
To appear in "Proceedings of the 22nd Annual International Symposiumon Computer Architecture," 1995.

Reducing TLB and Memory Overhead Using Online Superpage Promotion

Theodore H. Romer Wayne H. Ohlrich Anna R. Karlin
Brian N. Bershad

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195�
romer,ohlrich,karlin,bershad � @cs.washington.edu

Abstract

Modern microprocessors contain small TLBs that maintain a cache
of recently used translations. A TLB’s coverage is the sum of the
number of bytes mapped by each entry. Applications with working
sets larger than the TLB coverage will perform poorly due to high
TLB miss rates. Superpages have been proposed as a mechanism for
increasing TLB coverage. A superpage is a virtual memory page with
size and alignment that are a power of two multiple of the system’s
base page size. In this paper, we describe online policies for superpage
management that monitor TLB miss traffic to decide when a superpage
should be constructed. Our policies take into account both the benefit
of a superpage promotion (potential for preventing future misses) and
the cost (page copying). Although our approach increases the cost of
each TLB miss, the net effect is to improve total execution time by
eliminating a large number of misses without significantly increasing
memory usage, thereby improving system performance.

1 Introduction

The performance of the Translation Lookaside Buffer (TLB) has
become increasingly important to overall application performance.
It is now common to find systems configured with several hun-
dred megabytes or even gigabytes of primary storage in order to
accommodate the demanding memory requirements of applications
such as database, multimedia, parallel and scientific codes and voice
recognition systems. Unfortunately, TLB coverage, which is the
amount of virtual memory that can be directly accessed without
incurring a TLB miss, has not scaled accordingly. Because mod-
ern systems typically incur a penalty of between 10 and 30 cycles
per TLB miss [Kane & Heinrich 92, Dutton et al. 92], any applica-
tion with a working set larger than the TLB’s coverage can spend
a significant fraction of its time waiting for TLB misses to be ser-
viced [Chen et al. 92, Bala et al. 94, Talluri et al. 92].

This research was sponsored by the Office of Naval Research through a Research Ini-
tiation Award, and by an equipment grant from Digital Equipment Corporation. Bershad
was partially supported by a National Science FoundationPresidential Young Investigator
Award and a Presidential Faculty Fellowship. Karlin was supported by a grant from the
National Science Foundation.

Superpages offer a way to increase TLB coverage without increas-
ing the number of TLB entries. A superpage is made up of two or
more base virtual pages that are contiguous in both virtual and physical
memory. Hardware implementations of superpages typically restrict
superpage size and alignment to a power of two of the base page
size. This dual contiguity allows the pages to be represented by a sin-
gle translation entry. Superpages have been used effectively to map
large, static regions of memory such as the operating system’s text
or the window manager’s frame buffer. They have not yet been used
to support general applications, which have more dynamic memory
requirements.

We believe the reason for this lack of support is straightforward:
demonstrably good memory management policies for superpages have
been elusive [Talluri et al. 92, Talluri & Hill 94, Khalidi et al. 93]. A
cost/benefit analysis is required to determine if the overhead of con-
structing a superpage is outweighed by its benefit. Overhead arises
becausea superpagemust map a physically contiguous range of mem-
ory, and the component pages of a candidate superpage may not be
physically contiguous at the time of candidacy, requiring a copy. Ben-
efit results because a single TLB entry can provide greater coverage.

In this paper, we address the problem of performing this cost/benefit
analysis automatically at runtime. We describe online policies that
take into account both past miss cost and superpage construction cost
in order to determine which and when pages should be promoted into a
larger superpage. Accounting takes place during the handling of TLB
misses. While this approach increases the cost of each miss, we show
through simulation that the total number of misses is substantially re-
duced, improving overall system performance. Our online superpage
management policies reduce TLB overhead by as much as 99%, and
overall execution time by as much as 48%, when compared to a system
using small fixed-size pages. When compared to a system using large
fixed-size pages, TLB overhead is approximately the same, but mem-
ory consumption is substantially less. We show that the performance
of our online policies across a range of applications comes close to
a nearly optimal offline allocation policy that uses future reference
knowledge to allocate superpages. We also show that policies that do
not consider previous reference patterns and promotion costs perform
worse than those that do, in terms of TLB miss overhead, memory
consumption, or both.

Our online policies require modest architectural support which can
already be found in modern systems [Kane & Heinrich 92, Dig 92],
namely a software-managed TLB with the ability to map entries of
variable size. The policies can be implemented entirely within the
machine-dependent layer of the virtual memory system, enabling all
other components of the operating system to rely on a virtual memory
interface based on small, fixed-size pages.

1.1 The rest of this paper

The rest of this paper is structured as follows. In Section 2 we discuss
related work. In Section 3 we describe our experimental methodology.
In Section 4 we motivate dynamic page sizes by showing that large
superpages can improve application performance, but that no single
statically allocated page size is appropriate for all applications. In
Section 5 we describe the operating system and hardware mechanisms
required to support our superpage policies. In Section 6 we describe
the principles behind the design of our online superpage promotion
policies. In Section 7 we present several promotion policies. In
Section 8 we describe the performance impact of these policies on a
range of common applications using trace-driven simulation. Finally,
in Section 9 we present our conclusions.

2 Related work

Our online policies rely on a cost/benefit analysis that can be traced
to theoretical work in competitive algorithms. Competitive algo-
rithms make online decisions that result in performance within a
constant factor of an optimal offline algorithm. Prior research in
this area has influenced, for example, the design of synchroniza-
tion [Karlin et al. 91], paging [Sleator & Tarjan 85], and cache man-
agement algorithms [Cao et al. 94].

Others [Chen et al. 92, Mogul 93, Khalidi et al. 93] have described
the potential positive impact of a system that supports superpages,
although they do not describe policies for promotion or demotion.
Instead, they suggest that the programmer or compiler offer the op-
erating system a hint about the appropriate page size for a particular
range of memory.

Researchers at Wisconsin [Talluri & Hill 94] present a simple pol-
icy for page promotion in a system that supports two page sizes: 4 KB
and 64 KB. They are primarily concerned with minimizing the soft-
ware complexity of superpage management, and propose hardware
that allows the operating system to declare invalid subpages within
a 64 KB superpage. The Wisconsin approach relies on “page reser-
vation,” whereby pages are initially allocated from physical memory
where they would ultimately lie when placed within a superpage. In
this way, page promotion does not require any copying and can occur
at no cost.

The approach described in this paper differs from Wisconsin’s in
three ways that enable greater TLB coverage and a promotion policy
that is more flexible but does not require additional hardware. First, we
permit the TLB to map superpageswith sizes up to several megabytes.
This allows applications with working sets that would exceed the
capacity of a TLB with 64 KB entries to fit entirely within the TLB.
Second, our policies do not rely on page reservation, which can limit
the gain made possible by superpages. Specifically, reservation makes
it difficult to construct superpages of varying size,since there is no way
to decide a priori how many base pages to reserve at page allocation
time. For small superpages, reservations may often hold until they
are needed. As the superpage size grows, however, it is increasingly
likely that a reservation will fail: that is, some base page within the
reserved superpage is allocated for another purpose before a promotion
occurs. The final difference is that the Wisconsin superpage policy
only creates superpages if they are part of 64 KB page that is between
50% and 100% populated. Smaller superpages and large sparsely
populated superpages that could eliminate TLB misses will not be
created with this policy. To overcome this inflexibility, the Wisconsin
study proposes subpage valid bits in each TLB entry to indicate that a
particular subpage is not accessible through a referenced superpage.

This new hardware allows partial superpages to be constructed with
“holes” in the superpage where base pages are either not resident
or not in a contiguous, aligned region of memory. In contrast, our
strategy has the flexibility to create superpages with sizes tailored to
the workload’s memory reference pattern, and requires only that the
TLB map pages with multiple sizes.

