Achieving Speed and Flexibility by Separating
Management from Protection:
Embracing the Exokernel Operating System’

Tim Leschke
Department of Computer Science
Illinois Institute of Technology
10 W 31st Street
Chicago, Illinois 60616
lesctim@jit.edu

ABSTRACT

The modern operating system is currently caught
in a tug-of-war between two forces. At one end,
there is a force that is demanding that the
operating system become more flexible to handle
the needs of evolving hardware and evolving
user applications. At the other end, there is a
force that is demanding that the operating
system become more efficient to meet the needs
of faster hardware. If the modern operating
system does not keep pace with these two forces,
it could cause the progress in computer design to
become stagnant.

One possible solution to this problem is the
Exokernel Operating System — an extensible (or
easily modifiable) operating system developed at
the Massachusetts Institute of Technology.
Extensibility allows the operating system to be
flexible to change and also open to optimization.

Extensibility within an operating system has
resulted in several new issues. For example,
extensibility seems to make customer-support
harder to provide. Furthermore, some
multithreaded applications perform worse in an
extensible environment. Lastly, some have
argued that it is optimization, not extensibility,
that should be credited for the enhanced
operating system speeds.

In this paper, we discuss the Exokernel
Operating System with some detail. We explore
some of the issues that have kept the Exokernel
design from being the main-stream approach.
We propose solutions to these issues and we
conclude by trying to motivate the reader to
embrace the Exokernel approach.

1. INTRODUCTION

A traditional operating system (OS) is seen as
both a resource allocator and a control program.
As an allocator, an OS manages the resources
and allocates them to programs that need to use
them to accomplish their own tasks. Some of the
resources that need to be allocated include CPU
time, memory space, file-storage space, and I/O
devices. As a control program, a modern OS
controls the execution of user programs to help
prevent errors and also to help the machine avoid
improper use. A traditional OS is often secen as
the one program that is always running at all
times on the computer. This program is
sometimes called the kernel.

In a traditional operating system, the hardware
resources are hidden behind abstractions that are
provided by the operating system. These
abstractions are intended to help provide the user
with an environment in which it is convenient for
the user to execute programs as well as to make
the programs run efficiently. In this way, a

* Funded by a Research Fellowship provided by the Illinois Institute of Technology.

traditional operating system gets involved in the
execution of every user process.

An OS is generally seen as being a program that
is embedded between the hardware and the user
processes themselves. It is this implementation
that requires the traditional OS to be all things to
all processes. This traditional view is flawed
because it leads to the development of operating
systems that lower the efficiency of the system.
This is rather ironic since, as we mentioned
previously, one of the goals of an OS is to help
the system run efficiently.

The Exokernel Operating System that was
developed by a team at the Massachusetts
Institute of Technology (MIT) has challenged
this traditional view of an OS and it has proven
that there is a more efficient way to implement a
kernel. With the Exokernel Operating System,
the kernel is only responsible for protecting and
multiplexing the resources (hardware), and it
relies on the applications to manage themselves.
As Engler, Kaashoek, and O’Toole say
"Applications know better than operating
systems what the goal of their resource
management decisions should be and therefore,
they should be given as much control as possible
over those decisions” [5]. This idea leads the
team to create an operating system that is striped
of the normal abstractions. The Exokernel is
only responsible for providing protection of the
hardware and it leaves the job of managing the
user processes to an application level program.

In our investigation, we will investigate how the
Exokernel Operating System, and exokernel
systems in general, make separation of
management from protection possible. In our
investigation, we will look at the Exokernel
Operating System in general by briefly
explaining how select operating system functions
are accomplished within an exokernel
environment. In our investigation of this area,
we will discuss topics that include the tracking of
resource ownership, protecting and revoking
resource usage, management of resources,
interprocess communication, exceptions and
interrupts, read and write operations to disk

memory, and downloading code into the kernel.
We will also investigate networking with an
Exokernel by looking at packet sending and
receiving, naming and routing of packets, and
network error reporting.

As a reaction to the Exokernel, we will explore
some of the shortcomings of the extensible OS
approach and look at the holes in the Exokernel’s
feasibility for being a commercial operating
system. We will discuss the customer support
issue for an extensible system in a commercial
setting. We will question the wisdom of
eliminating a// management from the kernel. We
will question the optimization of code and who
should be in charge of this process. We will
show how some multithreaded applications do
not benefit from the Exokenel approach. Lastly,
we will question if extensibility is even the
solution to the need for a faster and more flexible
operating system. We will conclude that the
exokernel approach can be attributed with many
impressive speed-ups and we want to encourage
further research in this area.

The next section, section 2, describes the major
motivation for attempting the extensible
approach. Section 3 provides an overview of
seven key areas within the Exokernel’s design.
Section 4 is a review of the performance results
as provided by the original researchers at MIT.
Section 5 provides an analysis and discussion of
the issues that surround the Exokernel. We
conclude with some remarks as provided in
section 6.

2. PROBLEM DESCRIPTION

The motivation for an extensible operating
system comes from two sources — the need for
flexibility in an operating system, and the need
for a faster operating system. We will
investigate these two motivations separately.

