
A Caching File S y s t e m
For a P r o g r a m m e r ' s Works ta t ion

by

M i c h a e l D . S c h r o e d e r , D a v i d K . G i f f o r d a n d R o g e r M . N e e d h a m
X e r o x P a l s A l t o R e s e a r c h C e n t e r *

A b s t r a c t

This pape r describes a file sys tem for a p r o g r a m m e r ' s
works t a t ion t h a t has access b o t h to a local disk and to
r emote file servers. T h e file sys tem is designed to help
p r o g r a m m e r s m a n a g e the i r local n a m i n g env i ronments and
share cons is ten t versions of collections of software. I t
names mul t ip le versions of local and remote files in a hier-
archy. Local names can refer to local files or be a t t a ched
to r emote files. R e m o t e files also may be referred to di-
rectly. R e m o t e files are immutab l e and cached on the lo-
cal disk. T h e file sys tem is p a r t of the Cedar exper imenta l
p r o g r a m m i n g env i r onm en t a t Xerox PARC and has been
in use since la te 1983.

* Authors' addresses - - Michael D. Schroeder is at the
DEC Systems Research Center, 1$0 Lytton Ave., Pals
Alto, CA 94501. David K. Gifford is at the Laboratory/or
Computer Science, 5~5 Technology Sq., Cambridge, MA
0~139. Roger M. Needham is at the Computer Laboratory,
Corn Ezchange St., Cambridge CBe $QG, UK.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 A C M - 0 - 8 9 7 9 1 - 174- 1- 12/85-0025 $ 0 0 . 7 5

I n t r o d u c t i o n

A conf igura t ion of personal works ta t ions , each wi th a local
disk, connec ted to sha red file servers by a local area net -
work can provide a responsive base for software develop-
m e n t by a t e a m of p rogrammers . The works ta t ions provide
each p r o g r a m m e r wi th dedica ted ha rdware resources t h a t
r e spond quickly to in terac t ive demands . The file servers
provide a way for the group of p r o g r a m m e r s to share in-
fo rmat ion . This pape r describes a d i s t r ibu ted file sys tem,
called CFS, designed to suppo r t group p r o g r a m m i n g in
th is ha rdware context . CFS was developed as p a r t of the
Cedar expe r imen ta l p r o g r a m m i n g env i ronmen t [8, 18, 19]
at t he Xerox Pa l s Al to Research Center .

A file sys tem t h a t suppor t s a group of coopera t ing pro-
g r a m m e r s has two i m p o r t a n t jobs to do. Fi rs t , it mus t
help each p r o g r a m m e r m a n a g e a pr iva te file n a m i n g envi-
r o n m e n t in which to work. Second, it mus t help the group
share cons is ten t versions of the software subsys tems be ing
developed in paral lel . CFS addresses these requ i rements
by provid ing each works ta t ion wi th a hierarchical n a m e
space t h a t includes the files on the local disk and on all
file servers. The local files are pr iva te to the works ta t ion .
The remote files are sha rab le among all works ta t ions . A
s imple copying model connec ts file c rea t ion and shar ing .
A client of CFS creates a file on the local disk. To make
t h a t file avai lable for shar ing , the cl ient t ransfers it to a
file server , giving it a r emote name. A client on a n o t h e r
works t a t ion can t h e n access the file by its r emote n a m e
and t r ans fe r i t to t h a t works ta t ion ' s local disk. T h e basis
for consis tency in sha r ing is a tomic crea t ion of each remote
file.

A d is t inc t ive fea ture of CFS is t h a t only immutab l e files
may be shared . An immutab l e file has two i m p o r t a n t prop-
erties: i ts n a m e may not be reused and its conten ts may
no t be al tered. Thus , the n a m e of an i m m u t a b l e file sig-
nifies the fixed conten ts of the file, no t the file as a con-
t a ine r for var iable informat ion . All r emote files in CFS
are i m m u t a b l e a n d only r emote files are shared . As we
will see, sha r ing only immutab l e files makes it easy to sup-
por t cons is ten t sha r ing and makes it easy to implement a
d i s t r ibu ted file sys tem.

Two o the r key features of CFS are the abil i ty to a t t a c h
local names to r emote files and the caching of r emote files

25

on the local disk. These two features work together to
decouple the management of the local naming environment
on a workstat ion from the management of space on the
local disk.

CFS was designed to be used by software management
tools like Cedar 's D F package [16]. The tools in the DF
package provide a way to define and share a static snap.-
shot of a software subsystem. The definition is a list of
component file names recorded in a so called D F tile. The
components may be source files, object files, documenta-
tion files, and other DF files. A DF file is the value of
a subsystem, not a reference to it. A programmer using
a par t icular DF file to identify the components of a sub-
system can be certain to find a set of file contents that
represents a consistent version of the subsystem. The im-
mutable files provided by CFS directly support this snap-
shot view of subsystems. A part icular version of a subsys-
t em is shared via an immutable version of a DF file that
names immutable versions of the component files.

The tools in the DF package work by establishing a cor-
respondence between remote files named in DF files and
local file names on a workstation. The programmer then
works in this local naming environment. The facilities in
CFS for a t taching local names to remote files allow sett ing
up the local naming environment wi thout actually copying
the corresponding files from the file servers. The presence
of the actual files on the local disk is managed indepen-
dently by the local cache for remote files.

Simplicity and good performance were pr imary goals in
the CFS design. Forcing all sharing to be through file
servers eliminates workstat ion code that responds to file
requests from other workstat ions and from servers. Shar-
ing only immutable files means that the workstat ion cache
machinery can ignore the possibility of remote files chang-
ing. Using simple atomic updates to server directories to
suppor t consistent sharing eliminates the need for transac-
tions and long-term locks on the file servers. In addit ion,
to reduce the load on the shared file servers and reduce
the complexi ty of the workstat ion cache machinery, CFS
transfers and caches whole files rather than individual file
blocks.

