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Abstract

The Linux kernel currently supports a single user
space page size, usually the minimum dictated by
the architecture. This paper describes the ongoing
modifications to the Linux kernel to allow applica-
tions to vary the size of pages used to map their
address spaces and to reap the performance bene-
fits associated with the use of large pages.

The results from our implementation of multiple
page size support in the Linux kernel are very en-
couraging. Namely, we find that the performance
improvement of applications written in various mod-
ern programming languages range from 10% to over
35%. The observed performance improvements are
consistent with those reported by other researchers.
Considering that memory latencies continue to grow
and represent a barrier for achieving scalable perfor-
mance on faster processors, we argue that multiple
page size support is a necessary and important ad-
dition to the OS kernel and the Linux kernel in par-
ticular.

1 Introduction

To achieve high performance, many processors sup-
porting virtual memory implement a Translation
Lookaside Buffer (TLB) [8]. A TLB is a small
hardware cache for maintaining virtual to physi-
cal translation information for recently referenced
pages. During execution of any instruction, a trans-
lation from virtual to physical addresses needs to
be performed at least once. Thereby, a TLB is ef-
fectively reducing the cost of obtaining translation
information from page tables stored in memory.
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Programs with good spatial and temporal locality
of reference achieve high TLB hit rates which con-
tribute to higher application performance. Because
of long memory latencies, programs with poor local-
ity can incur a noticeable performance hit due to low
TLB utilization. Large working sets of many mod-
ern applications and commercial middleware [12, 13]
make achieving high TLB hit rates a challenging and
important task.

Adding more entries to a TLB to increase its cov-
erage and increasing the associativity of a TLB to
reach higher TLB hit rates is not always feasible as
large and complex TLBs make it difficult to attain
short processor cycle times. A short TLB latency
is a critical requirement for many modern proces-
sors with fast physically tagged caches, in which
translation information (i.e., a physical page asso-
ciated with a TLB entry) needs to be available to
perform cache tag checking [8]. Therefore, many
processors achieve wider TLB coverage by support-
ing large pages. Traditionally, operating systems
did not expose large pages to application software,
limiting this support to the kernel. Growing work-
ing sets of applications make it appealing to support
large pages for applications, as well as for the kernel
itself.

A key challenge for this work was to provide effi-
cient support for multiple page sizes with only minor
changes to the kernel. This paper discusses ongoing
research to support multiple page sizes in the con-
text of the Linux operating system, and makes the
following contributions:

e it describes the changes necessary to support
multiple page sizes in the Linux kernel;

e it presents validation data demonstrating the
accuracy of our implementation and its ability
to meet our design goals; and



e it illustrates non-trivial performance benefits of
large pages (reaching more than 35%) for Java
applications and (reaching over 15%) for C and
C++ applications from well-known benchmark
suites.

We have an implementation of multiple page size
support for the TA-32 architecture and are currently
working on an implementation for the PowerPC!
architecture.

The rest of the paper is organized as follows. In Sec-
tion 2, we present an overview of the Linux virtual
memory subsystem. We describe the design and im-
plementation of multiple page size support in the
Linux kernel in Section 3 and Section 4 respectively.
Experimental results obtained from the implemen-
tation are presented and analyzed in Section 5. Re-
lated work is discussed in Section 6. Finally, we
summarize the results of our work and present some
ideas for future work in Section 7.

2 The Virtual Memory Subsystem in
Linux

In this section, we give a brief overview of the Linux
Virtual Memory (VM) subsystem?. Unless other-
wise noted, this section refers to the 2.4 series of
kernels after version 2.4.18.

2.1 Address space data structures

Each address space is defined by a mm_struct data
structure?. The mm_struct contains information
about the address space, including a list of Virtual
Memory Areas (VMAs), a pointer to the page di-

rectory, and various locks and resource counters.

A VMA contains information about a single region
of the address space. This includes:

e the address range the VMA is responsible for;

IThis is for the PPC405gp and PPC440 processors, both
of which support multiple page sizes.

2This section is meant to be neither exhaustive or com-
plete.

3Note that multiple tasks can share the same address
space

e the access rights — read, write, and execute —
for that region;

e the file, if any, which backs the region; and

e any performance hints supplied by an applica-
tion, such as memory access behaviour.

A VMA is also responsible for populating the region
at page fault time via its nopage method. A VMA
generally maps a virtual address range onto a region
of a file, or zero filled (anonymous) memory.

A VMA exists for each segment in a process’s exe-
cutable (e.g., its text and data segments), its stack,
any dynamically linked libraries, and any other files
the process may have mapped into its address space.
All VMAs, except for those created when a process
is initially loaded, are created with the mmap sys-
tem call*. The mmap system call essentially checks
that the process is allowed the desired access to the
requested file® and sets up the VMA.

The page directory contains mappings from vir-
tual addresses to physical addresses. Linux uses a
three level hierarchical page table (PT), although in
most cases the middle level is optimised out. Each
leaf node entry in the PT, called a page table en-
try (PTE), contains the address of the correspond-
ing physical page, the current protection attributes
for that page®, and other page attributes such as
whether the mapping is dirty, referenced, or valid.

Figure 1 shows the relationship between the Vir-
tual Address Space, the mm_struct, the VMAs, the
Physical Address Space, and the page directory.

2.2 The page data structure and alloca-
tor

The page data structure represents a page of phys-
ical memory, and contains the following properties:

e its usage count, which denotes whether it is in
the page cache, if it has buffers associated with
it, and how many processes are using it;

4This is not strictly true: the shmat system call is also
used to create VMAs. It is, however, essentially a wrapper
for the mmap system call.

5This check is trivial if the mapping is anonymous.