3 Methodology

We measured system behavior using trace-driven simulation of a col-
lection of benchmarks, which are described in Table 1. We used five
of the benchmarks (compress, nasa7-5, nasa7-4, fft, and gcc) to de-
velop and tune the online policies. Once the policy parameters were
established, we augmented this “training set” with the remaining five
benchmarks(coral, fpga, cecil, atom, and spice), but did not make any
further changes to the parameters. We used ATOM, a binary rewriting
tool from DEC WRL [Srivastava & Eustace 94], to simulate the TLB
behavior of the applications. The simulated system had two 32-entry
fully-associative TLBs, one for instructions and one for data, and used
an LRU replacement policy.

Our primary performance metric in this study is the TLB miss
penalty per instruction, which is the total number of cycles spent in
service of the TLB divided by the total number of user instructions
executed. For convenience, we use the term “TLBMCPI” here (TLB
memory cycles per instruction). On a single-issue machine with an
infinite cache, overall CPI (cycles per instruction) would be 1+TLBM-
CPI. Our second performance metric is “Memory Usage Overhead,”
which is the percentage increase in memory consumed due to internal
fragmentation compared to a system with fixed-size 4 KB pages.

Benchmark Description
coral The Wisconsin coral database performing a nested join

[Ramakrishnan et al. 93].
compress compress compressing a 977 KB input file.
nasa7-5 Gaussian elimination for a 3.8 MB matrix.
nasa7-4 Block tridiagonal matrix solver for a 131.8 KB matrix.
fpga Logic bipartitioner targeted to FPGAs, using a 1626 KB

input file [Hauck & Borriello 95].
cecil cecil compiling a 21 KB input file [Chambers 93].
atom atom instrumenting a 2.6 MB binary with our TLB

simulator.
fft Fast fourier transform of a 32 MB array.
spice the spice circuit simulation benchmark on the 15 KB

reference input set.
gcc gcc compiling a 109 KB input file.

Table 1: This table describes the applications consideredin this study.
compress, gcc, the two nasa7 programs, and spice are drawn from
the SPEC92 benchmark suite. Coral is a benchmark used in the
Wisconsin TLB study. Atom, cecil, and fpga are tools used in our
local research environment.

4 Motivation

Two aspects of performance are affected by page size: the number
of TLB misses and memory utilization. Large pages can reduce the
number of TLB misses, but may also waste memory due to internal
fragmentation. Small pages can increase the number of misses,but use
memory more efficiently since the average fragment size is smaller.

We reveal in this section and demonstrate in those following that
variable-size superpages offer the best of both worlds.

A system with small fixed-size pages can cause applications with
large working sets to spend a significant fraction of total execution
time handling TLB misses. We ran each of the benchmarks on a DEC
Alpha 3000/700, and measured the total execution time and the time
spent handling TLB misses. These measurements are summarized in
Table 2. The table shows that the applications we considered spend
between 5% and 41% of their time in the TLB miss handler on the
DEC Alpha 3000/700, which has fixed-size 8 KB pages. The majority
of TLB misses were due to data references.

Benchmark Exec. TLB Misses TLB Time
Exec. Time (%)

Time (s) (100s)
coral 51.6 1,242,456 41.4
compress 1.1 25,650 35.2
nasa7-5 9.0 205,845 34.7
nasa7-4 1.0 23,787 34.4
fpga 53.8 806,331 28.4
cecil 126.2 969,255 16.6
atom 9.8 94,304 16.1
fft 43.7 294,899 10.7
spice 210.5 1,212,271 9.4
gcc 1.5 4,389 5.2

Table 2: Baseline performance. The TLB performance of the bench-
mark suite was measured on a DEC Alpha 3000/700 running DEC
OSF/1 2.1. This system contained a 225 Mhz Alpha 21064 processor
with a 32 entry DTLB and an 8 entry ITLB, a 2 MB offchip cache,
and 160 MB of main memory. The execution time is the average of
five runs on an unloaded system, after an initial run to warm the file
buffer cache. The TLB miss statistics were collected using a TLB miss
handler instrumented with the Alpha cycle counter.

A larger page size can result in both lower TLBMCPI (due to
increased TLB coverage) and higher memory consumption (due to
increased fragmentation). We illustrate this tradeoff in Figure 3,
which shows TLBMCPI as a function of memory overhead as the page
size varies. While an ideal system would have both TLBMCPI and
memory overhead of zero, this figure shows that there is no single page
size that approaches this ideal point for any of the applications that
have significant TLB overhead. With fixed-sized pages, performance
is constrained to follow these curves. With an appropriate superpage
policy, however, large pages can be constructed where memory is used
densely and frequently, and small pages elsewhere. In the following
sections, we describe mechanisms and policies that attain performance
close to the origin on this tradeoff graph.

5 Mechanisms

Superpages require both operating system and hardware support. The
operating system must support two fundamental operations: promo-
tion and demotion. Page promotion occurs whenever two or more
small pages are combined into a superpage. Page demotion occurs
whenever a superpage is broken down into two or more smaller pages.
Promotion of two smaller pages with contiguous and aligned virtual
frame numbers V1 and V2, which are mapped to physical frame num-
bers P1 and P2, requires that zero, one, or both of pages P1 and P2
be copied to a new range of physical memory to ensure that they are

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

T
L

B
M

C
PI

Memory Usage Overhead (%)

coral
compress

nasa7-5
nasa7-4

fpga

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40
T

L
B

M
C

PI
Memory Usage Overhead (%)

cecil
atom

fft
spice

gcc

Figure 1: TLB overhead as a function of memory consumption for
a range of page sizes. This graph shows that increasing the page
size can sometimes reduce TLBMCPI as well as increase memory
consumption. For each program, each point on the line represents
a different page size, ranging from 4 KB (the points with the highest
TLB miss rate) to 256 KB (the points with the highest memory usage).
Note that the two graphs use different scales.

contiguous. Furthermore, P1 and V1 must be aligned at addresses
that are a multiple of the containing superpage’s size.

In terms of hardware, superpages require that the TLB allow the
simultaneous mapping of pages having more than one size. This
requires that each TLB entry maintain additional bits that mask off
the lower bits of the requested virtual page so that all base pages
that are part of the same superpage are matched by the same TLB
entry. This additional logic can be found in several contemporary
processors [Kane & Heinrich 92, Blanck & Krueger 92, Dig 92].

There is a tension between superpages and other operating system
mechanisms that rely on uniformly sized pages, such as the file sys-
tem’s buffer cache, copy-on-write virtual memory [Young et al. 87],
and LRU-clock [Babaoğlu & Joy 81]. To resolve this tension, su-
perpage management can be concealed entirely within the machine-
dependent layer of the operating system’s virtual memory system
(MD-VM) [Rashid et al. 87]. When clients of the virtual memory
system request operations on base pages that are component to super-
pages, the MD-VM layer can demote any superpages containing the
target base pages so that the requested operation can be performed. In
practice, most such demotions occur when the virtual memory system
gathers reference information for its page replacement algorithm. If
the replacement policy is a simulation of LRU using a two-handed
clock, and the system is not paging, then the system only needs ref-
erence information about a small fraction of pages at any given time,

and demotions will occur infrequently. More esoteric functions that
require fine-grained reference information [Appel & Li 91], such as
write-trapping for a distributed shared memory [Carter et al. 91], will
increase the frequency of page demotion. As a result, superpagesmay
not be appropriate for applications that rely on such functions. How-
ever, recent results indicate that the use of the virtual memory system
to detect application-level accessescan be less efficient than strategies
that rely on the compiler [Hosking & Moss 93, Zekaukas et al. 94].

