
Reevaluating Online Superpage Promotion with Hardware Support

Zhen Fang, Lixin Zhang, John B. Carter, Wilson C. Hsieh, Sally A. McKee
School of Computing

University of Utah�
zfang, lizhang, retrac, wilson, sam � @cs.utah.edu

http://www.cs.utah.edu/impulse/

Abstract

Typical translation lookaside buffers (TLBs) can map
a far smaller region of memory than application foot-
prints demand, and the cost of handling TLB misses
therefore limits the performance of an increasing num-
ber of applications. This bottleneck can be mitigated by
the use of superpages, multiple adjacent virtual mem-
ory pages that can be mapped with a single TLB en-
try, that extend TLB reach without significantly increas-
ing size or cost. We analyze hardware/software trade-
offs for dynamically creating superpages. This study ex-
tends previous work by using execution-driven simula-
tion to compare creating superpages via copying with
remapping pages within the memory controller, and by
examining how the tradeoffs change when moving from
a single-issue to a superscalar processor model. We find
that remapping-based promotion outperforms copying-
based promotion, often significantly. Copying-based
promotion is slightly more effective on superscalar pro-
cessors than on single-issue processors, and the relative
performance of remapping-based promotion on the two
platforms is application-dependent.

1 Introduction

The translation lookaside buffers (TLBs) on most
modern processors support superpages: groups of con-
tiguous virtual memory pages that can be mapped with
a single TLB entry [7, 16, 28]. Using superpages makes
more efficient use of a TLB, but the physical pages
that back a superpage must be contiguous and properly

This effort was sponsored in part by the Defense Advanced Re-
search Projects Agency (DARPA) and the Air Force Research Labora-
tory (AFRL) under agreement number F30602-98-1-0101 and DARPA
Order Numbers F393/00-01 and F376/00. The views and conclusions
contained herein are those of the authors and should not be interpreted
as necessarily representing the official polices or endorsements, either
express or implied, of DARPA, AFRL, or the US Government.

aligned. Dynamically coalescing smaller pages into a
superpage thus requires that all the pages be reserved
a priori, be coincidentally adjacent and aligned, or be
copied so that they become contiguous. The overhead of
promoting superpages by copying includes both direct
and indirect costs. The direct costs come from copying
the pages and changing the mappings. Indirect costs in-
clude the increased number of instructions executed on
each TLB miss (due to the new decision-making code
in the miss handler) and the increased contention in the
cache hierarchy (due to the code and data used in the
promotion process). When deciding whether to create
superpages, all costs must be balanced against the im-
provements in TLB performance.

Romer et al. [24] study several different policies for
dynamically creating superpages. Their trace-driven
simulations and analysis show how a policy that bal-
ances potential performance benefits and promotion
overheads can improve performance in some TLB-
bound applications by about 50%. However, at least
two significant architectural trends have emerged since
Romer et al. performed their study. First, superscalar,
out-of-order processor pipelines have replaced single-
issue, in-order designs. Second, in response to the grow-
ing “memory wall” problem, architects have proposed
a number of smart memory system designs [5, 14, 20].
Our work extends that of Romer et al. by considering the
impact of these new architectural features when design-
ing a dynamic superpage promotion mechanism. For
example, Swanson et al. demonstrate that applications
can create superpages without copying using the Im-
pulse memory controller’s physical-to-physical address
remapping capabilities [29]. The resulting system yields
a two-fold increase in TLB reach and a 5%-20% im-
provement in the performance of a mix of SPECint95
and Splash2 applications. We also extend previous work
by employing an execution-driven simulation environ-
ment that more accurately models both the direct and in-
direct costs of a given promotion algorithm. Our results
show that the differences in accuracy between the two

simulation approaches are significant, especially when
studying complex interactions between operating sys-
tems and modern architectures.

We draw several conclusions from this research.
Combining the work of Romer et al. and Swanson et al.
changes the tradeoffs in designing an online superpage
promotion policy. Romer et al. find that a competitive
promotion policy that tries to balance the overheads of
creating superpages with their benefits achieves the best
average performance. Our experiments confirm this re-
sult when promotion is performed via copying, but we
find that for a remapping-based mechanism, a more ag-
gressive policy that promotes superpages as soon as all
of their constituent sub-pages have been touched per-
forms best. In addition, we find that the performance of
Romer’s competitive promotion policy can be improved
by tuning it to create superpages more aggressively,
even when copying is employed. When thus tuned, on-
line superpage promotion via remapping achieves per-
formance comparable to the hand-coded superpage pro-
motion mechanism employed by Swanson et al.

We use an augmented version of the RSIM [21] simu-
lation environment for all of our experiments. The sim-
ulator models a MIPS R1000-based workstation and a
BSD-like micro kernel, including software TLB miss
handlers. We model both a single-issue and four-way
superscalar version of the processor pipeline, vary the
TLB size from 64 to 128 entries, and consider two mem-
ory systems: a conventional memory controller and the
Impulse memory controller [5], with its support for dy-
namic address remapping.

By using a detailed execution-driven simulator, we
identify the impact of several performance factors not
covered by Romer et al.’s trace-based study, such as
the detrimental effects of the cache pollution induced
by copying. In particular, the direct and indirect costs
of copying can lead to poor performance (as much as
a 55% slow-down), whereas promotion via remapping
performs well on all applications (ranging from a 230%
speedup to a 5% slowdown). Copying-based promotion
delivers fairly consistent benefits on both processor ar-
chitectures, but remapping-based promotion yields es-
pecially high benefits on superscalar processors for ap-
plications with high degrees of instruction-level paral-
lelism. Finally, we find that lost potential instruction-
issue slots are a significant hidden source of TLB over-
head in superscalar machines.