SThe pages protection attributes may change over the life
of the mapping due to copy-on-write and reference counting
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Figure 1: Virtual Address Space data structures

e its associated mapping, which indicates how a
file is mapped onto its data, and its offset;

its wait queue, which contains processes waiting
on the page; and

its various flags, most importantly:

locked This flag is used to lock a page. When
a page is locked, I/0O is pending on the
page, or the page is being examined by
the swap subsystem.

error This flag is used to communicate to the
VM subsystem that an error occurred dur-
ing I/0O to the page.

referenced This flag is used by the swapping
algorithm. It is set when a page is refer-
enced, for example, when the page is ac-
cessed by the read system call, and when
a PTE is found to be referenced during the
page table scan performed by the swapper.

uptodate This flag is used by the page cache
to determine whether the page’s contents
are valid. It is set after the page is read
in.

dirty This flag is used to determine whether
the page’s contents has been modified. It
is set when the page is written to, either by
an explicit write system call, or through
a store instruction.

Iru This flag is used to indicate that the page
is in the LRU list.

active This flag is used to indicate that the
page is in the active list.

launder This flag is used to determine
whether the page is currently undergoing

swap activity. It is set when the page is
selected to be swapped out.

Pages are organised into zones; memory is requested
in terms of the target zone. Each zone has certain
properties: the DMA zone consists of pages whose
physical address is below the 16MB limit required
by some older devices, the normal zone contains
pages that can be used for any purpose (aside from
that fulfilled by the DMA zone), and the highmem
zone contains all pages that do not fit into the ker-
nel’s virtual memory: when the kernel needs to ac-
cess this memory, it needs to be mapped into a re-
gion of the kernels address space. Note that the
DMA zone is only required for support of legacy
devices, and the highmem zone is only required on
machines with 32 bit (or smaller) address spaces.

Each zone uses a buddy allocator to allocate pages,
so pages of different orders can be allocated. Al-
though a client of the allocator requests pages from
a specific list of zones and a specific page order, the
pages that are returned can come from anywhere
within the zone. This means that a page for the slab
allocator” can be allocated between pages that are
allocated for the page cache. The same can be said
for other non-swappable pages such as task control
blocks and page table nodes.

"The slab allocator[5] provides efficient allocation of ob-
jects, such as inodes. Pages allocated to the slab allocator
cannot be paged out.



2.3 The page cache

The page cache implements a general cache for file
data. Most filesystems use the page cache to avoid
re-implementing the page cache’s functionality. A
filesystem takes advantage of the page cache by set-
ting a file’s mmap operation to generic file mmap.
When the file is mmaped, the VMA is set up such
that its nopage function invokes filemap nopage.
The file’s read and write operations will also go
through the page cache.

The page cache uses the page’s mapping and offset
fields to uniquely identify the file data that the page
contains — when an access occurs, the page cache
uses this data to look up the page in a hash table.

2.4 The swap subsystem

Linux attempts to fully utilise memory. At any one
time, the amount of available memory may be less
than that required by an application. To satisfy
a request for memory, the kernel may need to free
a page that is currently being used. Selecting and
freeing pages is the job of the swap subsystem.

The swap subsystem uses two lists to record the ac-
tivity of pages: a list of pages which have not been
accessed during in a certain time period, called the
inactive list, and a list of pages which have been re-
cently accessed, called the active list. The active list
is maintained pseudo LRU, while the inactive list is
used by the one-handed clock replacement algorithm
currently implemented in the kernel. Whenever a
page on the inactive list is referenced, it is moved to
the active list.

The kernel uses a swapper thread to periodically
balance the number of pages in the active and in-
active lists: if a page in the active list has been
referenced, it is moved to the end of the active list,
otherwise it is moved to the end of the inactive list.

Periodically, the swapper thread sweeps through the
inactive list looking for pages that can be freed. If
the swapper thread is unable to free enough pages,
it starts scanning page tables: for each PTE exam-
ined, the kernel checks to see whether the page has
been referenced (i.e., whether the referenced bit is
set in the PTE). If so, the page is moved to the ac-
tive list, if it is not already a member. Otherwise,

the page is considered a candidate for swapping. In
this manner reference statistics are gathered from
the page tables in the system, and used to select
pages to be swapped out and freed.

The swapper thread may be woken up when the
amount of memory becomes too low. The swap-
per functions may also be called directly when the
amount of free memory becomes critical: when
memory allocation fails, a task may attempt to swap
out pages directly.

2.5 Anatomy of a page fault

When a virtual memory address is accessed, but a
corresponding mapping is not in the TLB, a TLB
miss occurs. When this happens, the fault address
is looked up in the page table, by either the hard-
ware in systems with a hardware loaded TLB, or via
the kernel in systems with a software loaded TLB
(note that this implies an interrupt occurs).

If a mapping exists in the page table, is valid, and
matches permissions with the type of the access, the
entry is inserted into the TLB, the page table is up-
dated to reflect the access by setting the referenced
bit®, and the faulting instruction is restarted.

If a valid mapping does not exist, the kernel’s page
fault handler is invoked. The handler searches
the current address space’s VMA set for the VMA
which corresponds to the fault address, and checks
whether the access requested is allowed by the per-
missions specified in the VMA.

The kernel then looks up the PTE corresponding to
the fault address and allocates a page table node if
necessary. If the fault is a write to a PTE marked
read-only, the address space requires a private copy
of the page. A page is allocated, the old page is
copied, and the dirty bit is set in the PTE. If the
PTE exists but isn’t valid, the page needs to be
swapped in, otherwise the page needs to be allocated
and filled.

If the VMA does not define a nopage method, the
memory is defined to be anonymous, i.e., zero-filled
memory that is not associated with any device or
file. In this case, the kernel allocates a page, zeroes

8Note that architectures with a hardware loaded TLB
whose page table doesn’t map directly onto Linux’s need to
simulate this bit



it, and inserts the appropriate entry into the page
table. If a valid nopage method exists, it is invoked
and the resulting page is inserted into the PTE.

In the majority of filesystems, the nopage method
goes to the page cache. The mapping and offset for
the fault address are calculated — the information
required for this calculation is stored in the VMA
— and the page cache hash table is searched for the
file data corresponding to the mapping and offset.

If an up-to-date page exists, then no further action
is required. If the page exists but is not up-to-date,
it is read in. Otherwise, a new page is allocated,
inserted into the page cache, and read in. In all
cases, the page’s reference count is incremented, and
the page is returned.

