
70 September 1996/Vol. 39, No. 9 COMMUNICATIONS OF THE ACM

T
HE microkernel story is full of good ideas and blind alleys. The

story began with enthusiasm about the promised dramatic

increase in flexibility, safety, and modularity. But over the years,

enthusiasm changed to disappointment, because the first-gen-

eration microkernels were inefficient and inflexible. • Today,

we observe radically new approaches to the microkernel idea

that seek to avoid the old mistakes while overcoming the old

constraints on flexibility and performance. The second-generation

microkernels may be a basis for all types of operating systems, including timesharing, mul-

timedia, and soft and hard real time.

J o c h e n L i e d t k e

TOWARD REAL
MICROKERNELS

The inefficient, inflexible first generation inspired
development of the vastly improved second generation, which

may yet support a variety of operating systems.

The Kernel Vision
Traditionally, the word kernel denotes the mandato-
ry part of the operating system common to all other
software. The kernel can use all features of a proces-
sor (e.g., programming the memory management
unit); software running in user mode cannot execute
such safety-critical operations.

Most early operating systems were implemented by
means of large monolithic kernels. Loosely speaking,
the complete operating system—scheduling, file sys-
tem, networking, device drivers, memory management,

paging, and more—was packed into a single kernel.
In contrast, the microkernel approach involves

minimizing the kernel and implementing servers out-
side the kernel. Ideally, the kernel implements only
address spaces, interprocess communication (IPC),
and basic scheduling. All servers—even device dri-
vers—run in user mode and are treated exactly like
any other application by the kernel. Since each serv-
er has its own address space, all these objects are pro-
tected from one another.

When the microkernel idea was introduced in the

COMMUNICATIONS OF THE ACM September 1996/Vol. 39, No. 9 71

late 1980s, the software technology advantages
seemed obvious:

• Different application program interfaces (APIs),
different file systems, and perhaps even different
basic operating system strategies can coexist in one
system. They are implemented as competing or
cooperating servers.

• The system becomes more flexible and extensible.
It can be more easily and effectively adapted to
new hardware or new applications. Only selected
servers need to be modified or added to the sys-
tem. In particular, the impact of such modifica-
tions can be restricted to a subset of the system, so
all other processes are not affected. Furthermore,
modifications do not require build-
ing a new kernel; they can be made
and tested online.

• All servers can use the mechanisms
provided by the microkernel, such as
multithreading and IPC.

• Server malfunction is as isolated as
normal application malfunction.

• These advantages also hold for
device drivers.

• A clean microkernel interface
enforces a more modular system struc-
ture.

• A smaller kernel can be more easily
maintained and should be less prone
to error.

• Interdependencies between the vari-
ous parts of the system can be restrict-
ed and reduced. In particular, the trusted
computing base (TCB) comprises only the hard-
ware, the microkernel, a disk driver, and perhaps a
basic file system.1 Other drivers and file and network
systems need no longer be absolutely trustworthy.

Although these advantages seemed obvious, the first-
generation microkernels could not substantiate them.

The First Generation
The microkernel idea met with efforts in the research
community to build post-Unix operating systems.
New hardware (e.g., multiprocessors, massively paral-
lel systems), new application requirements (e.g.,
security, multimedia, and real-time distributed com-
puting) and new programming methodologies (e.g.,
object orientation, multithreading, persistence)
required novel operating-system concepts.

The corresponding objects and mechanisms—
threads, address spaces, remote procedure calls
(RPCs), message-based IPC, and group communica-
tion—were lower-level, more basic, and more general

abstractions than the typical Unix primitives. In addi-
tion to the new mechanisms, providing an API com-
patible with Unix or another conventional operating
system was a sine qua non; hence implementing Unix
on top of the new systems was a natural consequence.
Therefore, the microkernel idea became widely
accepted by operating-system designers for two com-
pletely different reasons: (1) general flexibility and
power and (2) the fact that microkernels offered a
technique for preserving Unix compatibility while
permitting development of novel operating systems.