The remainder of this paper is organized as follows.
Section 2 surveys related work. Section 3 describes Im-
pulse, compares our simulation environment to Romer et
al.’s, and outlines the two superpage promotion policies.
Section 4 describes our benchmark suite and experimen-
tal methodology, and gives the results of our study. Sec-

tion 5 summarizes our conclusions and discusses future
work.

2 Related Work

Competitive algorithms perform online cost/benefit
analyses to make decisions that guarantee performance
within a constant factor of an optimal offline algorithm.
Romer et al. [24] adapt this approach to TLB man-
agement, and employ a competitive strategy to decide
when to perform dynamic superpage promotion. They
also investigate online software policies for dynamically
remapping pages to improve cache performance [3, 23].
Competitive algorithms have been used to help increase
the efficiency of other operating system functions and
resources, including paging [26], synchronization [12],
and file cache management [4].

Chen et al. [6] report on the performance effects
of various TLB organizations and sizes. Their re-
sults indicate that the most important factor for mini-
mizing the overhead induced by TLB misses is reach,
the amount of address space that the TLB can map at
any instant in time. Even though the SPEC bench-
marks they study have relatively small memory require-
ments, they find that TLB misses increase the effec-
tive CPI (cycles per instruction) by up to a factor of
five. Jacob and Mudge [11] compare five virtual mem-
ory designs, including combinations of hierarchical and
inverted page tables for both hardware-managed and
software-managed TLBs. They find that large TLBs
are necessary for good performance, and that TLB miss
handling accounts for much of the memory-management
overhead. They also project that individual costs of TLB
miss traps will increase in future microprocessors.

Proposed solutions to this growing TLB performance
bottleneck range from changing the TLB structure to re-
tain more of the working set (e.g., multi-level TLB hi-
erarchies [1, 8]), to implementing better management
policies (in software [10] or hardware [9]), to masking
TLB miss latency by prefetching entries (again, in soft-
ware [2] or hardware [25]).

All of these approaches can be improved by exploit-
ing superpages. Most commercial TLBs support super-
pages, and have for several years [16, 28], but more re-
search is needed into how best to make general use of
them. Chen et al. [6] suggest the possibility of using
variable page sizes to improve TLB reach, but do not
explore the implications of their use. Khalidi [13] and
Mogul [17] discuss the benefits of systems that support
superpages, and advocate static allocation via compiler
or programmer hints. Talluri et al. [18] report on many
of the difficulties attendant upon general utilization of
superpages, most of which result from the requirement

that superpages map physical memory regions that are
contiguous and aligned.

On a system with four-kilobyte base pages, Talluri et
al. [19] find that judicious use of 32-kilobyte superpages
can reduce the impact of TLB misses on CPI by as much
as a factor of eight. Exclusive use of the larger pages
increases application working sets by as much as 60%,
though. Mixing both page size limits this bloat to around
10%, and allowing the TLB to map superpages without
requiring that all the underlying base pages be present
eliminates the bloat.

3 Experimental Parameters

We measure the performance impact of no-copy su-
perpage promotion and instruction issue width for the
two online promotion algorithms proposed by Romer et
al. [24]. In this section we describe the Impulse memory
controller, compare our processor models to Romer’s,
and review Romer’s promotion policies.

����� ���	��
��������
������������������� ����!�"���#

The Impulse memory system [29] supports an extra
level of address remapping at the MMC (main mem-
ory controller): unused physical addresses are remapped
into “real” physical addresses. We refer to the remapped
addresses as shadow addresses. From the point of view
of the processor, shadow addresses are used in place
of real physical addresses when needed. Shadow ad-
dresses will be inserted into the TLB as mappings for
virtual addresses, they will appear as physical tags on
cache lines, and they will appear on the memory bus
when cache misses occur. The memory controller main-
tains its own page tables for shadow memory mappings.
Building superpages from base pages that are not phys-
ically contiguous entails simply remapping the virtual
pages to properly aligned shadow pages. The memory
controller then maps the shadow pages to the original
physical pages. The processor’s TLB is not affected by
the extra level of translation that takes place at the con-
troller.

Figure 1 illustrates how superpage mapping works on
Impulse. In this example, the OS has mapped a contigu-
ous 16KB virtual address range to a single shadow su-
perpage at “physical” page frame 0x80240. When an
address in the shadow physical range is placed on the
system memory bus, the memory controller detects that
this “physical” address needs to be retranslated using its
local shadow-to-physical translation tables. In the exam-
ple in Figure 1, the processor translates an access to vir-
tual address 0x00004080 to shadow physical address
0x80240080, which the controller, in turn, translates
to real physical address 0x40138080.

�$�&% �'�(�$)*���+���,�.-/�$0�1�2�

Our studies use the URSIM [30] execution-driven
simulator, derived from RSIM [21]. URSIM models
a microarchitecture close to MIPS R10000 micropro-
cessor [16] with a 32-entry instruction window. It can
be configured to issue either one or four instructions
per cycle. We model a 64-kilobyte L1 data cache that
is non-blocking, write-back, virtually indexed, physi-
cally tagged, direct-mapped, and has 32-byte lines. The
512-kilobyte L2 data cache is non-blocking, write-back,
physically indexed, physically tagged, two-way associa-
tive, and has 128-byte lines. L1 cache hits take one cy-
cle, and L2 cache hits take eight cycles.