This paper documents the CFS design. After listing the
facilities required in the file servers used by CFS, the pa-
per presents the key features of the design and shows by
example how these features are used by the DF package to
suppor t group programming. Then some detailed points
about naming, binding and caching are considered, and
the implementa t ion s t ructure is sketched. The final sec-
t ion bounds the design by discussing potent ial goals not
addressed and directions for future exploration. The pa-
per concludes that , when used with software management
tools like the DF package, CFS effectively supports the
development of large programs by groups of programmers .
An appendix defines the semantics of the key operat ions
in the CFS interface.

R e l a t e d Work

Much work has been done on dis tr ibuted file systems and
many of the recent efforts are surveyed in Svobodova's ar-
ticle [17]. Most designs s tar t by dis t r ibut ing a t radi t ional
t ime-sharing file system over mult iple computers a t tached
to a network. The clients on all computers see the same
set of shared, mutable files. This t radi t ional model of file
system semantics is easy for clients to unders tand, but an
efficient dis t r ibuted implementat ion is quite complex. The
simplest implementat ions, such as tlhe Newcastle Connec-
tion [5], provide direct access to the blocks of files from
a named collection of file system instances. Performance
is improved in the Apollo Domain file system [11] and
Sun Microsystems ' NFS [221 by adding local caching of
file blocks. The ITC dis t r ibuted file system [15] adds lo-
cation t ransparency for files and replication of read-only
files. It has adopted the transferring and caching of whole
files used in CFS, but still maintains the t radi t ional client
model of shared, mutable files. The performance implica-
tions of this combinat ion are not unders tood yet. In all
these cases, the file system provides no assistance in orga-
nizing the consistent sharing of sets of files. The LOCUS
file system [21] addresses consistent sharing with sophisti-
cated locking and t ransact ion mechanisms for shared, mu-
table files. It also provides for replication of such files. This
combinat ion of functions produces interface semantics and
an implementa t ion tha t are quite complex.

CFS differs from these systems by changing the seman-
tics of the t radi t ional file systems interface, as described
earlier, to reflect the intended use. These semantics are
carefully selected to provide the functionali ty required to
support group programming efforts while enabling a sim-
ple, efficient dis t r ibuted implementat ion.

F i l e S e r v e r s

CFS integrates a private, local file system for a worksta-
t ion with the shared, remote file systems on network file
servers. The client interface to CFS is in the workstat ion.
All shared mechanism is in the file servers. The network
interface of the file servers is considered to be internal to
the CFS implementat ion, to be used only by the CFS code
in a workstat ion, but this restriction is not enforced. CFS
was able to use the existing IFS file servers tha t are com-
mon in the Xerox research and development community.
Before describing the key features available at the CFS
client interface, we outl ine the services provided by these
file servers.

Each file server provides a shared hierarchical directory.
Access control mechanisms define which authent ica ted
users are able to access and manipula te each file. Using
a file transfer protocol [3], new files can be stored and
existing files can be read, renamed and deleted. These
operat ions are on whole files. File names include version
numbers and when a new version of a file is stored the
file server automat ical ly generates a new version number
for its name. The file servers also allow directories to be
enumera ted and information about existing files to be re-
trieved.

26

Updates to file server directories are indivisible and serial-
ized. Thus, t ransferring a new file to the server, assigning
it a new version number, and entering its name in the file
server directory appear to be a single act. If any step fails
then no trace of the a t t empt remains visible. This a tom-
icity is implemented with simple mutual exclusion in each
file server.

CFS does not require file servers to provide locks tha t can
be held between file operations. No transact ion facilities
covering mult iple operat ions are needed. CFS does not
need to read or write file server directories as files; it can
use remote directory operations.

K e y F e a t u r e s o f CFS

We now describe in more detail the features of CFS, as
viewed from the client interface in a workstat ion, that
suppor t consistent sharing of collections of software and
management of the local name space. The appendix of the
paper contains detailed descriptions of the CFS operat ions
that embody these features.

CFS provides a uniform hierarchical naming s t ructure for
local and remote files. A complete file name consists
of a server, a root directory, zero or more subdirecto-
ties, a simple name, and a version. The server par t
names the file server that stores the file. For example,
/ivy/Cedar/CFS/CFSNames.mesa!5 might be the name of
version 5 of a program source file as stored in the file server
ivy. An empty server part means a file on the local work-
stat ion. For e x a m p l e , / / C e d a r / C F S N a m e s . m e s a ! l might
be the name of a copy of the same file on the workstat ion.

CFS generates the version part for all new file names. The
new version is the successor of the highest existing version,
or 1 if no version exists. The version par t of a file name
argument to a CFS operat ion on an existing file may be
a variable or be omit ted. The variables allowed are !L,
meaning the lowest existing version, and !H, meaning the
highest existing version. When omit ted the version par t
defaults to !L or !H, depending on the operat ion being
invoked, e.g., !L for Delete and !H for Open. This sort o f
version naming first appeared in Tenex [2].

CFS encourages the view that all files are immutable . It
enforces the immutabi l i ty of remote files - - they may not
be altered once created, except to be deleted. Exist ing lo-
cal files may be modified, but this feature is used only for
special purposes such as updat ing local log files. Tools such
as the editor and compiler t reat local files as immutable
too, by always creat ing new file versions when writ ing re-
sults to disk. The Swallow file system design [13] first
explored the benefits of immutable versions.

A local working directory provides the naming environ-
ment in which a p rogrammer works. CFS prepends the
current local working directory name to any file name ar-
gument tha t does not s tar t with the character " / " . There
is no search rule mechanism, however, as the use of search
rules is in conflict with the philosophy of precise specifi-
cation of subsystem components embodied in the software
management tools.