3 Design

This section discusses the approaches we considered
and justifies our final design. This section is or-
ganised as follows: Section 3.1 discusses the goals
that guided the design and the terminology used
throughout this and future sections. Section 3.2 dis-
cusses the semantics of large pages: what aspects of
the support for large pages the kernel exports to
user space, the granularity at which page size deci-
sions are made, and the high-level abstractions the
kernel exports to the user.

It should be noted that this is an ongoing project,
so the approaches describe here may have been im-
proved upon by the time of publication.

3.1 Goals

This section discusses the design goals and guide-
lines which we attempt to adhere to in the design
of our solution. We consider a good design to have
the following properties:

Low overhead We do not wish to penalise appli-
cations that will not benefit from large pages,
S0 we aim to minimise the performance impact
of our modifications for these applications.

Generic The Linux kernel runs on numerous differ-

ent architectures® and is usually ported quickly
to new architectures. Any kernel enhance-
ments such as ours should be easily adaptable
to support existing and future systems, espe-
cially considering that many modern architec-
tures feature MMUs which support multiple
page sizes.

Flexible While a generic solution allows for easy
portability, it does not indicate how well such
a solution takes advantage of an architectures
support for multiple page sizes. The design
should be flexible enough to encompass any
support.

Simple The more complex a solution is, the more
likely it is to have subtle bugs, and the harder
it is to understand. While we can foresee a
point at which a more complex solution may be
necessary, the initial design should be as simple
as possible.

Minimal The Linux kernel is a large and com-
plex system, so a minimalist approach is re-
quired: subsystem modifications that are not
absolutely required may result in a solution
that is overly complex and unwieldy. There-
fore, we try to limit our changes to the VM
subsystem only.

3.2 Semantics

This section discusses the semantics associated with
supporting multiple page sizes: how the page size for
a range of virtual addresses is chosen and whether
the kernel considers this page size mandatory or ad-
visory.

The following terms are used throughout this and
later sections:

Base page A base page is the smallest page sup-
ported by the kernel, usually the minimum dic-
tated by the hardware.

Superpage A superpage is a contiguous sequence
of 2™ base pages.

Order A superpage’s order refers to its size. A
superpage of order n contains 2™ base pages.

9A count of the number of architectures in the mainline
kernel reveals 15 implementations that are more or less com-
plete



Sub-superpage A sub-superpage is a superpage of
order m, contained in a superpage of order n,
such that n > m. Note that a base page is a
sub-superpage with order m = 0
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Figure 2: A superpage and sub-superpage

These concepts are illustrated in Figure 2 which
shows a superpage of order 4 containing a sub-
superpage of order 2.

3.2.1 Visibility

There are two basic approaches to supporting mul-
tiple page sizes: restrict knowledge of superpages
to the kernel or export page size decisions to user
space.

In the former approach, the kernel can create su-
perpage mappings based on some heuristic, for ex-
ample, a dynamic heuristic based on TLB miss in-
formation, or a static heuristic based on the type of
mapping such as whether the mapping is for code,
data, or whether it is anonymous. This approach is
transparent to applications, and should result in all
applications benefiting. It is, however, more com-
plex, and would rely on effective heuristics to map
a virtual address range with large pages.

In the latter approach, an application explicitly re-
quests a section of its address space be mapped with
superpages. This request could come in the form of
programmer hints, or via instrumentation inserted
by a compiler. While this approach requires appli-
cations to have specific knowledge of the operating
system’s support for large pages, it is much simpler
from the kernels perspective. The major problem
with this approach is that it requires the applica-
tion programmer to have a good understanding of
the applications memory behaviour.

We have decided on the latter approach, due to its
simplicity: the former approach would necessitate
developing heuristics that require fine-tuning and
rewriting.

3.2.2 Granularity

This section discusses the granularity of control that
the application has over page sizes. The approaches
considered were:

per address space While making page sizes per
address space would simplify some aspects of
the implementation, it is too restrictive. We
expect applications to have regions of their ad-
dress space where the use of large pages would
be a waste of memory;

per address space region type '°

This approach also has its drawbacks: there is
no clear set of types, although the region’s at-
tributes (e.g., executable, anonymous) could be
used, so again this approach is limited without
any clear gains;

per address space region This approach is more
flexible than either of the above approaches,
however it does not allow for hotspot mapping
within a region; or

over an arbitrary address space range. This
is the most flexible approach, however, there
are implementation issues: the kernel would
need to keep track of the applications desired
page sizes for the entire address space.

To allow maximum flexibility while minimising im-
plementation overhead, we have decided upon a
combination of the last two options: an application
can dictate the page size for an arbitrary address
range only if that range belongs to an address space
region. This means that an application can map a
region hotspot with large pages, but leave the rest
of the region at the system’s default page size.

3.2.3 Interface

This section discusses the guarantees given about
the actual page size used to map an address space
range.

The kernel can take a best-effort approach to map-
ping a virtual address with the applications indi-
cated page size, falling back to a smaller page size if

10A region is a defined part of the address space that cre-
ated by the mmap system call, for example.



the larger page is not immediately available. Alter-
natively, the kernel can block the application until
the desired page size becomes available, copying any
existing pages to the newly allocates superpage.

Rather than mandating either behaviour, we have
elected to allow the application to choose between
the two alternatives. In situations where selecting
a larger page size is merely an opportunistic opti-
misation for a relatively short running application,
the first behaviour is desirable. In cases where the
application is expected to execute for an extended
period of time, however, the expected performance
improvement may be greater than the expected wait
time, and so waiting for a superpage to become
available is justified. If an application is expected
to re-use a large mapping over a number of invoca-
tions (a text page or a data file, for example), the
application will benefit by waiting for the large page
to be constructed.

4 Implementation

This section discusses the implementation of the de-
sign in Section 3.

4.1 Interface

An application requires some mechanism to commu-
nicate a desired page size to the kernel. A system
call is the conventional mechanism for communicat-
ing with the kernel. In this section, we discuss our
implementation of a system call interface for setting
the page size for a region of the address space.

We considered three options: add a parameter to
the mmap system call which specifying the page size
for the new mapping; implement a new system call,
setpagesize; and add another operation to the
madvise system call.