6 Policy design principles

In this section, we discuss the principles underlying the design of
effective online superpage construction policies. The goal of our
policies is to obtain TLB miss overhead, including copy costs, close
to that of the optimal offline policy, which minimizes total TLB miss
overhead. The overhead of the optimal offline policy establishes a
lower bound on the performance of any policy. A good policy can
achieve this goal by creating superpages early enough to bound the
performance loss of not having a superpage, but late enough so that
a promotion is unlikely to incur more overhead than it saves. Our
policies do not explicitly attempt to optimize memory consumption.
In practice, the online policies tend to create superpages in densely
populated regions, so the increase in memory consumption is small.

Our approach for determining when and where to promote is
straightforward. We monitor TLB miss traffic, and on each miss
update reference information to reflect the number of TLB misses that
would not have occurred had the set of already assigned superpages
been larger. We then use this information to construct new superpages.

We assume that a superpageconsists of a number of base pages that
is divisible by a power of 2, is no smaller than the base page (4 KB),
and can be as large as 8 MB. We also assume worst-case promotion
overhead (no reservation), which requires that we move all of the data
into the contiguous memory backing the newly created superpage. A
single base page may be involved in a sequence of promotions as it
gradually becomes component to larger and larger superpages.

6.1 Policy components

Each TLB miss is charged to each of the potential superpages that
would have prevented the miss if it had already been created. As
the number of misses charged to a potential superpage

�
grows, by

locality of reference we expect that promoting to
�

will eliminate
future TLB misses. Therefore, as soon as

�
’s miss charge exceeds

a certain threshold,
�

is constructed. In the rest of this section we
discuss how to maintain the counters that reflect the history of past
TLB misses, and how to select a promotion threshold based on these
counters.

Maintaining miss charges

We charge each TLB miss to any superpage in the system that could
have prevented the miss. A superpage can prevent a miss to a page� in one of two ways. First, the superpage may cover both � and
a page already in the TLB. In this case the miss would have been
prevented if the superpage had already been constructed, because the
translation for the page already in the TLB would have covered � .
Second, a superpage may increase the capacity of the TLB, so that
a prior translation for � would not have been evicted from the TLB,
avoiding the miss. We can tally preventable misses by maintaining
two counters that keep track of the two different miss charges to a

potential superpage
�

: prefetch � ��� and capacity � ��� . The counters
are updated on a TLB miss to a page � as follows:

� Prefetch charges are updated on each miss by incrementing
prefetch � ��� for each potential superpage

�
that contains the

currently referenced page � and one or more TLB entries.

� Capacity charges are computed by examining the TLB miss
stream at the time of the reference to � . Capacity � ��� is incre-
mented for each potential superpage

�
that coalesces enough

TLB entries to have kept � from having been evicted from the
TLB in the past. (The TLB miss stream is maintained in a LRU
stack data structure that reflects the set of referenced pages in
order of most recently referenced to least recently referenced.
That is, if the LRU stack at some time is � ���	�
������������
��� � , then��� is the � th most recently referenced page.)

�

We can illustrate the use of these counters with an example,depicted
in Figure 2. Consider a TLB with three entries. Immediately after
servicing the stream of virtual page references 8,1,7,6,5,0 the TLB
contains translations for pages 0, 5 and 6. Suppose the next reference
is to virtual page 1, resulting in a miss. If superpage �	� �	��� had been
created from the start, this miss would not have occurred: on the
prior reference to page 0, a translation for ��� ����� would have entered
the TLB, and the subsequent reference to page 1 would have hit.
Therefore, we increment prefetch ���	� ����� � . Alternatively, if superpage
��� ��� �"!��#� had been created from the start, this miss would not have
occurred. This can be seen by observing the entire LRU stack prior
to the reference to page 1. In order of most recently to least recently
referenced, the LRU stack contains 0,5,6,7,1,8. If ��� ��� ��! �"#� had been
initially promoted, the LRU stack would reduce to 0, ��� ����"! ��# � ,1,8.
Page 1 is now one of the top 3 entries in the stack and, under LRU
replacement, its translation would be in the TLB. Since the promotion
of ��� ��� ��! �"#� would have prevented virtual page 1 from being evicted
from the TLB, we increment capacity ����� ��� �"!�"# � � .

The two counters differ substantially in the information they reflect.
The promotion of ��� ����� in the previous example effectively causes a
prefetch of the translation for virtual page 1, since the first reference
to page 0 causes a translation for ��� ����� to enter the TLB. On the other
hand, the promotion of ��� ��� �"!�"# � effectively increases the capacity
of the TLB by reducing a set of entries in the LRU stack to a single
entry, thereby preventing the prior eviction of some other entry.

We show in the Section 8 that in practice the prefetch counter is more
important than the capacity counter in identifying the best potential
superpage. Fortunately, the prefetch counter is the less expensive to
maintain of the two. A simple way to compute prefetch charges is
to scan the TLB on a miss to page � and check if some potential
superpage contains both � and a current TLB entry. A more efficient
algorithm for maintaining prefetch charges is given in Appendix A.
On the other hand, determining capacity charges requires scanning
both the TLB and the LRU stack of pages referenced prior to the
last reference of � to determine if there is a potential superpage that
coalesces enough entries to have prevented � ’s eviction.

Choosing the threshold

The prefetch and capacity charges combine to give a total miss charge
for each potential superpage

�
. Miss charges on a superpage indicate�

We describe the LRU stack as a totally ordered list to simplify the exposition. Since
information about the LRU stack is updated on a TLB miss, we are only able to record
the set of pages that have translations in the TLB in addition to the precise LRU stack of
pages that do not have translations in the TLB. This information is sufficient, though, to
accurately update capacity charges.

1

1

7 6 5 0 18

Miss
8

7
1

8

6
7

1

5
6

7

0
5

6

8

(a) A sequence of TLB references with no superpages. In this scenario,
the final reference to page 1 results in a TLB miss.

(b) The same sequence of TLB references with the superpage {0,1}.
In this scenario, the reference to page 0 effectively prefetches the
TLB entry for page 1, so that the final reference is a TLB hit.

1 7 6 5 0 18

Hit
8

7

8

6
7

5
6

7

5

6

8 {0..1}
{0..1}

{0..1}

{0..1}

(c) The same sequence of TLB references with the superpage
{4,5,6,7}. In this scenario, the existence of this large superpage
effectively increases the capacity of the TLB, so that the final
reference to page 1 results in a TLB hit.

1

1

7 6 5 0 18

Hit
8 1

8

1

8

1

8

0

1

8 {4..7} {4..7} {4..7}
{4..7}

Figure 2: Example of prefetch and capacity charges. Each part of
the figure shows the changing contents of the TLB when presented
with the reference stream of virtual pages 8,1,7,6,5,0,1. In part (a),
the final reference to page 1 results in a TLB miss. Part (b) shows
why superpage � 0,1 � incurs a prefetch charge: had the superpage
� 0,1 � existed, the final reference would have resulted in a TLB hit.
Similarly, part (c) shows why superpage � 4,5,6,7 � incurs a capacity
charge: had the superpage � 4,5,6,7 � existed, the final referencewould
have resulted in a TLB hit.

that prior promotion to that page would have prevented TLB misses.
In the presenceof locality, a promotion will also prevent future misses.
Therefore, when the miss charges to a potential superpage exceed a
certain threshold, we promote the superpage. Our goal in choosing
this threshold is to ensure that we promote a superpage early enough
to avoid future misses, but late enough to ensure that the cost of
promotion does not dominate TLB overhead.

Since an online promotion policy does not have information about
future references, in the worst case it may promote pages that are
never subsequently referenced. Nonetheless, we can still bound the
overhead of an online policy. In the remainder of this section we
show how to select a promotion threshold that limits the overhead of
an online policy relative to the overhead of the optimal offline policy.

