IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

1117

The Impulse Memory Controller

Lixin Zhang, Student Member, IEEE, Zhen Fang, Student Member, IEEE,
Mike Parker, Student Member, IEEE, Binu K. Mathew,
Lambert Schaelicke, Member, IEEE Computer Society, John B. Carter, Member, IEEE,
Wilson C. Hsieh, and Sally A. McKee, Member, IEEE

Abstract—Impulse is a memory system architecture that adds an optional level of address indirection at the memory controller.
Applications can use this level of indirection to remap their data structures in memory. As a result, they can control how their data is
accessed and cached, which can improve cache and bus utilization. The Impulse design does not require any modification to
processor, cache, or bus designs since all the functionality resides at the memory controller. As a result, Impulse can be adopted in
conventional systems without major system changes. We describe the design of the Impulse architecture and how an Impulse memory
system can be used in a variety of ways to improve the performance of memory-bound applications. Impulse can be used to
dynamically create superpages cheaply, to dynamically recolor physical pages, to perform strided fetches, and to perform gathers and
scatters through indirection vectors. Our performance results demonstrate the effectiveness of these optimizations in a variety of
scenarios. Using Impulse can speed up a range of applications from 20 percent to over a factor of 5. Alternatively, Impulse can be used
by the OS for dynamic superpage creation; the best policy for creating superpages using Impulse outperforms previously known

superpage creation policies.

Index Terms—Computer architecture, memory systems.

1 INTRODUCTION

SINCE 1987, microprocessor performance has improved at
a rate of 55 percent per year; in contrast, DRAM latencies
have improved by only 7 percent per year and DRAM
bandwidths by only 15-20 percent per year [17]. The result
is that the relative performance impact of memory accesses
continues to grow. In addition, as instruction issue rates
increase, the demand for memory bandwidth grows at least
proportionately, possibly even superlinearly [8], [19]. Many
important applications (e.g., sparse matrix, database, signal
processing, multimedia, and CAD applications) do not
exhibit sufficient locality of reference to make effective use
of the on-chip cache hierarchy. For such applications, the
growing processor/memory performance gap makes it
more and more difficult to effectively exploit the tremen-
dous processing power of modern microprocessors. In the
Impulse project, we are attacking this problem by designing
and building a memory controller that is more powerful
than conventional ones.

Impulse introduces an optional level of address transla-
tion at the memory controller. The key insight that this
feature exploits is that “unused” physical addresses can be
translated to “real” physical addresses at the memory
controller. An unused physical address is a legitimate
address that is not backed by DRAM. For example, in a
conventional system with 4 GB of physical address space

and only 1 GB of installed DRAM, 3 GB of the physical

o The authors are with the School of Computing, 50 S. Central Campus Dr.,
Room 3190, University of Utah, Salt Lake City, UT 84112-9205.
E-mail: retrac@cs.utah.edu.

Manuscript received 5 Dec. 2000; revised 25 May 2001; accepted 31 May
2001.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114254.

address space remains unused. We call these unused
addresses shadow addresses and they constitute a shadow
address space that the Impulse controller maps to physical
memory. By giving applications control (mediated by the
OS) over the use of shadow addresses, Impulse supports
application-specific optimizations that restructure data.
Using Impulse requires software modifications to applica-
tions (or compilers) and operating systems, but requires no
hardware modifications to processors, caches, or buses.

As a simple example of how Impulse’s memory
remapping can be used, consider a program that accesses
the diagonal elements of a large, dense matrix A. The
physical layout of part of the data structure A is shown on
the righthand side of Fig. 1. On a conventional memory
system, each time the processor accesses a new diagonal
element (A[1i][1]), it requests a full cache line of
contiguous physical memory (typically 32-128 bytes of data
on modern systems). The program accesses only a single
word of each of these cache lines. Such an access is shown
in the top half of Fig. 1.

Using Impulse, an application can configure the memory
controller to export a dense, shadow-space alias that
contains just the diagonal elements and can have the OS
map a new set of virtual addresses to this shadow memory.
The application can then access the diagonal elements via
the new virtual alias. Such an access is shown in the bottom
half of Fig. 1.

Remapping the array diagonal to a dense alias yields
several performance benefits. First, the program enjoys a
higher cache hit rate because several diagonal elements are
loaded into the caches at once. Second, the program
consumes less bus bandwidth because nondiagonal ele-
ments are not sent over the bus. Third, the program makes
more effective use of cache space because the diagonal

0018-9340/01/$10.00 © 2001 IEEE

1118

Conventional Memory System

wasted bus bandwidth

Impulse Memory System

Impulse é ss==
Controller

Cache

Physical pages

Fig. 1. Using Impulse to remap the diagonal of a dense matrix into a
dense cache line. The black boxes represent data on the diagonal,
whereas the gray boxes represent nondiagonal data.

elements now have contiguous shadow addresses. In
general, Impulse’s flexibility allows applications to custo-
mize addressing to fit their needs.

Section 2 describes the Impulse architecture. It describes
the organization of the memory controller itself, as well as
the system call interface that applications use to control it.
The operating system must mediate use of the memory
controller to prevent applications from accessing each
other’s physical memory.

Section 3 describes the types of optimizations that
Impulse supports. Many of the optimizations that we
describe are not new, but Impulse is the first system that
provides hardware support for them all in general-purpose
computer systems. The optimizations include transposing
matrices in memory without copying, creating superpages
without copying, and doing scatter/gather through an
indirection vector. Section 4 presents the results of a
simulation study of Impulse and shows that these optimi-
zations can benefit a wide range of applications. Various
applications see speedups ranging from 20 percent to a
factor of 5. OS policies for dynamic superpage creation
using Impulse have around 20 percent better speedup than
those from prior work.

Section 5 describes related work. A great deal of work
has been done in the compiler and operating systems
communities on related optimizations. The contribution of
Impulse is that it provides hardware support for many
optimizations that previously had to be performed purely
in software. As a result, the trade-offs for performing these
optimizations are different. Section 6 summarizes our
conclusions and describes future work.

2 IMPULSE ARCHITECTURE

Impulse expands the traditional virtual memory hierarchy
by adding address translation hardware to the memory
controller. This optional extra level of remapping is enabled
by the fact that not all physical addresses in a traditional
virtual memory system typically map to valid memory
locations. The unused physical addresses constitute a
shadow address space. The technology trend is putting more
and more bits into physical addresses. For example, more
and more 64-bit systems are coming out. One result of this
trend is that the shadow space is getting larger and larger.
Impulse allows software to configure the memory controller

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

to interpret shadow addresses. Virtualizing unused physi-
cal addresses in this way can improve the efficiency of
on-chip caches and TLBs since hot data can be dynamically
segregated from cold data.

Data items whose physical DRAM addresses are not
contiguous can be mapped to contiguous shadow
addresses. In response to a cache line fetch of a shadow
address, the memory controller fetches and compacts
sparse data into dense cache lines before returning the
data to the processor. To determine where the data
associated with these compacted shadow cache lines
reside in physical memory, Impulse first recovers their
offsets within the original data structure, which we call
pseudovirtual addresses. It then translates these pseudovir-
tual addresses to physical DRAM addresses. The pseu-
dovirtual address space page layout mirrors the virtual
address space, allowing Impulse to remap data structures
that lie across noncontiguous physical pages. The
shadow — pseudovirtual — physical mappings all take place
within the memory controller. The operating system
manages all the resources in the expanded memory
hierarchy and provides an interface for the application to
specify optimizations for particular data structures.

2.1 Software Interface and OS Support
To exploit Impulse, appropriate system calls must be
inserted into the application code to configure the memory
controller. The Architecture and Language Implementation
group at the University of Massachusetts is developing
compiler technology for Impulse. In response to an Impulse
system call, the OS allocates a range of contiguous virtual
addresses large enough to map the elements of the new
(synthetic) data structure. The OS then maps the new data
structure through shadow memory to the corresponding
physical data elements. It does so by allocating a contiguous
range of shadow addresses and downloading two pieces of
information to the MMC: 1) A function that the MMC
should use to perform the mapping from shadow to
pseudovirtual space and 2) a set of page table entries that
can be used to translate pseudovirtual to physical DRAM
addresses.

As an example, consider remapping the diagonal of an
n x n matrix A[]. Fig. 2 depicts the memory translations for
both the matrix A[] and the remapped image of its
diagonal. Upon seeing an access to a shadow address in
the synthetic diagonal data structure, the memory controller
gathers the corresponding diagonal elements from the
original array, packs them into a dense cache line, and
returns this cache line to the processor. The OS interface
allows alignment and offset characteristics of the remapped
data structure to be specified, which gives the application
some control over L1 cache behavior. In the current Impulse
design, coherence is maintained in software: The OS or the
application programmer must keep aliased data consistent
by explicitly flushing the cache.

2.2 Hardware Organization

The organization of the Impulse controller architecture is
depicted in Fig. 3. The critical component of the Impulse
MMC is the shadow engine, which processes all shadow
accesses. The shadow engine contains a small SRAM

ZHANG ET AL.: THE IMPULSE MEMORY CONTROLLER

Conventional Memory System
MMU/TLB -

o)
Impulse Memory System 2 -
b -
on
]
Y]
4] -
—
g [
s E
Diagonal = 7 -
o ||

virtual memory shadow memory pscudo—virtual memory physical memory

Fig. 2. Accessing the (sparse) diagonal elements of an array via a dense
diagonal variable in Impulse.

