
S P I N - An Extensible Microkernel
for Application-specific Operating System Services

Br ian N. B e r s h a d Cra ig C h a m b e r s Susan Eggers Chr i s M a e d a
Dy lan M c N a m e e P r z e m y s l a w P a r d y a k S te fan Savage E m i n G/in Sirer

Dep t , of C o m p u t e r Sc ience and E n g i n e e r i n g FR-35
U n i v e r s i t y of W a s h i n g t o n

Sea t t l e , W A 98195

Abstract

Application domains such as multimedia, databases, and parallel computing, require operating system
services with high performance and high functionality. Existing operating systems provide fixed interfaces
and implementations to system services and resources. This makes them inappropriate for applications
whose resource demands and usage patterns are poorly matched by the services provided. The SPIN
operating system enables system services to be defined in an application-specific fashion, through an
extensible microkernel. It offers applications fine-grained control over a machine's logical and physical
resources through run-time adaptation of the system to application requirements.

1 I n t r o d u c t i o n

The next decade will bring a radical change in the resource requirements of common computer applications.
High performance applications that were at one time "niche services" such as large distributed databases,
interactive multimedia, and programs for massively parallel systems, will become common. Although ap-
plication demands are changing substantially, the Operating systems base has remained relatively static.
Consequently, application performance is fl'equently limited by today's operating systems, which provide an
inadequate interface to computer system resources.

This paper describes an operating system called SPIN that will address tile requirements of this coming
generation of resource-intensive applications. In SPIN, these requirements are satisfied through kernel
support for application-specific services. An application-specific service is one that precisely satisfies the
functional and performance requirements of an application or class of applications. The key idea in SPIN is
that application-specific services can be implemented with code sequences that are installed into the kernel
at runtime. These code sequences expose alternative interfaces, and enable alternative implementations of
existing interfaces to demanding applications. A trusted compiler and safe language runtime environment
ensure that the installed sequences do not violate system integrity [Savage & Bershad 94].

The ideas underlying SPIN stem from research over the last several years that has addressed some of
the fundamental performance problems that arise in modern operating system services. This research in-
cludes interprocess communication [Bershad et al. 90, Draves et al. 91], synchronization [Bershad et al. 92,
Bershad 93], thread management [Anderson et al. 92, Stodolsky et al. 93], networking [Maeda & Bershad 93,
Yuhara et al. 94, Thekkath et al. 93, Felten 92], virtual memory [Young 89, McNamee & Armstrong 90],
and cache management [Wheeler & Bershad 92]. In each case, the interfaces exported by a service were
poorly matched to the needs of important applications. The solution to the performance problem came
from enabling applications to adapt the behavior (interface and implementation) of system services to realize

68

maximum performance. Each change, though, required careful and deliberate modifications of the operating
system kernel.

Our goal in building SPIN is to provide applications with an adaptable kernel platform that enables
system resources to be efficiently and safely managed by the application. By efficient, we mean that capable
applications execute more quickly and with less programming complexity than when using a more conven-
tional platform, such as Ultrix or Mach. By safe, we mean that multipl e applications may run at the same
time, yet be protected from one another through hardware and software firewalls.

In the rest of this position paper, we expand on our approach to operating system adaptability and
resource management, discuss the language and compiler requirements of the system, and briefly describe
the system's current status.

2 Operating System Adapatability
SPIN supports adaptability through an extensible microkernel that can safely execute application-specific
code at the kernel level. The application-specific kernel components are called spindles (SPIN Dynamically
Loaded Extensions), and enable applications to define the precise interface and implementation for the
kernel services that they require. Specifically, installing code at the kernel level allows for flexible and rapid
response to system hardware and software events. For example, an application program can install a code
sequence that runs in response to one of its threads being preempted by an interrupt, a time-slice event,
or a higher-priority thread. In the first two cases, the program can ensure system-wide or application-wide
invariants about preemptability. In the third case, the application can enforce constraints that deny priority
inversion.