URSIM models a split-transaction MIPS R10000
cluster bus with a snoopy coherence protocol. The bus
multiplexes addresses and data, is eight bytes wide, has
a three-cycle arbitration delay and a one-cycle turn-
around time. We model two memory controllers: a
conventional high-performance MMC based on the one
in the SGI O200 server and the Impulse MMC. The
system bus, memory controller, and DRAMs have the
same clock rate, which is one third of the CPU clock’s.
The memory system supports critical word first, i.e., a
stalled memory instruction resumes execution after the
first quad-word returns. The load latency of the first
quad-word is 16 memory cycles.

The unified TLB is single-cycle, fully associative,
software-managed, and combined instruction and data.
It employs a least-recently-used replacement policy. The
base page size is 4096 bytes. Superpages are built in
power-of-two multiples of the base page size, and the
biggest superpage that the TLB can map contains 2048
base pages. We model two TLB sizes: 64 and 128 en-
tries.

Our system model differs from that modeled by
Romer et al. in several significant ways. They employ
a form of trace-driven simulation with ATOM [27], a
binary rewriting tool. That is, they rewrite their applica-
tions using ATOM to monitor memory references, and
the modified applications are used to do on-the-fly “sim-
ulation” of TLB behavior. Their simulated system has
two 32-entry, fully-associative TLBs (one for instruc-
tions and one for data), uses LRU replacement on TLB
entries, and has a base page size of 4096 bytes.

Romer et al. combine the results of their trace-
driven simulation with measured baseline performance
results to calculate effective speedup on their bench-
marks. They execute their benchmarks on a DEC Al-
pha 3000/700 running DEC OSF/1 2.1. The processor
in that system is a dual-issue, in-order, 225 MHz Alpha
21064. The system has two megabytes of off-chip cache
and 160 megabytes of main memory.

0x00006000

0x80241000

0x80242000

0x80240000 0x04012000

Physical Addresses

0x06155000

0x40138000

0x20285000

0x80243000

0x00005000

0x00004000

Virtual Addresses Shadow Addresses

0x00007000

00004 00480240

physical size

Processor TLB

virtual

Memory
controller

Figure 1. An Example of Creating Superpages Using Shadow Space

For their simulations, they assume the following fixed
costs, which do not take cache effects into account:

� each 1Kbyte copied is assigned a 3000-cycle cost;

� the asap policy is charged 30 cycles for each TLB
miss;

� and the approx-online policy is charged 130 cycles
for each TLB miss.

��� � ��
������ � � � � � � ��� ��!�"�� # � �,� "�) "2� �

We evaluate two of the online superpage promo-
tion policies developed by Romer et al. [24], asap and
approx-online. Note that approx-online is a simplifica-
tion of a more complex online policy [24]. Romer [23]
shows that approx-online is as effective as online, but
has much lower bookkeeping overhead.

asap is a greedy policy that promotes a set of pages
to a superpage as soon as each page has been referenced.
The algorithm minimizes bookkeeping overhead by ig-
noring reference frequency for the potential superpages.
The price for this simplicity is that the asap policy may
build superpages that will rarely be referenced later, in
which case the benefits of having the superpages would
not offset the costs of building them.

approx-online uses a competitive strategy to deter-
mine when superpages should be coalesced. If a super-
page P accrues many misses, probably it will be ref-
erenced again in the future, and promoting it should
prevent future TLB misses. Such promotions effec-
tively prefetch the translations for any non-resident base
pages that the superpage contains. To track reference
information, the approx-online algorithm maintains a
prefetch charge counter P.prefetch for each potential su-
perpage P. On a miss to base page p, P.prefetch is in-
cremented for each potential superpage P that contains
the referenced page p and at least one current TLB entry.
Each superpage size is given a miss threshold; when the
prefetch charge for a superpage reaches its miss thresh-
old, that superpage is created.

The choice of threshold value used to decide when
to promote a set of pages to a superpage is critical to
the effectiveness of approx-online. The ideal threshold
must be small enough for useful superpages to be pro-
moted early enough to eliminate future TLB misses; on
the other hand, it must be large enough that the cost of
promotion does not dominate TLB overhead.

Romer et al. choose an appropriate threshold value
by using a competitive strategy — a collection of pages
is promoted to a superpage as soon as it has suffered
enough TLB misses to pay for the cost of the promo-
tion. Theoretically, the promotion threshold should be
the promotion cost divided by the TLB miss penalty.
For example, if the average TLB miss penalty is 40 cy-
cles and copying two base pages to a contiguous two-
page superpage costs 16,000 cycles, the threshold for
superpage promotion would be 400 (16,000 divided by
40). Romer [23] proves that a system that employs
approx-online can suffer no more than twice the com-
bined TLB miss and superpage promotion overheads
that would be incurred by a system employing an opti-
mal offline promotion algorithm. Although the theoret-
ical threshold bounds worst-case behavior to an accept-
able level, we find that smaller thresholds tend to work
better in practice.