In CFS, all access to file servers is in units of whole files.
Thus, new remote files may be created only by copying
from existing files. Local files, however, are held open
by clients while being read and wri t ten in smaller units.
Readers /wr i t e r locking is provided within a workstat ion
to synchronize such local access by mult iple processes in a
workstat ion. Clients can read remote files in smaller units
too, but only the cached copy of the remote file is held
open, the cache having been filled by a whole file transfer
from the server.

CFS uses a form of symbolic links between file names, an
idea introduced in CTSS [6] and developed in Multics [1],
to make giving a local name to a remote file be inexpen-
sive. CFS forms an a t tachment between a local name and
a remote file by storing the remote file's name in the lo-
cal directory entry. Forming an a t tachment is viewed as
lazy copying and is done with a mode of the Copy opera-
tion. Access to the the remote file is delayed until the file
contents associated with the local name are needed by the
client. As with symbolic links in other file systems, the
target file of a CFS a t tachment may turn out to be inac-
cessible when needed. Unlike other file systems, however,
immutable remote files means that the contents of a tar-
get of a CFS a t tachment cannot change. At tachments are
useful because they separate the management of the local
name space from the transfer and storage of files. With at-
tachments it is practical to always set up a complete local
naming environment for a programming task, even when
only a few of the files named will eventually get used.

CFS uses the port ion of the local disk not occupied by lo-
cal files as the cache for remote files. All requests to open
remote files for reading are satisfied from the cache. Ex-
cept for performance effects, the client cannot tell whether
the requested file was already in the cache or had to be
transferred from the remote server. The cache is managed
automat ical ly using an approximate LRU strategy.

U s e o f CFS

We now describe how these features of CFS are used
with tools from the DF package to manage a local nam-
ing environment and to share consistent versions of multi-
component subsystems among programmers. A tool called
BrlngOver is used to incorporate a subsystem version de-
fined by a DF file into a local naming environment. A tool
called SModel is used to generate and share the DF file
that describes a new subsystem version.

In a DF file the identities of source files, object files and
other DF files tha t are part of a subsystem are specified by
remote file names with version numbers. The BringOver
tool uses CFS to copy each listed component file from the
file server to the current local working directory, if the
component is not already present. The local name that
is the target of each copy operat ion is the simple name
part of the remote name listed in the DF file. (Collapsing
to simple names in this way can generate name conflicts,
which in Cedar are avoided by careful name choice!) When
BringOver is finished, each subsystem component from the
DF file appears in the current working directory as the

27

highest version of the simple name.

At tachments allow significant opt imizat ions of BringOver.
Before CFS, BringOver actually had to transfer the con-
tents of missing files to the workstat ion disk - - a fairly ex-
pensive proposit ion. Applying BringOver to the entire Ce-
dar system took more than an hour and frequently would
fail by running out of local disk space. Using the at tach-
ment mode of copying in CFS, BringOver simply associates
local names with remote file names. No files other than the
DF files tha t need to be read by BringOver are transferred.
Thus Br ingOver is fast and does not fill up the local disk.

Figure l a shows an example working directory in which
the simple name x.df! l is a t tached to a previously created
remote DF file. When the user issues the command "Bring-
Over x .df" , BringOver opens x .dr and reads the contents
of the at tached, remote DF file.

Local Working Remote File
Directory System

(Attachment) Con ten t s : X

F i g u r e l a : A n A t t a c h m e n t t o a D F F i l e

Figure l b shows tha t BringOver has created the at tach-
ments a .mesa!l and b.mesa!l for the components listed in
the DF file. Creat ion of these a t tachments has no effect
on the presence or absence of remote files in the cache. At
this point o n l y / i v y / C e d a r / 5 . 2 / x . d f ! 4 0 is certain to be in
the cache (since BringOver had to read its contents).

Local Working Remote File
Directory System

x.df!1 '
(A t t achmen t)

a.mesa!l
(Attachment)

b.mesa!l
(Attachment)

/ivy/Cedar/5.2/x.df!40
C o n t e n t s : X

/ivy/Cedar/5.2/a.mesa!36
Contents: A

/ivy/Cedar/5.2/b.mesa!28
Contents: B

F i g u r e l b : A t t a c h m e n t s C r e a t e d b y B r i n g O v e r

After using BringOver, the p rogrammer makes changes
to subsystem components. He usually presents single-
component file names wi thout version parts as arguments
to the editor, compiler and other tools. The compiler and
binder refer to object files using such names. The cur-
rent working directory is the naming environment in which
these single-component names are bound to the collection
of source and object files that define a par t icular subsys-
tem. Figure lc supposes tha t the p rogrammer has modified
b.mesa, say using the editor. The editor stored the modi-

fled source file in a new local version, b.mesa!2. Note that
this new local file has not yet been transferred to the file
server.

Loca l Working Remote F i l e
D i r e c t o r y System

x.df!l '
(Attachment)

a . m e s a ! l
(A t t achmen t)

b.mesa!l
(Attachment)

b.mesa!2
Contents B'

i Y /ivy/Csdar/8.2/x.df!40
Contents: X

I i /ivy/Cedar/5.2/a.mesa!36
Contents: A

. /ivy/Cedar/5.2/b.mesa!28

Contents: B

F i g u r e l c : N e w V e r s i o n o f a S o u r c e F i l e

After a new consistent version of the subsystem under de-
velopment has been created, the S1t4odel tool is used to
move the changed components back to their remote home
on a file server. Each changed file is t ransferred back to
the remote server and the existing local name is a t tached
to the new remote file. In addit ion, a new version of the
DF file is created to list the components of the new sub-
system version and then is copied to the remote server.
Figure l d shows the s ta te of the file system after SModel
has completed. SModel created x.df!2 as a new local file,
then copied it to the file server and at tached the local name
x.df!2 to the new remote file.