Assembly Buffer, which is used to scatter/gather cache lines
in the shadow address space, some shadow descriptors to
store remapping configuration information, an ALU unit
(AddrCalc) to translate shadow addresses to pseudovirtual
addresses, and a Memory Controller Translation Lookaside
Buffer (MTLB) to cache recently used translations from
pseudovirtual addresses to physical addresses. The shadow
engine contains eight shadow descriptors, each of which is
is capable of saving all configuration settings for one
remapping. All shadow descriptors share the same ALU
unit and the same MTLB.

Since the extra level of address translation is optional,
addresses appearing on the memory bus may be in the
physical (backed by DRAM) or shadow memory spaces.
Valid physical addresses pass untranslated to the DRAM
interface.

Shadow addresses must be converted to physical
addresses before being presented to the DRAM. To do so,
the shadow engine first determines which shadow descrip-
tor to use and passes its contents to the AddrCalc unit. The
output of the AddrCalc will be a series of offsets for the
individual sparse elements that need to be fetched. These
offsets are passed through the MTLB to compute the
physical addresses that need to be fetched. To hide some
of the latency of fetching remapped data, each shadow
descriptor can be configured to prefetch the remapped
cache line following the currently accessed one.

Depending on how Impulse is used to access a particular
data structure, the shadow address translations can take
three forms: direct, strided, or scatter/gather. Direct map-
ping translates a shadow address directly to a physical
DRAM address. This mapping can be used to recolor
physical pages without copying or to construct superpages
dynamically. Strided mapping creates dense cache lines from
array elements that are not contiguous. The mapping
function maps an address soffset in shadow space to
pseudovirtual address puvaddr + stride x soffset, where
pvaddr is the starting address of the data structure’s
pseudovirtual image. pvaddr is assigned by the OS upon
configuration. Scatter/gather mapping uses an indirection
vector vec to translate an address soffset in shadow space to
pseudovirtual address pvaddr + stride x vec[so ffset).

1119

e MET T :
; Shadow Address i
i [!
1)) ! ,Z . 1
3 ; g Shadow engine i
gl g ’_¢_‘ i
CPU 1| gl 2 TE AddrCale] |
i O 1
MMU 5 i MTLB i
2] i
L2 I DRAM Interface I
\“ I“
| DRAM | DRAM

Fig. 3. Impulse memory controller organization.

3 IMPULSE OPTIMIZATIONS

Impulse remappings can be used to enable a wide variety of
optimizations. We first describe how Impulse’s ability to
pack data into cache lines (either using stride or scatter/
gather remapping) can be used. We examine two scientific
application kernels—sparse matrix-vector multiply (SMVP)
and dense matrix-matrix product (DMMP)—and three
image processing algorithms—image filtering, image rota-
tion, and ray tracing. We then show how Impulse’s ability
to remap pages can be used to automatically improve TLB
behavior through dynamic superpage creation. Some of
these results have been published in prior conference
papers [9], [13], [44], [49].

3.1 Sparse Matrix-Vector Product

Sparse matrix-vector product (SMVP) is an irregular
computational kernel that is critical to many large scientific
algorithms. For example, most of the time in conjugate
gradient [3] or in the Spark98 earthquake simulations [33] is
spent performing SMVP.

To avoid wasting memory, sparse matrices are generally
compacted so that only nonzero elements and correspond-
ing index arrays are stored. For example, the Class A input
matrix for the NAS conjugate gradient kernel (CG-A) is
14,000 by 14,000 and contains only 1.85 million nonzeros.
Although sparse encodings save tremendous amounts of
memory, sparse matrix codes tend to suffer from poor
memory performance because data must be accessed
through indirection vectors. CG-A on an SGI Origin 2000
processor (which has a 2-way, 32K L1 cache and a 2-way,
4MB L2 cache) exhibits L1 and L2 cache hit rates of only
63 percent and 92 percent, respectively.

The inner loop of the sparse matrix-vector product in CG
is roughly:

fori:=1tondo
sum := 0
for j :=ROWS[i] to ROWS[i+1]-1 do

sum += DATA[]]*x[COLUMNI[j]]

bl[i] := sum

1120

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

A x b
S A Z | *
2\ B| |c| |p Al .

5\ E F x| _ e
LIRS . 2 =
vy W i
1 v vy —
\‘\\ \Yj]
— \\\\\ o o o —
\\\\ U °
— 7« v v W o
ROWS '\ LT
'\ | 2] 4] 6] 8] 3] 8] ¢« coLumn
o

for

ROWS[i] to ROWS[i+l1l]-1 do

sum += DATA[j] * x[COLUMNI[j]1];

b[i] :=

sum;

Fig. 4. Conjugate gradient’s sparse matrix-vector product. The matrix A is encoded using three dense arrays: DATA, ROWS, and COLUMN. The
contents of A are in DATA. ROWS[i] indicates where the th row begins in DATA. COLUMN[i] indicates which column of A the element stored in

DATA[i] comes from.

The code and data structures for SMVP are illustrated in
Fig. 4. Each iteration multiplies a row of the sparse matrix A
with the dense vector x. The accesses to x are indirect (via
the COLUMN index vector) and sparse, making this code
perform poorly on conventional memory systems. When-
ever x is accessed, a conventional memory system fetches a
cache line of data, of which only one element is used. The
large sizes of x, COLUMN, and DATA and the sparse nature of
accesses to x inhibit data reuse in the L1 cache. Each
element of COLUMN or DATA is used only once and almost
every access to x results in an L1 cache miss. A large L2
cache can enable reuse of x if physical data layouts can be
managed to prevent L2 cache conflicts between A and x.
Unfortunately, conventional systems do not typically
provide mechanisms for managing physical layout.

The Impulse memory controller supports scatter/
gather of physical addresses through indirection vectors.
Vector machines such as the CDC STAR-100 [18]
provided scatter/gather capabilities in hardware within
the processor. Impulse allows conventional CPUs to take
advantage of scatter/gather functionality by implement-
ing the operations at the memory, which reduces memory
traffic over the bus.

To exploit Impulse, CG’s SMVP code can be modified as
follows:

// x' [k] <- x[COLUMN [k]]

impulse_remap (x, X', N, COLUMN, INDIRECT, ...)
fori :=1tondo

sum := 0

for j :=ROWS[i] to ROWS[i+1]-1 do

sum += DATA[]] * x’ []]
b[i] := sum

The impulse_remap operation asks the operating
system to 1) allocate a new region of shadow space, 2)
map x’ to that shadow region, and 3) instruct the memory
controller to map the elements of the shadow region x’ [k]
to the physical memory for x[COLUMN[k]]. After the
remapped array has been set up, the code accesses the
remapped version of the gathered structure (x’) rather than
the original structure (x).

This optimization improves the performance of SMVP in
two ways. First, spatial locality is improved in the L1 cache.
Since the memory controller packs the gathered elements
into cache lines, each cache line contains 100 percent useful
data, rather than only one useful element. Second, the
processor issues fewer memory instructions since the read
of the indirection vector COLUMN occurs at the memory
controller. Note that the use of scatter/gather at the
memory controller reduces temporal locality in the L2
cache. The remapped elements of x’ cannot be reused since
all of the elements have different addresses.

An alternative to scatter/gather is dynamic physical
page recoloring through direct remapping of physical
pages. Physical page recoloring changes the physical
addresses of pages so that reusable data is mapped to a
different part of a physically addressed cache than non-
reused data. By performing page recoloring, conflict misses
can be eliminated. On a conventional machine, physical
page recoloring is expensive: The only way to change the
physical address of data is to copy the data between
physical pages. Impulse allows physical pages to be
recolored without copying. Virtual page recoloring has been
explored by other authors [6].

For SMVP, the x vector is reused within an iteration,
while elements of the DATA, ROW, and COLUMN vectors are
used only once in each iteration. As an alternative to

ZHANG ET AL.: THE IMPULSE MEMORY CONTROLLER

scatter/gather of x at the memory controller, Impulse can
be used to physically recolor pages so that x does not
conflict with the other data structures in the L2 cache. For
example, in the CG-A benchmark, x is over 100K bytes: It
would not fit in most L1 caches, but would fit in many L2
caches.

Impulse can remap x to pages that occupy most of the
physically indexed L2 cache and can remap DATA, ROWS,
and COLUMNS to a small number of pages that do not
conflict with x. In our experiments, we color the vectors x,
DATA, and COLUMN so that they do not conflict in the L2
cache. The multiplicand vector x is heavily reused, so we
color it to occupy the first half of the L2 cache. To keep the
large DATA and COLUMN structures from conflicting, we
divide the second half of the L2 cache into two quarters and
then color DATA and COLUMN so they each occupy one
quarter of the cache. In effect, we use pieces of the L2 cache
as a set of virtual stream buffers [29] for DATA, ROWS, and
COLUMNS.

3.2 Tiled Matrix Algorithms

Dense matrix algorithms form an important class of
scientific kernels. For example, LU decomposition and
dense Cholesky factorization are dense matrix computa-
tional kernels. Such algorithms are tiled (or blocked) to
increase their efficiency. That is, the iterations of tiled
algorithms are reordered to improve their memory perfor-
mance. The difficulty with using tiled algorithms lies in
choosing an appropriate tile size [27]. Because tiles are
noncontiguous in the virtual address space, it is difficult to
keep them from conflicting with each other or with
themselves in cache. To avoid conflicts, either tile sizes
must be kept small, which makes inefficient use of the
cache, or tiles must be copied into nonconflicting regions of
memory, which is expensive.

Impulse provides an alternative method of removing
cache conflicts for tiles. We use the simplest tiled algorithm,
dense matrix-matrix product (DMMP), as an example of
how Impulse can improve the behavior of tiled matrix
algorithms. Assume that we are computing C' = A x B, we
want to keep the current tile of the C matrix in the L1 cache
as we compute it. In addition, since the same row of the
A matrix is used multiple times to compute a row of the C
matrix, we would like to keep the active row of A in the L2
cache.