Spindles enable a service to be partitioned across the user/kernel boundary in the most efficient manner
that still satisfies its safety and sharing requirements. A service might be crafted in terms of application-level
components, which are linked into the application's address space, kernel-level components, which provides
fast, specialized access to in-kernel services, or user.level server componeuts, which manage long-lived service
state. By allowing applications to participate in the implementation of services, we permit them to make
informed decisions about their resource requirements. By placing the implementation within an application
component (application-level library), or a kernel-level code sequence, the service can be accessed with low
latency.

3 Resource Management
An operating system kernel offers two general flmctions: it provides abstractions of the system's physical and
logical resources, and it implements a set of management policies for those resources. In the SPIN kernel,
both of these functions are adaptable. Low-level resource controllers provide lightweight abstractions of the
physical hardware, such as page frames and activation contexts. Higher level resource abstractions such as
threads or address spaces are implemented by collections of communicating spindles, which may each be
individually replaced or interposed on.

SPIN addresses the management of these resources with a two-level resource allocation architecture.
The primary, or system allocator manages a global pool of resources, such as pages, CPUs, and network
bandwidth. The secondary, or user allocator, manages private pools of resources that have been acquired
from the system allocator. A user allocator may be implemented as a spindle to allow application sPecific
knowledge to be directly applied to the management of its resources. Each application may potentially have
its own user allocator, although applications without special purpose resource mangement requirements can
use default policies.

The system allocator is responsible for reclaiming resources when a shortage occurs. The user allocators
in turn may select individual resource instances as more or less important, and consequently influence their
eligibility for reclamation. The resource management policy used by the system allocator may vary depending
on the types of guarantees the system needs to provide to application programs.

69

4 Language and Compiler Requirements

An operating system interface is much like a programming language in that it defines a primitive set of
Operations available to the programmer [Lampson 84]. In SPIN, the operating system interface is defined
by an actual programming language through which applications can define and install new interfaces that
match their requirements. Because we anticipate aggressive use of spindles for system decomposition, we
require this language and the associated compiler technology to provide specialized support for safety and
performance. Our target language is a safe subset of C that we have defined.

We depend on a combination of type safety, object based methodology, and explicit guards to limit the
access of untrusted spindles. The combination of type safety and well-defined interfaces to kernel services
can ensure that only legal operations may be invoked on data structures shared between spindles and native
kernel code. Synchronization between trusted kernel code and untrusted spindles is accomplished through
the use of time bounded closures defined by spindles running in the context of critical sections defined and
implemented by the kernel. " •

Spindles are compiled into an executing system at run-time. We rely on aggressive compiler technology to
ensure that the SPIN microkernel extended with user-defined spindles performs as well as a non-extensible
monolithic operating system with services built-in to the kernel. Good performance can be achieved with well-
understood optimizing compiler technology, such as intraprocedural data flow analysis, symbolic evaluation,
and inline expansion. These techniques can eliminate much of the overhead of the spindle language: the
compiler can inline-expand calls in spindles to kernel operations, replacing them with direct data structure
accesses or even constants, and the compiler can evaluate predicate expressions guarding kernel operations
in the context of the spindle code preceding the call. With this technology, spindles can be installed and
executed quickly.

Advanced compilation technology, such as parlial evaluation [Jones et al. 89, Consel 90, Weise et al. 91,
Jones et al. 93] can blend together multiple spindle routines and the surrounding kernel code to reduce
the overheads of maintaining large numbers of spindles. It can also reduce the cost of crossing from the
kernel's execution environment to the spindle's. Partial evaluation is a program transformation technique
that specializes program code with respect to some of its argument values. In our context, for example, if
several spindles are associated with the same kernel event, the compiler can specialize the event dispatcher
to produce a single code sequence tuned just for the spindles installed at that time.

5 Status

We are developing SPIN in the context of the Mach 3.0 microkernel and an OSF/1 Unix server running on
DEC Alpha workstations. We are partitioning the system statically into a SPIN component and a native
(Mach 3.0 and OSF/1) componen t. Existing OSF/1 binaries will continue to run by accessing the OSF/1
services that manage the native-component. SPIN will manage the SPIN component across applications
that have been explicitly marked to run within SPIN. This approach will allow us to migrate away from a
mixed-mode system to one that runs SPIN natively.