Local Working Remote File
Directory System

x.df!l
(A t t achmen t)

a.mesa!l
(Attachment)

b.mesa!l
(Attachment)

b.mesa!2
(Attachment)

x . d f ! 2
(Attachment)

) /ivy/CedarlS.21x.df!40
Contents: X

" /ivy/Cedar/5.21a.mesa!36
Contents: h

/ivy/Cedar/5.2/b.mesa!28
Contents: B

) /ivy/Cedar/B.2/b.mesa!29
C o n t e n t s : B'

> /ivy/Cedarl5.21x.df!41
Contents: X'

Figure Id: Attachments Created by SModel

SModel maintains the consistency of mul t i -component sub-
systems as viewed by clients. The last action of SModel
is to copy the updated DF file to the server. Since file

28

creations are atomic on the file servers, and since all sub-
system clients retrieve the components via the DF file, a
client doing a BringOver while the SModel is in progress
will get either the old subsystem or the new one, but not a
mixture. Knowledge that a new version of a subsystem is
available can be communicated implicitly via higher-level
DF files or outside the system via word-of-mouth, a com-
puter mail system, etc. Programmers who wish may con-
tinue to use the old version of the subsystem, via the old
version of the DF file, until it is deleted from the file server.

The example in this section shows the overall pattern of
how CFS works with the system modelling tools to sup-
port group programming. Not all use of CFS to access
remote files, however, is via DF files. For example, docu-
ment display programs accept remote names and use CFS
to retrieve and cache the files to be displayed. Users of-
ten use this facility to poke around the remote file servers
directly, without the intervention of DF files.

M o r e A b o u t N a m i n g

It is acceptable for multiple names to be bound to the
same immutable file contents and for some or all of these
name bindings to be broken later. Thus, copying and dele-
tion are reasonable operations on immutable files. Strictly
speaking, however, names for immutable files should never
be reused. The version naming mechanism in CFS does
not eliminate the possibility of name reuse. If all the ver-
sions of a file are deleted then the record of the highest
version that has existed is lost and version numbering for
that name will start over at 1. If the highest existing ver-
sion is deleted then that version number will be reused.
With version naming it is hard to eliminate these flaws.
Permanent memory of the highest version issued for each
name would be required. In practice, using version num-
bers to approximate non-reused names for immutable files
has proved adequate. People do not delete the highest ver-
sion of a remote file unless the name is to become dormant.

As a safeguard against reused version numbers causing
confusion, CFS allows a file's creation time to be included
with file name arguments to CFS operations. The cre-
ation time, defined as the local clock reading when the
contents of a file were first generated, is a file property
that CFS propagates when a file is copied or renamed. If
a creation time is specified with a file name argument then
CFS searches for the file version with that creation time.
Any version part in the name argument is treated as a hint.
The creation time of a remote file may be recorded in an
attachment.

DF files frequently specify the creation times along with
the complete names for component remote files. Bring-
Over includes these creation times in the attachments it
makes. This extra information provides assurance that
incorrect component versions will not be found, even if
version numbers in the DF files are incorrect or if version
numbers on the file servers have gotten scrambled. Object
files produced by the compiler contain the simple names
and creation times of other object files read during compi-

lation. The debugger presents these names with creation
times to CFS when opening object files in the local working
directory to read symbol tables.

M o r e A b o u t Vers ions

The version variables allowed in file name arguments are
used mainly when referring to local files. Most remote
files are referred to through DF files by specific version.
During periods of system development, however, the DF
file for one subsystem may refer to the !H version of the
DF file for another subsystem. The !H reference provides
automatic access to the most recent version of the latter.
As part of the system release process, the !H reference is
replaced by a specific version number and creation time.

For an operation on a remote file, correctly binding a ver-
sion variable in a file name argument to a particular version
requires checking with the server. If the server is inacces-
sible then the binding cannot be performed and the opera-
tion will fail, even if versions of the file happen to be in the
workstation cache. To allow the operation to succeed in
this case, CFS lets the client specify that remote checking
should not be used to bind a version variable. Without
remote checking CFS binds the version variable relative
to the (possibly incomplete) set of versions in the cache;
only if no cached version is present is the remote server
interrogated. Clients turn off remote checking when the
consequences of retrieving an out-of-date version are small
and the consequences of retrieving nothing are unaccept-
able. For example, when starting up Cedar the display
font file is opened for reading using a !H version variable.
If opening the font file with remote checking fails then an
at tempt is made to open it with no remote checking, be-
cause without a display font Cedar cannot tell the user
what happened.

Two potential problems with always creating a new ver-
sion are increased use of disk space and increased disk al-
location activity. For local files in CFS these problems are
mitigated by automatically limiting the number of versions
that are kept. Each local name has a property called its
keep, a numeric value that specifies the number of versions
of the local name to keep around. Automatically processed
keeps first appeared in the Alto operating system [10], al-
though the feature got little use. In CFS, whenever a local
name is created its keep is inherited from the highest exist-
ing version or set from an argument to the operation doing
the creation.

Keep processing occurs when creating a new version of a lo-
cal name. In this case CFS will enumerate existing versions
in decreasing order. After keep- 1 versions are encountered
in this enumeration, additional versions will be deleted if
not open. The disk file of a deleted version will be reused
for the new version being created. For example, if the only
existing version of a file is named Example.bcd!4, if it has
a keep of 1, and if no client has it open, then creating Ex-
amp]e.bcd will cause Example.bcd!4 to be deleted and its
disk file to be reused for the new file ExampIe.bcd!5. Keeps
typically are set to two for source files and one for derived
files. Because most files on a particular workstation are

29

only read, however, the average number of versions per file
on a workstat ion is close to one.

