter approach will work fine in the
cases that we can easily guess the developer's activities from the
version files. For example, the number of compilation would be
guessed by the version number of the object files straightforward.

There are environments which can be used as metrics environments.
METKIT (Metrics Education Toolki0[20] can be used to collect
metrics data in ordinary development environment. Engineers can
introduce or create modules to collect data they want; it should be
defined what metrics is used before it uses. Project Crocodile[13]
is also metrics environment which integrates measurement tool sets
and existing tool sets. However, it assumes that the criteria for the
metrics is already defined before using the environment. TAME[3]
is a project to establish a metrics environment. TAME introduces
GQM paradigm[2] to collect metrics data, so it tends to be top down
approach to select what metrics should be used before adapting
to existing software development environment. Ginger2[22] also
achieves to build a metrics environment. However, since its imple-
mentation employs propriety tool sets to collect data it is difficult
to apply to actual environment.

7. CONCLUSION
In this paper, we presented Moraine, which supports various activ-
ities in software development. Moraine accumulatively records the
history of all files. Moraine acts as a file system wrapper for ex-
isting version management system. We evaluated Moraine in the
performance and file-size point of view. Moraine provides easy op-
erations of the version management, open system structure. It is
very practical to various software development projects.

86

We also proposed MAME, which is a metrics environment as an
application of Moraine. MAME collects data of most activities on
the environment without a burden to the developer. MAME was
applied to the project, and various observations of the student activ-
ities has been easily obtained from the metrics data from MAME.

As a further work, we are planning to apply Moraine and MAME
to an industrial-size project. In such case, the issue to be solved
is not the disk space or CPU power of the development system,
but maturity of the system. In order to ensure the reliability of the
system, we are currently reviewing the implementation of Moraine,
with directly interact with UNIX kernel.

8. REFERENCES
[1] Atria Software Inc. ClearCase product summary. Technical

report, Atria Software Inc., 24 Prime park Way, Natick,
Massachusetts 01760, 1994.

[2] V.R. Basili, G. Caldiera, and H. D. Rombach. Goal Question
Metric Paradigm. In J. J. Marciniak, editor, Encyclopedia of
Software Engineering, volume 1, pages 528-532. John Wiley
& Sons, 1994.

[3] V. R. Basili and H. D. Rombach. The TAME Project:
Towards improvement--oriented software environments.
IEEE Transactions on Software Engineering,
SE-14(6):758-773, June 1988.

[4] B. Berliner. CVS II: Parallelizing software development. In
Proceedings of 1990 Winter USENIX Conference,
Washington, D.C., Winter 1990.

[5] P. H. Feiler. Configuration management models in
commercial environments. Technical Report
CMU/SEI-91-TR-7, Software Engineering Institute,
Carnegie-Mellon University, Pittsburgh, Pennsylvania
15213, Mar. 1991.

[6] J. K. Hubbard. RELEASE NOTES FreeBSD Release
3.0-RELEASE.
"http://www.freebsd.org/releases/3.0R/notes.html'.

[7] W. Humphrey. Introduction to the Personal Software
Process. SEI Series in Software Engineering. Addison
Wesley, 1997.

[8] International Organization for Standardization. ISO 9000:
Quality management and quality assurance standards; Part
3: Guidelines for the application of lSO 9001 to the
development, supply and maintenance of software. Geneva,
Switzerland, 1991.

[9] ISO/IEC TR 15504. Software process assessment's parts
1-9, technical report type 2, 1998.

[10] D.G. Korn and E. Krell. A new dimension for the Unix file
system. Software-Practice and Experience, 20(S 1): 19-34,
June 1990.

[11] E. S. Laymond. The cathedral and the bazaar.
"http://www.tuxedo.org/%7Eesr/writings/cathedral-
bazaar/cathedral-bazaar.ps".

[12] S. Leffler, M. McKusick, M. karels, and J. Quarterman. The
Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

[13] C. Lewerents and S. E A product metrics tool integrated into
a software development environment. In In Proc. European
Software Measurement Conference FESMA98, pages
6O3-608, 1998.

[14] K. McCoy. VMS File System Internals. Digital Press, 1990.

[15] M. McKusick, K. Bostic, M. karels, and J. Quarterman. The
Design and Implementation of the 4.4BSD UNIX Operating
System. Addison-Wesley, 1996.

[16] Merant, Inc. Merant pvcs version manager & configuration
builder. "http://www.merant.com/products/pvcs/".

[17] Microsoft, Inc. Visual source safe.
"http://msdn.microsoft.com/ssafe/".

[18] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber.
Capability maturity model, version 1.1. IEEE Software,
10(4):18-27, July 1993.

[19] J.-S. Pendry and M. McKusick. Union mounts in
4.4BSD-Lite. In Proceedings of the USENIX 1995 Technical
Conference, pages 25-33, New Orleans, LA, USA, January
16-20 1995.

[20] M. Russell and M. Bush. Introduction to metkit. Journal of
Information and Software Technology, 35(2):108-110, 1993.

[21] W. F. Tichy. RCS - a system for version control.
Software-Practice and Experience, 15(7):637-654, July
1985.

[22] K. Torii, K. Matsumoto, K. Nakakoji, Y. Takada, S. Takada,
and K. Shima. Ginger2: An environment for caese
(computer-aided empirical software engineering). IEEE
Transactions on Software Engineering, 25(4):474-492, 1999.

[23] T. Yamamoto, M. Matsushita, and K. Inoue. Moraine: An
Accumulative Software Development Environment for
Software Evolution. In IWPSE99 International Workshop on
the Principles of Software Evolution, pages 89-93, Fukuoka,
Japan, July 1999.

87