Impulse allows base-stride remapping of the tiles from
noncontiguous portions of memory into contiguous tiles of
shadow space. As a result, Impulse makes it easy for the OS
to virtually remap the tiles since the physical footprint of a
tile will match its size. If we use the OS to remap the virtual
address of a matrix tile to its new shadow alias, we can then
eliminate interference in a virtually indexed L1 cache. First,
we divide the L1 cache into three segments. In each
segment, we keep a tile: the current output tile from C
and the input tiles from A and B. When we finish with one
tile, we use Impulse to remap the virtual tile to the next
physical tile. To maintain cache consistency, we must purge
the A and B tiles and flush the C tiles from the caches
whenever they are remapped. As Section 4.1.2 shows, these
costs are minor.

1121

Fig. 5. Example of binomial image filtering. The original image is on the
left and the filtered image is on the right.

3.3 Image Filtering

Image filtering applies a numerical filter function to an
image to modify its appearance. Image filtering may be
used to attenuate high-frequency components caused by
noise in a sampled image, to adjust an image to different
geometry, to detect or enhance edges within an image, or to
create various special effects. Box, Bartlett, Gaussian, and
binomial filters are common in practice. Each modifies the
input image in a different way, but all share similar
computational characteristics.

We concentrate on a representative class of filters,
binomial filters [15], in which each pixel in the output image
is computed by applying a two-dimensional “mask” to the
input image. Binomial filtering is computationally similar
to a single step of a successive overrelaxation algorithm for
solving differential equations: The filtered pixel value is
calculated as a linear function of the neighboring pixel
values of the original image and the corresponding mask
values. For example, for an order-5 binomial filter, the
value of pixel (4,j) in the output image will be
B (iyg) +*(i—1,5)+Z*(i+1,5)+.... To avoid
edge effects, the original image boundaries must be
extended before applying the masking function. Fig. 5
illustrates a black-and-white sample image before and after
the application of a small binomial filter.

In practice, many filter functions, including binomial, are
“separable,” meaning that they are symmetric and can be
decomposed into a pair of orthogonal linear filters. For
example, a two-dimensional mask can be decomposed into
two, one-dimensional, linear masks ([, 15 1% 15)—the
two-dimensional mask is simply the outer product of this
one-dimensional mask with its transpose. The process of
applying the mask to the input image can be performed by
sweeping first along the rows and then the columns,
calculating a partial sum at each step. Each pixel in the
original image is used only for a short time, which makes
filtering a pure streaming application. Impulse can trans-
pose both the input and output image arrays without
copying, which gives the column sweep much better cache
behavior.

3.4 Image Rotation

Image warping refers to any algorithm that performs an
image-to-image transformation. Separable image warps are
those that can be decomposed into multiple one-dimen-
sional transformations [10]. For separable warps, Impulse

1122

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

NSNS

Fig. 6. Three-shear rotation of an image counterclockwise through one radian. The original image (upper left) is first sheared horizontally (upper
right). That image is sheared upward (lower right). The final rotated image (lower left) is generated via one final horizontal shift.

can be used to improve the cache and TLB performance of
one-dimensional traversals orthogonal to the image layout
in memory. The three-shear image rotation algorithm is an
example of a separable image warp. This algorithm rotates a
two-dimensional image around its center in three stages,
each of which performs a “shear” operation on the image,
as illustrated in Fig. 6. The algorithm is simpler to write,
faster to run, and has fewer visual artifacts than a direct
rotation. The underlying math is straightforward. Rotation
through an angle § can be expressed as matrix multi-

plication:
2\ [cos® sind x
y) \ —sinf cos@)\ y)

The rotation matrix can be broken into three shears as
follows:

cosf sinf\ 1 0 1 sinf 1 0
—sinf cosf) —tang 1 0 1 —tang 1)

None of the shears requires scaling (since the determinant
of each matrix is 1), so each involves just a shift of rows or
columns. Not only is this algorithm simple to understand
and implement, it is robust in that it is defined over all
rotation values from 0° to 90°. Two-shear rotations fail for
angles near 90°.

We assume a simple image representation of an array of
pixel values. The second shear operation (along the y axis)
walks along the column of the image matrix, which gives
rise to poor memory performance for large images. Impulse
improves both cache and TLB performance by transposing
the matrix without copying so that walking along columns
in the image is replaced by walking along rows in a
transposed matrix.

3.5 Isosurface Rendering Using Ray Tracing

Our isosurface rendering benchmark is based on the
technique demonstrated by Parker et al. [37]. This bench-
mark generates an image of an isosurface in a volume from
a specific point of view. In contrast to other volume
visualization methods, this method does not generate an
explicit representation of the isosurface and render it with a
z-buffer, but instead uses brute-force ray tracing to perform
interactive isosurfacing. For each ray, the first isosurface
intersected determines the value of the corresponding pixel.
The approach has a high intrinsic computational cost, but
its simplicity and scalability make it ideal for large data sets
on current high-end systems.

Traditionally, ray tracing has not been used for volume
visualization because it suffers from poor memory behavior
when rays do not travel along the direction that data is
stored. Each ray must be traced through a potentially large
fraction of the volume, giving rise to two problems. First,
many memory pages may need to be touched, which results
in high TLB pressure. Second, a ray with a high angle of
incidence may visit only one volume element (voxel) per
cache line, in which case, bus bandwidth will be wasted
loading unnecessary data that pollutes the cache. By
carefully hand-optimizing their ray tracer’s memory access
patterns, Parker et al. achieve acceptable performance for
interactive rendering (about 10 frames per second). They
improve data locality by organizing the data set into a
multilevel spatial hierarchy of tiles, each composed of
smaller cells. The smaller cells provide good cache-line
utilization. “Macro cells” are created to cache the minimum
and maximum data values from the cells of each tile. These
macro cells enable a simple min/max comparison to detect
whether a ray intersects an isosurface within the tile. Empty
macro cells need not be traversed.

Careful hand-tiling of the volume data set can yield
much better memory performance, but choosing the
optimal number of levels in the spatial hierarchy and sizes
for the tiles at each level is difficult and the resulting code is
hard to understand and maintain. Impulse can deliver
better performance than hand-tiling at a lower program-
ming cost. There is no need to preprocess the volume data
set for good memory performance: The Impulse memory
controller can remap it dynamically. In addition, the source
code retains its readability and modifiability.

Like many real-world visualization systems, our bench-
mark uses an orthographic tracer whose rays all intersect
the screen surface at right angles, producing images that
lack perspective and appear far away, but are relatively
simple to compute.

We use Impulse to extract the voxels that a ray
potentially intersects when traversing the volume. The
righthand side of Fig. 7 illustrates how each ray visits a
certain sequence of voxels in the volume. Instead of fetching
cache lines full of unnecessary voxels, Impulse can remap a
ray to the voxels it requires so that only useful voxels will
be fetched.

3.6 Online Superpage Promotion

Impulse can be used to improve TLB performance
automatically by having the operating system automati-
cally create superpages dynamically. Superpages are

ZHANG ET AL.: THE IMPULSE MEMORY CONTROLLER

7 = volume
v
a4
%
X8
rd \
/
4 screen

1123

Fig. 7. Isosurface rendering using ray tracing. The picture on the left shows rays perpendicular to the viewing screen being traced through a volume.
The one on the right illustrates how each ray visits a sequence of voxels in the volume; Impulse optimizes voxel fetches from memory via indirection

vectors representing the voxel sequences for each ray.

supported by the translation lookaside buffers (TLBs) on
almost all modern processors; they are groups of
contiguous virtual memory pages that can be mapped
with a single TLB entry [12], [30], [43]. Using superpages
makes more efficient use of a TLB, but the physical pages
that back a superpage must be contiguous and properly
aligned. Dynamically coalescing smaller pages into a
superpage thus requires that all the pages be be coinciden-
tally adjacent and aligned (which is unlikely) or that they be
copied so that they become so. The overhead of promoting
superpages by copying includes both direct and indirect
costs. The direct costs come from copying the pages and
changing the mappings. Indirect costs include the increased
number of instructions executed on each TLB miss (due to
the new decision-making code in the miss handler) and the
increased contention in the cache hierarchy (due to the code
and data used in the promotion process). When deciding
whether to create superpages, all costs must be balanced
against the improvements in TLB performance.

Romer et al. [40] study several different policies for
dynamically creating superpages. Their trace-driven simu-
lations and analysis show how a policy that balances
potential performance benefits and promotion overheads
can improve performance in some TLB-bound applications
by about 50 percent. Our work extends that of Romer et al.
by showing how Impulse changes the design of a dynamic
superpage promotion policy.

The Impulse memory controller maintains its own page
tables for shadow memory mappings. Building superpages

Virtual Addresses

0x00004000 0x80240000

0x00005000 0x80241000

_>.

0x00006000 0x80242000

0x00007000 0x80243000

virtual physical size
| 00004 | 80240 | 004 |

Processor TLB

Fig. 8. An example of creating superpages using shadow space.

Shadow Addresses

from base pages that are not physically contiguous entails
simply remapping the virtual pages to properly aligned
shadow pages. The memory controller then maps the
shadow pages to the original physical pages. The proces-
sor’s TLB is not affected by the extra level of translation that
takes place at the controller.

Fig. 8 illustrates how superpage mapping works on
Impulse. In this example, the OS has mapped a contiguous
16KB virtual address range to a single shadow superpage at
“physical” page frame 0x80240. When an address in the
shadow physical range is placed on the system memory
bus, the memory controller detects that this “physical”
address needs to be retranslated using its local shadow-to-
physical translation tables. In the example in Fig. 8, the
processor translates an access to virtual address
0x00004080 to shadow physical address 0x80240080,
which the controller, in turn, translates to real physical
address 0x40138080.