Using the mmap system call would appear to be an
obvious solution. It has, however, several negative
aspects: firstly, the mmap system call is complex
and is frequently used. Modifying mmap’s argument
types would break existing code, as would adding
extra parameters. Secondly, the application would
be restricted to the one page size for that mapping,
for the life of the mapping.

Using a new system call would be the cleanest al-
ternative, however this requires significant modifica-
tions to all architectures, and is generally frowned
upon where an alternative exists.

Using the madvise system call would allow an appli-
cation to modify the page size at any point during
its execution and would not affect existing applica-
tions, as any modification would be orthogonal to
current operations.

We therefore added a setregionorder(n) operation to
the madvise system call, where n is the new page or-
der. We implemented this using the advise param-
eter of the madvise system call. The upper half of
the parameter word contains the desired page order,
while the lower half indicates that a setregionorder
operation is to be performed.

Within the kernel, the madvise system call veri-
fies that the requested page order is actually sup-
ported by the processor, and sets the VMA’s order
attribute accordingly.

4.2 Address space data structures

This section discusses the modifications made to the
kernel’s representation of a virtual address space.
The application can modify the page size used by
a VMA at runtime, either by an explicit madvise
system call or by instructing the kernel to fall back
to a smaller page size if a larger is not available.
Consequently, the kernel needs to keep track of the
following: firstly, the page size indicated by the ap-
plication, which is associated with the VMA; sec-
ondly, the actual page size used to map a virtual
address.

To communicate the requested page order to the
VMA'’s nopage function, another parameter was
added. This parameter indicates the desired page
order at invocation, and contains the actual page
size upon return. We rely upon the fact that subsys-
tems which have not been modified will only return
base pages.

To store the superpage size that actually maps the
virtual address range, the PTE includes the order
of the mapping. To achieve this, we associated un-
used bits within the PTE with different page sizes,
although the actual bits and sizes may be dictated
by hardware.
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Figure 3: The modified page table structure

The page table structure was also modified: super-
pages which span a virtual address range greater or
equal to that of a non-leaf page directory entry are
collapsed until they fit into a single page table node
(see Figure 3). This means that we can now have
valid page table elements at each level of the address
translation hierarchy. This affects kernel routines
which scan the page table, for example, the swap
routine.

Although the main reason behind this was to con-
form to the page table structure defined by the x86
family, it also has other advantages: the kernel can
use positional information to determine the page
size, rather than relying solely on the information
store in the PTE. This means that the number of
page sizes supported by the kernel is not restricted
by the number of unused bits in the PTE (which can
be quite few). There may also be some performance
advantage as the TLB refill handler does needs to
traverse fewer page table levels.

4.3 Representing superpages in physi-
cal memory

This section discusses the representation of super-
pages in the page data structure. The kernel needs
to keep track of various properties of the superpage,
such as whether it is freeable, whether it needs to
be written back, etc. The superpage can include
sub-superpages which are in use: any superpage op-
eration that affects the sub-superpage also affects
the superpage, and this needs to be taken into con-
sideration.

We considered the following representations of su-
perpages: firstly, an explicit hierarchy of page data
structures, with one level for each possible order.

A superpage would then be operated on using the
page data structure at the appropriate level. This
implies that each operation would only have to look
at a single instance of the page data structure.

This approach is the cleanest in terms of semantics.
Unfortunately, the kernel makes certain assump-
tions about the one-to-one relationship between the
page data structure and the actual physical page.
Implementing this design would violate those as-
sumptions and also involve significant modifications
to the lower levels of the kernel.

The alternative involves a modification to the exist-
ing page data structure, such that each page con-
tains the order of the superpage it belongs to. A
superpage of order m would then be operated on
by iterating over all 2" base pages. This approach
conforms to the kernels existing semantics. It is,
however, subject to various race conditions, and is
inelegant.

We implemented a combination of the two ap-
proaches presented: while we do not have an ex-
plicit hierarchy, there is an implicit hierarchy cre-
ated by storing the superpage’s order in each com-
ponent base page. We logically partition the proper-
ties of a page into those associated with superpages,
or with base pages.

This partitioning was guided by the usage of these
properties: if the property was used in the VM sub-
system only, it was usually put in the superpage
partition. If the property was used for I/0, it was
put into the base page partition. The properties
were then partitioned as follows:

e the page’s usage count is per superpage. As
all allocation are done in terms of superpages,
it follows that a superpage is only freeable if
no sub-superpage is being used. This means
that whenever a sub-superpage’s usage count
is modified, the actual modification is applied
to the superpage;

e the mapping and offset properties are per base
page, as they are only used to perform I/O on
the page;

e the wait queue is per base page, as it is used
to signal when I/O has completed;

e the flags are partitioned as follows:

locked is per base page, as it is used primarily
to indicate that a page is undergoing I/0;



error is per base page, as it is used to indicate
an I/0 error in the page;

referenced is per superpage, as it is used by
the VM subsystem only;

uptodate is per base page, as it is set when
I/0 successfully completes on a page;

dirty is per superpage, as it is primarily used
in the VM subsystem;

Iru is per superpage, as it indicates whether a
page is in the LRU list, and the LRU list
is now defined to contain superpages;

active is per superpage, as it indicates
whether a page is in the active list, and
the active list is now defined to contain
superpages;

launder is per superpage, as it is only used in
the swap subsystem, and the swap subsys-
tem has to deal with superpages.

All other flags are per base page, as they re-
flect static properties of the page, (for example,
whether the page is in the highmem zone).

Operations that iterate over each base page in a
superpage are required to operate in ascending order
to avoid deadlock or other inconsistencies.

4.4 Page allocation

The current page allocator supports multiple page
sizes, however it has 2 major problems: firstly, non-
swappable pages can be spread throughout each
zone, causing memory fragmentation; secondly, if
a large page is required, but a user (i.e. swappable)
page is in the way, there is no efficient way to find
all users of that page.

While the latter problem can be solved by Rik van
Riel’s reverse mapping patch[18], the former is still
an issue. For this implementation, we have created
another largepage zone, which is used exclusively for
large pages. While this is not a permanent solution,
it does aid in debugging, and solves the immedi-
ate problem for specialised users. The size of the
largepage zone is fixed at boot time.