Many academic projects took this path, including
Amoeba [19], Choices [4], Ra [1], and V [7]; some
even moved to commercial use, particularly Chorus
[11], L3 [15], and Mach [10], which became the flag-

ship of industrial microkernels.
Mach’s external pager [22] was the first conceptu-

al breakthrough toward real microkernels. The con-
ceptual foundation of the external pager is that the
kernel manages physical and virtual memory but for-
wards page faults to specific user-level tasks. These
pagers implement mapping from virtual memory to
backing store by writing back and loading page
images. After a page fault, they usually return the
appropriate page image to the kernel, which then
establishes the virtual-to-physical memory mapping
(see Figure 1). See the sidebar “Frequently Asked
Questions on External Pagers.”

This technique permits the mapping of files and
databases into user address spaces without having to
integrate the file/database systems into the kernel.
Furthermore, different systems can be used simulta-
neously. Application-specific memory sharing and
distributed shared memory can also be implemented
by user-level servers outside the kernel.

The second conceptual step toward microkernels
was the idea of handling hardware interrupts as IPC

1The TCB is the set of all components whose correct functionality is a precondition for security. Hardware and kernel both belong to the TCB.

Application Pager

Microkernel

RPCresume
page
fault

Figure 1. Page fault processing

messages [17] and including I/O ports in address
spaces. The kernel captures the interrupt but does
not handle it, instead generating a message for the
user-level process currently associated with the inter-
rupt. Thus, interrupt handling and device I/O are
done completely outside of the kernel in the follow-
ing way:

driver thread:
do

wait for (msg, sender) ;
if sender = my hardware interrupt
then read/write i/o ports ;

reset hardware interrupt
else . . .

fi
od .

In this approach, device drivers can be replaced,
removed, or added dynamically—without linking a
new kernel and rebooting the system. Drivers can
thus be distributed to end users independent of the
kernel. Furthermore, device drivers profit from using
such microkernel mechanisms as multithreading,
IPC, and address spaces. See the sidebar “Frequently
Asked Questions on User-Level Device Drivers.”

Disappointments
An appealing concept is only one side of the coin; the

other is usefulness. For example, are the concepts
flexible enough and the costs of that flexibility low
enough for such real-world problems as multimedia,
real time, and embedded systems?

With respect to efficiency, the communication
facility is the most critical microkernel mechanism.
Each invocation of an operating system or applica-
tion service requires an RPC, generally consisting of
two IPCs—the call and the return message. There-
fore, microkernel architects spent much time opti-
mizing the IPC mechanisms. Steady progress yielded
up to twofold improvement in speed, but by 1991, the
steps became less and less effective. Mach 3 stabilized
at about 115 µs per IPC on a 486-DX50—comparable
to most other microkernels. For example, a conven-
tional Unix system call—roughly 20 µs on this hard-
ware—has about 10 times less overhead than the
Mach RPC. It seemed that 100 µs was the inherent
cost of an IPC and that the concept had to be evalu-
ated on this basis.

Since absolute time lacks meaning on its own, two
more practical criteria are used for evaluation:

• Applications must not be degraded by the micro-
kernel. This conservative criterion is a necessary
precondition for practical acceptance.

• Microkernels must efficiently support new types of
applications that cannot be implemented with
good performance on conventional monolithic ker-

72 September 1996/Vol. 39, No. 9 COMMUNICATIONS OF THE ACM

Is a pager required inside the microkernel? No.

How do user-level pagers affect system security? A
pager can corrupt the data it maintains. So you
rely on the correct functionality of the pager you
use, whether it is kernel-integrated or user-level.
However, different noninterfering user-level
pagers can be used to increase security by, for
example, holding sensitive data in a trustworthy
and stable (standard) pager and less critical data in
potentially less trustworthy pagers. Note that
semantic dependencies are similar on all levels and
are not operating-system specific; users rely as
much on the correct functionality of a compiler as
on that of a database system.

How expensive are user-level pagers? In principle, the
overhead compared to that of an integrated pager
is only one IPC and should be negligible. In prac-
tice, however, most first-generation microkernels
use a complicated protocol with up to eight addi-
tional IPCs and implement IPC inefficiently. Over-
heads of 1,000 µs (Digital Equipment Corp. Alpha,
133 MHz) can occur. A microkernel of the second
generation solves this performance problem by
using only one additional IPC and making it fast
(less than 10 µs).