4 PERFORMANCE

We performed a series of detailed simulations to evaluate
the performance impact of the optimizations described in
Section 3. Our studies use the URSIM [48] execution-driven
simulator, which is derived from RSIM [35]. URSIM models
a microarchitecture close to the MIPS R10000 microproces-
sor [30] with a 64-entry instruction window. We configured
it to issue four instructions per cycle. We model a
64-kilobyte L1 data cache that is nonblocking, write-back,

Physical Addresses

0x04012000

N

0x06155000

A 0x20285000

* 0x40138000

e

1124

TABLE 1
Simulated Results for the NAS Class A Conjugate Gradient
Benchmark, Using Two Different Optimizations

| H Conventional | Scatter/Gather | Pagc Coloring

Time 5.48B 1.77B 4.67B
L1 hit ratio 63.4% 77.8% 63.7%
L2 hit ratio 19.7% 15.9% 22.0%
mem hit ratio 16.9% 6.3% 14.3%
avg load time 47.6 232 38.7
TLB misses 1.01M 1.05M 0.75M
loads 493M 353M 493M
speedup — 3.10 1.17

Times are in processor cycles.

virtually indexed, physically tagged, direct-mapped, and
has 32-byte lines. The 512-kilobyte L2 data cache is
nonblocking, write-back, physically indexed, physically
tagged, two-way associative, and has 128-byte lines. L1
cache hits take one cycle and L2 cache hits take eight cycles.

URSIM models a split-transaction MIPS R10000 cluster
bus with a snoopy coherence protocol. The bus multiplexes
addresses and data, is eight bytes wide, has a three-cycle
arbitration delay, and a one-cycle turn-around time. We
model two memory controllers: a conventional high-
performance MMC based on the one in the SGI 0200 server
and the Impulse MMC. The system bus, memory controller,
and DRAMs have the same clock rate, which is one third of
the CPU clock’s. The memory system supports critical word
first, i.e., a stalled memory instruction resumes execution
after the first quad-word returns. The load latency of the
first quad-word is 16 memory cycles.

The unified TLB is single-cycle, fully associative, soft-
ware-managed, and combined instruction and data. It
employs a least-recently-used replacement policy. The base
page size is 4,096 bytes. Superpages are built in power-of-
two multiples of the base page size and the biggest
superpage that the TLB can map contains 2,048 base pages.
We model a 128-entry TLB.

In the remainder of this section, we examine the
simulated performance of Impulse on the examples given
in Section 3. Our calculation of “L2 cache hit ratio” and
“mem (memory) hit ratio” uses the total number of loads
executed (not the total number of L2 cache accesses) as the
divisor for both ratios. This formulation makes it easier to
compare the effects of the L1 and L2 caches on memory
accesses: the sum of the L1 cache, L2 cache, and memory hit
ratios equals 100 percent.

4.1 Fine-Grained Remapping

The first set of experiments exploits Impulse’s fine-grained
remapping capabilities to create synthetic data structures
with better locality than in the original programs.

4.1.1 Sparse Matrix-Vector Product

Table 1 shows how Impulse can be used to improve the
performance of the NAS Class A Conjugate Gradient
(CG-A) benchmark. The first column gives results from
running CG-A on a non-Impulse system. The second and
third columns give results from running CG-A on an

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

Impulse system. The second column numbers come from
using the Impulse memory controller to perform scatter/
gather; the third column numbers come from using it to
perform physical page coloring.

On the conventional memory system, CG-A suffers
many cache misses: Nearly 17 percent of accesses go to
the memory. The inner loop of CG-A is very small, so it
can generate cache misses quickly, which leads to there
being a large number of cache misses outstanding at any
given time. The large number of outstanding memory
operations causes heavy contention for the system bus,
memory controller, and DRAMs; for the baseline version
of CG-A, bus utilization reaches 88.5 percent. As a result,
the average latency of a memory operation reaches 163
cycles for the baseline version of CG-A. This behavior,
combined with the high cache miss rates, causes the
average load in CG-A to take 47.6 cycles, compared to
only one cycle for L1 cache hits.

Scatter/gather remapping on CG-A improves perfor-
mance by over a factor of 3, largely due to the increase in
the L1 cache hit ratio and the decrease in the number of
loads/stores that go to memory. Each main memory access
for the remapped vector x’ loads the cache with several
useful elements from the original vector x, which increases
the L1 cache hit rate. In other words, retrieving elements
from the remapped array x’ improves the spatial locality of
CG-A.

Scatter /gather remapping reduces the total number of
loads executed by the program from 493 million from
353 million. In the original program, two loads are issued to
compute x [COLUMN [j]]. In the scatter/gather version of
the program, only one load is issued by the processor
because the load of the indirection vector occurs at the
memory controller. This reduction more than compensates
for the scatter/gather’s increase in the average cost of a load
and accounts for almost one-third of the cycles saved.

To provide another example of how useful Impulse can
be, we use it to recolor the pages of the major data
structures in CG-A. Page recoloring consistently reduces the
cost of memory accesses by eliminating conflict misses in
the L2 cache and increasing the L2 cache hit ratio from
19.7 percent to 22.0 percent. As a result, fewer loads go to
memory and performance is improved by 17 percent.

Although page recoloring improves performance on
CG-A, it is not nearly as effective as scatter/gather. The
difference is primarily because page recoloring does not
achieve the two major improvements that scatter/gather
provides: improving the locality of CG-A and reducing the
number of loads executed. This comparison does not mean
that page recoloring is not a useful optimization. Although
the speedup for page recoloring on CG-A is substantially
less than scatter/gather, page recoloring is more broadly
applicable.

4.1.2 Dense Matrix-Matrix Product

This section examines the performance benefits of tile
remapping for DMMP and compares the results to software
tile copying. Impulse’s alignment restrictions require that
remapped tiles be aligned to L2 cache line boundaries,
which adds the following constraints to our matrices:

ZHANG ET AL.: THE IMPULSE MEMORY CONTROLLER

TABLE 2
Simulated Results for Tiled Matrix-Matrix Product

Conventional | Softwarc copying | Impulsc
Time 664M 610M 547M
L1 hit ratio 49.6% 98.6% 99.5%
L2 hit ratio 48.7% 1.1% 0.4%
mem hit ratio 1.7% 0.3% 0.1%
avg load time 6.68 1.71 1.46
TLB misses 0.27M 0.28M 0.01M
speedup — 1.09 1.21

Times are in millions of cycles. The matrices are 512 by 512, with 32 by
32 tiles.

e Tile sizes must be a multiple of a cache line. In our
experiments, this size is 128 bytes. This constraint is
not overly limiting, especially since it makes the
most efficient use of cache space.

e Arrays must be padded so that tiles are aligned to
128 bytes. Compilers can easily support this con-
straint: Similar padding techniques have been
explored in the context of vector processors [7].

Table 2 illustrates the results of our tiling experiments.
The baseline is the conventional no-copy tiling. Software tile
copying outperforms the baseline code by almost 10 percent;
Impulse tile remapping outperforms it by more than
20 percent. The improvement in performance for both is
primarily due to the difference in cache behavior. Both
copying and remapping more than double the L1 cache hit
rate and they reduce the average number of cycles for a load
to less than two. Impulse has a higher L1 cache hit ratio
than software copying since copying tiles can incur cache
misses: The number of loads that go to memory is reduced
by two-thirds. In addition, the cost of copying the tiles is
greater than the overhead of using Impulse to remap tiles.
As a result, using Impulse provides twice as much speedup.

This comparison between conventional and Impulse
copying schemes is conservative for several reasons. Copy-
ing works particularly well on DMMP: The number of
operations performed on a tile of size O(n?) is O(n?), which
means the overhead of copying is relatively low. For
algorithms where the reuse of the data is lower, the relative
overhead of copying is greater. Likewise, as caches (and
therefore tiles) grow larger, the cost of copying grows,
whereas the (low) cost of Impulse’s tile remapping remains
fixed. Finally, some authors have found that the perfor-
mance of copying can vary greatly with matrix size, tile
size, and cache size [45], but Impulse should be insensitive
to cross-interference between tiles.

4.1.3 Image Filtering

Table 3 presents the results of order-129 binomial filter on a
32 x 1,024 color image. The Impulse version of the code
pads each pixel to four bytes. Performance differences
between the hand-tiled and Impulse versions of the
algorithm arise from the vertical pass over the data. The
tiled version suffers more than 3.5 times as many L1 cache
misses and 40 times as many TLB faults and executed
134 million instructions in TLB miss handlers. The indirect
impact of the high TLB miss rate is even more dramatic—in

1125

TABLE 3
Simulated Results for Image Filtering with Various Memory
System Configurations

| [Tiled [Impulse |

Time 459M 237M
L1 hit ratio 98.95% | 99.7%
L2 hit ratio 0.81% | 0.25%
mem hit ratio 0.24% | 0.05%
avg load time 1.57 1.16
issued instructions (total) 725M 290M
graduated instructions (total) 435M 280M
issued instructions (TLB) 256M 7.8M
graduated instructions (TLB) 134M 3.3M
TLB misses 421M | 0.13M
speedup — 1.94

Times are in processor cycles. TLB misses are the number of user data
misses.

the baseline filtering program, almost 300 million instruc-
tions are issued but not graduated. In contrast, the Impulse
version of the algorithm executes only 3.3 million instruc-
tions handling TLB misses and only 10 million instructions
are issued but not graduated. Compared to these dramatic
performance improvements, the less than 1 million cycles
spent setting up Impulse remapping are a negligible
overhead.