4 Results

The performance results presented here are obtained
through complete simulation of the benchmarks. We
measure both kernel and application time, the direct
overhead of implementing the superpage promotion al-
gorithms and the resulting effects on the system, includ-
ing the expanded TLB miss handlers, cache effects due
to accessing the page tables and maintaining prefetch
counters, and the overhead associated with promoting
and using superpages with Impulse. We first present the
results of our microbenchmark experiments to explore
the break-even points for each of the superpage promo-
tion policies and mechanisms, and then we present com-

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

iterations

0.0

0.5

1.0

1.5

2.0

sp
ee

du
p copy+asap

copy+aol4
copy+aol16
copy+aol128
copy+aol128

(a) copying

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

iterations

0.0

0.5

1.0

1.5

2.0

sp
ee

du
p remap+asap

remap+aol2
remap+aol4
remap+aol16
remap+aol64

(b) remapping

Figure 2. Microbenchmark performance. aoln: approx-online with threshold n.

parative performance results for our application bench-
mark suite.

� ��� - "�)*�(�����1#)��� ������� �1�+
��!+�

The number of TLB misses that must be eliminated
per promotion to amortize the cost of implementing the
promotion algorithm is an important performance factor
when comparing online superpage promotion schemes.
This cost includes the extra time spent in the TLB miss
handler determining when to coalesce pages and the
time spent performing the actual promotions (via either
copying or remapping). To explore the cost/performance
tradeoffs for each approach, we run a synthetic mi-
crobenchmark that consists of a loop that touches 4096
different base pages for a configurable number of itera-
tions:

char A[4096][4096];

for (j = 0; j < iterations; j++)
for (i = 0; i < 4096; i++)

sum += A[i][j];

Without superpages, each memory access in the syn-
thetic microbenchmark suffers a TLB miss. However,
since every page is touched repeatedly, superpages can
be used to reduce the aggregate cost of these misses.
This experiment determines the break-even point for
each approach, i.e., the number of iterations at which
the benefit of creating superpages exceeds the cost.

Figure 2(a) and Figure 2(b) illustrate the microbench-
mark results for online superpage promotion via copy-
ing and remapping, respectively. The microbenchmark’s
working set is sufficiently large that performance is the
same for both a 64-entry and a 128-entry TLB. The 	
axes indicate the number of loop iterations (and thus the
number of times each page is referenced). These graphs

emphasize the performance differences among the copy-
ing and remapping policies.

Copying-based asap performs much worse than
remapping-based asap, especially when pages are sel-
dom referenced. Execution time with copying is 75
times greater than execution time for remapping when
each page is touched only once. Copying-based asap
only becomes profitable after each page is touched about
2000 times, but remapping-based asap breaks even after
only 16 references per page. The mean cost of a TLB
miss increases from around 37 cycles in the baseline to
412 cycles for remapping asap, and to 8100 cycles for
copying asap.

Performance for all approx-online configurations
suffers when the threshold is larger than the number of
references to each page. The additional overheads in the
TLB miss handler dominate the microbenchmark’s ex-
ecution time. In general, the remapping-based policies
deliver performance benefits at much lower thresholds,
and all policies and mechanisms perform well when
pages are referenced at least 4096 times. The number of
references required for approx-online to be profitable
increases with the threshold, and for a given thresh-
old, the number of references per page required to make
copying-based promotion profitable is at least twice the
number for the remapping-based approach. The TLB
miss penalty goes from about 37 cycles in the baseline
to 1100 cycles for remapping approx-online and 2300
cycles for copying approx-online.

For the microbenchmark, asap outperforms
approx-online when remapping is employed, but
approx-online beats asap when copying is used.
approx-online carefully chooses the superpages to
promote, but the history mechanism used to make the
decisions is expensive. Since promoting superpages
by copying is expensive, the cost of this promotion
policy is justified. In contrast, the lower overhead of

the remapping mechanism allows for more aggressive
promotion of pages to superpages.

� � % � � ���2"2) � !�"�� #��.����
��!+�

To evaluate the different superpage promotion ap-
proaches on larger problems, we use eight programs
from a mix of sources. Our benchmark suite includes
three SPEC95 benchmarks (compress, gcc, and
vortex), three image processing benchmarks (ray-
trace, rotate, and filter), one scientific bench-
mark (adi), and one benchmark from the DIS bench-
mark suite (dm) [15]. All benchmarks were compiled
with Sun cc Workshop Compiler 4.2 and optimization
level “-xO4”.

Compress is the SPEC95 data compression pro-
gram run on an input of ten million characters. To avoid
overestimating the efficacy of superpages, the compres-
sion algorithm was run only once, instead of the default
25 times. gcc is the cc1 pass of the version 2.5.3 gcc
compiler (for SPARC architectures) used to compile the
306-kilobyte file “1cp-dec1.c”. vortex is an object-
oriented database program measured with the SPEC95
“test” input. raytrace is an interactive isosurfacing
volume renderer whose input is a 1024 � 1024 � 1024
volume; its implementation is based on work done by
Parker et al. [22] filter performs an order-129 bino-
mial filter on a 32 � 1024 color image. rotate turns
a 1024 � 1024 color image clockwise through one ra-
dian. adi implements algorithm alternative direction
integration. dm is a data management program using in-
put file “dm07.in”.

Two of these benchmarks, gcc and compress, are
also included in Romer et al.’s benchmark suite, al-
though we use SPEC95 versions, whereas they used
SPEC92 versions. We do not use the other SPEC92 ap-
plications from that study, due to the benchmarks’ ob-
solescence. Several of Romer et al.’s remaining bench-
marks were based on tools used in the research envi-
ronment at the University of Washington, and were not
readily available to us.