For maximum flexibility, the current allocator
should be modified so that pages which are not page-
able are allocated in so that they do not cause frag-
mentation. Also, pages which are allocated together

will probably be freed together, so clustering pages
at allocation time may also reduce fragmentation.

4.5 The Page Cache

To support mapping files with superpages, the page
cache needs to be modified. The bulk of these mod-
ifications are in the nopage and affiliated functions,
which attempt to allocate and read in a superpage
of the requested order. To avoid any problems due
to overlapping superpages, we require a superpage
of order n also have file order n — that is, the align-
ment of the superpage in the virtual, physical, and
file space is the same. For example, a 64K mapping
of a file should be at a file offset that is a multiple of
64K, a virtual offset that is a multiple of 64K, and
a physical offset of 64K'!.

The changes to the nopage function are essentially
straightforward. If an application requests a super-
page which contained in the page cache, it get back
a sub-superpage whose order is the minimum of the
requested order and the superpage’s order. If a su-
perpage does not exist, a page of the requested order
is allocated, each base page is read in, and the su-
perpage is added to the LRU and active queues.

Because reading in a large page can cause signifi-
cant I/O activity (the amount of time required to
read in 4MB of data from a disk can be significant),
we may need to read in base pages in a more in-
telligent fashion. One solution is to read in the
sub-superpage which contains the address of inter-
est first and schedule the remainder of the superpage
to be read in after the first sub-superpage has com-
pleted. When the rest of the superpage has com-
pleted I/0, the address space can be mapped with
the superpage. Note that this is similar to the early
restart method used in some modern processors to
fetch a cache line.

4.6 The swap subsystem

In our current implementation, a region mapped
with superpages will not be swapped out. Swapping
a superpage would negate any performance gained
by its use due to the high cost of disk I/O. The su-
perpage may need to be written back, however, and

1 The virtual and physical alignment constraints are com-
mon to most architectures.



this is handled in an essentially iterative manner —
when the superpage is not being used by any appli-
cations, and it is chosen by the swap subsystem to
be swapped out (i.e. when it appears as a victim on
the LRU list), each base page is flushed to disk, and
the superpage is freed.

In the future, a number of approaches present them-
selves. The kernel may, for example, split up a su-
perpage into smaller superpages over a series of swap
events, until a threshold superpage order is met, and
then swap that out. Alternatively, the kernel may
just swap out the entire page.

4.7 Architecture specifics

This section discusses the architecture specific as-
pects of our implementation. Although our imple-
mentation attempts to be generic, the kernel re-
quires knowledge of the architecture’s support for
multiple page sizes and the additional page table
requirements.

The architecture specific layer in our implementa-
tion consists mainly of page table operations, i.e.,
creating and accessing a PTE. To constructed a
PTE, the kernel now uses mk_pte_order, which is
identical to mk_pte'? except for an additional order
parameter. This function creates a PTE with which
maps a page of order order. To allow the kernel to
inspect a PTE, a pte_order function is required.
This function returns the order of a PTE.

On architectures which use an additional page ta-
ble (usually because it is required by the hardware),
the update mmu_cache needs to be modified to take
superpages into consideration. The kernel also re-
quires a mechanism to verify that a page size is
supported. This is achieved by implementing the
pgorder _supported function.

4.8 Anatomy of a large page fault

In systems with a hardware loaded TLB, a TLB
miss is transparent to the kernel, and so is not dif-
ferent in the case of a large page. In architectures
with a software TLB refill handler, the new page ta-
ble structure needs to be taken into consideration:

12For backwards compatibility, mk_pte calls mk_pte_order
with order 0

the handler needs to check whether each level in
the page table hierarchy is a valid PTE. The refill
handler also needs to extract the page size from the
entry and insert the correct (V A, PA,size) entry
into the TLB.

If there is no valid mapping in the page table, a
page fault occurs. As with the standard kernel, the
VMA is found and the access is validated. The PTE
is then found, although a page table node is not
created if it is required — the page table node is
allocated later on in the page fault process. This
postponement in allocating page table nodes is re-
quired as the kernel does not know what size the
allocated page will be: this is determined when the
page is allocated.

On a write access to a page marked read-only in
the PTE, a private copy is created and replaces the
read-only mapping. This involves copying the entire
superpage, so it is a relatively expensive operation
— as with all superpage operations, there will only
be overhead if the operations would not have been
done on each base page. For example, writing a
single character to a 4Mb mapping will result in
the whole 4Mb being copied, which would not have
occurred if the region was mapped with 4K pages.
Conversely, if most or all of the base pages are to
be written to, copying them in one operation may
reduce the total overhead due to caching effects and
the reduced number of page faults.

If no mapping exists, the VMA’s order field is con-
sulted to determine the application’s desired page
size. If there are pages mapped into the region de-
fined by this order and the fault address, and the
application has elected to opportunistically allocate
superpages, the kernel selects the largest supported
order that contains the fault address, no mapped
pages, and is less than or equal to the desired or-
der. Otherwise, the application’s desired page order
is selected.

After the kernel has determined the correct page or-
der, it examines the VMA’s nopage method. If the
nopage method is not defined, a zeroed superpage
is allocated and inserted into the page table. Oth-
erwise, the nopage method is called with the calcu-
lated page order, and the result is inserted into the
page table.

If the file that backs the VMA is using the page
cache to handle page faults, the kernel searches the
page cache for the file data associated with the fault



I-TLB 4K pages
I-TLB 4M pages
I-L1 cache

128 entries, 4-way SA
Fragmented into 4K I-TLB
12K micro-ops

D-TLB 4K pages
D-TLB 4M pages
D-L1 cache

64 entries, FA
Shared with 4K D-TLB
8K, 64 byte CL, 4-way SA

unified L2 cache | 256K, 64-byte CLS, 8-way SA

Table 1: Pentium 4 processor’s memory system
characteristics (Notation: CL - cache lines; CLS -
cache lines, sectored; SA - set associative; FA - fully
associative).

address. If a superpage is found, the minimum
of the superpage’s order and the requested order
is used to determine the sub-superpage to be vali-
dated. The sub-superpage is then checked to ensure
its contents are valid, and if so, it is returned. If
the sub-superpage’s contents is not valid, each base
page is read in, and the sub-superpage is returned.