Although both versions of the algorithm touch each data
element the same number of times, Impulse improves the
memory behavior of the image filtering code in two ways.
When the original algorithm performs the vertical filtering
pass, it touches more pages per iteration than the processor
TLB can hold, yielding the high kernel overhead observed
in these runs. Image cache lines conflicting within the L1
cache further degrade performance. Since the Impulse
version of the code accesses (what appear to the processor
to be) contiguous addresses, it suffers very few TLB faults
and has near-perfect temporal and spatial locality in the
L1 cache.

4.1.4 Three-Shear Image Rotation

Table 4 illustrates performance results for rotating a color
image clockwise through one radian. The image contains 24
bits of color information, as in a “.ppm” file. We measure
three versions of this benchmark: the original version,
adapted from Wolberg [47]; a hand-tiled version of the code
in which the vertical shear’s traversal is blocked; and a
version adapted to Impulse in which the matrices are
transposed at the memory controller. The Impulse version
requires that each pixel be padded to four bytes since
Impulse operates on power-of-two object sizes. To quantify
the performance effect of padding, we measure the results
for the non-Impulse versions of the code using both three-
byte and four-byte pixels.

The performance differences among the different ver-
sions are entirely due to cycles saved during the vertical
shear. The horizontal shears exhibit good memory behavior
(in row-major layout) and, so, are not a performance
bottleneck. Impulse increases the cache hit rate from
roughly 95 percent to 98.5 percent and reduces the number

1126

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

TABLE 4
Simulation Results for Performing a 3-Shear Rotation of a 1k-by-1k 24-Bit Color Image
Original | Original | Tiled Tiled | Impulse
padded padded

Time 572M 576M | 284M | 278M 215M
L1 hit ratio 95.0% 94.8% | 98.1% | 97.6% | 98.5%
L2 hit ratio 1.5% 1.6% | 1.1% 1.5% 1.1%
mem hit ratio 3.5% 3.6% | 0.8% 0.9% 0.4%
avg load time 3.85 3.85 1.81 2.19 1.50
issued instructions (total) 476M 477M | 300M | 294M 232M
graduated instructions (total) 346M 346M | 262M | 262M 229M
issued instructions (TLB) 212M 215M 52M 5IM | 0.81IM
graduated instructions (TLB) 103M 104M 24M 24M | 0.42M
TLB misses 3.70M | 3.72M | 0.93M | 0.94M 0IM
speedup — 0.99 2.01 2.06 2.66

Times are in processor cycles. TLB misses are user data misses.

of TLB misses by two orders of magnitude. This reduction
in the TLB miss rate eliminates 99 million TLB miss
handling instructions and reduces the number of issued
but not graduated instructions by over 100 million. These
two effects constitute most of Impulse’s benefit.

The tiled version walks through all columns 32 pixels at
a time, which yields a hit rate higher than the original
program’s, but lower than Impulse’s. The tiles in the source
matrix are sheared in the destination matrix, so, even
though cache performance for the source is nearly perfect, it
suffers for the destination. For the same reason, the decrease
in TLB misses for the tiled code is not as great as that for the
Impulse code.

The Impulse code requires 33 percent more memory to
store a 24-bit color image. We also measured the perfor-
mance impact of using padded 32-bit pixels with each of the
non-Impulse codes. In the original program, padding
causes each cache line fetch to load useless pad bytes,
which degrades the performance of a program that is
already memory-bound. In contrast, for the tiled program,
the increase in memory traffic is balanced by the reduction
in load, shift, and mask operations: Manipulating word-
aligned pixels is faster than manipulating byte-aligned
pixels. The padded, tiled version of the rotation code is still
slower than Impulse. The tiled version of the shear uses
more cycles recomputing (or saving and restoring) each
column’s displacement when traversing the tiles. For our
input image, this displacement is computed % = 32 times
since the column length is 1,024 and the tile height is 32. In
contrast, the Impulse code (which is not tiled) only
computes each column’s displacement once since each
column is completely traversed when it is visited.

4.1.5 Isosurface Rendering Using Ray Tracing

For simplicity, our benchmark assumes that the screen
plane is parallel to the volume’s z axis. As a result, we can
compute an entire plane’s worth of indirection vector at
once and we do not need to remap addresses for every ray.
This assumption is not a large restriction: It assumes the use
of a volume rendering algorithm like Lacroute’s [26], which
transforms arbitrary viewing angles into angles that have

better memory performance. The isosurface in the volume is

on one edge of the surface, parallel to the x-z plane.
The measurements we present are for two particular

viewing angles. Table 5a shows results when the screen is
parallel to the y-z plane so that the rays exactly follow the

TABLE 5
Results for Isosurface Rendering

| H Original ‘ Indirection | Impulse
Time 74.2M 65.0M 61.4M
L1 hit ratio 95.1% 90.8% 91.8%
L2 hit ratio 3.7% 7.3% 6.3%
mem hit ratio 1.2% 1.9% 1.9%
avg load time 1.8 2.8 2.5
loads 21.6M 17.2M 13M
issued instructions (total) 131M 71.4M 57.7M
graduated instructions (total) 128M 69.3M 55.5M
issued instructions (TLB) 0.68M 1.14M 0.18M
graduated instructions (TLB) 0.35M 0.50M 0.15M
TLB misses 9.0K 13.5K 0.8K
speedup — 1.14 1.21
(a)
| H Original ‘ Indircction | Impulsc ‘
Time 383M 397M | 69.7M
L1 hit ratio 87.1% 82.6% 93.3%
L2 hit ratio 0.6% 2.2% 51%
mem hit ratio 12.3% 15.2% 1.6%
avg load time 8.2 10.3 24
loads 32M 27T 16M
issued instructions (total) 348M 318M 76M
graduated instructions (total) 218M 148M 68M
issued instructions (TLB) 126M 156M 0.18M
graduated instructions (TLB) 59M 60M 0.15M
TLB misses 2.28M 2.33M 0.01M
speedup — 0.97 5.49

(b)
Times are in processor cycles. TLB misses are user data misses. In (a),
the rays follow the memory layout of the image; in (b), they are
perpendicular to the memory layout.

ZHANG ET AL.: THE IMPULSE MEMORY CONTROLLER

layout of voxels in memory (we assume an x-y-z layout
order). Table 5b shows results when the screen is parallel to
the x-z plane, where the rays exhibit the worst possible
cache and TLB behavior when traversing the x-y planes.
These two sets of data points represent the extremes in
memory performance for the ray tracer.

In our data, the measurements labeled “Original” are of a
ray tracer that uses macro-cells to reduce the number of
voxels traversed, but that does not tile the volume. The
macro-cells are 4 x 4 x 4 voxels in size. The results labeled
“Indirection” use macro-cells and address voxels through
an indirection vector. The indirection vector stores pre-
computed voxel offsets of each x-y plane. Finally, the results
labeled “Impulse” use Impulse to perform the indirection
lookup at the memory controller.

In Table 5a, where the rays are parallel to the array
layout, Impulse delivers a substantial performance gain.
Precomputing the voxel offsets reduces execution time by
approximately nine million cycles. The experiment reported
in the Indirection column exchanges the computation of
voxels offsets for the accesses to the indirection vector.
Although it increases the number of memory loads, it still
achieves positive speedup because most of those accesses
are cache hits. With Impulse, the accesses to the indirection
vector are performed only within the memory controller,
which hides the access latencies. Consequently, Impulse
obtained a higher speedup. Compared to the original
version, Impulse saves the computation of voxels offsets.

In Table 5b, where the rays are perpendicular to the
voxel array layout, Impulse yields a much larger perfor-
mance gain—a speedup of 5.49. Reducing the number of
TLB misses saves approximately 59 million graduated
instructions while reducing the number of issued but not
graduated instructions by approximately 120 million.
Increasing the cache hit ratio by loading no useless voxels
into the cache saves the remaining quarter-billion cycles.
The Indirection version executes about 3 percent slower
than the original one. With rays perpendicular to the voxel
array, accessing voxels generates lots of cache misses and
frequently loads new data into the cache. These loads can
evict the indirection vector from the cache and bring down
the cache hit ratio of the indirection vector accesses. As a
result, the overhead of accessing the indirection vector
outweighs the benefit of saving the computation of voxel
offsets and slows down execution.

4.2 Online Superpage Promotion

To evaluate the performance of Impulse’s support for
inexpensive superpage promotion, we reevaluated Romer
et al.’s work on dynamic superpage promotion algorithms
[40] in the context of Impulse. Our system model differs
from theirs in several significant ways. They employ a form
of trace-driven simulation with ATOM [42], a binary
rewriting tool. That is, they rewrite their applications using
ATOM to monitor memory references and the modified
applications are used to do on-the-fly “simulation” of TLB
behavior. Their simulated system has two 32-entry, fully
associative TLBs (one for instructions and one for data),
uses LRU replacement on TLB entries, and has a base page
size of 4,096 bytes. To better understand how TLB size may

1127

affect the performance, we model two TLB sizes: 64 and 128
entries.

Romer et al. combine the results of their trace-driven
simulation with measured baseline performance results to
calculate effective speedup on their benchmarks. They
execute their benchmarks on a DEC Alpha 3000/700
running DEC OSE/1 2.1. The processor in that system is a
dual-issue, in-order, 225 MHz Alpha 21064. The system has
two megabytes of off-chip cache and 160 megabytes of main
memory.

For their simulations, they assume the following fixed
costs, which do not take cache effects into account:

e Each 1Kbyte copied is assigned a 3000-cycle cost,

e The asap policy is charged 30 cycles for each TLB
miss,

e and the approx-online policy is charged 130 cycles
for each TLB miss.