2.1 THE NEED FOR FLEXIBILITY

An operating system is often seen as that “thing”
that sits between the hardware and the software.
Defining what an operating system actually is

can become a point of contention. Some would
say an operating system (OS) is that program
that manages and protects the hardware within a
computer system. An OS provides a standard
interface that allows user applications a simple
way to communicate with the hardware. It
makes resources available and also protects how
those resources are used.

Another view of an operating system says it is
whatever comes in the box when it is purchased.
In other words, an operating system is defined by
the manufacturer. If, for example, a manufacture
includes a text editor as part of its operating
system, then this functionality becomes part of
the definition of what an operating system is.
Some have even gone so far as to argue that the
user manual that accompanies the software must
also be considered part of the operating system.

No matter how one defines an operating system,
we must at least agree that in a very basic sense,
an operating system is the software program that
provides the interface to the computer hardware.
This interface has its challenges. This interface
needs to be able to interact with quickly
changing hardware. Hardware is becoming
faster, and consequently, more demanding of the
operating system. For example, faster
processors, larger processors (64 bit vs. 32 bit),
larger and different memory devices (CD/DVD),
faster communication links (busses), and higher
network bandwidth are just some of the hardware
improvements that have increased the demands
placed on the operating system.

On the application side of the operating system,
demand has also grown. Realistic gaming
programs that demand different types of
hardware access, portable palm pilots that
require special features for downloading or
uploading data, database systems that have
particular memory management needs, garbage
collection for object oriented programming
environments, and real-time applications that
require a guarantee on performance levels all put
a strain on the current understanding of an
operating system.

The traditional operating system has found itself
in the middle of a tug-of-war between the ever
changing needs of the hardware and the
increasing demands of the user applications. If
the modern operating system remains rigid in its
design, it could be ripped-to-shreds by the
opposing forces. The modern OS needs to
become more flexible to accommodate change,
as well as more modifiable and customizable to
handle the specific demands that are asked of it.

2.2 THE NEED FOR SPEED

One of the fundamental laws of computer
architecture is attributed to Gene Amdahl.
“Amdahl’s Law,” as it is known, tells us that the
speed-up to be gained by using an improved
mode of execution is limited by the amount of
time that the improved mode is actually used.
By example, this means that a 100% speed-up in
an improved mode that is only used 10% of the
time, will only cause about a 5% improvement
(or speed-up) in the total execution of the
system. What this means for the modern
computer designer is that he must stay aware of
trends in changing technology so he can identify
and improve those areas that will likely impede
the impact of the improved technology.

One of the areas of computer design that has
enjoyed some great improvement in the recent
past is the area of Central Processing Unit (CPU)
speed. Although CPU speed, as well as other
hardware speeds, may be increasing, it’s full
benefit will not be realized if the rest of the
computer system cannot keep pace with its
advances. One such area that may impede the
benefits associated with faster hardware is the
area of the operating system. As Engler,
Kaashoek, and O’Toole explain, “Traditional
operating systems limit the performance,
flexibility, and functionality of applications by
fixing the interface and implementation of
operating system abstractions such as
interprocess communication and virtual
memory” [5]. Furthermore, as an example,
“Operating systems derived from UNIX use
caches to speed up reads, but they require
synchronous disk I/O for operations that modify

files. If this coupling isn’t eliminated, a large
class of file-intensive programs will receive little
or no benefit from faster hardware” [9] If the
speed of computer systems is going to avoid
becoming stagnant, we must enter a new age of
operating system design. This new age will
require that operating systems be more efficient
to match the improvements made with faster
hardware.

2.3 THE APPROACH

Some would say, an operating system is a
necessary evil [1]. In so far as it is necessary, it
cannot be eliminated form the equation. The
modern demands that an operating system
become faster and more flexible have forced
researchers to consider radical changes in how
operating systems are designed. One such
radical design is called an extensible operating
system.

To be extensible means to be flexible to change.
An operating system that is extensible can be
easily modified to accommodate the changing
needs of the underlying hardware. An extensible
system is also one that can be easily modified to
accommodate the growing needs of wuser
applications. Furthermore, this extensibility also
allows the operating system to be optimized to
provide faster service in an environment that is
always demanding more speed. Extensibility
appears to be the magic solution to the growing
speed and flexibility issue. By promising both
speed and flexibility, the extensible operating
system seems to be the approach that will, at
least temporarily, prevent computer speeds from
becoming stagnant while still meeting the
changing needs of the user applications.

One such extensible approach is provided by the
Exokernel Operating System at the
Massachusetts Institute of Technology. The
Exokernel approaches the extensibility issue by
separating management from protection. The
Exokernel provides only multiplexing of
resources while leaving management of
resources to user level processes. The initial idea
for this approach is that user processes

themselves know better how to manage the use
of those resources. The result of this approach is
an operating system that is both flexible and
efficient. This approach is flexible because user
level code is easily and quickly modifiable. It is
efficient because management processes can now
be optimized to provide the quickest response. It
is this operating system, the Exokernel, that we
will be taking a closer look at.