5 Experimental Results

In this section, we present and analyze the exper-
imental data from our implementation of multiple
page size support in the Linux kernel.

All results in this section were generated on a
1.8GHz Pentium 4 system with 512M of RAM. The
Pentium 4 processor has separate instruction and
data TLBs and supports two different page sizes:
4K and 4M!3. Table 1 shows the parameters of the
memory system of Pentium 4.

5.1 Validating the Implementation with
a Micro-benchmark

This section presents and discusses the data validat-
ing the accuracy of our implementation and demon-
strating the benefits of multiple page size support
for a simple microbenchmark. The use of a sim-
ple benchmark makes it possible to reason in detail
about its memory behavior and its interactions with
the memory system.

The benchmark allocates a heap and initializes it
with data. We vary the heap size from 128K to

13Note that with large physical memory support ( >4GB),
the large page size on Pentium 4 processors is 2M.

32M in 128K increments in order to adjust the work-
ing set of the benchmark. The benchmark per-
forms 1000 iterations during each of which it strides
through the heap in the following manner: for each
4K page, it accesses one word of data. Assuming
that caches and TLBs do not contain any informa-
tion, each data access brings one cache line of PTEs
and one cache line of data into the data L1 cache.
To ensure that consecutive accesses do not compete
for cache lines in the same cache set, we increment
the offset at which we access data within a page by
the size of a cache line. We also access every six-
teenth page to ensure that we use only one PTE per
L1 cache line'.

We performed two sets of experiments. In the first
set, the heap was mapped with 4K pages. In the
second set, the heap was mapped with 4M pages.
Both the 4K and the 4M cases have several inflec-
tion points. The first two inflection points for the
4K case are at 4M and 6M, and the first two in-
flection points for the 4M case are at 8M and 10M.
The first inflection point indicates that the impor-
tant working set (consisting of data and PTEs) can
no longer fit in the fast L1 cache. Up to this point,
the benchmark achieves full L1 cache reuse (both
data and PTEs fit in the L1 cache)!®. Between the
first and the second inflection points, the benchmark
achieves partial cache reuse (some of the data and
PTEs remain in L1 across iterations). After the sec-
ond inflection point, there is no L1 cache reuse (nei-
ther data nor PTEs remain in the L1 cache across
iterations). The working set, however, still fits in
the larger L2 cache. The performance of the 4K case
degrades sooner than that of the 4M case due to the
space overhead of PTEs!'®. The 4M case does not
suffer from this behavior as it uses few PTEs and,
hence, significantly less space in the L1 data cache;
each cache line can accommodate 16 PTEs mapping
a total of 64M of contiguous address space.

By extending the portion of the graph where the
benchmark achieves full L1 cache reuse (i.e., past
the first inflection point to the right), one can esti-
mate the performance of the benchmark on a sys-
tem with increasingly larger L1 cache. Similarly,

140n our Pentium 4 machine, one 64-byte cache line ac-
commodates sixteen 4-byte PTE entries.

15Coincidentally, because we access one cache line of data
per 4K page and access every sixteenth page, the 64-entry
D-TLB begins thrashing at 4M, too.

16Namely, the PTEs occupy the same number of cache lines
as the data. Consequently, the number of L1 misses begins
to grow once the number of distinct pages we touch exceeds
one half the number of cache lines in the L1 data cache.



DTLB micro-benchmark (L1-DCache)
1000 iterations, 128k increments

4klpages=ze
r 4M pagesize -3~ 1

Time (milliseconds)
o B N W M O O N
T

0 2 4 6 8 10 12 14 16
Test size (megabytes)

DTLB micro-benchmark (L1-DCache)
1000 iterations, 128k increments

aheam —— |

4k:4M
oOrRr NWhAUOON®O

0 2 4 6 8 10 12 14 16
Test size (megabytes)
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by extending the portion of the graph where the
benchmark experiences no L1 cache reuse, one can
estimate the performance of the benchmark on a
system with a slower L1 data cache (whose access
time is equal to the access time of the L2 cache of
our configuration). The next inflection point (not
shown on the graph) will occur when the L2 cache
starts to saturate.

5.2 Assessing Performance for Tradi-
tional Workloads

This section discuss the performance of multi-
ple page size support in the context of the
SPEC CPU2000 benchmark suite[16], specifi-
cally CINT2000, the integer component of SPEC
CPU2000.

The CINT2000 benchmark suite was designed to
measure the performance of a CPU and its mem-
ory subsystem. There are 12 integer benchmarks in
the suite. These are the gzip data compression util-
ity, vpr circuit placement and routing utility, gcc
compiler, mc¢f minimum cost network flow solver,
crafty chess program, parser natural language pro-
cessor, eon ray tracer, perlbmk'” perl utility, gap
computational group theory, vortexr object oriented
database, bzip2 data compression utility, and twolf
place and route simulation benchmarks. All appli-
cations, except for eon, are written in C. The eon
benchmark is written in C++.

We noted that the applications in the CINT2000
suite use the malloc family of functions to allocate

"Due to compilation difficulties, this benchmark was ex-
cluded from out results

the majority of their memory. To provide the ap-
plication with memory backed by large pages via
the malloc function, we modified the sbrk function.
The memory allocator uses sbrk to allocate memory
at page granularity; it then allocates portions of this
memory to the application upon request. The sbrk
function ensures that the pages it gives to memory
allocator are valid; i.e., it grows the process’s heap
using the brk system call when required.

We modified the sbrk function so that it returns
memory backed by large pages. At the first request,
sbrk maps a large region of memory, and uses the
madvise system call to map that region with large
pages. Whenever the memory allocator requests a
memory, sbrk returns the next free page in this re-
gion.

If the memory request is greater than some thresh-
old (128K), the current memory allocator will al-
locate pages using the mmap system call. To ensure
that the memory allocator returned memory backed
by large pages, we disabled this feature so that the
allocator always uses our sbrk.