The performance results presented here are obtained
through complete simulation of the benchmarks. We
measure both kernel and application time, the direct
overhead of implementing the superpage promotion algo-
rithms, and the resulting effects on the system, including
the expanded TLB miss handlers, cache effects due to
accessing the page tables and maintaining prefetch coun-
ters, and the overhead associated with promoting and using
superpages with Impulse. We present comparative perfor-
mance results for our application benchmark suite.

4.2.1 Application Results

To evaluate the different superpage promotion approaches
on larger problems, we use eight programs from a mix of
sources. Our benchmark suite includes three SPEC95
benchmarks (compress, gcc, and vortex), the three
image processing benchmarks described earlier (1sosurf,
rotate, and filter), one scientific benchmark (adi), and
one benchmark from the DIS benchmark suite (dm) [28]. All
benchmarks were compiled with Sun cc Workshop Compi-
ler 4.2 and optimization level “-xO4.”

Compress is the SPEC95 data compression program run
on an input of 10 million characters. To avoid over-
estimating the efficacy of superpages, the compression
algorithm was run only once, instead of the default 25 times.
gcc is the ccl pass of the version 2.5.3 gcc compiler (for
SPARC architectures) used to compile the 306-kilobyte file
“lcp-decl.c.” vortex is an object-oriented database pro-
gram measured with the SPEC95 “test” input. isosurf is
the interactive isosurfacing volume renderer described in
Section 4.1.5. filter performs an order-129 binomial filter
on a 32 x 1,024 color image. rotate turns a 1,024 x 1,024
color image clockwise through one radian. adi implements
algorithm alternative direction integration. dm is a data
management program using input file “dm07.in.”

Two of these benchmarks, gcc and compress, are also
included in Romer et al.’s benchmark suite, although we
use SPEC95 versions, whereas they used SPEC92 versions.
We do not use the other SPEC92 applications from that
study due to the benchmarks’ obsolescence. Several of
Romer et al.’s remaining benchmarks were based on tools
used in the research environment at the University of
Washington and were not readily available to us.

1128

TABLE 6
Characteristics of Each Baseline Run

Total | Cache | TLB TLB
Benchmark | cycles | misses | misses | miss

M) (K) (K) time

64-entry TLB
compress 632 | 3455 | 4845 |27.9%
gcc 628 1555 | 2103 | 10.3%
vortex 605 1090 | 4062 | 21.4%
isosurf 94 989 563 | 18.3%
adi 669 | 5796 | 6673 | 33.8%
filter 425 241 | 4798 | 35.1%
rotate 547 | 3570 | 3807 | 17.9%
dm 233 129 771 | 9.2%
128-entry TLB

compress 426 3619 36 | 0.6%
gee 533 1526 332 | 2.0%
vortex 423 763 1047 | 8.1%
isosurf 93 989 548 | 17.4%
adi 662 | 5795 | 6482 |32.1%
filter 417 240 | 4544 | 33.4%
rotate 545 | 3569 | 3702 | 16.9%
dm 211 143 250 | 3.3%

Table 6 lists the characteristics of the baseline run of each
benchmark with a four-way issue superscalar processor,
where no superpage promotion occurs. TLB miss time is the
total time spent in the data TLB miss handler. These
benchmarks demonstrate varying sensitivity to TLB perfor-
mance: On the system with the smaller TLB, between
9.2 percent and 35.1 percent of their execution time is lost
due to TLB miss costs. The percentage of time spent
handling TLB misses falls to between less than 1 percent
and 33.4 percent on the system with a 128-entry TLB.

Figs. 9 and 10 show the normalized speedups of the
different combinations of promotion policies (asap and
approx-online) and mechanisms (remapping and copying)
compared to the baseline instance of each benchmark. In
our experiments we found that the best approx-online

B Impulse+asap
B Impulse+approx_online
O copying+asap
> O copying+approx_online

speedup
107
106

0.96

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

threshold for a two-page superpage is 16 on a conventional
system and is 4 on an Impulse system. These are also the
thresholds used in our full-application tests. Fig. 9 gives
results with a 64-entry TLB; Fig. 10 gives results with a 128-
entry TLB. Online superpage promotion can improve
performance by up to a factor of two (on adi with
remapping asap), but it also can decrease performance by
a similar factor (when using the copying version of asap on
isosurf). We can make two orthogonal comparisons from
these figures: remapping versus copying and asap versus
approx-online.

4.2.2 Asap vs. Approx-Online

We first compare the two promotion algorithms, asap and
approx-online, using the results from Figs. 9 and 10. The
relative performance of the two algorithms is strongly
influenced by the choice of promotion mechanism, remap-
ping or copying. Using remapping, asap slightly outperforms
approx-online in the average case. It exceeds the perfor-
mance of approx-online in 14 of the 16 experiments and
trails the performance of approx-online in only one case (on
vortex with a 64-entry tlb). The differences in performance
range from asap+remap outperforming aol+remap by 32 per-
cent for adi with a 64-entry TLB, to aol+remap outperform-
ing asap+remap by 6 percent for vortex with a 64-entry
TLB. In general, however, performance differences between
the two policies are small: asap is, on average, 7 percent
better with a 64-entry TLB and 6 percent better with a 128-
entry TLB.

The results change noticeably when we employ a copying
promotion mechanism: approx-online outperforms asap in
nine of the 16 experiments, while the policies perform
almost identically in three of the other seven cases. The
magnitude of the disparity between approx-online and
asap results is also dramatically larger. The differences in
performance range from asap outperforming approx-online
by 20 percent for vortex with a 64-entry TLB, to approx-
online outperforming asap by 45 percent for isosurf with
a 64-entry TLB. Overall, our results confirm those of Romer
et al.: the best promotion policy to use when creating

1048

109

rotate dm

compress gcc vortex isosurf adi filter
Fig. 9. Normalized speedups for each of two promotion policies on a 4-issue system with a 64-entry TLB.
3 m Impulse+asap

B Impulse+approx_online

O copying+asap b=
o 2 O copying+approx_online i
E

~ o

% . g 28 ==

© w©

=S = I

— = >
o
=
S

compress

isosurf

adi filter rotate

Fig. 10. Normalized speedups for each of two promotion policies on a 4-issue system with a 128-entry TLB.

ZHANG ET AL.: THE IMPULSE MEMORY CONTROLLER

superpages via copying is approx-online. Taking the
arithmetic mean of the performance differences reveals that
asap is, on average, 6 percent better with a 64-entry TLB
and 4 percent better with a 128-entry TLB.

The relative performance of the asap and approx-online
promotion policies changes when we employ different
promotion mechanisms because asap tends to create super-
pages more aggressively than approx-online. The design
assumption underlying the approx-online algorithm (and
the reason that it performs better than asap when copying is
used) is that superpages should not be created until the cost
of TLB misses equals the cost of creating the superpages.
Given that remapping has a much lower cost for creating
superpages than copying, it is not surprising that the more
aggressive asap policy performs relatively better with it
than approx-online does.

4.2.3 Remapping vs. Copying

When we compare the two superpage creation mechanisms,
remapping is the clear winner, but by highly varying margins.
The differences in performance between the best overall
remapping-based algorithm (asap+remap) and the best copy-
ing-based algorithm (aonline+copying) is as large as 97 percent
in the case of adi on both a 64-entry and 128-entry TLB.
Overall, asap+remap outperforms aonline+copying by more
than 10 percent in 11 of the 16 experiments, averaging
33 percent better with a 64-entry TLB and 22 percent better
with a 128-entry TLB.

4.2.4 Discussion

Romer et al. show that approx-online is generally superior
to asap when copying is used. When remapping is used to
build superpages, though, we find that the reverse is true.
Using Impulse-style remapping results in larger speedups
and consumes much less physical memory. Since superpage
promotion is cheaper with Impulse, we can also afford to
promote pages more aggressively.

Romer et al.’s trace-based simulation does not model any
cache interference between the application and the TLB
miss handler; instead, that study assumes that each super-
page promotion costs a total of 3,000 cycles per kilobyte
copied [40]. Table 7 shows our measured per-kilobyte cost
(in CPU cycles) to promote pages by copying for four
representative benchmarks. (Note that we also assume a
relatively faster processor.) We measure this bound by
subtracting the execution time of aol+remap from that of
aol+copy and dividing by the number of kilobytes copied.
For our simulation platform and benchmark suite, copying
is at least twice as expensive as Romer et al. assumed. For
gce and raytrace, superpage promotion costs more than
three times the cost charged in the trace-driven study. Part
of these differences is due to the cache effects that copying
incurs.

We find that when copying is used to promote pages,
approx-online performs better with a lower (more aggres-
sive) threshold than used by Romer et al. Specifically, the
best thresholds that our experiments revealed varied from
four to 16, while their study used a fixed threshold of 100.
This difference in thresholds has a significant impact on
performance. For example, when we run the adi bench-
mark using a threshold of 32, approx-online with copying

1129

TABLE 7
Average Copy Costs (in Cycles) for approx-online Policy

cycles per 1K average baseline

bytes promoted | cache hit ratio | cache hit ratio

gce 10,798 98.81% 99.33%
filter 5,966 99.80% 99.80%
raytrace 10,352 96.50% 87.20%
dm 6,534 99.80% 99.86%

slows performance by 10 percent with a 128-entry TLB. In
contrast, when we run approx-online with copying using
the best threshold of 16, performance improves by 9 percent.
In general, we find that even the copying-based promotion
algorithms need to be more aggressive about creating
superpages than was suggested by Romer et al. Given that
our cost of promoting pages is much higher than the 3,000
cycles estimated in their study, one might expect that the
best thresholds would be higher than Romer et al’s.
However, the cost of a TLB miss far outweighs the greater
copying costs; our TLB miss costs are about an order of
magnitude greater than those assumed in their study.