3. THE EXOKERNEL SOLUTION

As we said previously, an exokernel is only
responsible for protecting and multiplexing the
resources. This resource protection consists of
three major tasks according to Dawson Engler;
1) tracking ownership of resources, 2) ensuring
protection by guarding all resource usage or
binding points, and 3) revoking access to
resources [4]. Some of the lesser tasks that an
exokernel is responsible for include protecting
physical memory, the CPU, network devices,
writes to "special" memory locations that control
devices, and the ability of a process to execute
privileged instructions. What is important to
understand here is that the exokernel only gets
involved in these activities to the extent that it is
providing protection. The exokernel does not get
involved in the details of these activities. By this
we mean that, for example, an exokernel gets
involved with granting access to a resource and
revoking access to a resource, but it does not
manage how that resource should be used.
Because of this increased freedom, a user
process is allowed to use a resource improperly.
Therefore, more responsibility falls on the
shoulders of the programmers to ensure that their
programs use the shared resources properly.

A more solid example of how an exokernel gets
involved in protecting resources and not
involved in management is seen in the example
provide by Engler where he explains the
protection of physical memory. In a traditional
OS, reading and writing to memory are
privileged instructions. Thus, every read/write
request to disk memory has to be verified for
access rights by the kernel. At this point, there is
a kind of message relaying that the kernel gets

involved in. For example, a process that wants
to access a memory location for writing will ask
the kernel through what is sometimes called a
system call. The kernel gets this system call and
it then contacts the hardware on the processes
behalf. In this way, a process is not allowed to
execute privileged instructions directly. By
forcing every read/write to go though the kernel,
global efficiency is greatly reduced.

According to Engler, the Exokernel’s answer to
this situation is "to make traditionally privileged
code unprivileged by limiting the duties of the
kernel to just these required for protection” [4].
What this means for the user is that now a user
process can access memory directly. A kernel
will still verify that the memory access is safe,
but any message relaying will be directly
between the process and the hardware itself.

In the following pages, we investigate seven key
parts of the Exokernel Operating System. This is
not intended to be a comprehensive list, but
rather a sclection that will provide a good
general understanding of the exokernel approach.

3.1 RESOURCE PROTECTION
TRACKING OWNERSHIP OF RESOURCES

When a resource gets allocated, it actually gets
allocated by what is called the Library Operating
System (LibOS) and not by the exokernel itself.
When a resource gets allocated, the exokernel
records who the owner is and any other
information associated with that ownership. For
example, if the resource was a physical memory
page, the exokernel would record the process
that owns it and the permissions like ‘read’ and
‘write’ that are associated with that allocation
[4]. The exokernel records this information
according to what can be called an open book-
keeping policy. As Engler says, the book-
keeping page table is made available as read-
only to all the processes. Since the available
resources are now visible to all of the processes,
a process can look-up which resources should be
available before it even submits a request for that

resource. If the resource is not available, the
request is denied.

ENSURING PROTECTION BY GUARDING
ALL RESOURCE USAGE OR BINDING
POINTS

The ability of a process to use a resource and not
have that resource taken away by accident is
very important. For example, if a process is
granted a block of memory, it should be allowed
to safely use that memory block without fear of
having it taken away by another process.
Furthermore, the owner should have the ability
to de-allocate the resource when it wants. An
exokernel allows a process to bind to a resource
through what is called a “secure binding” [5].

A secure binding is simply the separation of
authorization from the actual use of a resource.
When a resource gets allocated, authorization is
only allowed at the time of the binding. The
process retains the authorization until it
relinquishes it [S]. Since the exokernel only gets
involved in the authorization of a binding at bind
time, the exokernel does not have to get involved
in the ongoing management of that secure
binding.

Furthermore, an exokernel does not have to
understand what it is binding with a secure
binding. Application software can involve many
complex semantics when it is binding to a
resource. An exokernel only gets involved in the
secure binding and it does not care about the
details or semantics of that binding. As Engler,
Kaashoek, and O’Toole say, "a secure binding
allows the kernel to protect resources without
understanding them." [5].

REVOKING ACCESS TO RESOURCES

Once a process has obtained a secure binding to
a resource, there must be a way for the OS to
revoke this binding. In a traditional OS, the
binding is broken through what is known as
invisible revocation. An invisible revocation is
one in which the application is not informed of
the de-allocation. A disadvantage of this

approach is, as Engler, Kaashoek, and O’Toole
say, "library operating systems cannot guide de-
allocation and have no knowledge that resources
are scarce" [5].

An exokernel, on the other hand, revokes a
secure binding for most resources by what has
been called a visible revocation. A visible
revocation allows communication between the
kernel and the process. By communicating with
the process, the kernel can inform it of its need to
break the secure binding. The process can then
prepare for this by saving any data that it needs
to. For example, if a process was going to lose a
certain page of physical memory, it could update
its pointers to reflect this change. Furthermore,
sometimes a kernel just needs a page of memory
and it does not care which one. By
communicating with the process, the process is
allowed to choose which of its memory pages to
give up. The process can then write this page to
disk and free the memory page for the kernel.
This is how revoking a resource can be
accomplished if the process cooperates with the
kernel.