Frequently Asked Questions on
External Pagers

Can you really use a user-level disk driver for demand
paging? Yes.

Can a user-level driver corrupt the system? Drivers
are encapsulated in address spaces, so they can
access only the memory and the I/O ports granted
to them. From this point of view, they can corrupt
any component relying on their functionality, but
not the whole system. However, drivers control
hardware, and if this hardware permits system
corruption (e.g., by physical memory access via
DMA), no kernel can prevent the driver from cor-
rupting the system. Risk depends on the hardware
accessible to the driver.

Do user-level drivers increase security? Yes, because
of encapsulation. For example, a mouse driver can
do no more harm than an editor.

How expensive are user-level drivers? Most first-gen-
eration kernels (except L3) implement all time-crit-
ical drivers as kernel drivers. However, due to the
fast communication facilities of second-generation
microkernels, user-level drivers perform as well as
integrated drivers in these systems. Less than 10 µs
are required per interrupt or driver RPC.

Frequently Asked Questions on
User-Level Device Drivers

COMMUNICATIONS OF THE ACM September 1996/Vol. 39, No. 9 73

nels. This progressive criterion must be satisfied for
a real advance in operating-system technology.

The conservative criterion can be evaluated by bench-
marks running on the same hardware platform under
a monolithic and a microkernel-based operating sys-
tem. This method measures not only the primary
(direct) IPC costs but also the secondary costs
induced by structuring software with the client/serv-
er paradigm and by using the IPC mechanism.

Some applications performed as well under a
microkernel as under a monolithic kernel, and a few
slightly better. Unfortunately, other applications were
substantially degraded. Chen and Bershad [6] com-
pared applications under Ultrix and Mach on a DEC-
Station 5200/200 and found peak degradations of up
to 66% on Mach (compared to Ultrix) (see Figure 2).
Condict, et al [8] compared an eight-user AIM III
benchmark on a 486-DX50 under a monolithic
OSF/1 and a Mach-based OSF/1 and measured an
average 50% degradation. The measurements cor-
roborate that the degradation is essentially caused by

IPC: At least 73% of the measured
penalty is related to IPC or activi-
ties that are its direct consequence;
10% comes from multiprocessor
provisions that could be dropped
on this uniprocessor; and the
remaining 17% is due to unspeci-
fied reasons.

Chen found that the perfor-
mance differences are caused in
part by a substantially higher
cache-miss rate for the Mach-based
system. This result could point to a
principal weakness of server archi-
tectures when used with microker-
nels. However, the increased cache
misses are caused by the Mach ker-
nel, invoked for IPC, not by the
higher modularity of the
client/server architecture.

The measured microkernel
penalty is too large to be ignored.
From a practical point of view, the
pure microkernel approach of the
first generation was a failure.

As a consequence, both Chorus
and Mach reintegrated the most
critical servers and drivers into the
kernel [3, 8]. Chorus’s “supervisor
actors” and Mach’s “kernel-loaded
tasks” run in kernel mode, can
freely access kernel space, and can
freely interact with each other.
Gaining performance by saving
user-kernel and address-space
switches looked reasonable and
seemed successful. However, while
solving some performance prob-
lems, this workaround weakens the

microkernel approach. If most drivers and servers are
included in the kernel for performance reasons, the
benefits—encapsulation, security, and flexibility—
largely disappear.

Evaluation of the progressive criterion must be
based on upcoming trends and applications. Object-
orientation and distribution will cause increased cross-
address-space interaction. As a consequence, RPC
granularity will become finer; on average, clients and
server will spend fewer cycles between successive RPCs.