We begin by drawing an analogy with the ski-rental problem.
�

Consider a novice skier who is faced with the choice of buying skis at
a cost of $100, or renting skis for some period of time, at a cost of $10
a day. The “optimal offline policy” is to buy skis on the first day if it
were known that more than 10 days would be spent skiing. Otherwise,
the skier is financially better off renting every time. Although the skier
must make this decision online, without knowledge of the number of
times she will go skiing in the future, she would nevertheless prefer
to know that she will not make a decision “much worse” than the�

This analogy was originally suggested by Larry Rudolph in explanationof the results
described in [Karlin et al. 88].

optimal offline decision. In this case, the right thing for her to do is
to begin by renting skis. If she makes it to her eleventh excursion,
she should then buy skis. This policy guarantees that she will spend
no more than twice the optimal offline’s expense no matter how many
excursions she takes. (In the worst case, the optimal offline policy
would have spent $100, whereas the skier would have spent $200.)

We can use the ski-rental problem to understand the problem facing
an online superpageconstruction policy. An optimal offline superpage
construction policy has the luxury of observing all future references
prior to making a promotion. Suppose that there is one candidate�

KB superpage
�

consisting of two
�����

KB pages, and that in
the run of an application, � TLB misses will become hits if

�
is

constructed at time 0. The optimal offline policy, knowing � , will
perform the promotion at time 0 if � is at least the ratio of

�
’s

promotion cost (cycles lost due to copying) and the cost of a TLB
miss. We call this ratio ��� Promotion Cost

�
TLB Miss Cost. The

optimal offline policy will never promote to
�

if �
	�� . An online
policy that promotes when the miss charges to a page reach � is
guaranteed to deliver performance no worse than twice the optimal
offline with respect to this single superpage. If ���� , then both
the online and offline policies pay for � TLB misses. If ����� , the
offline policy pays for a promotion at time 0, while the online policy
pays for � TLB misses and the promotion, for a total cost of two
promotions.

In practice, the online policy of waiting until the miss charges
exceed � is overly conservative. Because of locality in page refer-
ence patterns, most potential superpageseither never accumulate miss
charges exceeding a fraction of � , or else accumulate miss charges
greatly exceeding � . Therefore, we can afford to use a promotion
threshold substantially less than � . In the next section, we present
data that support this hypothesis.

Resetting miss charges on promotion

The miss charge of a potential superpage should reflect the number of
misses that promotion would have eliminated that were not already
eliminated by previously promoted pages. So in addition to updating
the counters on each TLB miss, the counters must be updated when
promoting to a page

�
, to reflect the new, perhaps diminished ben-

efit of subsequent promotions. To adjust the prefetch charges when�
is promoted, prefetch � ��� � is decremented by prefetch � ��� for all

superpages
� �

containing
�

, since whenever prefetch � ��� is incre-
mented, prefetch � � � � is also incremented. Adjusting the capacity
charges when

�
is promoted is more difficult: for every superpage�

, capacity � ��� must be decremented for each miss that incremented
both capacity � ��� and capacity � ��� .

7 Promotion policies

In this section we describe several promotion polices. Three of these
policies – OFFLINE, ONLINE, and APPROX-ONLINE – are based
on the principles described in the previous section. That is, they
construct a superpage when enough miss charges have accumulated
to offset the cost of promotion. We also discuss two policies, ASAP
and ASAP-4-64, that do not consider the cost and benefit of superpage
construction.

7.1 OFFLINE – an approximation to the optimal offline
policy

The optimal offline policy takes as input the complete sequence of
page references made by an application. It outputs a set of superpages
that minimizes the total cost of executing the application, considering
the TLB miss overhead and promotion cost. We require that the offline
policy pay a worst-case promotion cost for copying the component
base pages. Otherwise, the offline policy would start with a single
large superpage that covered the application’s entire working set, and
incur no TLB overhead and no promotion cost. The problem of com-
puting the optimal offline solution is NP-complete by reduction from
Set-Cover. Therefore, we use the following greedy approximation
which we will call OFFLINE.

Like the optimal offline policy, OFFLINE reduces future TLB
misses by creating appropriate superpages. Unlike the optimal so-
lution, however, it greedily selects the superpages to promote. The
value of a potential superpage is the ratio of TLB miss cycles elim-
inated to the promotion cost in cycles. Initially, OFFLINE analyzes
the TLB miss stream and promotes the superpages with the highest
ratio of misses eliminated to promotion cost. OFFLINE then contin-
ues promoting incrementally, examining a revised TLB miss stream
based on the current set of superpages, until it can find no superpages
with benefit exceeding the promotion cost.

Clearly, OFFLINE is infeasible in a real system, as it relies on
information about future reference patterns of the application. Nev-
ertheless, its performance offers an approximate lower bound on the
performance of any algorithm that starts with small base pages and
pays worst-case copy cost for promotions.

7.2 ONLINE – the basic online algorithm

The algorithm ONLINE is based on the prefetch and capacity coun-
ters described Section 6. Once the miss counters for a superpage
reach a certain threshold, ONLINE promotes the superpage. To deter-
mine an appropriate threshold, we analyzed the distribution of final
miss charges for all potential superpages that were not constructed
by OFFLINE. For these unpromoted superpages, 99% of the capacity
charges were less than � � ! � � � � , and 99% of the prefetch charges
were less than � � � � � � � , where � is the ratio of promotion cost
to TLB miss cost. An online policy that uses promotion thresholds
above these values is unlikely to promote unnecessarily, whereas one
that uses thresholds below may. Therefore, ONLINE promotes to a
superpage

�
if capacity � ��� exceeds � � ! � � � � , or prefetch � ��� ex-

ceeds � � � � � � � . When a promotion occurs, the prefetch charges are
decremented for each superpage containing the promoted superpage,
as described in Section 6. We do not decrement the capacity charges
precisely on a promotion, as properly resetting them requires keeping
track of the capacity counters to which each miss contributed. Because
this involves considerable bookkeeping overhead, we instead simply
reset capacity charges to zero on a promotion. Although this is overly
conservative, we found that our results were relatively insensitive to
how sharply we reduced capacity charges following a promotion. De-
spite the simplification, ONLINE has high overhead, both in terms
of time and space, since it maintains detailed information about the
miss charges for each superpage, and requires an LRU stack of TLB
references.

7.3 APPROX-ONLINE – an approximate online algorithm

The algorithm APPROX-ONLINE is the same as ONLINE except that it
only maintains prefetch charges. As a result, APPROX-ONLINE does
not incur the overhead of maintaining the capacity counters. When
prefetch � ��� reaches � � � � � � � , the superpage

�
is created and the

prefetch counters for larger superpages containing
�

are decremented
by the threshold value. In Section 8 we will see that APPROX-
ONLINE is nearly as effective as ONLINE in eliminating TLB misses,
although it has much lower bookkeeping overhead.

7.4 ASAP – the as-soon-as-possible algorithm

ASAP promotes a superpageas soon as all of its component base pages
have been referenced, without considering the frequency of reference
to those pages. Although it requires minimal bookkeeping, it has
two drawbacks. First, the algorithm may copy too frequently, since it
creates superpages without concern for promotion cost. Even if pages
are rarely referenced, the algorithm will still pay the cost to create
a superpage. Second, ASAP may fail to create beneficial superpages
if any one of the component base pages is not referenced. We also
simulate a variant of ASAP, called ASAP-4-64, that allows only two
page sizes: 4 KB and 64 KB. Once at least half of the pages in a
potential superpage of size 64 KB have been referenced, ASAP-4-64
directly promotes those pages.

We include ASAP because it is simple and offers a plausible alter-
native to the more sophisticated policies, and ASAP-4-64 because it
is similar to a policy used in other studies [Talluri et al. 92]. We do
not consider the impact of page reservation, so ASAP and ASAP-4-64
incur copy costs. Accurately assessing the impact of reservation is
difficult, since the effectiveness of reservation depends on the level
of contention for memory, and this in turn depends on the behavior
of the entire system, not just a single application. In a system in
which memory is plentiful, reservations always succeed, and ASAP
and ASAP-4-64 incur no copy cost. In such a system they should have
nearly the same TLBMCPI as a system with fixed-size 64 KB pages.