Sometimes processes do not cooperate with the
kernel, and when this happens, the kernel has to
use more force. When the exokernel has to
break a secure binding by force, it "simply
breaks all existing secure bindings to the
resource and informs the Library OS" [5].

3.2 MANAGEMENT BY USER LEVEL
CODE

EXTENSIBLE MANAGEMENT LIBRARIES

Previously we said that the exokernel is only
responsible for protection and it leaves the
management duties up to another entity. We
would be remiss in our discussion if we did not
explain how management actually works. For an
exokernel operating system, management of
resources and processes is provided by an
outside entity that is known as a “user level
library operating system,” or LibOS for short.

10

The LibOS provides the typical abstraction that
lies between an application and the hardware.
Since each application has its own LibOS, its
LibOS can be custom-made to suit the needs of
the application. This customized use of
resources is one of the things that contributes to
the efficiency of the exokernel system.
Furthermore, a LibOS can be simple and more
specialized, as Engler, Kaashoek, and O’Toole
say, "because library operating systems need not
multiplex a resource among competing
applications with widely different demands" [5].
LibOS’s allow for portability of applications if
the LibOS’s use standardized interfaces.
Furthermore, having a specialized library
operating system for each application would
seem to add a lot of redundant user code to user
space. The Exokernel OS overcomes this
problem by what has been called “shared
libraries.”

SHARED LIBRARIES

The shared library of the LibOS allows multiple
applications to share common collections of
code. This sharing helps reduce the amount of
redundant disk and memory usage. With a
typical application, a small section of code is
run at startup to load the necessary libraries into
memory. This process can lead to what Douglas
Wyatt calls a “bootstrapping problem” [11],
because loading the LibOS from disk into
memory is dependent upon the code that is in the
LibOS itself. We will investigate this further,
after we finish our shared library investigation.

One of the key issues that a shared library
system must address is what Wyatt calls “symbol
resolution” [11]. As Wyatt explains, there is a
need for each program to have a reference to a
particular memory location executed correctly at
run-time. The solution to this problem is to
always have a shared library loaded into the
same location within the virtual address space.

A better solution to the “symbol resolution”
issue is what Wyatt calls an “indirection table”
[11]. With an indirection table, the actual
address of a symbol is stored in one central table.

Each shared library is provided with a copy of
this table, and this copy is what allows a shared
library to look-up the relative offset of the
symbol and jump to that location. Furthermore,
since these offset locations are known when the
shared libraries are compiled, these addresses
can be incorporated and hard-coded into the
shared library itself. Careful use of an
indirection table in this manner allows a shared
library to be loaded into any available address
apace.

IMPLEMENTING A SHARED LIBRARY

When a program loads a shared library for the
first time, it first checks to see if the library is
already in the indirection table. If the library is
not in the indirection table, it loads the library
and it updates the indirection table to record
where the new library is. If a second program
tries to load the same library, it first notices that
the indirection table already has an address for
that particular library. Rather than loading a
second copy of the same library, the program
simply updates its page table to point to the
existing library.

There is a cost associated with using a shared
library. The cost is having to look up addresses
in the indirection table. However, by sharing
libraries, memory consumption is reduced which
leads to less frequent page faults. Having less
frequent page faults can allow applications to run
faster. Another benefit of using a shared library
is that the library can be updated and improved.
As long as no interfaces are changed or new
functions added, the new library can be compiled
and used to replace the old one without changing
or recompiling the applications that rely on it.

THE SHARED LIBRARY SERVER

Earlier we mentioned a “bootstrapping problem”
that was the result of trying to load a LibOS into
memory when the code needed to help us do this
is actually in the LibOS itself. This problem is
solved by what is called the “shared library
server” or SLS for short.

11

When an exokernel is booted, the shared library
server is also initiated. Once initiated, the SLS
communicates with applications that want to
load a shared library. As part of the process of
helping load a shared library, an SLS provides a
means to be able to open files, read files, write
files, map files from disk, open directories, read
directories, and perform basic console input and
output. The basic workings of the shared library
server provide just enough functionality to allow
a shared library to overcome the bootstrapping
problem and load itself into memory.

3.3
(IPC)

INTERPROCESS COMMUNICATION

Benjie Chen says that one is able to implement
fast IPC through what he calls “protected control
transfer” [2]. This communication method
allows secure registers to be used to pass data.
Furthermore, this communication is immediate;
once it is initiated, the message is passed
immediately between processes and the registers
without any need for kernel assistance. In this
way, the exokernel only provides the secure
registers and does not actively manage the
communication. This speed-up in
communication is just one of the many
advantages of using an extensible operating
system like Exokernel.

3.4 EXCEPTIONS AND INTERRUPTS

When a traditional operating system experiences
an exception or an interrupt, it has to protect the
current state of the system by saving some
register data to a more secure memory location.
The OS then has to decode the exception or
interrupt and execute the appropriate instructions
to handle the problem. Once the error has been
dealt with, the OS then starts running at a
program counter location that is saved prior to
handling the error.