References
[Anderson et al. 92] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M. Scheduler Activations:

Effective Kernel Support for the User-Level Mari~gement of Parallelism. ACM Transactions on Computer
Systems, 10(1):53-79, February 1992.

[Bershad 93] Bershad, B. N. Practical Considerations for Non-Blocking Concurrent Objects. In Proceedings of the
13th International Con]erence on Distributed Computing Systems, pages 264-274, May 1993.

[Bershad et al. 90] Bershad, B. N., Anderson, T. E., Lazowska, E. D., and Levy, H. M. Lightweight Remote Procedure
Call. ACM Transactions on Computer Systems, 8(1):37-55, February 1990. Also appeared in Proceedings
of the 12th A CM Symposium on Operating Systems Principles, December 1989.

70

[Bershad et al. 92] Bershad, B. N., Redell, D. D., and Ellis, J. R. Fast Mutual Exclusion for Uniprocessors. In
Proceedings of the Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-V), pages 223-233, October 1992.

[Consel 90] Consel, C. Binding Time Analysis for Higher Order Untyped Functional Languages. In Conference on
Lisp and Functional Programming, pages 264-272, 1990.

[Draves et al. 91] Draves, R. P., Bershad, B. N., Rashid, R. F., and Dean, R. W. Using Continuations to Implement
Thread Management and Communication in Operating Systems. In Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles, pages 122-136, October 1991.

[Felten 92] Felten, E. The Case for Application-Specific Communication Protocols. In Proceedings of lntel Super-
computer Systems Division Technology Focus Conference, pages 171-181, 1992.

[Jones et al. 89] Jones, N., Sestoft, P., and Sondergaard, H. MIX: A Self-Applicable Partial Evaluator for Experiments
in Compiler Generation. Lisp ~A Symbolic Computing, 2(1):9-50, February 1989.

[Jones et al. 93] Jones, N., Gomard, C., and Sestoft, P. Partial Evaluation and Automatic Program Generation.
Prentice Hall, 1993.

[Lampson 84] Lampson, B. W. Hints for Computer System Design. IEEE Software, 1(1):11-28, January 1984.

[Maeda & Bershad 93] Maeda, C. and Bershad, B. N. Protocol Service Decomposition for High-Performance Net-
working. In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, pages
244-255, December 1993.

[McNamee & Armstrong 90] McNamee, D. and Armstrong, K. Extending the Mach External Pager Interface to
Accommodate User-Level Page Replacement Policies. In Proceedings of the Usenix Math Symposium,
pages 17-29, 1990.

[Savage & Bershad 94] Savage, S. and Bershad, B. N. Issues in the Design of an Extensible Operating System. 1994.
Submitted for publication.

[Stodolsky et al. 93] Stodolsky, D., Bershad, B. N., and Chen, B. Fast interrupt Priority Management for Operat-
ing System Kernels. In Proceedings of the Second Usenix Workshop on Microkernels and Other Kernel
Architectures, September 1993.

[Thekkath et al. 93] Thekkath, C. A., Nguyen, T. D., Moy, E., and Lazowska, E. D. Implementing network protocols
at user level. 1EEE/ACM Transactions on Networking, 1(5):554-565, October 1993.

[Weise et al. 91] Weise, D., Conybeare, R., Ruf, E., and Seligman, S. Automatic Online Partial Evaluation. In
Functional Programming Languages and Computer Architecture, pages 165-191. Springer-Verlag, August
1991. LNCS 202.

[Wheeler & Bershad 92] Wheeler, B. and Bershad, B. N. Consistency Management for Virtually Indexed Caches. In
Proceedings of the Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS. V), October 1992.

[Young 89] Young, M. W. Exporting a User Interface to Memory Management from a Communicati0n-Oriented
Operating System. Technical Report CMU-CS-89-202, Carnegie Mellon University, November 1989.

[Yuhara et M. 94] Ynhara, M., Bershad, B. N., Maeda, C., and Moss, J. E. B. Efficient Packet Demultiplexing for
Multiple Endpoints and Large Messages. In Proceedings of the 1994 Winter USENIX Conference, January
1994.

71