To allow the applications to use our modified mem-
ory allocator and sbrk functions, we placed these
functions in a shared library and used the dy-
namic linker’s preload functionality. We set the
LD_PRELOAD environment variable to out library, so
the dynamic linker will resolve any malloc function
calls in the application to our implementation. In
this way, no recompilation is necessary for the ap-
plications to use large pages.

Table 2 shows the performance results we obtained
using large pages. Overall, the results obtained are
encouraging, many applications showing approxi-



Benchmark | Improvement (%)
164.gzip 12.31
175.vpr 16.72
176.gcc 9.29
181.mcf 9.43
186.crafty 15.22
197.parser 16.30
252.eon 12.07
254.gap 5.91
255.vortex 22.27
256.bzip2 14.37
300.twolf 12.47

Table 2: Performance improvements for SPEC
CPU2000 integer benchmark suite using large pages

mately 15% improvement in run time.

5.3 Assessing Performance with Emerg-
ing Workloads

This section discusses the impact of large pages on
the performance of Java workloads. Java applica-
tions, and SPECjvm98 [15] applications in particu-
lar, are known to have to have poor cache and page
locality of data references [11, 14]. To demonstrate
the advantages of large pages for Java programs, we
conducted a set of experiments with the fast con-
figuration of Jikes Research Virtual Machine (Jikes
RVM) [1, 2] configured with the mark-and-sweep
memory manager (consisting of an allocator and a
garbage collector) [3, 10].

To get the baseline numbers, i.e., where the heap is
mapped with 4K pages, we ran the SPECjvm98 ap-
plications with the largest available data size on an
unmodified Jikes RVM. The virtual address space in
Jikes RVM consists of three regions: the bootimage
region, the small heap (the heap region intended for
small objects), and the large heap (for objects whose
size exceeds 2K). We modified the bootimage run-
ner of Jikes RVM!® to ensure that the small heap
is aligned to a 4M boundary and is mapped by 4M

pages.

The decision to map only the small heap to large
pages was based on the observation that, with a

18The bootimage runner is a program responsible for map-
ping memory for Jikes RVM and the heap, loading the core
of the RVM into memory, and then passing control to the
RVM.

few exceptions, most objects created by SPECjvm98
are small. We then repeated the experiments by
mapping all three heap regions to large pages. We
also varied the size of the small heap from 16M to
128M and computed the performance improvements
with 4M pages over a configuration that uses only
4K pages.

For each application, Figure 5 shows the minimum,
the average, and the maximum performance im-
provements when the small heap is mapped to large
pages (left) and when all three heap regions are
mapped to large pages (right). It can be seen that
for several applications the performance improve-
ments are consistent and range from 15% to 30%
even if only the small heap is mapped to large pages.
The compress benchmark is the only one in the
suite that creates a significant number of large ob-
jects and only a few small objects, and so does not
benefit from large pages in this case.

When all three heap regions are mapped to large
pages, we observe an additional 5% to 10% perfor-
mance improvement. For many applications, the
performance improvement ranges from 20% to 40%
over the base case. It can also be seen that the
compress benchmark enjoys a significant perfor-
mance boost.

5.4 Discussion

The observed benefits of large page support can vary
and depend on a number of factors such as the char-
acteristics of applications and architecture. In this
section, we discuss some of these factors.

A small number of TLB entries covering large
pages'® may not be sufficient for a realistic appli-
cation to take full advantage of large page support.
If the working set of an application is scattered over
a wide range of address space, the application is
likely to experiencing thrashing of a relatively small
4M page TLB, in some cases to a much larger extent
than with the 64-entry 4K page data TLB. This is a
problem on processors like Pentium II and Pentium
III.

Applications executing on processors with software
loaded TLBs are expected to benefit from large

191n Pentium II and Pentium III microprocessors, there are
eight 4M page data TLB entries some of which are used by
the kernel.
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Figure 5: Summary of results for SPECjvm98.

pages. The TLB miss overhead of an application
executing on a processor that handles TLB misses
in hardware (such as x86 processors) can also be
significant unless most page tables of an application
can fit in the L2 cache and co-reside with the rest
of the working set. This is highly unlikely for ap-
plications of interest: assuming that each L2 cache
line is 32 bytes and each PTE is 4 bytes, one L2
cache line can cover eight 4K pages (a total of 32k).
Hence, a 512K L2 cache can accommodate PTEs
to cover only 512M of address space (this does not
leave any space for data in the L2 cache). Conse-
quently, for applications with relatively large work-
ing sets, it is highly likely that a significant fraction
of PTEs would not be found in the L2 cache on a
TLB miss. Although hardware makes reloading a
TLB from a L2 cache relatively inexpensive, many
TLB misses may need to be satisfied directly from
memory.

The Java platform [7] presents another set of chal-
lenges. For performance reasons, state-of-the-art
JVMs compile Java bytecode into executable ma-
chine code [1, 2, 9]. In some virtual machines,
such as Jikes RVM [1, 2], generated machine code is
placed into the same heap as application data and is
managed by the same memory manager. It has been
observed that the code locality of Java programs
tends to be better than their data locality [14]. This
suggests that application code should reside in small
pages while application data should reside in large
pages. In Jikes RVM, generated code and data ob-
jects are indistinguishable from the memory man-
ager’s point of view and are intermixed in the heap.

Because a memory region can only be mapped to ei-
ther small or large pages, a tradeoff must be made.
Mapping the entire heap region to large pages may
not be effective since application code may not need
to use large pages. What is worse is that some pro-
cessors have a very small number of 4M page in-
struction TLB entries?® which can lead to thrashing
of an instruction TLB. Consequently, for best per-
formance results, a JVM should be made aware of
the constraints imposed by the underlying OS and
hardware, and segregate application code and data
into separate well-defined regions.