With the exokernel, the kernel gets less involved
in the error handling. For example, all hardware
exceptions are handled by the applications
themselves. An Exokernel’s limited role
involves saving some registers in what Engler

calls an agreed upon “save area” [4]. This “save
area” is a user-accessible memory location.
Once the registers are saved, the exokernel loads
the exception and jumps to an address specified
by an application. This new address is
application code written specifically to handle
the particular exception. Presumably, this
application level code is found in what we are
calling the “User Level Library.” Once again we
see a situation where the kernel absolves itself of
any management responsibility and leaves this
up to the Library OS to handle.

Once the Library OS has taken over the handling
of the exception, the Exokernel’s job is done.
When the Library OS is done handling the
exception, since the register states were saved in
user-accessible memory, the LibOS can simply
access this information and continue with its
normal execution without any further assistance
from the exokernel. In this way, the exokernel
does not get involved in the details of error
handling. As we have seen, the LibOS handles
the details of error handling, and the exokernel
simply helps provide protection for the current
state of the registers.

3.5 DISK /O

Disk I/O that provides read and write to memory
operations is achieved though an asynchronous
method. When a calling application makes a
read or write request, the Exokernel’s “exodisk”
system hands this request off to the disk driver
itself. Control is immediately returned to the
calling application. The Exokernel does not wait
for the request to complete, instead it gives
control to the application, and the application can
choose to wait for a read or write request to
complete or not. In this way, the Exokernel is
again absolving itself of any management
responsibilities.

The Exokernel briefly gets involved in disk I/O
one more time when the read or write process
completes. When a process completes, the
Exokernel needs to notify the requesting
application of this event. However, other than
helping an application start executing a good

12

read or write operation and then helping with
some limited message passing, the Exokernel OS
continues its roll as only a protection provider
and it leaves management wup to
application/LibOS themselves.

3.6 DOWNLOADING CODE INTO THE
KERNEL

One of the ways an exokernel system improves
performance is through a technique of
downloading code into the kernel itself. This
technique is not unique to an exokernel system.
Downloading code into the kernel is a technique
that a variety of other operating systems have
also taken advantage of.

There are two main advantages to downloading
code into the kernel according to Engler
Kaashoek and O’Toole. First, downloading code
into the kernel eliminates the neced to make
“kernel crossings,” which require context
switches [5]. Kernel crossings slow down the
execution speed of applications. By eliminating
kernel crossings, applications benefit from
having an enhanced speed.

The second main benefit of downloading code
into the kernel is, as they say again, “the
execution of downloaded code can be readily
bounded” [5]. What they mean by this is that
downloaded code can be executed at times when
doing a context switch would prove to be too
costly, like when there is only a few
microseconds of processing time available for
use. Engler says this second benefit is the most
valuable of the two because it makes the code
more powerful [4]. Downloading code is more
powerful because it can be granted more freedom
of ability than normal application code.
Freedom, after all, is the main point of using an
exokernel system in the first place.

3.7 NETWORKING
PACKET SENDING AND RECEIVING

The Exokernel makes use of what Ganger and
others call “application-level” networking [6].

With this approach, user applications are allowed
to interact almost directly with a network
interface. This allows applications to manage
their communication patterns better which can
lead to higher performance. In true Exokernel
style, the operating system only gets involved in
this event in so far as it can provide protection of
resources, and it leaves the actual management
up to the user processes. The details of how the
kernel gets involved in networking is a little
vague from the research documents, but it is
clear that the kernel provides a FIFO send queue.
It is also clear that the kernel has a method for
receiving packets from the wire and copies them
to the proper receiving application. Both of
these activities are explained next.

When it comes to sending a packet on a network,
the Exokernel provides a system call referenced
by “send packet.” This function adds the
outbound packet to a first-in-first-out queue
which is serviced by a network interface card or
a device driver that handles the transmission
from that point. That’s it. That all the Exokernel
does for sending packets. The Exokernel gets
involved minimally, to the extent that is has to
get involved, but not anymore than that. This
minimal involvement in sending packets allows
the Exokernel to provide a secure way to send
packets, without managing the details of the
network transmission.

When it comes to receiving packets, the
Exokernel gets a little more involved, but not
much more. When receiving a packet, there are
two major parts which Ganger and others call
packet demultiplexing and packet buffering.
Packet demultiplexing is the process of deciding
which application a particular packet should be
associated with. This is accomplished by
checking various data offset values in the packet.
Packet buffering is the process of delivering
packets to the appropriate application. The
Exokernel does this by copying the packet into a
pre-registered memory region. At this point, the
role of the Exokernel is complete. Any further
packet handling is done by user-level code.

13

NAMING AND ROUTING OF PACKETS

Naming is the process by which a high-level
identifier is translated to a low-level identifier.
Routing depends on naming to properly map a
correct route through a network. Naming is of
central importance to networking because it is
how the Address Resolution Protocol (ARP)
uniquely identifies a computer within a network.
Uniquely identifying a computer is essential to
properly addressing a packet. An exokernel
supports this by what the Ganger group refers to
as the “sharing model” [6]. With the sharing
model, all of the ARP information is provided in
a translation table. If an application needs some
ARP information, it can access this read-only
table and look for the information that it needs.
If the information is not in the ARP table, the
process can request the information from the
network. In this way, all application processes
share this translation table. Once again, in
classic Exokernel style, we see that the operating
system is providing the bare minimum of this
service. It has exposed the ARP information to
the processes while allowing the processes
themselves to manage its use.