Table 1 lists the characteristics of the baseline run of
each benchmark with a four-way issue superscalar pro-
cessor, where no superpage promotion occurs. TLB miss
time is the total time spent in the data TLB miss han-
dler. These benchmarks demonstrate varying sensitiv-
ity to TLB performance: on the system with the smaller
TLB, between 9.2% and 35.1% of their execution time is
lost due to TLB miss costs. The percentage of time spent
handling TLB misses falls to between less than 1% and
33.4% on the system with a 128-entry TLB.

Figures 3 and 4 show the normalized speedups of
the different combinations of promotion policies (asap
and approx-online) and mechanisms (remapping and

Total Cache TLB TLB
Benchmark cycles misses misses miss

(M) (K) (K) time

64-entry TLB
compress 632 3455 4845 27.9%
gcc 628 1555 2103 10.3%
vortex 605 1090 4062 21.4%
raytrace 94 989 563 18.3%
adi 669 5796 6673 33.8%
filter 425 241 4798 35.1%
rotate 547 3570 3807 17.9%
dm 233 129 771 9.2%

128-entry TLB
compress 426 3619 36 0.6%
gcc 533 1526 332 2.0%
vortex 423 763 1047 8.1%
raytrace 93 989 548 17.4%
adi 662 5795 6482 32.1%
filter 417 240 4544 33.4%
rotate 545 3569 3702 16.9%
dm 211 143 250 3.3%

Table 1. Characteristics of each baseline run

0

1

2

3

s
p

e
e

d
u

p

Impulse+asap
Impulse+approx_online
copying+asap
copying+approx_online

compress

1
.4

1

1
.3

6

0
.7

9 1
.1

2

gcc

1
.0

1

1
.0

0

0
.5

5 0
.8

0
vortex

1
.4

0

1
.4

6

1
.1

6

0
.9

6

raytrace

1
.0

7

1
.0

6

0
.4

8

0
.9

3

adi

2
.0

3

1
.7

1

1
.0

6

0
.8

5

filter

1
.7

6

1
.7

4

1
.7

0

1
.6

8

rotate

1
.0

8

1
.0

2

0
.8

4

0
.8

0

dm

1
.1

3

1
.0

9

1
.1

1

1
.0

5

Figure 3. Normalized speedups for each of two pro-
motion policies on a four-issue system with a 64-entry
TLB.

copying) compared to the baseline instance of each
benchmark. In our experiments we found that the best
approx-online threshold for a two-page superpage is 16
on a conventional system and is 4 on an Impulse sys-
tem. These are also the thresholds used in our full-
application tests. Figure 3 gives results with a 64-entry
TLB; Figure 4 gives results with a 128-entry TLB. On-
line superpage promotion can improve performance by
up to a factor of two (on adi with remapping asap),
but it also can decrease performance by a similar fac-
tor (when using the copying version of asap on ray-
trace). We can make two orthogonal comparisons
from these figures: remapping versus copying, and asap
versus approx-online.

4.2.1 Asap vs. Approx-online

We first compare the two promotion algorithms, asap
and approx-online, using the results from Figures 3
and 4. The relative performance of the two algo-
rithms is strongly influenced by the choice of promotion

0

1

2

3
s
p

e
e

d
u

p
Impulse+asap
Impulse+approx_online
copying+asap
copying+approx_online

compress

0
.9

5

0
.9

1

0
.5

3 0
.8

8

gcc

0
.9

6

0
.9

2

0
.4

9 0
.8

3

vortex
1

.0
7

1
.0

3

0
.8

4

0
.8

2

raytrace

1
.0

6

1
.0

6

0
.4

8

0
.9

2

adi

2
.0

1

1
.7

0

1
.0

5

1
.0

9

filter

1
.7

3

1
.6

9

1
.6

7

1
.6

5

rotate

1
.0

8

1
.0

2

0
.8

4

0
.9

3

dm

1
.0

2

0
.9

9

1
.0

0

1
.0

1

Figure 4. Normalized speedups for each of two pro-
motion policies on a 4-issue system with a 128-entry
TLB.

mechanism, remapping or copying. Using remapping
, asap slightly outperforms approx-online in the aver-
age case. It exceeds the performance of approx-online
in 14 of the 16 experiments, and trails the performance
of approx-online in only one case (on vortex with
a 64-entry tlb). The differences in performance range
from asap+remap outperforming aol+remap by 32%
for adiwith a 64-entry TLB, to aol+remap outperform-
ing asap+remap by 6% for vortex with a 64-entry
TLB. In general, however, performance differences be-
tween the two policies are small: asap is on average 7%
better with a 64-entry TLB, and 6% better with a 128-
entry TLB.

The results change noticeably when we employ
a copying promotion mechanism. With copying,
approx-online outperforms asap in nine of the 16 ex-
periments, while the policies perform almost identically
in three of the other seven cases. The magnitude of
the disparity between approx-online and asap results is
also dramatically larger. The differences in performance
range from asap outperforming approx-online by 20%
for vortex with a 64-entry TLB, to approx-online
outperforming asap by 45% for raytrace with a 64-
entry TLB. Overall, our results confirm those of Romer
et al.: the best promotion policy to use when creating
superpages via copying is approx-online. Taking the
arithmetic mean of the performance differences reveals
that asap is, on average, 6% better with a 64-entry TLB,
and 4% better with a 128-entry TLB.