5 RELATED WORK

A number of projects have proposed modifications to
conventional CPU or DRAM designs to improve memory
system performance, including supporting massive multi-
threading [2], moving processing power on to DRAM chips
[25], or developing configurable architectures [50]. While
these projects show promise, it is now almost impossible to
prototype nontraditional CPU or cache designs that can
perform as well as commodity processors. In addition, the
performance of processor-in-memory approaches are
handicapped by the optimization of DRAM processes for
capacity (to increase bit density) rather than speed.

The Morph architecture [50] is almost entirely configur-
able: Programmable logic is embedded in virtually every
datapath in the system, enabling optimizations similar to
those described here. The primary difference between
Impulse and Morph is that Impulse is a simpler design
that can be used in current systems.

The RADram project at the University of California at
Davis is building a memory system that lets the memory
perform computation [34]. RADram is a PIM, or processor-
in-memory, project similar to IRAM [25]. The RAW project at
that Massachusetss Institute of Technology [46] is an even
more radical idea, where each IRAM element is almost
entirely reconfigurable. In contrast to these projects,
Impulse does not seek to put an entire processor in memory
since DRAM processes are substantially slower than logic
processes.

Many others have investigated memory hierarchies that
incorporate stream buffers. Most of these focus on non-
programmable buffers to perform hardware prefetching of
consecutive cache lines, such as the prefetch buffers
introduced by Jouppi [23]. Even though such stream buffers
are intended to be transparent to the programmer, careful
coding is required to ensure good memory performance.

1130

Palacharla and Kessler [36] investigate the use of similar
stream buffers to replace the L2 cache, and Farkas et al. [14]
identify performance trends and relationships among the
various components of the memory hierarchy (including
stream buffers) in a dynamically scheduled processor. Both
studies find that dynamically reactive stream buffers can
yield significant performance increases.

The Imagine media processor is a stream-based archi-
tecture with a bandwidth-efficient stream register file [38].
The streaming model of computation exposes parallelism
and locality in applications, which makes such systems an
attractive domain for intelligent DRAM scheduling.

Competitive algorithms perform online cost/benefit
analyses to make decisions that guarantee performance
within a constant factor of an optimal offline algorithm.
Romer et al. [40] adapt this approach to TLB management
and employ a competitive strategy to decide when to
perform dynamic superpage promotion. They also investi-
gate online software policies for dynamically remapping
pages to improve cache performance [6], [39]. Competitive
algorithms have been used to help increase the efficiency of
other operating system functions and resources, including
paging, synchronization, and file cache management.

Chen et al. [11] report on the performance effects of
various TLB organizations and sizes. Their results indicate
that the most important factor for minimizing the overhead
induced by TLB misses is reach, the amount of address
space that the TLB can map at any instant in time. Even
though the SPEC benchmarks they study have relatively
small memory requirements, they find that TLB misses
increase the effective CPI (cycles per instruction) by up to a
factor of five. Jacob and Mudge [22] compare five virtual
memory designs, including combinations of hierarchical
and inverted page tables for both hardware-managed and
software-managed TLBs. They find that large TLBs are
necessary for good performance and that TLB miss
handling accounts for much of the memory-management
overhead. They also project that individual costs of TLB
miss traps will increase in future microprocessors.

Proposed solutions to this growing TLB performance
bottleneck range from changing the TLB structure to retain
more of the working set (e.g., multilevel TLB hierarchies [1],
[16]) to implementing better management policies (in
software [21] or hardware [20]) to masking TLB miss
latency by prefetching entries (again, in software [4] or
hardware [41]).

All of these approaches can be improved by exploiting
superpages. Most commercial TLBs support superpages
and have for several years [30], [43], but more research is
needed into how best to make general use of them. Khalidi
et al. [24] and Mogul [31] discuss the benefits of systems
that support superpages and advocate static allocation via
compiler or programmer hints. Talluri and Hill [32] report
on many of the difficulties attendant upon general utiliza-
tion of superpages, most of which result from the require-
ment that superpages map physical memory regions that
are contiguous and aligned.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

6 CONCLUSIONS

The Impulse project attacks the memory bottleneck by
designing and building a smarter memory controller.
Impulse requires no modifications to the CPU, caches, or
DRAMs. It has one special form of “smarts”: The controller
supports application-specific physical address remapping.
This paper demonstrates how several simple remapping
functions can be used in different ways to improve the
performance of two important scientific application kernels.

Flexible remapping support in the Impulse controller can
be used to implement a variety of optimizations. Our
experimental results show that Impulse’s fine-grained
remappings can result in substantial program speedups.
Using the scatter/gather through an indirection vector
remapping mechanism improves the NAS conjugate gra-
dient benchmark performance by 210 percent and the
volume rendering benchmark performance by 449 percent;
using strided remapping improves performance of image
filtering, image rotation, and dense matrix-matrix product
applications by 94, 166, and 21 percent, respectively.

Impulse’s direct remappings are also effective for a range
of programs. They can be used to dynamically build
superpages without copying and thereby reduce the
frequency of TLB faults. Our simulations show that this
optimization speeds up eight programs from a variety of
sources by up to a factor of 2.03, which is 25 percent better
than prior work. Page-level remapping to perform cache
coloring improves performance of conjugate gradient by
17 percent.

The optimizations that we describe should be applicable
across a variety of memory-bound applications. In parti-
cular, Impulse should be useful in improving system-wide
performance. For example, Impulse can speed up messa-
ging and interprocess communication (IPC). Impulse’s
support for scatter/gather can remove the software over-
head of gathering IPC message data from multiple user
buffers and protocol headers. The ability to use Impulse to
construct contiguous shadow pages from noncontiguous
pages means that network interfaces need not perform
complex and expensive address translations. Finally, fast
local IPC mechanisms like LRPC [5] use shared memory to
map buffers into sender and receiver address spaces and
Impulse could be used to support fast, no-copy scatter/
gather into shared shadow address spaces.

REFERENCES

[1] Advanced Micro Devices, “AMD Athlon Processor Technical
Brief,” http://www.amd.com/-products/cpg/athlon/techdocs/
pdf/22054. pdf, 1999.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter-
field, and B. Smith, “The Tera Computer System,” Proc. 1990 Int’l
Conf. Supercomputing, pp. 1-6, Sept. 1990.

[3] D. Bailey et al., “The NAS Parallel Benchmarks,” Technical Report
RNR-94-007, NASA Ames Research Center, Mar. 1994.

[4] K. Bala, F. Kaashoek, and W. Weihl, “Software Prefetching and
Caching for Translation Buffers,” Proc. First Symp. Operating
System Design and Implementation, pp. 243-254, Nov. 1994.

[5] B.Bershad, T. Anderson, E. Lazowska, and H. Levy, “Lightweight
Remote Procedure Call,” ACM Trans. Computer Systems, vol. 8,
no. 1, pp. 37-55, Feb. 1990.

ZHANG ET AL.: THE IMPULSE MEMORY CONTROLLER

o]

[

8]

B

[10]

[11]

(12]

[13]

[14]

(15]

[1o]

(17]

(18]

(19]

[20]
(21]

(22]

[23]

(24]

(23]

[26]

(27]

(28]

[29]

(30]

(31]

B. Bershad, D. Lee, T. Romer, and J. Chen, “Avoiding Conflict
Misses Dynamically in Large Direct-Mapped Caches,” Proc. Sixth
Symp. Architectural Support for Programming Languages and Operat-
ing Systems, pp. 158-170, Oct. 1994.

P. Budnik and D. Kuck, “The Organization and Use of Parallel
Memories,” ACM Trans. Computers, vol. 20, no. 12, pp. 1566-1569,
Dec. 1971.

D. Burger, J. Goodman, and A. Kagi, “Memory Bandwidth
Limitations of Future Microprocessors,” Proc. 23rd Ann. Int’l
Symp. Computer Architecture, pp. 78-89, May 1996.

J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama, “Impulse: Building a Smarter Memory Controller,”
Proc. Fifth Ann. Symp. High Performance Computer Architecture,
pp- 70-79, Jan. 1999.

E. Catmull and A. Smith, “3-D Transformations of Images in
Scanline Order,” Computer Graphics, vol. 15, no. 3, pp. 279-285,
1980.

J.B. Chen, A. Borg, and N.P. Jouppi, “A Simulation Based Study of
TLB Performance,” Proc. 19th Ann. Int’l Symp. Computer Architec-
ture, pp. 114-123, May 1992.

Compaq Computer Corp., Alpha 21164 Microprocessor Hardware
Reference Manual, July 1999.

Z. Fang, L. Zhang,]. Carter, W. Hsieh, and S. McKee, “Revisiting
Superpage Promotion with Hardware Support,” Proc. Seventh
Ann. Symp. High Performance Computer Architecture, Jan. 2001.

K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic, “Memory-System
Design Considerations for Dynamically-Scheduled Processors,”
Proc. 24th Ann. Int’l Symp. Computer Architecture, pp. 133-143, June
1997.

J. Gomes and L. Velho, Image Processing for Computer Graphics.
Springer-Verlag, 1997.

HAL Computer Systems, Inc., “SPARC64-GP Processor, http://
mpd.hal.com/products/-SPARC64-GP.html, 1999.

J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, second ed. San Francisco: Morgan Kaufmann, 1996.

R. Hintz and D. Tate, “Control Data STAR-100 Processor Design,”
Proc. COMPCON ’72, Sept. 1972.

A. Huang and J. Shen, “The Intrinsic Bandwidth Requirements of
Ordinary Programs,” Proc. Seventh Symp. Architectural Support for
Programming Languages and Operating Systems, pp. 105-114, Oct.
1996.