8 Simulation results

In this section we describe the performance of the policies presented
in the previous section. We also consider the performance of systems
with fixed-size pages, which we refer to as FIXED 4 KB, FIXED
16 KB, and FIXED 64 KB. We first discuss the space and time over-
head of our bookkeeping strategies. We then present the impact on
application performance by analyzing the results of trace-driven sim-
ulations.

8.1 Space and time considerations

The online policies introduce both space and time overhead. Space
overhead is incurred by the counters associated with each potential
superpage. These counters only need to be maintained for each 8 MB
segment of virtual memory that is actually referenced, since we do
not create superpages larger than 8 MB. Within an 8 MB segment,
the number of potential superpages equals the number of allocated
virtual base pages, since each superpage of size

� �
is composed of

two lesser superpagesof size
� ��� �

. Our algorithm for maintaining the
prefetch counters incurs additional space overhead for auxiliary data
structures. As described in Appendix A, this results in an average
of 3.125 counters per base page for APPROX-ONLINE. Altogether,
even at one four-byte word per counter, the maximum space overhead

is 33 KB
�
8 MB (0.4%) for ONLINE and 25 KB

�
8 MB (0.3%) for

APPROX-ONLINE using 4 KB base pages. Although not insignifi-
cant, the space required for the counters is less than the space wasted
by internal fragmentation when larger fixed-size pages are used.

Every TLB miss also introduces time overhead. We account
for the overhead of a TLB miss for the various policies as follows.
All of the policies incur a baseline TLB miss overhead of 30 cycles.
(This is consistent with TLB miss costs on current systems. For
example, we measured a minimum TLB miss penalty on a DEC
Alpha 3000/700 of 31 cycles.) In addition, the dynamic policies incur
overhead to maintain bookkeeping information. ONLINE incurs the
highest overhead, because on each TLB miss it must update both the
prefetch and capacity counters. As described in Appendix A, updating
the prefetch counters costs 100 cycles per TLB miss, and updating the
capacity counters costs about 2470 cycles per TLB miss. Thus the
total overhead per TLB miss for ONLINE is

� ��� � ����� � � # � � � ! ���
cycles per TLB miss. APPROX-ONLINE uses the prefetch counters
alone, so the overhead per TLB miss is

� ��� � ��� � � � � cycles per
TLB miss. These cycle counts assumethat the bookkeepingcode does
not incur any overhead due to cache misses. ASAP and ASAP-4-64 are
not charged any additional overhead, since the necessary bookkeeping
can be performed as pages are mapped. Likewise, OFFLINE does
not incur overhead beyond the baseline TLB miss cost, since it can
perform all of its accounting computation offline. These overheads
are summarized in Table 3.

Policy TLB Miss Cost
FIXED (4 KB, 16 KB, 64 KB) 30
OFFLINE 30
ONLINE 2600
APPROX-ONLINE 130
ASAP 30
ASAP-4-64 30

Table 3: Cost of a single TLB miss for each policy, computed as
baseline TLB miss cost, plus any bookkeeping cost. The calculation
of the bookkeeping cost for ONLINE and APPROX-ONLINE is
described in Appendix A. The value for ONLINE reflects the high
overhead of maintaining capacity counters. ASAP and ASAP-4-64
can perform the necessary bookkeeping as pages are mapped, while
OFFLINE can perform its bookkeeping offline, so these three policies
have the same overhead as FIXED.

All of the promotion policies incur time overhead when creating a
new superpage. We charge a copy cost of 3,000 cycles per 1 KB
copied during a promotion. This cost reflects both the instructions to
perform the copy and stall cycles due to cache misses that may occur

FIXED FIXED FIXED ASAP- APPROX-
Benchmark 4 KB 16 KB 64 KB OFFLINE ASAP 4-64 ONLINE ONLINE
coral 1,205,951 858,980 410,424 405 1,193,847 412,253 12,517 16,107
compress 29,198 9,201 0 1 2 1 85 117
nasa7-5 407,140 100,880 5 3 6 8 249 249
nasa7-4 30,044 7,084 3 38 8 18 316 352
fpga 744,183 643,967 487,609 251 734,965 489,516 8,827 10,446
cecil 482,885 274,927 156,059 42,006 433,048 158,025 28,731 35,497
atom 49,511 428 70 930 1,164 128 864 1,041
fft 317,447 231,161 58,162 10 83 58,199 4,112 4,112
spice 1,852,305 215,924 355 3 1,002,570 380 605 823
gcc 1,207 48 0 237 21 2 187 232

Table 4: The number of TLB misses, in 100s, that occurred using
each policy.

during the copy. Combining the copy cost with the 30 cycle TLB
miss cost yields a value of � (the ratio of the copy cost to the baseline
TLB miss cost) of 100 per 1 KB of a superpage. For example, an
8 KB superpage has � ������� . In Section 6.1 we showed that an
online policy that promotes a superpage when the miss charges reach
a threshold of � has cost at most twice that of the optimal offline
cost for that superpage. That analysis ignored the additional overhead
the online policies incur on each TLB miss. In particular, the ratio
between promotion cost and TLB miss cost is less than � for ONLINE
and APPROX-ONLINE. Intuitively, it might seem that these policies
should use a different promotion threshold in order to best bound their
overhead compared to the optimal offline algorithm. In Appendix B
we show that this is in fact not the case: despite the increased cost
of each TLB miss, using a threshold of � still minimizes the ratio
between the cost of the online and offline algorithms.

8.2 TLB Misses and TLBMCPI

Table 4 shows the impact of the policies described in Section 7 on TLB
miss counts. All of the promotion policies are capable of eliminating
the majority of TLB misses for many of the programs. However,
ASAP performs poorly for programs with fragmented memory access
patterns, such as coral, fpga, cecil, and spice, since it never promotes
a superpage that is not fully populated. For fpga and coral, any policy
that imposes too small a maximum page size does not result in a large
reduction in the miss count. The table also shows that ONLINE and
APPROX-ONLINE sometimes cause slightly more TLB misses than
the more anxious ASAP policies because the online policies defer
promotion until there is evidence that it will be beneficial. The TLB
miss counts counts show that ASAP sometimes promotes pages that
OFFLINE does not, indicating that ASAP creates some superpages
that do not eliminate enough misses to recover the promotion cost.

Figure 3 shows the impact that each of the policies described in the
previous section has on TLBMCPI. The figure illustrates that:

� OFFLINE reduces TLBMCPI substantially when compared to
fixed-size 4 KB or 16 KB pages.

� Although neither ONLINE nor APPROX-ONLINE performs as
well as OFFLINE, for most of the workloads their performance
is significantly better than a policy that uses small fixed-size
pages.

� For APPROX-ONLINE the largest component of TLBMCPI is
page promotion cost, which reflects the overhead of physically
coalescing pages. This indicates that both baseline TLB miss
cost and bookkeeping overhead can be negligible in a system
that eliminates most TLB misses.

� ASAP-4-64 achieves an overall TLBMCPI that is close to
APPROX-ONLINE except for applications with extremely large
working sets such as coral, fpga, cecil and fft. For these appli-
cations, ASAP-4-64’s imposition of a maximum superpage size
of 64 KB results in performance worse than that of APPROX-
ONLINE.

� Some workloads, such as gcc, do not benefit from larger pages.
This is unsurprising, since gcc has a low TLB miss rate even with
4 KB pages. In such cases, no policy performs better than one
that uses fixed-size 4 KB page. It is straightforward to modify
the online policies so that they remain inactive until the TLB
miss rate exceeds some maximally acceptable TLBMCPI.

fi
xe

d
4K

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
4K

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
4K

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
4K

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
4K

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

0.0

0.5

1.0

1.5

2.0

T
L

B
M

C
PI

Book MCPI
Copy MCPI
TLB Miss Handler MCPI

(3.1)(3.1)(3.1)

coral compress nasa7-5 nasa7-4 fpga

fi
xe

d
4K

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
4K

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
4K

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
4K

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
4K

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

0.0

0.5

1.0

T
L

B
M

C
PI

cecil atom fft spice gcc

Figure 3: This figure shows the overhead due to TLB management for policies using fixed and variable-sized pages. The fixed-size page
policies incur a fixed overhead on each TLB miss (TLB Miss Handler MCPI). The variable-size page policies also incur promotion overhead
when superpages are created (Copy MCPI), and bookkeeping overhead on each TLB miss (Book MCPI).