The relative performance of the asap and
approx-online promotion policies changes when
we employ different promotion mechanisms because
asap tends to create superpages more aggressively than
approx-online. The design assumption underlying
the approx-online algorithm (and the reason that it
performs better than asap when copying is used) is that
superpages should not be created until the cost of TLB
misses equals the cost of creating the superpages. Given
that remapping has a much lower cost for creating
superpages than copying, it is not surprising that the

0

1

2

3

s
p

e
e

d
u

p

Impulse+asap
Impulse+approx_online
copying+asap
copying+approx_online

compress

1
.3

8

1
.3

6

0
.8

4 1
.0

6

gcc

0
.9

8

1
.0

0

0
.5

6 0
.8

2

vortex

1
.1

4

1
.1

8

0
.9

5

0
.9

0

raytrace

1
.3

3

1
.2

5

0
.4

5

0
.9

0

adi

2
.3

2

1
.9

7

0
.9

6

0
.8

6

filter

1
.8

1

1
.7

7

1
.6

9

1
.6

6

rotate

1
.1

2

1
.0

6

0
.7

7

0
.7

5

dm

1
.0

9

1
.0

6

1
.0

5

1
.0

1

Figure 5. Normalized speedup on a single-issue pro-
cessor with a 64-entry TLB

more aggressive asap policy performs relatively better
with it than approx-online does.

4.2.2 Remapping vs. Copying

When we compare the two superpage creation mech-
anisms, remapping is the clear winner, but by highly
varying margins. The differences in performance
between the best overall remapping-based algorithm
(asap+remap) and the best copying-based algorithm
(aonline+copying) is as large as 97% in the case of
adi on both a 64-entry and 128-entry TLB. Over-
all, asap+remap outperforms aonline+copying by more
than 10% in eleven of the sixteen experiments, averaging
33% better with a 64-entry TLB, and 22% better with a
128-entry TLB.

4.2.3 Single-issue vs. Four-issue

The TLB miss time shown in Table 1 includes only the
cycles spent in the TLB miss handler. This time is the
primary cause of TLB miss overhead on a single-issue
machine. On a superscalar machine, however, TLB
misses also lead to unusable issue slots between when
a miss is detected by the TLB and when the faulting in-
struction reaches the head of the instruction queue. At
this point, the processor flushes the instruction queue
and the program traps to an appropriate TLB miss han-
dler. These lost issue slots represent a potentially serious
performance problem.

To determine the importance of these lost potential
issue slots, we compare the performance of the vari-
ous promotion algorithms on both a single-issue ma-
chine (Figure 5) and a superscalar machine (Figure 3),
both with 64 TLB entries. We find that the impact of
copying-based promotion is fairly constant across plat-
forms. However, five of the eight benchmarks (com-
press, gcc, vortex, filter and dm) benefit more
from remapping-based superpage promotion on a super-
scalar processor than on a single-issue processor. For
the other three, remapping-based superpage promotion
is more effective on a single-issue processor.

Single-issue Four-way
Benchmark

��� ��� ��� ���
Handler time Lost cycles

�	� ��� �
� ���
Handler time Lost cycles

compress 0.75 0.62 24.5% 1.0% 1.22 0.89 27.9% 3.9%
gcc 0.90 0.77 8.0% 0.4% 1.55 1.02 10.3% 1.9%
vortex 0.90 0.78 16.1% 0.9% 1.54 1.01 21.4% 2.4%
raytrace 0.45 0.53 28.8% 3.1% 0.57 1.05 18.3% 43.0%
adi 0.41 0.59 44.5% 18.7% 0.51 0.96 33.8% 38.5%
filter 0.83 0.77 36.1% 1.4% 1.07 1.03 35.1% 8.7%
rotate 0.56 0.74 23.2% 25.7% 0.64 1.09 17.9% 50.1%
dm 0.91 0.80 7.2% 0.3% 1.67 1.14 9.2% 1.9%

Table 2. IPCs and cycles lost due to TLB misses, with a 64-entry TLB

To understand why remapping-based promotion
sometimes improves performance more on a superscalar
machine than on a single-issue machine, while copying-
based promotion is always most effective on a super-
scalar machine, one must consider a number of spe-
cific application characteristics. Table 2 presents the in-
structions per cycle (IPC) for the non-TLB handler code
(������ , for “global IPC”), the IPC for the TLB miss han-
dler (� �����), the percentage of application cycles spent in
the data TLB miss handler, and the percentage of poten-
tial issue slots that are lost due to TLB misses for each
application.

The TLB lost time can be significant for some of the
applications. For example, on a 4-issue processor, ro-
tate, raytrace and adi waste 50%, 43%, and 39%
of their potential issue slots while TLB misses are pend-
ing, respectively. With superpages we found that these
lost cycles drop below 1% of total execution time for all
the benchmarks.