CFS provides no automat ic mechanisms for deleting un-
needed versions of remote files. Client tools exist tha t will
delete all files from a remote directory tha t are not named
in a specified set of DF files.

C a c h i n g I m m u t a b l e F i l e s

Caching immutable files is easy. Because remote files are
immutable , changes tha t occur on file servers need not be
reflected into workstat ion caches. Clearly, the properties
and contents of existing remote files cannot change and
creat ion of new remote files need not be reported. The
case of deletion, however, may be less clear.

With immutable files, deletion does not change the al>-
s t ract s ta te of the file system. Deletion does not cause the
file to cease to exist, it jus t frees some space on a file server.
Leaving a deleted remote file in a workstat ion cache is like
keeping an out-of-print book on your bookshelf. To avoid
confusion, however, a remote file should be deleted only
when it is no longer being used. Then the deleted version
will fall out of the workstat ion caches quietly from lack
of use. While one can construct scenarios where contin-
ued use of a cached, deleted version could cause confusion,
in pract ice these cases do not occur - - p rogrammers need
not use file deletion as a message passing mechanism! To
help users retain their sanity, CFS does remove a deleted
remote file f rom the cache on the workstat ion tha t caused
the deletion.

I m p l e m e n t a t i o n a n d P e r f o r m a n c e

With the exception of a performance opt imizat ion to ex-
isting file servers, CFS was implemented entirely by work-
s ta t ion code. Figure 2 i l lustrates tha t this code depends
upon an implementa t ion of the file transfer protocol to ac-
cess remote file servers. It also depends on a lower level file
system in the workstat ion, called DiskFile, tha t allocates
sectors on the local disk into disk files named by unique
identifiers. CFS uses these disk files to implement both
local files and cached, remote files. A disk file includes a
proper ty page in which CFS records the complete name,
length, creat ion t ime and other propert ies of the corre-
sponding CFS file.

The performance opt imizat ion to the file servers is a re-
ques t / response protocol for gett ing information about a
file. The request packet from the workstat ion contains a
complete file name with either a version number or a ver-
sion variable. The response packet from the file server will
ei ther indicate tha t no matching file was found, or give
information about the file tha t matches. The information
includes the correctly capitalized file name (with version
number) , the creat ion t ime, and the byte length. This sin-
gle packet protocol is used to reduce the overhead of finding
out versions and creat ion t imes from a file server. In par-
t icular, when opening a file specified by version variable

c l i e n t s o f CFS

I

I CFS l o c a l d i r e c t o r y h i e r a r c h y

k
• c a c h e o f r e m o t e f i l e s

I

J
FTP

a c c e s s tO

file servers

D i s k F i l e
• l o c a l d i s k

f i l e s w/ u i d ' s

F i g u r e 2: S t r u c t u r e o f C F S I m p l e m e n t a t i o n

and no creat ion t ime, CFS uses this protocol to bind the
version variable before looking in the cache for a specific
remote file.

CFS implements bo th the local directory hierarchy and the
index for the cache of remote files wi th a B-tree keyed by
complete file names. The B-tree is permanent ly s tored in a
disk file. A B-tree ent ry for a local file contains the unique
identifier of the corresponding disk file. An entry for an
a t tachment contains the name and possibly the creat ion
t ime of a remote file. An entry in the B-tree for a cached
remote file contains the unique identifier of the disk file
tha t is the cached copy of the remote file.

Determining when to flush a file f rom the cache is left up
to the DiskFile machinery under CFS. When CFS starts ,
it registers a procedure wi th DiskFile which is to be called
to remove a remote file f rom the cache. DiskFile calls the
procedure from a detached process tha t tries to keep 1000
pages free on the local disk. DiskFile will call the procedure
synchronously wi th a client allocation request only when
tha t request cannot be satisfied from the set of free pages
already available on the disk. As a result , most al location
requests are satisfied wi thout synchronously flushing the
cache.

Having DiskFile tr igger cache flushing helps to control disk
f ragmentat ion. DiskFile 's al locator demands to find rea-
sonable sized runs of pages and will call the cache flusher
synchronously to make them available if necessary. An-
other v i r tue of this call back scheme for cache flushing
is tha t it allows DiskFile to share the disk dynamical ly
among mult iple clients. For example, Alpine [4] is a t rans-
actional file sys tem that , when run on a workstat ion, also
uses DiskFile to provide stdrage for its da ta base. When
Alpine demands a bigger file for its da ta base, DiskFile can
call CFS to flush the cache to make room.

Figure 3 shows the response t ime dis t r ibut ion for Open op-
erat ions as observed during a compila t ion of a large soft-
ware subsystem. The workstat ion compute r was a Dorado
[g]. The file server compute r was an Alto [20] wi th 512
KBytes of memory and mult iple 300 MByte disks. T h e

server to worksta t ion transfer was over a 3 mbps experi-
mental E therne t [12]. This file server shared all Cedar sys-

30

tern files for approximately 30 workstations. The file server
load dur ing the measurement is not known precisely, but
the t i m e s recorded are representat ive of daily use. Note
tha t the dis t r ibut ion is bimodal. Most t imes are less than
0.25 seconds. These t imes correspond either to remote files
tha t already are cached or to local files. Star t ing at 0.75
seconds are remote files that had to be retrieved. The re-
sponse t ime dis t r ibut ion for these files is centered around
approximately 2 seconds. Almost all the t ime of an Open
is spent wait ing for the disk a n d / o r the file server.