Figure 3 shows the relative RPC overhead as a
function of the average number of cycles spent by
client and server between two successive RPCs. The
overhead is given with respect to an ideal system
where RPC is free. Total overhead means a program
takes twice as much time for execution due to RPC as
in the ideal system. It seems reasonable to assume
that 10% is tolerated in most cases but that 50% is
not. The 10% limit allows applications of first-genera-
tion microkernels to use one RPC every 100,000 user-
level cycles; roughly 10,000 lines of client and server
code must be executed before invoking the next

sed U
M

egrep U
M

yacc U
M

gcc U
M

compress U
M

ab U
M

espresso U
M

12M
7M

45M

35M

42M

21M

1241M

141M

47M

39M

61M

28M

1838M

147M

+66%

+ 9%

+11%

+45%

+34%

+48%

+ 4%

Figure 2. Non-idle cycles under Ultrix and Mach

50%

40%

30%

20%

10%

0%

Mach 3, 486
Mach 3, Alpha
Chorus, 486
Mach 3, R3000

L3/L4
486

ExOS
R3000

102 103 104 105 106

Average user-level cycles (client+server)
between RPCs

RPC overhead

Figure 3. Relative RPC overhead

RPC. The disappointing conclusion is that first-gen-
eration microkernels do not support fine-grained use
of RPC. For comparison, Figure 3 also shows over-
heads for two second-generation microkernels.
Under the 10% restriction, the second-generation
microkernels permit roughly one RPC per 400 lines
of executed user-level code.

Beside this performance-based inflexibility, anoth-
er shortcoming became apparent over the years. The
external-pager concept is in principle not sufficiently
flexible. Its most important technical weakness is that
main memory is still managed by the microkernel
and can be controlled only rudimentarily by the
external pager. However, multimedia file servers,
real-time applications, frame buffer management,
and some nonclassical applications require complete
main-memory control.2

Conceptually, the weakness is the policy inside the
microkernel. A “policy interface” permitting parama-
terization and tuning of a built-in policy is convenient
as long as that policy is suited for all applications. Its
limitations are obvious as soon as a really novel policy
is needed or a substantial modification is needed for
a predefined policy.

The Second Generation
The deficiency analysis of the early microkernels
identified user-kernel-mode switches, address-space
switches, and memory penalties as primary sources of
disappointing performance. Regarded superficially,
this analysis was correct, because it was supported by
detailed performance measurements.

Surprisingly, a deeper analysis shows that the three
points—user-kernel-mode switches, address-space
switches, and memory penalties—are not the real
problems; the hardware-inherited costs of mode and
address-space switching are only 3%–7% of the mea-
sured costs (see Figure 4). A detailed discussion can
be found in [16].

The situation was strange. On the one hand, we
knew the kernels could run at least 10 times faster; on
the other, after optimizing microkernels for years, we

no longer saw new significant
optimization possibilities. This
contradiction suggested the effi-
ciency problem was caused by the
basic architecture of these
kernels.

Indeed, most early microker-
nels evolved step by step from
monolithic kernels, remaining
rich in concepts and large in
code size. For example, Mach 3
offers approximately 140 system
calls and needs more than 300
Kbytes of code. Reducing a large
monolithic kernel may not lead
to a real microkernel.

Radical New Designs
A new radical approach, designing a microkernel archi-
tecture from scratch, seemed promising and necessary.
Exokernel [9] and L4 [16], discussed here, both con-
centrate on a minimal and clean new architecture and
support highly extensible operating systems.

• Exokernel. Exokernel, developed at MIT in 1994-
95, is a small, hardware-dependent microkernel
based on the idea that abstractions are costly and
restrict flexibility [9]. The microkernel should
multiplex hardware primitives in a secure way. The
current exokernel, which is tailored to the Mips
architecture and gets excellent performance for
kernel primitives, is based on the philosophy that a
kernel should provide no abstractions but only a
minimal set of primitives (although the Exokernel
includes device drivers). Consequently, the Exok-
ernel interface is architecture dependent, dedicat-
ed to software-controlled translation lookalike
buffers (TLBs). The basic communication primi-
tive is the protected control transfer that crosses
address spaces but does not transfer arguments. A
lightweight RPC based on this primitive takes 10 µs
on a Mips R3000 processor, while a Mach RPC
needs 95 µs. Unanswered is the question of
whether the right abstractions perform better and
lead to better-structured and more efficient appli-
cations than Exokernel’s primitives do.