ONLINE doesnot always reduce TLBMCPI comparedto APPROX-
ONLINE, even if we disregard the additional bookkeeping overhead
incurred by ONLINE. This indicates that the prefetch counters are
generally a more important predictor of the future benefit of promo-
tion than the capacity counters. While the prefetch counters reflect
an application’s current working set (pages in the TLB and the just-
referenced page), the capacity counters can reflect pages that are no
longer in the TLB and may no longer even be part of the program’s
working set. We conclude that the considerable space and time over-
head for maintaining the capacity counters is not justified, and that
APPROX-ONLINE is a much more desirable policy than ONLINE, for
reasons of both cost and accuracy.

8.3 Execution time

We can use the measurements of a live system presented in Table 2
to estimate the end-to-end performance of each policy. We add the
simulated TLB overhead for each program and policy to the measured
non-TLB execution time on the DEC Alpha, which is independent of
the Alpha’s TLB size. We then compute the percentage improvement
of each policy relative to a system with fixed-size 4 KB pages. The
results of this computation are shown in Table 5. The table shows
that for these workloads, the reduction in TLBMCPI due to APPROX-
ONLINE translates into a reduction in program execution time of as
much as 48%.

8.4 Memory usage

The promotion policies can increase the memory usage relative to a
system using 4 KB pages because a superpage may not be fully popu-

FIXED FIXED ASAP- APPROX-
Benchmark 16 KB 64 KB OFFLINE ASAP 4-64 ONLINE ONLINE
coral 10.0 22.9 33.8 0.3 21.9 12.3 29.5
compress 23.7 34.6 33.9 32.0 33.7 28.5 33.1
nasa7-5 36.2 48.1 47.9 47.1 47.8 46.4 47.8
nasa7-4 28.7 37.6 35.7 22.9 33.5 15.0 33.5
fpga 2.8 7.1 19.4 0.2 5.8 5.9 17.4
cecil 2.5 3.9 4.5 0.5 0.4 -13.7 2.0
atom 7.3 7.4 7.2 6.9 2.4 0.6 6.6
fft 2.7 8.0 8.8 4.0 7.0 2.3 8.2
spice 1.1 1.3 1.3 0.6 1.3 1.3 1.3
gcc 1.1 1.1 0.6 -1.6 -0.4 -8.8 -0.8

Table 5: This table shows the estimated percentage improvement in
end-to-end execution time relative to a system with fixed-size 4 KB
pages. Negative entries reflect a slowdown.

lated with referenced data. As described in Section 4, large fixed-size
pagescan also increasememory consumptionbecauseof internal frag-
mentation. Since the online policies delay promotion until warranted
by TLB miss patterns, these policies should waste less memory than
a system with large fixed-size pages. Figure 4 confirms this hypothe-
sis, showing that the online policies never increase memory usage by
more than 4%, and only in one case by more than 2%. In contrast,
ASAP 4-64 increases memory usage by 5% or more for four of the
benchmarks, and as much as 12% for one.

Table 6 shows the distribution of final page sizes created with
APPROX-ONLINE, revealing that this policy limits its memory con-
sumption by using a wide range of page sizes.

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

0

5

10

15

20

25

M
em

or
y

U
sa

ge
 O

ve
rh

ea
d

(%
)

coral compress nasa7-5 nasa7-4 fpga

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

fi
xe

d
16

K
fi

xe
d

64
K

of
fl

in
e

as
ap

-4
-6

4
on

lin
e

ap
pr

ox
-o

nl
in

e

0

5

10

15

20

M
em

or
y

U
sa

ge
 O

ve
rh

ea
d

(%
)

cecil atom fft spice gcc

Figure 4: Memory overhead. This figure shows the increase in memory usage for each policy relative to a system with fixed-size 4 KB pages.
The dynamic superpage policies typically incur a memory usage overhead of less than 2%, compared to overheads of 10-25% for 64 KB
fixed-size pages. ASAP uses no more memory than FIXED 4 KB, and is not shown. ASAP-4-64 promotes as soon as a 64 KB superpage is
at least half full, so its memory usage can be greater than ASAP.

4 8 16 32 64 128 256 512 1 2 4 8 Total
Benchmark KB KB KB KB KB KB KB KB MB MB MB MB 4 KB Pages
coral 105 9 11 4 8 3 4 1 11 8 1 0 8,743
compress 22 1 6 10 2 1 0 0 0 0 0 0 192
nasa7-5 126 0 0 0 1 0 1 1 1 0 0 0 590
nasa7-4 406 0 1 13 10 4 0 0 0 0 0 0 802
fpga 378 2 0 5 1 1 3 12 13 2 4 0 10,646
cecil 44,526 154 61 45 40 19 14 9 4 8 8 5 72,286
atom 8,134 17 11 6 3 2 0 0 0 0 0 0 8,372
fft 97 0 0 0 0 2 1 1 1 1 1 3 8,289
spice 117 2 4 4 8 9 4 0 0 0 0 0 841
gcc 109 8 18 15 3 0 0 0 0 0 0 0 365

Table 6: The final page distributions for APPROX-ONLINE. This
table shows the number of pages of a given size at the end of the run
of each program.

8.5 Summary

In Section 4 we showed that large fixed-size pages can reduce TLBM-
CPI at the expense of increased internal fragmentation. Figure 5
revisits this tradeoff between TLBMCPI and memory usage in the
context of superpages. The figure shows that APPROX-ONLINE
attains the low TLBMCPI of large fixed-size pages, while keeping
memory consumption close to that of small pages. While the other
promotion policies also improve upon the performance of fixed-size
pages, APPROX-ONLINE outperforms them on every benchmark in
terms of TLBMCPI, memory overhead, or both.

APPROX-ONLINE achieves TLBMCPI within 0.10 of OFFLINE
for nine of the ten programs, even though OFFLINE has full in-
formation about the future reference stream, and has no accounting
overhead. By paying a small bookkeeping cost on each TLB miss,

APPROX-ONLINE identifies and constructs those superpages that re-
sult in a net reduction in TLB overhead, while avoiding the internal
fragmentation of large fixed-size pages.

9 Conclusions

Superpages permit a system’s TLB to map a substantially larger por-
tion of memory than is possible with small fixed-size pages, and to
use memory more effectively than when pages are large. We have
described a methodology for detecting when and where a superpage
should be constructed based on TLB miss behavior gathered at run-
time. A simple online policy, APPROX-ONLINE, that considers both
past TLB miss behavior and promotion cost delivers a TLBMCPI
nearly as good as a policy using fixed-size pages, consumes less
memory, and outperforms policies that obliviously promote.