NETWORK ERROR REPORTING

The Exokernel uses what is called a “stray
packet” daemon to handle unclaimed network
packets. Occasionally, a recipient of a packet
cannot be located. In such cases, it is important
to convey this information to the sender of the
packet. According to the Ganger group, this
problem and other TCP segment errors are
handled by this stray packet daemon [6]. The
exact details of how the stray packet daemon
handles this is never made clear by the Ganger
group. What is clear is that this service is
provided by the operating system because it is a
protection-related service (not a management
service).

4. PERFORMANCE RESULTS
When looking at the performance of the

Exokernel system, we sce that there are good
results that support the argument for

implementing this new extensible method [4, 7].
As we look at some of the results, we will see
how the experimental results show enhancements
in five major areas of operating system
performance.

4.1 BENCHMARK APPLICATIONS RUN
SIGNIFICANTLY FASTER

Xok/ExOS (an example of an exokernel
operating system) was able to complete 11
benchmark tests in 41 seconds [4]. This result is
19 seconds faster than the other two operating
systems that it was compared to (FreeBSD and
OpenBSD). There are three benchmark tests
where Xok/ExOS was just slightly slower than
the other operating systems, but this difference
was very small and it was also expected because
of how the benchmark test was weighted [4].
Overall, we see that Xok/ExOS is about 32%
more efficient than the operating system that it
was tested against.

4.2 EXOKERNEL'’S FLEXIBILITY IS NOT
COSTLY

Another benchmark test has been completed to
test if the flexibility that exokernel offers adds
any extra cost to application execution [4]. In
the test, Xok/ExOS completed the tests in a total
running time of 41 seconds. This value should
be compared to the results of OpenBSD/C-FFS
which completed all of its tests in 51 seconds, or
about 20% slower than exokernel. From this
result, we see that “an exokernel’s flexibility can
be provided for free” [4]. Furthermore, this
efficiency is gained because some protection
mechanisms that are duplicated in a traditional
operating system are only implemented once by
the leaner exokernel system.

4.3 AGGRESSIVE APPLICATIONS ARE
SIGNIFICANTLY TIMES FASTER

When investigating this area, researchers were
primarily interested in knowing if meaningful
optimizations could be performed with
applications running on an exokernel system. To
investigate this, researchers compared two file

14

copy programs, XCP and CP. XCP is a file copy
program that is optimized to take advantage of
the exokernel system. Results of tests show that
XCP runs three times faster than CP [4].

In another experiment, web servers were tested
that take advantage of the exokernel system.
When a Cheetah web server was implemented on
top of an exokernel system (Xok), there was a
performance improvement of four times (for
small documents) [4].

Both of these significant speed-ups demonstrate
that an aggressively optimized application can in
fact run at a significantly faster rate.

44 LOCAL CONTROL CAN LEAD TO
ENHANCED GLOBAL PERFORMANCE

There is still much work that can be done in this
area, but some test results suggest that an
exokernel system can provide improvements in
global performance. For example, tests were
performed to evaluate how an exokernel system
performed while running multiple applications
concurrently [4]. The results show that an
exokernel is able to perform comparably to
widely used non-extensible systems.
Furthermore, if an exokernel system is allowed
to make local optimizations, global performance
is allowed to increase. Therefore, local control

can actually lead to enhanced global
performance.
4.5 EXOKERNEL’'S FILE STORAGE

SCHEME ENHANCES RUN-TIME

Robert Grimm points out that experiments were
done to test the effects of the Exokernel’s “fine-
grained interleaving of disk storage” [7]. In the
experiments, two applications that accessed
1,000 10 KByte files each were compared. The
results show that the Exokernel’s
implementation is able to access the files up to
45% faster than a system that does not use “fine-
grained interleaving.” Furthermore, a file insert
operation can be performed 6 times faster as a
result of the Exokernel’s flexibility. Thus, the

Exokernel’s file storage scheme improves the
global efficiency of the entire system.

5. ANALYSIS AND DISCUSSION

As a way to provide a meaningful analysis of the
Exokernel operating system, we discuss the
criticisms that have been made by some of the
Exokernel’s detractors. We also offer our own
reactions, comments, and criticisms as a way to
foster more discussion of the Exokernel
approach.,

5.1 CUSTOMER-SUPPORT

As a launching pad for our commentary, let us
start with the insight of Jeff Mogul of Compaq
Western Research Laboratory. Mogul says
“Extensibility has its problems. For example, it
makes the customer-support issues a lot more
complicated, because you no longer know which
OS each of your customers is running” [8].
Presumably this is an issue because, with an
extensible OS, each OS can be modified to a
point that it is unique. If every user has a truly
unique, self-modified and self-configured,
operating system, then it does seem to be a
challenge to provide support for this new
product. For example, if an extensible OS has a
uniquely modified file management system
interacting with a uniquely modified
communication manager, then it could be
difficult to trouble-shoot issues that rise from
their interaction.