For Java programs, some performance gains are ex-
pected to come from better garbage collection (GC)
performance. Much work during garbage collection
is spent on chasing pointers in objects to find all
reachable objects in the region of the heap that is
being collected [4]. Many reachable objects can be
scattered throughout the heap. As a result, the lo-
cality of GCs is often worse than that of applica-
tions [11]. This behavior is representative of sys-
tems employing non-moving GCs which have to be
used when some objects cannot be relocated (e.g.,
when not all pointers can be identified reliably by
a runtime). Consequently, large pages can improve
TLB miss rates during GC (and overall GC perfor-
mance). Applications that perform GC frequently,
have a lot of live data at GC times, or whose live
data are spread around the heap can benefit from
large page support and achieve short GC pauses.
Short pauses are critical for software systems that

20There are only two 4M page instruction TLB entries in
Pentium II and Pentium III processors.



are expected to have relatively predictable response
times.

The availability of large pages can also be benefi-
cial for programs that use data prefetching instruc-
tions. Modern processors squash a data prefetching
request if the appropriate translation information is
not available in the data TLB. Consequently, high
TLB miss rates of applications can lead to many
prefetching requests being squashed, thereby lead-
ing to ineffective utilization of memory bandwidth
and reduced application performance[14]. The use
of large pages can help reduce TLB misses and take
full advantage of prefetching hardware. Further,
a hardware performing automatic sequential data
and code prefetching stops when a page boundary
is crossed and has to be restarted at the beginning
of the next page?'. Large pages make it possible
for such hardware to run for a longer period of time
and to perform more useful work with fewer inter-
ruptions.

6 Related work

Ganapathy and Schimmel [6] discussed a design of
general purpose operating system support for large
pages. They implemented their design in the IRIX
operating system for the SGI ORIGIN 2000 system
that employs the MIPS R10000 processors (which
handle TLB misses in software).

An important aspect of their approach is that it
preserves the format of pfdat and PTE data struc-
tures of the IRIX OS. The pfdat structures rep-
resent pages of a base size and contain no page
size information (just as in the original system).
Large pages are simply treated as a collection of
base pages. Consequently, only a few parts of the
OS kernel need to be aware of large pages and need
to be modified.

The PTEs contain the page size information but
the page table layout is unchanged. They use one
PTE for each base page of a large page and create a
set of PTEs that correspond to all addresses falling
withing a large page. As expected, for the large page
PTEs, the page frame numbers are contiguous.

To support multiple page sizes, the TLB miss han-

21This is due to the fact that such automatic prefetching
hardware uses physical addresses for prefetching.

dler needs to set a page mask register in the pro-
cessor on each TLB miss. To ensure that programs
that do not use large pages do no incur unnecessary
runtime overhead, a TLB handler is configured per
process. The allocation policy is specified on a com-
mand line (on a per segment basis) before starting
an application. Hence, applications do not need to
be modified to take advantage of large pages, and
applications that do not use large pages are not put
at disadvantage.

The advantage of this design is that it allows dif-
ferent processes to map the same large page with
different page sizes. The disadvantages are (i) this
approach does not reduce the size of page tables for
applications that use large pages and (ii) the infor-
mation stored in PTEs that cover a large page needs
to be kept consistent.

They demonstrated that applications from SPEC95
and NAS parallel suite do benefit from large pages.
For these applications, they registered 80% to 99%
reduction in TLB misses and 10% to 20% perfor-
mance improvement. A business application like the
TPC-C benchmark (which is known to have poor
locality and large working set) was also shown to
benefit from large pages. The authors report 70%
to 90% reduction in TLB misses and 6% to 9% per-
formance improvement for this application.

Subramanian et al. [17] describe their implementa-
tion of multiple page size support in the HP-UX
operating system for the HP-9000 Series 800 system
which uses the PA-8000 microprocessor.

In their design the VM data structures such as the
page table entry, virtual and physical page frame
descriptors are based on the smallest page size sup-
ported by the processor. A large page is defined as a
set of contiguous small base size pages. Hence, this
design is conceptually similar to that of Ganapathy
and Schimmel [6].

The authors note that an important advantage of
this approach is that it does not require changes to
many parts of the OS. However, it neither reduces
the sizes of data structures for applications that use
large pages. In addition, locking, access, and up-
dates of data structures for large pages are some-
what inefficient. In spite of the benefits of space
efficiency and the efficiency of updates, they choose
not to use variable page size based data structures
because, as the authors indicate, such an approach
would lead to more changes in the OS and would



have negative performance implications (e.g., a high
page-fault latency in certain cases).

In their scheme, applications do not need to be re-
compiled to take advantage of large pages. The
hints specifying large page sizes are region-based
and are used at page fault time. In some cases,
such as for performance reasons, the OS can ignore
these page size hints and fall back to mapping small

pages.

They implemented their design in the HP-UX oper-
ating system and studied the impact of large pages
on several VM benchmarks, SPEC95 applications,
and one commercial application. The reported per-
formance improvements range from 15% to 55%.

7 Conclusions and Further Work

Many modern processors support pages of vari-
ous sizes ranging from a few kilobytes to several
megabytes. The Linux OS uses large pages inter-
nally for its kernel (to reduce the overhead of TLB
misses) but does not expose large pages to applica-
tions. Growing memory latencies and large working
sets of applications make it important to provide
support for large pages to the user-level code as well.

In this paper, we discussed the design and imple-
mentation of multiple page size support in the Linux
kernel. We validated our implementation on a sim-
ple microbenchmark. We also demonstrated that re-
alistic applications can take advantage of large pages
to achieve significant performance improvements.

This work opens up a number of interesting direc-
tion. In the future, we plan to modify kernel’s mem-
ory allocator to further support large pages. We
would also like to evaluate the impact of large pages
on database and web workloads. These types of
workloads are known to have large working sets and
poor locality. Achieving high performance on com-
mercial workloads is crucial for continuing success
of Linux.

The latency of fetching a large 4M page from a
disk (as a result of a page fault) can be significant.
We consider implementing the “early restart” fea-
ture that would fetch and map the critical chunk of
data first and complete fetching the remaining data
chunks later, thereby reducing pauses experienced

by applications.

Some architectures support a number of different
page sizes (e.g., 16K, 256K, 4M, and 64M). We
would be interested in evaluating the performance of
applications on systems that have this architectural
support.
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