Acknowledgements

Jeff Dean, Dave Grove, Wayne Wong, and the anonymous referees
provided helpful comments on earlier drafts of this paper. Alan Eu-
stace provided invaluable assistance in the form of expertise on Atom
and access to CPU cycles at DEC WRL.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

T
L

B
M

C
PI

Memory Usage Overhead (%)

coral16K

64K

256K

fixed
offline

asap
asap-4-64

online
approx-online

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

T
L

B
M

C
PI

Memory Usage Overhead (%)

cecil

4K
16K64K

256K

fixed
offline

asap
asap-4-64

online
approx-online

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

T
L

B
M

C
PI

Memory Usage Overhead (%)

compress
4K

16K

fixed
offline

asap
asap-4-64

online
approx-online

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

T
L

B
M

C
PI

Memory Usage Overhead (%)

atom

4K

16K 64K 256K

fixed
offline

asap
asap-4-64

online
approx-online

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

T
L

B
M

C
PI

Memory Usage Overhead (%)

nasa7-5

16K

fixed
offline

asap
asap-4-64

online
approx-online

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

T
L

B
M

C
PI

Memory Usage Overhead (%)

fft

4K

16K

64K
256K

fixed
offline

asap
asap-4-64

online
approx-online

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

T
L

B
M

C
PI

Memory Usage Overhead (%)

nasa7-4

16K

64K

fixed
offline

asap
asap-4-64

online
approx-online

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

T
L

B
M

C
PI

Memory Usage Overhead (%)

spice

4K

16K

fixed
offline

asap
asap-4-64

online
approx-online

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

T
L

B
M

C
PI

Memory Usage Overhead (%)

fpga
4K

16K

64K

256K

fixed
offline

asap
asap-4-64

online
approx-online

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

T
L

B
M

C
PI

Memory Usage Overhead (%)

gcc

4K 16K 64K

fixed
offline

asap
asap-4-64

online
approx-online

Figure 5: Tradeoff between memory usage and TLBMCPI. The dynamic policies (ONLINE, APPROX-ONLINE, and OFFLINE) can achieve
the benefits of small pages, in terms of memory usage, and those of large pages, in terms of TLBMCPI. The origin represents the ideal point in
the tradeoff between memory usage and TLBMCPI. The graphs show that the dynamic policies come close to that ideal point. For comparison
we consider the performance of fixed-size pages as large as 256 KB. In some cases the FIXED policies have such high TLBMCPI or memory
usage that they do not fit on these graphs.

References
[Appel & Li 91] Appel, W. and Li, K. Virtual Memory Primitives for User Programs.

In Proceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 96–
107, April 1991.

[Babaoğlu & Joy 81] Babaoğlu, Özalp. and Joy, W. Converting a Swap-Based System to
do Paging in an Architecture Lacking Page-Referenced Bits. In Proceed-
ings of the Eighth Symposium on Operating Systems Principles, pages
78–86, December 1981.

[Bala et al. 94] Bala, K., Kaashoek, F., and Weihl, W. Software Prefetching and Caching
for Translation Buffers. In Proceedings of the 1st USENIX Symposium on
Operating System Design and Implementation, pages 243–254, Novem-
ber 1994.

[Blanck & Krueger 92] Blanck, G. and Krueger, S. The SuperSPARC Microprocessor.
In COMPCON, pages 136–141, February 1992.

[Cao et al. 94] Cao, P., Felten, E., and Li, K. Implementation and Performance of
Application-Controlled File Caching. In Proceedings of the 1st USENIX
Symposiumon OperatingSystem Design andImplementation,pages 165–
177, November 1994.

[Carter et al. 91] Carter, J., Bennett, J., and Zwaenepoel, W. Implementation and Per-
formance of Munin. In Proceedings of the Thirteenth ACM Symposium
on Operating Systems Principles, pages 152–164, October 1991.

[Chambers 93] Chambers, C. The Cecil Language: Specification and Rationale. Tech-
nical Report 93-03-05, University of Washington, March 1993.

[Chen et al. 92] Chen, J. B., Borg, A., and Jouppi, N. P. A Simulation-based Study of
TLB Performance. In Proceedings of the 19th Annual Symposium on
Computer Architecture, pages 114–123, May 1992.

[Dig 92] Digital Equipment Corporation. DECchip 21064-AA Microprocessor,
Hardware Reference Manual, 1992. Order Number: EC-N0079-72.

[Dutton et al. 92] Dutton, T., Eiref, D., Kurth, H., Reisert, J., and Stewart, R. The Design
of the DEC 3000 AXP Systems, Two High-Performance Workstations.
Digital Technical Journal, 4(4):66–81, 1992. Special Issue.

[Hauck & Borriello 95] Hauck, S. and Borriello, G. An Evaluation of Bipartition-
ing Techniques. Submitted for publication to IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 1995.

[Hosking & Moss 93] Hosking, A. L. and Moss, J. E. B. Protection Traps and Alter-
natives for Memory Management of an Object Oriented Language. In
Proceedings of the Fourteenth ACM Symposium on Operating Systems
Principles, pages 106–119, December 1993.

[Kane & Heinrich 92] Kane, G. and Heinrich, J. MIPS RISC Architecture. Prentice-Hall,
Englewood Cliffs, NJ, 1992.

[Karlin et al. 88] Karlin, A., Manasse, M., Rudolph, L., and Sleator, D. Competitive
Snoopy Caching. Algorithmica, 3(1):70–119, 1988.

[Karlin et al. 91] Karlin, A. R., Li, K., Manasse, M., and Owicki, S. Empirical Studies of
Competitive Spinning for Shared Memory Multiprocessors. In Proceed-
ings of the Thirteenth ACM Symposium on Operating Systems Principles,
1991.

[Khalidi et al. 93] Khalidi, Y. A., Talluri, M., Nelson, M., and Williams, D. Virtual
Memory Support for Multiple Page Sizes. In Proceedings of the Fourth
Workshop on Workstation Operating Systems, pages 104–109, October
1993.

[Mogul 93] Mogul, J. Big Memories on the Desktop. In Proceedings of the Fourth
Workshop on Workstation Operating Systems, pages 110–115, October
1993.

[Ramakrishnan et al. 93] Ramakrishnan, R., Srivastava, D., Sudarshan, S., and Seshadri,
P. Implementation of the CORAL Deductive Database System. In Pro-
ceedings of ACM SIGMOD Internation Conference on Management of
Data, 1993.

[Rashid et al. 87] Rashid, R., Avadis Tevanian, J., Young, M., Golub, D., Baron, R.,
Black, D., Bolosky, W., and Chew, J. Machine-Independent Virtual
Memory Management for Paged Uniprocessor and Multiprocessor Ar-
chitectures. In Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, pages 31–39, April 1987.

[Sleator & Tarjan 85] Sleator, D. D. and Tarjan, R. E. Amortized Efficiency of List
Update and Paging Rules. Communications of the ACM, 28:202–208,
February 1985.

[Srivastava & Eustace 94] Srivastava, A. and Eustace, A. ATOM: A System for Building
Customized Program Analysis Tools. In Proceedings of the 1994 ACM
Symposium on Programming Languages Design and Implementation.
ACM, 1994.

[Talluri & Hill 94] Talluri, M. and Hill, M. D. Surpassing the TLB Performance of Su-
perpages with Less Operating System Support. In Proceedings of the
Sixth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 171–182, October 1994.

[Talluri et al. 92] Talluri, M., Kong, S., Hill, M. D., and Patterson, D. Tradeoffs in Sup-
porting Two Page Sizes. In Proceedings of the 19th Annual Symposium
on Computer Architecture, pages 415–424, May 1992.

[Young et al. 87] Young, M., Tevanian, A., Rashid, R., Golub, D., Eppinger, J., Chew,
J., Bolosky, W., Black, D., and Baron, R. The Duality of Memory and
Communication in the Implementation of a Multiprocessor Operating
System. In Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles, pages 63–76, November 1987.

[Zekaukas et al. 94] Zekaukas, M., Sawdon, W., and Bershad, B. Software Write Detec-
tion for Distributed Shared Memory. In Proceedings of the 1st USENIX
Symposium on Operating System Design and Implementation, pages 87–
100, November 1994.

A Maintaining prefetch and capacity counters
The ONLINE and APPROX-ONLINE page promotion policies presented in
Section 7 rely on one or both of the prefetch and capacity counters described
in Section 6. We now present algorithms for maintaining these counters.