Count

0 10 20 30
I I I I

0 . 0 0 ************************************- -* 331
0 . 2 5 *
0 . 5 0

0 .75 **
1 .00 ****************
1 . 2 5 ***************************
1.50 **********************
1.75 **************************************
2 .00 ****************************
2 .25 ******************
2 . 5 0 * * * * * * * * * * *

2 .75 ****************
3 . 0 0 ********
3 . 2 5 ******
3 . 5 0 ***
3 . 7 5 * * * * *

4 . 0 0 *
4 . 2 5 *

4 . 5 0

4 . 7 5 *

>5 *****

S e c o n d s f o r an Open o p e r a t i o n

F i g u r e 3: H i s t o g r a m o f F i l e O p e n i n g T i m e s

D i s c u s s i o n

A potent ial goal of a file system like CFS might be work-
s tat ion operat ion when file servers are unavailable. This
goal was not seriously addressed by the CFS design. Re-
alizing the goal would require predict ing future needs to
specify which remote files to keep resident in the cache.
A bet ter approach is to develop highly reliable file servers
using replication. Immutable remote files make replication
easy to manage.

Another potent ial goal not addressed by CFS was el iminat-
ing the use of workstat ion disks for long-term private file
storage. Such private files can cause our users to become
d e p e n d e n t on a par t icular workstation. We considered but
did not implement a scheme where an entire private work-
s ta t ion environment could be copied to a private directory
on a file server. This saved environment would allow the
user to move to another workstat ion, and also would al-

low the user to recover from the failure of a workstat ion
disk. After part ial ly developing the design for such a mech-
anism, we concluded tha t the software management tools
reduced the need for such automat ic backup. BringOver
and SModel can be used instead to backup working files in
remote private directories.

An impor tant function of CFS is to provide a complete,
consistent local naming environment in which to do devel-
opment work on a software subsystem. In retrospect , the
local locking mechanism provided by CFS works against
this purpose, and should be changed. The problem is tha t
names and contents of files are locked together. As a re-
sult, a name cannot be deleted from the local naming en-
vi ronment if the corresponding file is open. Since some
applications depend on the Cedar garbage collection mech-
anism [14] to close files, files often stay open after they are
needed. Thus, t idying up the local naming environment by
deleting unneeded names is sometimes thwarted. It would
be be t te r to allow name deletion to occur ahead of content
deletion, the lat ter happening automat ical ly when no more
clients had the file open. For this scheme it is necessary to
lock the name and the content of a file separately.

DF files look a lot like directories and provide another way
to name files. It is tempt ing to consider integrating the
DF files wi th the file system directories to provide a single
naming mechanism. One approach to this consolidation
would be s tar t ing with file servers tha t named files with
unique identifiers. DF files would then provide a mapping
between simple names and these uid's, and become the
directories of the workstat ion file system. In such a desigr
it would be necessary to retain the immutabi l i ty of DF ill,;
versions to suppor t consistent sharing. If all file system
directories were immutable , then any change would require
new versions of all directories in a path back to the root of
the name space. Thus, a practical system probably would
require both immutable and variable directories. Such a
design requires further exploration. The Cambridge File
Server {7], with uid-named files, multiple file name indexes
and automat ic deletion of unreferenced files would provide
an ideal base for such an exploration.

The cache makes it possible to operate a Cedar program-
mer ' s workstat ion effectively with ~ 20 MBytes of local
disk storage. This number matches well the size of hard
disk available at fairly low price today. This size cache also
lowers significantly the load on the file servers. In our expe-
rience, a single file server running on an Alto can support
20 or more Cedar programmers using the 8 t imes faster Do-
rado workstations. It appears that the system will scale
to configurations with more servers and more workstat ions
wi thout suffering serious loss of performance or reliability.
The system also works well when file servers and worksta-
tions are separated by gateways and slower long-distance
internetwork links, rather than all being connected to the
same local area network.

CFS star ted as a conservative design intended to meet
the specific set of needs presented by program develop-
ment activities in Cedar. Features from previous file sys-
tem (such as versions, keeps and symbolic links} were se-

31

lected and combined with a few unproven features (such
as creation time naming, sharing only immutable remote
files and caching whole files) to meet the requirements of
a well-understood, specific application. In retrospect, the
combination of CFS's semantics with the higher-level tools
for maintaining consistent versions of shared software sub-
systems has worked extremely well. Given sufficient local
storage, we now believe it is unnecessary in this applica-
tion to have shared file servers that provide mutable files,
page-at-a-time access to files, long-term locks, or transac-
tions. We do not understand yet the benefits that come
from adding these features.

Acknowledgements

The Cedar Interim File System, a precursor to CFS de-
veloped by Dave Gifford with help from Larry Stewart,
first explored the use of an automatically managed cache
of remote files on the local workstation disk. The de-
sign and implementation of CFS was done primarily by
Michael Schroeder, with advice from Andrew Birrell, Mark
Brown, Butler Lampson, Roy Levin, Roger Needham, Eric
Schmidt, Larry Stewart, Paul Rovner and Ed Taft. Com-
ments from Andrew Birrell, Mark Brown, John Guttag,
Ed Lazowska, Roy Levin, Paul McJones and Greg Nelson
greatly improved initial versions of the paper.

References

[1] Bensoussan, A., Clingen, C.T. and Daley, R.C., "The
Multics Virtual Memory: Concepts and Design," Comm.
ACM 15, 5 (May 1972), pp. 308-318.

[2] Bobrow, D.G. et al., "TENEX, a Paged Time Sharing
System for the PDP-10," Comm. ACM 15, 3 (Mar 1972),
pp. 135-143.

[3] Boggs, D.R. et al., "PUP: an Internetwork Architec-
ture," IEEE Trans. on Comm. 28, 4 (Apr 1980), pp.
612-634.

[4] Brown, M.R., Kolling, K.N. and Taft, E.A., "The
Alpine File System," to appear in Trans. on Comp. Sys.
3, 4 (Nov 1985).

[5] Brownbridge, D., Marshall, L. and Randell, B., "The
Newcastle Connection - - or UNIXes of the World Unite!,"
Software Practice and Experience 12, 12 (Dec 1982), pp.
1147-1162.