• L4. Developed at GMD in 1995, L4 is based on the
theses that efficiency and flexibility require a mini-
mal set of general microkernel abstractions and
that microkernels are processor dependent. In
[16], we show that even such compatible proces-
sors as the 486 and the Pentium need different
microkernel implementations (with the same
API)—not only different coding but different algo-
rithms and data structures. Like optimizing code
generators, microkernels are inherently not
portable, although they improve the portability of a
whole system. L4 supplies three abstractions—

74 September 1996/Vol. 39, No. 9 COMMUNICATIONS OF THE ACM

2.1 s, enter/exit kernel
1 s, min addr-space switch
6 s, max addr-space switch

2.1 s, enter/exit kernel

18 s

115 s

System
Call

1-Byte
IPC

µ

 µ

 µ

 µ
 µ
 µ

Figure 4. Hardware (black) vs. Mach (black and white) costs when used with a
486-DX50 CPU

2Wiring specific pages in memory is not enough. To control second-level cache usage, DMA and management of memory areas with specific hardware-defined
semantics, you need complete allocation control. The same control is needed for deallocation to enable application-specific checkpointing and swapping.

COMMUNICATIONS OF THE ACM September 1996/Vol. 39, No. 9 75

address spaces (described in
the next section), threads,
and IPC—implements only
seven system calls, and needs
only 12 Kbytes of code.
Across-address-space IPC on
a 486-DX50 takes 5 µs for an
8-byte argument and 18 µs
for 512 bytes. The corre-
sponding Mach numbers are
115 µs (8 bytes) and 172 µs
(512 bytes). With 2 x 5 µs,
the basic L4-RPC is twice as
fast as a conventional Unix
system call. It remains unknown whether L4’s
abstractions, despite being substantially more flexi-
ble than the abstractions of the first generation, are
flexible and powerful enough for all types of oper-
ating systems.

Both approaches seem to overcome the perfor-
mance problem. Exokernel’s and L4’s communica-
tion is up to 20 times faster than that of
first-generation IPC.

Some nonmicrokernel systems try to reduce com-
munication costs by avoiding IPC. As with Chorus and
Mach, Solaris and Linux support kernel-loadable
modules. The Spin system [2] extends the Synthesis
[20] idea and uses a kernel-integrated compiler to
generate safe code inside the kernel space. Commu-
nicating with servers of this kind requires fewer
address-space switches. The reduced IPC costs of sec-
ond-generation microkernels might make this tech-
nique obsolete or even disqualify it, since kernel
compilers impose overhead on the kernel. However,
the question of which is superior—kernel-compiler
technology or a pure microkernel approach—is open
as long as there is no sound implementation integrat-
ing a kernel-compiler with a second-level microkernel.

More Flexibility
Performance-related constraints seem to be disap-
pearing. The problem of first-generation microker-
nels was the limitation of the external-pager concept
hardwiring a policy inside the kernel. This limitation
was largely removed by L4’s address-space concept,
which provides a pure mechanism interface. Instead
of offering a policy, the kernel’s role is confined to
offering the basic mechanisms required to imple-
ment the appropriate policies. These basic mecha-
nisms permit implementation of various protection
schemes and even of physical memory management
on top of the microkernel.

The idea is to support the recursive construction of
address spaces outside the kernel (see Figure 5). An
initial address space represents the physical memory
and is controlled by the first address-space server. At
system start time, all other address spaces are empty.
For construction and maintenance of further address

spaces on top of the initial space, the microkernel pro-
vides three operations: grant, map, and demap.

The owner3 of an address space can grant any of its
pages to another space, provided the recipient
agrees. The granted page is removed from the
granter’s address space and is included in the
grantee’s address space. The important restriction is
that instead of physical page frames, the granter can
grant only those pages already accessible to itself. The
owner of an address space can also map any of its
pages into another address space, if the recipient
agrees. Afterward, the page can be accessed in both
address spaces. In contrast to granting, in mapping,
the page is not removed from the mapper’s address
space. As in the granting case, the mapper can map
pages to which it already has access.

The owner of an address space can demap any of its
pages. The demapped page remains accessible in the
demapper’s address space but is removed from all
other address spaces that received the page directly
or indirectly from the demapper. Although explicit
consent of the address-space owners is not required,
the operation is safe, since it is restricted to owned
pages. The users of these pages already agreed to
accept a potential demapping when they received the
pages by mapping or granting. See the sidebar “Fre-
quently Asked Questions on Memory Servers.”