Prefetch counters

Recall that the prefetch counters are updated as follows. On a TLB miss to
a page � , prefetch ����� is incremented for each superpage � that covers both� and some page already in the TLB. To avoid the overhead of scanning the
contents of the TLB on each miss, we use an additional counter for each
superpage � , called tlbcount ����� , that indicates whether or not � or one of
its component pages is currently in the TLB. With this information, we can
quickly update the prefetch charges on a miss.

tlbcount ����� takes on one of four values, and satisfies the following invari-
ants:
� If � is part of a larger superpage that has already been promoted,

tlbcount �����
	��� .
� If � and none of its component pages are in the TLB, tlbcount ������	�� .
� If a translation for � is in the TLB, tlbcount ������	� .
� If a translation for a subpage of � is in the TLB and only one of

tlbcount ��� � � and tlbcount ��� � � is positive, where � � and � � are the
two component subpages of � , tlbcount ������	� .

� If a translation for a subpage of � is in the TLB and both tlbcount ��� � �
and tlbcount ��� � � are positive, where � � and � � are the two component
subpages of � , tlbcount ������	�� .

On a miss to � , the invariants are maintained and the prefetch counters are
updated as described below. Let � 	 ������� � ���������� be the set of superpages
containing � , in increasing order of size. (The size of �! is the maximum
superpage size.) For each � � with tlbcount � � � �"	�� , and the smallest # with
tlbcount � � � �%$&� , tlbcount ��#�� is incremented. For all # with tlbcount � � � �'$&� ,
prefetch ��#�� is incremented. Suppose that the translation for (is replaced in
order to bring � into the TLB. Let ()	*(�+� (� ��������� (�, be the superpages
containing (in increasing order of size, such that (-, is the smallest one with
tlbcount �.(�,��
	�� . Then for each (� , �0/1#�/12 , tlbcount �.(� � is decremented.

Finally, if a page � is promoted, tlbcount ��� � � is set to -1 for each � �
component to � . (Note that tlbcount �����3$4� already.) If a page � is
demoted, tlbcount ����� is reset to 0.

While the algorithm as described so far avoids the overhead of scanning
the TLB on every miss, it still updates a counter for pages as large as the
maximum page size. Since these large superpages are promoted only rarely,
we can reduce the bookkeeping overhead of the algorithm by maintaining
precise prefetch charges for large pages only when they are candidates for
promotion.

For example, in our simulations, APPROX-ONLINE’s promotion threshold
for a 128 KB superpage is 1600 (� � 5�56%798 , where 8 is the ratio of promotion
cost to TLB miss cost for a 128 KB page). Thus it is impossible that a
128 KB superpage will be promoted until at least 1600 TLB misses have
occurred. Rather than performing 1600 individual updates to superpages of
sizes 128 KB through 8 MB (the maximum superpage size), we can defer the

updates until we experience 1600 TLB misses, and then perform all of the
updates at once, sharply reducing the average overhead per TLB miss.

Implementing an algorithm based on this idea of “batching” updates to the
prefetch counters requires choosing the degree to which we maintain accurate
information. If we maintain precise prefetch counters for pages that are too
large, then the overhead of each TLB miss remains too high. On the other
hand, if we maintain precise information only for very small pages, then the
batched updates will have to be performed too frequently.

We implemented an algorithm that uses the tlbcount counters and batched
updates to reduce the overhead per TLB miss. We found that propagating
updates eagerly to superpages of size 64 KB or less and deferring updates to
larger superpages resulted in the best overall performance. Our implementation
requires an additional counter,deferred ����� , that reflects the updates to prefetch
counters that have not yet been propagated to superpages containing � . We
maintain deferred ����� for all superpages of size 64 KB and larger. We profiled
the execution of this algorithm with the TLB miss stream of our benchmark
suite, and found that on average it executed 100 instructions per TLB miss.
The algorithm as implemented also consumes space: one prefetch counter for
every potential superpage, one tlbcount counter for every potential superpage
and every base page, and one deferred counter for every superpage of size
64 KB or larger. Altogether this results in an average of 3.125 counters per
base page. Since APPROX-ONLINE uses the prefetch counter alone, it incurs a
total bookkeeping overheadper TLB miss of 100 instructions. ONLINE incurs
additional overhead in order to maintain the capacity counters,described below.

Capacity counters

ONLINE maintains capacity charges as well as prefetch charges. Here we
describe a simple algorithm in order to establish a rough estimate of the cost
of maintaining the capacity counters.

Recall that the capacity count is incremented for each superpage that would
have coalesced enough TLB entries to prevent the current miss to page � . We
can update the capacity count as follows. The number of TLB entries that must
be coalesced depends on the depth of the previous reference to � in the LRU
stack, which we will refer to as lru-depth. We compute the number of TLB
entries covered by each superpage

�
. The pseudo-code below computes this

number in the variable coverage� � � , and increments capacity � � � for every
potential superpage

�
that covers at least lru-depth TLB entries.

lru-depth: the depth of the page that missed in the LRU stack
coverage � � � : number of TLB entries covered by superpage

�
, initially 0.

for each page � in the TLB �
for each superpage

�
containing ���

increment coverage� � � ;
if (coverage � � � == lru-depth) �

increment capacity � � � ;
check for promotion;���

In a system with 32 TLB entries and page sizes ranging from 4 KB to 8 MB
(i.e. each base page is contained in 11 superpages), the body of the loop will be
executed at least 32*11 = 352 times. If we assume that the loop body requires
7 instructions (load, increment, store, subtract, conditional branch, update
index, conditional branch), then updating the capacity counters will require� 65����� 	 �	��
�� instructions per TLB miss. Since the ONLINE maintains
both prefetch and capacity counters, its total bookkeeping overhead is at least
 �5��&����
�� 	��56	
�� instructions per TLB miss.

B Effect of TLB miss overhead on promotion
threshold

In Section 6.1 we showed that we can bound the overhead of an online pro-
motion policy by using a promotion threshold of 8 , the ratio of promotion
cost to baseline TLB miss cost. We now show that even when the additional
bookkeeping overhead is included in the analysis, the online policy should

still use a promotion threshold of 8 to minimize its overhead compared to the
optimal offline policy.

Recall that in Section 6.1, we considered the case that there is one candidate�
KB superpage � consisting of two

��� � KB pages, and that in the run of an
application, � TLB misses can be prevented by constructing � at time 0. If we
let � denote � ’s promotion cost, and � denote the baseline TLB miss cost, then
the ratio of promotion cost to the TLB miss cost is 8 	�� � � . We observed
that the optimal offline policy, knowing � , will perform the promotion at time
0 if � is at least 8 , and will never promote to � if ���18 . We also showed
that an online policy that promotes to � when � ’s miss charges reach 8 incurs
a cost of at most twice the optimal offline cost.

We now consider how to choose ���+2������ , the promotion threshold for the
online algorithm, assuming that the online algorithm incurs an additional
overhead of time units on each TLB miss. The worst-case ratio between
online cost and offline cost occurs when the promoted page would not prevent
any future misses. For any given value of thresh, this worst-case ratio occurs
when � , the number of misses prevented if � is constructed initially, is exactly
thresh. For this value of � , the ratio between online and offline cost is

�!�"� � thresh #�$�%'& �(��� thresh � � �9�
This ratio is equal to

$*)�+�, - � 8
thresh

� thresh

8 /. thresh� 1	0
When thresh is set to 8*	�� � � , this worst case ratio between online and
offline cost has a value of �-# � � , since

- � 8
thresh

	�- � &�	��� �
and

thresh

8 /. thresh� &�	�� � &�	��- �
This is the ratio’s minimum, since for any thresh $18 ,

thresh

8 /. thresh� &0$1� � &�	��- �
and for any thresh �18 ,

- � 8
thresh

$�- � &�	��� �
Hence, the promotion threshold for � that minimizes the online to offline
performance ratio is 8 . With this threshold, the online policy incurs at most
�-1 � � times the cost incurred by offline policy with respect to � .