Two factors influence the effectiveness of superpage
promotion: the percentage of application cycles spent
handling TLB misses and the cost of superpage pro-
motion. For Impulse, superpage promotion overhead
is negligible, and so the relative impact of remapping-
based superpage promotion on the two platforms is con-
trolled by the ratio � ������� � ����� . When this ratio is greater
than ��� � (as is the case for compress, gcc, vor-
tex, filter and dm), remapping-based promotion
has a greater impact on a superscalar machine than
on a single-issue machine. This is because � ������� � �����
above one means that the non-TLB miss handling code
has greater instruction-level parallelism than the TLB
miss handling code. Therefore, avoiding TLB misses
is particularly beneficial on a superscalar machine. The
converse is true for the three applications with smaller
������ � ������� values. The relative performance of copying-
based promotion, on the other hand, tends to be domi-
nated by the cost of the copying itself, which is smaller
on the superscalar processor than on the single-issue
processor. However, for adi, raytrace, and ro-
tate, copying doubles the total number of instructions
executed. This overwhelms the potential performance

cycles per 1K average baseline
bytes promoted cache hit ratio cache hit ratio

gcc 10,798 98.81% 99.33%
filter 5,966 99.80% 99.80%
raytrace 10,352 96.50% 87.20%
dm 6,534 99.80% 99.86%

Table 3. Average copy costs (in cycles) for
approx-online policy.

benefits of avoiding TLB misses, even when the cost of
copying is reduced by running on a superscalar proces-
sor.

��� � � "���)
 �+�+"�� #

Romer et al. show that approx-online is generally
superior to asap when copying is used. When remap-
ping is used to build superpages, though, we find that
the reverse is true. Using Impulse-style remapping re-
sults in larger speedups and consumes much less physi-
cal memory. Since superpage promotion is cheaper with
Impulse, we can also afford to promote pages more ag-
gressively.

Romer et al.’s trace-based simulation does not model
any cache interference between the application and the
TLB miss handler; instead, that study assumes that each
superpage promotion costs a total of 3000 cycles per
kilobyte copied [24]. Table 3 shows our measured per-
kilobyte cost (in CPU cycles) to promote pages by copy-
ing for four representative benchmarks. (Note that we
also assume a relatively faster processor.) We mea-
sure this bound by subtracting the execution time of
aol+remap from that of aol+copy and dividing by the
number of kilobytes copied. For our simulation platform
and benchmark suite, copying is at least twice as expen-
sive as Romer et al. assumed. For gcc and raytrace,
superpage promotion costs more than three times the
cost charged in the trace-driven study. Part of these dif-
ferences are due to the cache effects that copying incurs.

We find that when copying is used to promote pages,
approx-online performs better with a lower (more ag-

gressive) threshold than used by Romer et al. Specifi-
cally, the best thresholds that our experiments revealed
varied from four to 16, while their study used a fixed
threshold of 100. This difference in thresholds has
a significant impact on performance. For example,
when we run the adi benchmark using a threshold of
32, approx-online with copying slows performance by
10% with a 128-entry TLB. In contrast, when we run
approx-online with copying using the best threshold of
16, performance improves by 9%. In general, we find
that even the copying-based promotion algorithms need
to be more aggressive about creating superpages than
was suggested by Romer et al. Given that our cost of
promoting pages is much higher than the 3000 cycles
estimated in their study, one might expect that the best
thresholds would be higher than Romer’s. However, the
cost of a TLB miss far outweighs the greater copying
costs; our TLB miss costs are about an order of magni-
tude greater than those assumed in his study.

5 Conclusions and Future Work

To summarize, we find that when creating superpages
dynamically:

� Impulse delivers greater (often much greater)
speedups than copying, due to lower direct and in-
direct overheads in setting up the superpages.

� To be effective, the different online superpage pro-
motion algorithms need to be more aggressive than
suggested in Romer et al.’s paper. We find that us-
ing a more modern simulation models make a big
difference (quantitatively and qualitatively) in the
results. In our experiments, asap works best for
Impulse-style promotion, but approx-online still
delivers better performance for copying promotion
mechanisms.

� The effectiveness of promotion using Impulse is af-
fected by both the percentage of time that the appli-
cation spends handling TLB misses, and how full
the pipeline tends to be when a TLB miss occurs.
For applications with low IPCs (where the pipeline
tends to advance slowly), Impulse-based promotion
tends to have a larger impact on a single-issue ma-
chine. For applications with high IPCs, Impulse
tends to have a bigger impact on a superscalar ma-
chine. The benefit of promotion via copying is
largely determined by the percentage of time an ap-
plication spends taking TLB misses – copying is
only beneficial when TLB miss time is high.

� The time between when a miss is flagged by the
TLB and when the instruction reaches the front of

the instruction pipeline (and the trap actually hap-
pens), can give rise to the loss of many potential
instruction-issue slots. These are a significant, hid-
den source of TLB overhead in a superscalar ma-
chine.

Although our results for copying-based promotion
are qualitatively similar to Romer et al.’s, they differ
quantitatively. Romer et al. use trace-driven simula-
tion; thus, their cost model for promotion is quite sim-
ple. Based on our measurements, the costs for copying-
based promotion are significantly higher in a real sys-
tem, largely due to cache effects. In addition, we find
that the promotion thresholds used in Romer et al.’s
approx-online simulations tend to be too high.

As applications continue to consume larger amounts
of memory, the necessity of using superpages will grow.
Our most significant results are: given relatively sim-
ple hardware at the memory controller, a straightforward
greedy policy for constructing superpages works well;
and lost potential instruction-issue slots are a significant
hidden source of TLB overhead in superscalar machines.

Further work in this area should look at how the dif-
ferent promotion mechanisms and policies interact with
multiprogramming. When multiple programs compete
for TLB space, it is possible that the choice of which
mechanism and policy is best will change. In particu-
lar, the penalty for being too aggressive in creating su-
perpages increases when the memory subsystem might
be forced to tear down superpages to support demand
paging. Our intuition is that remapping-based asap will
likely remain the best choice, because it combines the
cheaper promotion policy with the cheaper promotion
mechanism.