Since mapping a page requires consent between
mapper and mappee, as does granting, it is imple-
mented by IPC. In Figure 6, the mapper A sends a
map message to the mappee B specifying by an
appropriate receive operation that it is willing to
accept a mapping and determines the virtual address
of the page inside its own address space.

The address-space concept leaves memory man-
agement and paging outside the microkernel; only
the grant, map, and demap operations are retained
inside the kernel. Mapping and demapping are
required to implement memory managers and pagers
on top of the microkernel. Granting is used only in
special situations to avoid double bookkeeping and
address-space overflow. For a more detailed descrip-
tion, see [16].

In contrast to the external-pager concept, the ker-
nel confines itself to mechanisms. Policies are left

B

A

map IPC

send (‘map,’ virt. addr. in A)

receive (‘map,’ virt. addr. in B)

Figure 5. Recursively constructed address spaces

3“Owner” means the thread or threads that execute inside the address space.

completely to user-level servers. To illustrate, we
sketch some low-level services that can be implement-
ed by address-space servers based on the mechanisms.
A server managing the initial address space is a classic
main memory manager, though outside the micro-

kernel. Memory managers can easily
be stacked; the initial memory server
maps or grants parts of the physical
memory to memory server 1 and
memory server 2. Now we have two
coexisting main-memory managers.

A pager may be integrated with a
memory manager or use a memory-
managing server. Pagers use the
microkernel’s grant, map, and
demap primitives. The remaining
interfaces, pager-client, pager-memo-
ry server, and pager-device driver, are
completely based on IPC and are
defined outside the kernel. Pagers
can be used to implement traditional
paged virtual memory and file/data-
base mapping, as well as unpaged res-
ident memory for device drivers and
real-time or multimedia systems.

User-supplied paging strategies [5, 14] are handled at
the user level and are in no way restricted by the
microkernel. Stacked address spaces, like those in
Grasshopper [18], and stacked file systems [13] can
be realized in the same fashion.

Multimedia and other real-time applications
require allocation of memory resources in a way that
allows predictable execution times. For example,
user-level memory managers and pagers permit fixed
allocation of physical memory for specific data or for
locking data in memory for a given time. Multimedia
and timesharing resource allocators can coexist if the
servers cooperate.

Such memory-based devices as bitmap displays are
realized by a memory manager holding the screen
memory in its address space.

Improving the hit rates of a secondary cache by
means of page allocation or reallocation [12, 21] can
be implemented through a pager that applies cache-
dependent policies for allocating virtual pages in
physical memory.

Remote IPC is implemented by communication
servers translating local messages to external commu-
nication protocols and vice versa. The communica-
tion hardware is accessed by device drivers. If special
sharing of communication buffers and user address
spaces is required, the communication server also
acts as a special pager for the client. In contrast to the
first generation, there is no packet filter inside the
microkernel.

Unix system calls are implemented by IPC. The
Unix server can act as a pager for its clients and can
share memory for communication with its clients.
The Unix server itself is pageable or resident.

Conclusion
Although academic experiments in porting applica-
tions and operating system personalities to second-
generation microkernels look promising, we have
covered only the known problems of microkernels.
There is no real-life practical experience with second-

76 September 1996/Vol. 39, No. 9 COMMUNICATIONS OF THE ACM

Application

Application

Application

Application Pager 2

Pager 1

Mem server 1 Mem server 2

Initial space (physical memory)

Driver

Driver

Figure 6. A maps page by IPC to B

Is a kernel without main-memory management still a
microkernel or is it a submicrokernel? It is a kernel
because it is mandatory to all other levels. There
is no alternative kernel, although alternative mem-
ory servers may coexist. It is a microkernel
because it is a direct result of applying the micro-
kernel paradigm of making the kernel minimal. The
insight that microkernels have to be much smaller
than in the first generation does not justify a new
“submicro” term. The underlying paradigm is the
same.