However, just because customer support will be
challenging for an extensible OS, it does not
mean customer support has to be climinated. As
we saw in section 3.2 (Management by User
Level Code), the entire operating system does not
necessarily have to be customized. User
applications may require a standardized library.
In so far as users stick to using the standardized
libraries, customer support becomes more
manageable. Extensibility suggests there should
be a choice among the standard libraries. Having
choices might complicate the customer support
issue, but this complication should not prohibit

15

one from taking seriously the question of using
an extensible operating system.

On the other hand, extensibility could actually
help the customer support issue. If we assume
that some customer support issues arise from
bugs or errors in the original code of the
operating system, the fact that this operating
system is extensible should then make the
system easier to fix. Being that the system is
extensible, it positions itself to be easily fixed or
modified. Of course, if there is an error in the
kernel itself, perhaps a corrected version will
need to be released. In any case, because
extensibility can lead to faster corrections of the
code, extensibility may actually lead to a lower
customer support demand rather than an increase
in customer support demand.

Extensibility could also make customer service
casier to provide. For example, if a customer
support issue arises from a particular LibOS,
then the customer needs to only talk to a
customer service representative that handles that
particular LibOS. Because customer service
providers can specialize in a sub-set of
standardized LibOSs, they are no longer required
to know and understand the entire operating
system. This could greatly reduce the amount of
time it takes to train new customer service
representatives.

5.2 ELIMINATING MANAGEMENT

One may wonder if we need to eliminate all
management from the operating system. It
seems that there could be some existing
management techniques that do not need to be
optimized (because they are already fully
optimized or perhaps there is not enough to gain
by trying to optimize them). For example, as we
saw with the Library Operating System, an open
bookkeeping approach is used to display a
resources availability through a page table. This
helps the applications avoid requesting the
information from the kernel. One must agree
that avoiding a call to the kernel is good, but at
what cost? If the kernel is not going to provide
this service, then every application now has to

have a procedure to read the page table. Does
this mean that every application will be
duplicating this procedure and also duplicating
the code too? This seems wasteful. One might
suspect that the Exokernel group would reply
that duplicated code can be avoided by using a
shared library.

Perhaps we should consider providing
management for those items that cannot be
further optimized, and allow applications to
manage those areas that can be optimized. The
logically next question is, “how will we know
when something cannot be further optimized?”
Unfortunately, this cannot be known a priori.
On one hand, it seems that all applications
should be able to agree upon some common
management strategies, while on the other hand,
for maximum flexibility, we need to leave all of
the options open and provide no fixed
management strategies.

The main point is, perhaps the Exokernel is
taking too strong of a position by eliminating a//
management. Maybe there is a happy medium
between providing full management and
providing no management. Further research may
reveal that the Exokernel does not need to
eliminate all management to achieve maximum
optimization.

5.3 OPTIMIZING USAGE

Who knows better how to optimize hardware
usage? Some would argue, computer engineers
— those that design and build the actual hardware
components - probably are the most qualified to
optimize a particular piece of hardware. This
suggests that hardware engineers should also be
the ones to write the OS library code that
optimizes a particular piece of hardware. This
approach will tend to remove the line that
currently seems to separate software engineering
from hardware engineering. This means
engineers will have to play two roles — one of
hardware developer and another role of software
developer. This will require a paradigm shift in
the way computers are developed, but we will

16

gain a society of better optimized computer
resources.

This paradigm shift will enhance the Information
Technology Industry. It will put the science
back into the Computer Science that drives the
industry. It will force developers to consider
good computer science solutions. It will make
optimization one of the key driving forces.
Modern monolithic operating systems do not
make optimization as important as this new
extensible approach will make it. By making
optimization a focal point of Information
Technology, the entire industry will experience a
tremendous speed-up.

5.4 MULTITHREADED APPLICATIONS

According to Riechmann and Kleindder, “As
multithreaded applications become common,
scheduling inside applications plays a very
important role for efficiency and fairness.” [10].
They go on to explain that the Exokernel
approach leads to an inefficient solution. The
Exokernel requires an additional thread switch
during the scheduling algorithm. Their
conclusion is that a purely user-level thread
switching and scheduling algorithm leads to an
inefficiency. Their solution is to separate
mechanism from policy. In their research, they
placed the switching mechanism in the kernel
while allowing the scheduling algorithm to be
located at user level. This approach has resulted
in some modest improvements over the
Exokernel’s approach.

Riechmann and Kleindder support one of our
points. While the traditional monolithic
operating system provides management and
protection of resources, the Exokernel strives to
provide only protection. Perhaps the most
efficient solution is somewhere between these
two approaches. Perhaps modern computer
engineers should explore the approach of the
Exokernel without embracing it so tightly. The
Exokernel has provided some impressive
improvements in efficiency, and these
improvements need to be explored. However,
the radical approach of a pure exokernel might

not be the answer, but it could be a good place to
start the investigation.

5.5 IS EXTENSIBILITY THE ANSWER?

An argument against the Exokernel is “it is
unclear to what extent the performance gains are
due to extensibility, rather than metely resulting
from optimizations that could equally be applied
to an operating system that is not extensible. [3].
Druschel and others have demonstrated through
their research that the same gains that have been
accomplished by optimizing an extensible
operating system are also possible by optimizing
current monolithic operating systems. The key is
optimization, not extensibility.