[6] Crisman, P.A., ed., CTSS Programmer's Guide, 2nd
Edition, MIT Press, Cambridge, Mass., 1965.

[7] Dion, J., "The Cambridge File Server," ACM SIGOPS
Operating Sys. Review 14, 4 (Oct 1980), pp. 26-35.

[8] Donahue, J., "Integration Mechanisms in Cedar," ACM
SIGPLAN Notices 20, 7 (July 1985), pp. 245-251.

[9] Lampson, B.W. and Pier, K., "A Processor for a High-
Performance Personal Computer," Xerox Palo Alto Re-
search Center Report CSL-81-1, Jan 1981.

[10] Lampson, B.W. and Sproull, R.F., "An Open Oper-
ating System for a Single-User Machine," Proc. 7th ACM
SIGOPS SOSP, Dec 1979, pp. 98-105.

[11] Leach, P. et al., "The Architecture of an Integrated Lo-
cal Network," IEEE J. on Selected Areas in Comm. SAC-l,
5 (Nov. 1983), pp. 842-856.

[12] Metcalfe, R. and Boggs, D., "Ethernet: Distributed
Packet Switching for Local Computer Networks," Comm.
ACM 19, 7 (July 1976), pp. 395-404.

[13] Reed, D.P. and Svobodowt, L., "SWALLOW: a dis-
tributed data storage system for a local network," Local
Networks for Computer Communications, North-Holland,
Amsterdam, 1981, pp. 355-373.

[14] Rovner, Paul, "On Adding Garbage Collection and
Runtime Types to a Strongly-Typed, Statically-Checked,
Concurrent Language," Xerox Palo Alto Research Center
Report CSL-84-7, July 1985.

[15] Satyanarayanan, M., et al., "The ITC Distributed File
System: Principles and Design," in these proceedings.

[16] Schmidt, E.E., "Controlling Large Software Develop-
ment in a Distributed Environment," Xerox Palo Alto Re-
search Center Report CSL-82-7, Dec 1982.

[17] Svobodova, L., "File Servers for Network-Based Dis-
tributed Systems," Comp. Surveys 16, 4 (Dec 1984), pp.
353-398.

[18] Swinehart, D.C., Zellweger, P.T. and Hagmann, R.B.,
"The Structure of Cedar," ACM SIGPLAN Notices 20, 7
(July 1985), pp. 230-244.

[19] Teitelman, W. "The Cedar Programming Environ-
ment: A Midterm Report and Examination," Xerox Palo
Alto Research Center Report CSL-83-11, June 1984.

[20] Thacker, C. et al., "Alto: A Personal Computer," Xe-
rox Palo Alto Research Center Report CSL-79-11, Aug
1979.

[21] Walker, B. et al., "The LOCUS Distributed Operat-
ihg System," ACM SLOOPS Operating Sys. Review 17, 5
(Oct. 1983), pp. 49-70.

[22] Walsh, D., Lyon, R. and Sager, G., "Overview of the
Sun Network File System," Usenix Winter Conf. Dallas
1985 Proc., pp. 117-124.

A p p e n d i x : A b s t r a c t s o f Selected Ope ra t i ons

This appendix presents abstracts of the key operations
from the CFS interface. The descriptions here omit some
features. In particular, the working directory mechanism is
not described fully and the error reporting mechanisms are
not mentioned. For all operations, any file name argument
that does not start with the character "/" has the name of
the current local working directory prepended before being
considered further.

32

Filelnfo [name, wantedCreationTime, remoteCheck]
[fullName, attachedToName, keep, bytes, creationTime]

T h e Fileinfo procedure r e t u r n s in fo rmat ion a b o u t the file
des igna ted by n a m e and wantedCreationTime. A miss ing
vers ion p a r t in n a m e defaul ts to !H, ind ica t ing the h ighes t
exis t ing version. If wantedCreationTime is specified t hen
the vers ion pa r t of n a m e is t r e a t ed merely as a h in t ; t he in-
f o rma t ion r e tu rned is for the file wi th the specified c rea t ion
t ime, found by searching all versions of the n a m e d file as
necessary. The re are th ree cases of behav io r for Filelnfo:

Case 1: n a m e is local and not a t t a c h e d - - T he comple te
n a m e of the des igna ted local file including vers ion p a r t is
r e tu rned as fullName. T he keep, byte count and c rea t ion
t ime for the local file also are r e tu rned . No attachedToN-
ame is r e tu rned . T he remoteCheck a rgumen t is ignored.

Case 2: n a m e is local, bu t a t t ached to a r emote file - - The
comple te local n a m e is r e tu rned as fullName. T he keep of
the local n a m e is r e tu rned . T he comple te n a m e of the a t -
t ached remote file is r e tu rned as attachedToName and its
c rea t ion t ime is r e tu rned . If remoteCheck is FALSE t h e n
the byte count is r e t u r n e d as - 1 , thus e l imina t ing the need
to open the r emote file f rom the cache or check wi th the
server jus t to de t e rmine the byte count . If remoteCheck is
TRUE t hen the byte count is r e tu rned . Errors such as the
server be ing inaccessible or no t f inding the remote file, t h a t
are encoun te red when t ry ing to de t e rmine the byte count ,
are suppressed and - 1 is r e tu rned ins tead. (The client
usually will want the o ther in fo rmat ion anyway.) When-
ever a valid byte count is r e tu rned for an a t t a c h m e n t t hen
the version pa r t in the attachedToName is the t rue ver-
sion n u m b e r t h a t cor responds to the crea t ion t ime for the
a t t a c h m e n t ; o therwise th is version pa r t is wha t eve r h in t
or var iable was presented to the Copy opera t ion when the
a t t a c h m e n t was made.