Since the kernel is not usable without a memory serv-
er, why not include it in the microkernel? Two rea-
sons:

• Operating systems can offer coexisting alterna-
tive memory servers. Examples are timesharing
(paging), real-time, multimedia, and file caching
techniques.
• Memory servers may be as machine (not proces-
sor) dependent as device drivers.

Specialized servers are required for controlling
second-level caches and device-specific memories.
If a machine has fast and slow (uncached) main-
memory regions, a corresponding memory server
might ensure that only fast memory is used for
paging and slow memory is reserved for disk
caching.

Frequently Asked Questions on
Memory Servers

COMMUNICATIONS OF THE ACM September 1996/Vol. 39, No. 9 77

generation microkernels to draw on. Although we are
optimistic, second-generation microkernel design is
still research, and new problems can arise.

Most older microkernels evolved from monolithic
kernels and did not achieve sufficient flexibility and
performance. Although theoretically advantageous,
the microkernel approach was never widely accepted
in practice. However, a new generation of microker-
nel architectures shows promising results, and per-
formance and flexibility have improved by an order
of magnitude. Still debatable is whether Exokernel’s
nonabstractions, Spin’s kernel compiler, L4’s
address-space concept, or a synthesis of these
approaches is the best way forward. In each case, we
expect efficient and flexible operating systems based
on second-generation microkernels to be developed.

The microkernel approach was the first software
architecture to be examined in detail from the perfor-
mance point of view. We learned that applying the per-
formance criterion to such a complex system is not
trivial. Naive, uninterpreted measurements are some-
times misleading. Although early microkernel measure-
ments suggested reducing the frequency of user-to-user
IPC, the real problem was the structure and implemen-
tation of the kernels. To avoid such misinterpretations
in the future, we should always try to understand why we
get the measured results. As in physics, computer sci-
ence should regard measurements as experiments used
to validate or repudiate a theory.

Although steady evolution is a powerful methodol-
ogy, sometimes a radically new approach is needed.
Most problems of the first-generation microkernels
were caused by their step-by-step development. The
microkernels designed from scratch gave completely
different results that could not have been extrapolat-
ed from previous experience.

References
1. Bernabeu-Auban, J.M., Hutto, P.W., and Khalidi, Y.A. The

architecture of the Ra kernel. Tech. Rep. GIT-ICS-87/35,
Georgia Institute of Technology, Atlanta, 1988.

2. Bershad, B.N., Savage, S., Pardyak, P., Sirer, E.G., Fiuczynski,
M., Becker, D., Eggers, S., and Chambers, C. Extensibility, safe-
ty, and performance in the Spin operating system. In Proceed-
ings of the 15th ACM Symposium on Operating System Principles
(SOSP) (Copper Mountain Resort, Colo, Dec. 1995). ACM
Press, 1995, pp. 267–284.

3. Bricker, A., Gien, M., Guillemont, M., Lipkis, J., Orr, D., and
Rozier, M. A new look at microkernel-based Unix operating
systems. Tech. Rep. CS/TR-91-7, Chorus systèmes, Paris,
France, 1991.

4. Campbell, R., Islam, N., Madany, P., and Raila, D. Designing
and implementing Choices: An object-oriented system in C++.
Commun. ACM 36, 9 (Sept. 1993), 117–126.

5. Cao, P., Felten, E.W., and Li, K. Implementation and perfor-
mance of application-controlled file caching. In Proceedings of
the 1st Usenix Symposium on Operating Systems Design and Imple-
mentation (OSDI) (Monterey, Calif., Nov. 1994). ACM Press,
New York, 1994, pp. 165–178.

6. Chen, J.B. and Bershad, B.N. The impact of operating system
structure on memory system performance. In Proceedings of the
14th ACM Symposium on Operating System Principles (SOSP)
(Asheville, N.C., Dec. 1993). ACM Press, 1993, pp. 120–133.

7. Cheriton, D.R., Whitehead, G.R., and Sznyter, E.W. Binary
emulation of Unix using the V kernel. In Proceedings of the
Usenix Summer Conference (Anaheim, Calif., June 1990), pp.
73–86.

8. Condict, M., Bolinger D., McManus, E., Mitchell, D., and
Lewontin, S. Microkernel modularity with integrated kernel
performance. Tech. Rep., OSF Research Institute, Cambridge,
Mass, 1994.