Intel Corp., Pentium Pro Family Developer’s Manual, Jan. 1996.

B. Jacob and T. Mudge, “Software-Managed Address Transla-
tion,” Proc. Third Ann. Symp. High Performance Computer Archi-
tecture, pp. 156-167, Feb. 1997.

B. Jacob and T. Mudge, “A Look at Several Memory Management
Units, tlb-Refill Mechanisms, and Page Table Organizations,”
Proc. Eighth Symp. Architectural Support for Programming Languages
and Operating Systems, pp. 295-306, Oct. 1998.

N. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully Associative Cache and Prefetch
Buffers,” Proc. 17th Ann. Int’l Symp. Computer Architecture,
pp- 364-373, May 1990.

Y. Khalidi, M. Talluri, M. Nelson, and D. Williams, “Virtual
Memory Support for Multiple Page Sizes,” Proc. Fourth Workshop
Workstation Operating Systems, pp. 104-109, Oct. 1993.

C.E. Kozyrakis et al., “Scalable Processors in the Billion-Transistor
Era: IRAM,” Computer, pp. 75-78, Sept. 1997.

P.G. Lacroute, “Fast Volume Rendering Using a Shear-Warp
Factorization of the Viewing Transformation,” PhD thesis, CSL-
TR-95-678, Stanford Univ., Stanford, Calif., Sept. 1995.

M.S. Lam, E.E. Rothberg, and M.E. Wolf, “The Cache Performance
and Optimizations of Blocked Algorithms,” Proc. Fourth Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 63-74, Apr. 1991.

JJW. Manke and]. Wu, Data-Intensive System Benchmark Suite
Analysis and Specification. Atlantic Aerospace Electronics Corp.,
June 1999.

S. McKee and W. Wulf, “Access Ordering and Memory-Conscious
Cache Utilization,” Proc. First Ann. Symp. High Performance
Computer Architecture, pp. 253-262, Jan. 1995.

MIPS Technologies, Inc.,, MIPS R10000 Microprocessor User’s
Manual, Version 2.0, Dec. 1996.

J. Mogul, “Big Memories on the Desktop,” Proc. Fourth Workshop
Workstation Operating Systems, pp. 110-115, Oct. 1993.

(32]

(33]

(34]

(33]

(36]

(371

(38]

(39]

[40]

(41]

[42]

[43]
(44]

(45]

[40]

(47]
(48]

(49]

[50]

1131

M. Talluri and M. Hill, “Surpassing the TLB Performance of
Superpages with Less Operating System Support,” Proc. Sixth
Symp. Architectural Support for Programming Languages and Operat-
ing Systems, pp. 171-182, Oct. 1994.

D.R. O’'Hallaron, “Spark98: Sparse Matrix Kernels for Shared
Memory and Message Passing Systems,” Technical Report CMU-
(CS-97-178, Carnegie Mellon Univ. School of Computer Science,
Oct. 1997.

M. Oskin, F.T. Chong, and T. Sherwood, “Active Pages: A Model
of Computation for Intelligent Memory,” Proc. 25th Int’l Symp.
Computer Architecture, pp. 192-203, June 1998.

V. Pai, P. Ranganathan, and S. Adve, “RSIM Reference Manual,
Version 1.0,” IEEE Technical Committee on Computer Architecture
Newsletter, Fall 1997.

S. Palacharla and R. Kessler, “Evaluating Stream Buffers as a
Secondary Cache Replacement,” Proc. 21st Ann. Int’l Symp.
Computer Architecture, pp. 24-33, May 1994.

S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan,
“Interactive Ray Tracing for Isosurface Rendering,” Proc. Visua-
lization '98 Conf., Oct. 1998.

S. Rixner, W. Dally, U. Kapasi, B. Khailany, A. Lopez-Lagunas, P.
Mattson, and D. Owens, “A Bandwidth-Efficient Architecture for
Media Processing,” Proc. 31st Ann. Int’'l Symp. Microarchitecture,
Dec. 1998.

T. Romer, “Using Virtual Memory to Improve Cache and TLB
Performance,” PhD thesis, Univ. of Washington, May 1998.

T. Romer, W. Ohlrich, A. Karlin, and B. Bershad, “Reducing TLB
and Memory Overhead Using Online Superpage Promotion,”
Proc. 22nd Ann. Int’l Symp. Computer Architecture, pp. 176-187, June
1995.

A. Saulsbury, F. Dahlgren, and P. Stenstrom, “Recency-Based TLB
Preloading,” Proc. 27th Ann. Int'l Symp. Computer Architecture,
pp- 117-127, June 2000.

A. Srivastava and A. Eustace, “ATOM: A System for Building
Customized Program Analysis Tools,” Proc. 1994 ACM SIGPLAN
Conf. Programming Language Design and Implementation, pp. 196-
205, June 1994.

SUN Microsystems, Inc., UltraSPARC User’s Manual, July 1997.
M. Swanson, L. Stoller, and J. Carter, “Increasing TLB Reach Using
Superpages Backed by Shadow Memory,” Proc. 25th Ann. Int’l
Symp. Computer Architecture, pp. 204-213, June 1998.

O. Temam, E.D. Granston, and W. Jalby, “To Copy or Not to
Copy: A Compile-Time Technique for Assessing When Data
Copying Should Be Used to Eliminate Cache Conflicts,” Proc.
Supercomputing ‘93, pp. 410-419, Nov. 1993.

E. Waingold et al.,, “Baring It All to Software: Raw Machines,”
Computer, pp. 86-93, Sept. 1997.

G. Wolberg, Digital Image Warping. IEEE CS Press, 1990.

L. Zhang, “URSIM Reference Manual,” Technical Report UUCS-
00-015, Univ. of Utah, Aug. 2000.

L. Zhang,]J. Carter, W. Hsieh, and S. McKee, “Memory System
Support for Image Processing,” Proc. 1999 Int’l Conf. Parallel
Architectures and Compilation Techniques, pp. 98-107, Oct. 1999.

X. Zhang, A. Dasdan, M. Schulz, RK. Gupta, and A.A. Chien,
“Architectural Adaptation for Application-Specific Locality Opti-
mizations,” Proc. 1997 IEEE Int’l Conf. Computer Design, 1997.

Lixin Zhang is a PhD student in the School

of Computing at the University of Utah and

expects to graduate in August 2001. He
P received the BS degree in computer science
from Fudan University in 1993 and worked
for the Kingstar Computer Company from
1994 to 1995. His research interests are in
the areas of advanced memory systems,
computer architecture, architectural simulators,
and performance analysis. He is a student

*

member of the IEEE and the IEEE Computer Society and a
member of the ACM.

1132

Zhen Fang received the BS and MS degrees
in computer science from Fudan University
(China) in 1995 and 1998, respectively. He is
currently a PhD candidate with the School of
Computing at the University of Utah. His
primary research interest is the design and
analysis of computer memory systems. He is
a student member of the |IEEE.

Mike Parker is a PhD student in computer
science at the University of Utah. He received
the BS in electrical engineering from the
University of Oklahoma in 1995. His research
interests include computer architecture, perfor-
mance analysis, and VLSI design. Past work has
included reducing communication latency and
overhead in clusters of workstations by using
efficient protocols and closely coupling the
communication hardware with the CPU. He is
currently leading the hardware development effort for the Impulse
memory controller. His PhD research focuses on using SMT processors
to further hide and reduce communication overhead and latency for
clusters. He is a student member of the IEEE.

Binu K. Mathew is a PhD student at the
University of Utah. He received the BTech
degree in computer science and engineering
from the University of Kerala, India, in 1995
and the MS in computer science from the
University of Utah in 2000. His research
interests include high performance memory
systems; processor architecture for multime-
dia, speech, and computer vision; and low-
power systems. He currently works on the
microarchitecture and VLSI design for Impulse.

Lambert Schaelicke received the PhD de-
gree from the University of Utah in 2001 and
the Diploma in computer science in 1995
from the Technical University of Berlin,
Germany. He is an assistant professor of
computer science and engineering at the
University of Notre Dame, Notre Dame,
Indiana. His research interests include com-
puter architecture, system performance mea-
surement and modeling, and I/O systems. He
is a member of the IEEE Computer Society.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11,

NOVEMBER 2001

John B. Carter received the BS degree in
electrical and computer engineering from Rice
University in 1986. He received the MS and PhD
degrees in computer science from Rice Univer-
sity in 1990 and 1993, respectively. He is an
associate professor in the School of Computing
at the University of Utah. His research interests
span operating systems, distributed systems,
computer architecture, networking, and parallel
a computing, with a particular emphasis on mem-
ory and storage systems. Professor Carter has written more than 30
papers on these subjects and holds five patents related to his work as
the Chief Scientist of Mango Corporation. He is a member of the IEEE,
IEEE Computer Society, and ACM.

Wilson C. Hsieh received the SB (1988), SM
(1988), and PhD degrees (1995) from the
Massachusetts Institute of Technology, after
which he spent two years as a postdoctoral
research at the University of Washington. He is
an assistant professor in the School of Comput-
ing at the University of Utah. His research
interests are in compilers, programming lan-
guages, operating systems, and architecture.

Sally McKee received the BA degree from Yale
University in 1985, the MSE degree from
Princeton University in 1990, and the PhD
degree from the University of Virginia in 1995,
all in computer science. She is a research
assistant professor in the School of Computing
at the University of Utah. Her current interests in
computer architecture include performance
modeling and analysis and the design of
efficient, adaptable memory systems. She is a
member of the IEEE, the IEEE Computer Society, and the ACM.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