Case 3: n a m e is r emote - - T he comple te r emote file n a m e
is r e t u r n e d as fuIIName. A keep of 0 is r e tu rned (remote
files do not have keeps). T he t rue byte count and c rea t ion
t ime are r e tu rned . No attachedToName is r e tu rned . If
n a m e ends wi th a version var iable and no c rea t ion t ime is
specified t h e n remoteCheck controls access to the r emote
server. W h e n remoteCheck is TRUE t he server is always
accessed for the file informat ion . Otherwise the version
var iable is b o u n d relat ive to the set of versions in the cache;
the r emote server is in te r roga ted only if no version appear s
in the cache.

Open •name, wantedCreationTime, remoteCheck,
readOr Write] ---~ [openFile]

The Open procedure r e tu rns an object t h a t can be used to
pe r fo rm read, wri te and o ther opera t ions on the specified
file. Open first does FiIelnfo [name, wantedCreationTime,
remoteCheck]. If an attachedToName resul ts t hen t h a t
remote file is opened; o therwise the file n a m e d by fulIName
is opened, readOrWrite specifies the local lock to be set.
Open ing a file for wr i t ing causes the crea t ion t ime to be
upda ted . W h e n a local n a m e t h a t is a t t ached to a r emote
file is opened for wri t ing, the a t t a c h m e n t is b roken and

the contents of the r emote file are copied on to a local disk
file that is given the local name . (As an optimization,
t he copying will he done by r e n a m i n g the cached remote
file w h e n it is no t cur ren t ly open.) A t t e m p t i n g to open a
r emote n a m e for wr i t ing produces an error .

C r e a t e / n a m e , se tPages , pages, setKeep, keep]
[openFile]

A new local file wi th the specified n a m e is c rea ted and
opened for wri t ing. The c rea t ion t ime is set. No vers ion
pa r t may be inc luded in name. CFS will assign the vers ion
n u m b e r t h a t is the successor to the exis t ing !H version, or
!1 if no vers ions exist. If !1 is being c rea ted or setKeep is
TRUE t h e n the keep of the new file is set to keep; oth-
erwise the keep for the new file is t h a t of the exis t ing !H
version. Crea t ing a file t r iggers keep processing for exis t ing
versions. If one or more local files are deleted as a resul t ,
t hen one of t h e m will be reused for the new version. If
setPages is TRUE t hen the n u m b e r of pages in the crea ted
file is set to pages. If setPages is FALSE t hen the n u m b e r
of pages in the new file is the same as the reused disk file,
if any; o therwise it is set to pages. A t t e m p t i n g to crea te a
r emote n a m e produces an error .

Copy [fromName, wantedCreation Time, remoteCheck,
toName, setKeep, keep, attach] --~ [fullToName]

The Copy procedure has many cases, because i t can create
a t t a c h m e n t s as well as ac tua l ly t rans fe r files. The toName
c a n n o t con ta in a vers ion par t . The vers ion of the t a rge t
file c rea ted is one larger t h a n the exis t ing !H version. In
all cases, the comple te n a m e of the t a rge t file, inc luding
vers ion number , is r e tu rned . Note t h a t Copy is the only
way to wr i te a r emote file.

Case 1: attach is FALSE and toNarne is r emote - - CFS
does an Open [fromName, wantedCreationTime, remote-
Check, read] and t ransfers the con ten t s and proper t ies of
the opened file to the newly c rea ted file on the r emote
server. The file t r ans fe r occurs synchronously. If from-
Name is r emote t hen the file is t r ans fe r red via the cache.

Case 2: attach is FALSE and toName is local - - CFS
opens the source file as in case 1 and does Crea te [toName,
setKeep, keep] to genera te the t a rge t file. The con ten t s
and proper t ies are t r ans fe r red f rom the source to the t a rge t
open files. If t he copy is f rom an uncached remote file t h e n
t h a t file is no t added to the cache; the only pages a l located
on the local disk are those needed to hold the t a rge t file.

Case 3: attach is TRUE, toName is r emote and fromName
is local - - Begin as for case 1. Once the t rans fe r is com-
ple ted the local n a m e is a t t a ched to the r emote n a m e and
c rea t ion t ime. T h e source local disk file is r e n a m e d to be
the cached r emote file.

Case 4: attach is TRUE, toName is local and f r o m N a m e
is r emote - - Like case 2 except t h a t ins tead of an ac-
tual t r ans fe r of con ten t s and proper t ies the local n a m e
is a t t a c h e d to the r emote n a m e and c rea t ion t ime. If
no wantedCreationTime is specified or if remoteCheck is

33

TRUE then FileInfo [toName, wantedCreationTime, re-
moteCheck = TRUE] is performed first to de termine/check
the version number and creation t ime for the remote file.
When remoteCheck is FALSE then the a t tachment is made
to the fromNarne and wantedCreationTime provided with-
out checking either the remote server or the cache. (Bring-
Over sets remoteCheck to FALSE to speed operation.)

Case 5: attach is TRUE and b o t h / r o m N a m e and toName
are local or both are remote - - This case is illegal.

Delete [name, wantedCreation Time]

A missing version par t in name defaults to !L, meaning
the lowest existing version. The name and wantedCre-
ationTime are resolved to a complete file name using the

semantics described in FileInffo. The named file is deleted.
An error occurs if the file is currently open on this work-
stat ion. Remote deletions occur directly on the remote
server. The deleted remote file is removed from the cache
if present. If name is local hut a t tached to a remote name,
then jus t the local name is deleted; the remote file is un-
affected.

SetKeep /name, keep]

The n a m e must be local (keeps on remote servers has not
been implemented) and cannot contain a version part . The
keep on the !H version is set. Set t ing the keep causes any
unopened versions tha t are beyond the new keep to be
deleted. Set t ing the keep to 0 leaves the current keep but
does the keep processing.

34