References

[1] Advanced Micro Devices. AMD Athlon processor tech-
nical brief. http://www.amd.com/products/-
cpg/athlon/techdocs/pdf/22054.pdf, 1999.

[2] K. Bala, F. Kaashoek, and W. Weihl. Software prefetch-
ing and caching for translation buffers. In Proc. of the
First Symposium on Operating System Design and Im-
plementation, pp. 243–254, Nov. 1994.

[3] B. Bershad, D. Lee, T. Romer, and J. Chen. Avoid-
ing conflict misses dynamically in large direct-mapped
caches. In Proc. of the 6th ASPLOS, pp. 158–170, Oct.
1994.

[4] P. Cao, E. Felten, and K. Li. Implementation and per-
formance of application-controlled file caching. In Proc.
of the First Symposium on Operating System Design and
Implementation, pp. 165–177, Nov. 1994.

[5] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang,
E. Brunvand, A. Davis, C.-C. Kuo, R. Kuramkote,

M. Parker, L. Schaelicke, and T. Tateyama. Impulse:
Building a smarter memory controller. In Proc. of the
Fifth HPCA, pp. 70–79, Jan. 1999.

[6] J. B. Chen, A. Borg, and N. P. Jouppi. A simulation based
study of TLB performance. In Proc. of the 19th ISCA, pp.
114–123, May 1992.

[7] Compaq Computer Corporation. Alpha 21164 Micropro-
cessor Hardware Reference Manual, July 1999.

[8] HAL Computer Systems Inc. SPARC64-GP processor.
http://mpd.hal.com/products/SPARC64-
GP.html, 1999.

[9] Intel Corporation. Pentium Pro Family Developer’s Man-
ual, Jan. 1996.

[10] B. Jacob and T. Mudge. Software-managed address
translation. In Proc. of the Third HPCA, pp. 156–167,
Feb. 1997.

[11] B. Jacob and T. Mudge. A look at several memory man-
agement units, tlb-refill mechanisms, and page table or-
ganizations. In Proc. of the 8th ASPLOS, pp. 295–306,
Oct. 1998.

[12] A. Karlin, K. Li, M. Manasse, and S. Owicki. Empirical
studies of competitive spinning for shared memory mul-
tiprocessors. In Proc. of the 13th SOSP, pp. 41–55, Oct.
1991.

[13] Y. Khalidi, M. Talluri, M. Nelson, and D. Williams. Vir-
tual memory support for multiple page sizes. In Proc. of
the 4th WWOS, pp. 104–109, Oct. 1993.

[14] J. Kuskin and D. O. et al. The Stanford FLASH multi-
processor. In Proc. of the 21st ISCA, pp. 302–313, May
1994.

[15] J. W. Manke and J. Wu. Data-Intensive System
Benchmark Suite Analysis and Specification. Atlantic
Aerospace Electronics Corp., June 1999.

[16] MIPS Technologies, Inc. MIPS R10000 Microprocessor
User’s Manual, Version 2.0, Dec. 1996.

[17] J. Mogul. Big memories on the desktop. In Proc. 4th
WWOS, pp. 110–115, Oct. 1993.

[18] M.Talluri and M. Hill. Surpassing the TLB performance
of superpages with less operating system support. In
Proc. of the 6th ASPLOS, pp. 171–182, Oct. 1994.

[19] M.Talluri, S. Kong, M. Hill, and D. Patterson. Tradeoffs
in supporting two page sizes. In Proc. of the 19th ISCA,
pp. 415–424, May 1992.

[20] M. Oskin, F. Chong, and T. Sherwood. Active pages: A
model of computation for intelligent memory. In Proc.
of the 25th ISCA, pp. 192–203, June 1998.

[21] V. Pai, P. Ranganathan, and S. Adve. Rsim reference
manual, version 1.0. IEEE Technical Committee on Com-
puter Architecture Newsletter, Fall 1997.

[22] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P.
Sloan. Interactive ray tracing for isosurface rendering.
In Proc. of the Visualization ’98 Conference, Oct. 1998.

[23] T. Romer. Using Virtual Memory to Improve Cache and
TLB Performance. PhD thesis, University of Washing-
ton, May 1998.

[24] T. Romer, W. Ohlrich, A. Karlin, and B. Bershad. Reduc-
ing TLB and memory overhead using online superpage
promotion. In Proc. of the 22nd ISCA, pp. 176–187, June
1995.

[25] A. Saulsbury, F. Dahlgren, and P. Stenstrom. Recency-
based TLB preloading. In Proc. of the 27th ISCA, pp.
117–127, June 2000.

[26] D. Sleator and R. Tarjan. Amortized efficiency of list
update and paging rules. CACM, 28:202–208, 1985.

[27] A. Srivastava and A. Eustace. ATOM: A system for
building customized program analysis tools. In Proc.
of the 1994 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 196–
205, June 1994.

[28] SUN Microsystems, Inc. UltraSPARC User’s Manual,
July 1997.

[29] M. Swanson, L. Stoller, and J. Carter. Increasing TLB
reach using superpages backed by shadow memory. In
Proc. of the 25th ISCA, pp. 204–213, June 1998.

[30] L. Zhang. URSIM reference manual. TR UUCS-00-015,
University of Utah, August 2000.