Extensibility does have its place however. The
Druschel group says that “the real value of
extensible kernels lies in their ability to stimulate
research by allowing rapid experimentation using
general extensions” [3]. In other words,
extensible systems allow for fast prototyping of
experimental operating systems. More
experimentation needs to be done to optimize
current approaches to operating systems, and one
way to improve the speed at which this
experimentation takes place is to utilize the fast
prototyping that is made possible by extensible
systems. Thus, extensibility is not the answer
(according to the Druschel group), but it is a tool
that can be used in the development of a better
solution.

The Drushel group makes a very interesting
point. It does seem that it is optimization rather
than extensibility that gives rise to the speed-up.
However, one might argue that the Drushel
group over states their position. One may argue
it is extensibility that makes optimization
possible. Therefore, extensibility cannot be over
looked. What we need is an operating system
that can be optimized for a multitude of user
applications. Extensibility makes this possible.
It is precisely because the operating system is
easily modifiable that it can also be optimized to
please all user applications. In conclusion, the
Drushel group is correct in that it is optimization
that causes the speed-up, but it is extensibility

17

that makes the optimization possible. Therefore,
extensibility is the key component for enhancing
operating system speeds.

6. CONCLUSION

As we bring our investigation to a close, we
recall that we began our investigation by looking
at the two forces that are pulling at the modern
monolithic operating system. There is a
tremendous demand for an operating system to
be more flexible to meet the changing needs of
ever changing hardware and ever changing user
applications. There is also a new demand that
operating systems become faster — a problem that
is solved through optimization. The magic
approach that seems to satisfy these growing
needs is extensibility.

As we looked at extensible operating systems,
we focused on the implementation details of the
Exokernel Operating System that was developed
at the Massachusetts Institute of Technology. As
we studied the Exokernel approach, we saw that
this system provided protection of resources
while leaving the management of those resources
up to user-level applications. By separating
management from protection, we saw how the
Exokernel was able to become easily optimized.
This optimization has lead to several examples of
how the Exokernel is able to demonstrate
significant speed-ups when compared to standard
benchmarks. This solid performance
improvement should encourage more research in
the area of extensibility.

Lastly, we discussed some of the downsides
associated with creating an extensible operating
system. We mentioned the customer service
issue, the need to eliminate a// management, a
new approach to optimizing hardware and
software, and whether or not extensibility is even
the solution to this problem. We admit that there
are some issues with the Exokernel project.
There are some problems that arise from such a
radical new approach to operating system design.
However, we conclude that these initial issues
are minimal at best, and they should not

discourage further
extensibility question.

exploration into the

In conclusion, extensibility does seem to be the
solution that will solve the flexibility issue and
the speed issue, all at one time. This technology

18

is still in its infancy, but the initial findings
suggest that further studies should be encourage.
Thus, if the modern operating system is to avoid
being stagnant, operating system designers need
to embrace the extensibility approach.

7. REFERENCES

(1

[2]

i3]

[4]

[3]

[61

71

“Practice and Technique in

Extensible Operating Systems” by Lee
Carver, Ying-Hung Chen, and Theodore
Reyes. University of California — San
Diego, 1998.

“Multiprocessing with the Exokernel
Operating System” by Benjie Chen.
Massachusetts Institute of Technology,
February 2000.

“Extensible Kernels are Leading the OS
Research Astray” by Peter Druschel,
Vivek Pai, and Willy Zwaenepoel. Rice
University, 1997.

“The Exokernel Operating System
Architecture” by Dawson R. Engler.
Ph.D. thesis, Massachusetts Institute of
Technology, October 1998.

“Exokernel: an Operating System
Architecture for Application-level
Resource Management.” by Dawson R.
Engler, M. Frans Kaashoek, and James
O'Toole Jr. In the Proceedings of the
15th ACM Symposium on Operating
Systems Principles (SOSP '95), Copper
Mountain Resort, Colorado, December
1995, pages 251-266.

“Fast and Flexible Application-Level
Networking on Exokernel Systems” by
Gregory Ganger, Dawson Engler, M.
Frans Kaashoek, Héctor Briceiio,
Russell Hunt, and Thomas Pinckney. In
ACM Transactions on Computer
Science Volume 20, Issue 1, February
2002,

“Exodisk: Maximizing application
control over storage management” by
Robert Grimm. Massachusetts Institute
of Technology, May 1996.

19

(8]

91

(10]

[11]

“Operating Systems — Now and in the
Future” by Dejan Milojicic. IEEE
Concurrency, January-March 1999.

“Why Aren’t Operating Systems
Getting Faster As Fast As Hardware?”
by John Ousterhout. Digital Equipment
Corporation, October 1989.

“User-Level Scheduling with Kernel
Threads” by Thomas Riechmann and
Jiirrgen Kleinoder. University of
Erlangen-Niirnburg, June 1996,

“Shared Libraries in an Exokernel
Operating System” by Douglas Wyatt.
MS Thesis, Massachusetts Institute of
Technology; August 1997.