9. Engler, D., Kaashoek, M.F., and O’Toole, J. Exokernel, an
operating system architecture for application-level resource
management. In Proceedings of the 15th ACM Symposium on Oper-
ating System Principles (SOSP) (Copper Mountain Resort, Colo.,
Dec. 1995) ACM Press, 1995, pp. 251–266.

10. Golub, D., Dean, R., Forin, A., and Rashid, R. Unix as an applica-
tion program. In Proceedings of the Usenix Summer Conference (Ana-
heim, Calif., June 1990). Usenix Association, 1990, pp. 87–96.

11. Guillemont, M. The Chorus distributed operating system:
Design and implementation. In Proceedings of the ACM Interna-
tional Symposium on Local Computer Networks (Firenze, Italy, Apr.
1982) ACM Press, 1982, pp. 207–223.

12. Kessler, R., and Hill, M.D. Page placement algorithms for large
real-indexed caches. ACM Trans. Comput. Syst. 10, 4 (Nov.
1992), 11–22.

13. Khalidi, Y.A., and Nelson, M.N. Extensible file systems in
Spring. In Proceedings of the 14th ACM Symposium on Operating
System Principles (SOSP) (Asheville, N.C., Dec. 1993). ACM Press,
New York, 1993, pp. 1–14.

14. Lee, C.H., Chen, M.C., and Chang, R.C. HiPEC: High perfor-
mance external virtual memory caching. In Proceedings of the 1st
Usenix Symposium on Operating Systems Design and Implementation
(OSDI) (Monterey, Calif., Nov. 1994). ACM Press, New York,
1994, pp. 153–164.

15. Liedtke, J. A persistent system in real use—experiences of the
first 13 years. In Proceedings of the 3rd International Workshop on
Object Orientation in Operating Systems (IWOOOS) (Asheville,
N.C., Dec. 1993) IEEE Computer Society Press, Washington,
1993, pp. 2–11.

16. Liedtke, J. On microkernel construction. In Proceedings of the
15th ACM Symposium on Operating System Principles (SOSP) (Cop-
per Mountain Resort, Colo., Dec. 1995). ACM Press, New York,
1995, pp. 237-250.

17. Liedtke, J., Bartling, U., Beyer, U., Heinrichs, D., Ruland, R., and
Szalay, G. Two years of experience with a microkernel based
operating system. Oper. Syst. Rev. 25, 2 (Apr. 1991), 51–62.

18. Lindstroem, A., Rosenberg, J., and Dearle, A. The grand uni-
fied theory of address spaces. In Proceedings of the 5th Workshop
on Hot Topics in Operating Systems (HotOS-V) (Orcas Island,
Wash., May 1995).

19. Mullender, A.J. The Amoeba distributed operating system:
Selected papers 1984–1987. Tech. Rep. Tract. 41, CWI, Ams-
terdam, 1987.

20. Pu, C., Massalin, H., and Ioannidis, J. The Synthesis kernel.
Comput. Syst. 1, 1 (Jan. 1988), 11–32.

21. Romer, T.H., Lee, D.L., Bershad, B.N., and Chen, B. Dynamic
page mapping policies for cache conflict resolution on stan-
dard hardware. In Proceedings of the 1st Usenix Symposium on Oper-
ating Systems Design and Implementation (OSDI) (Monterey, Calif.,
Nov. 1994). ACM Press, New York, 1994, pp. 255–266.

22. Young, M., Tevanian, A., Rashid, R., Golub, D., Eppinger, J.,
Chew, J., Bolosky, W., Black, D., and Baron, R. The duality of
memory and communication in the implementation of a mul-
tiprocessor operating system. In Proceedings of the 11th ACM Sym-
posium on Operating System Principles (SOSP) (Austin, Tex., Nov.
1987). ACM Press, New York, 1987.

JOCHEN LIEDTKE is a senior researcher in the German National
Research Center for Information Technology (GMD) and at IBM’s
T.J. Watson Research Laboratory. He can be reached at
jochen.liedtke@gmd.de

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© ACM 0002-0782/96/0900 $3.50

C

