one up on LRU

and Dharmendra S.

Modha

D. S. Modha has pub-
lished on caching algo-
rithms, information and
coding theory,data min-
ing, learning theory, sig-
nal processing, and data
visualization. He holds 6
patents.

by Nimrod
Megiddo

Nimrod Megiddo has
published in the areas of
optimization, algorithms
and complexity, game
theory, and learning,
and has taught and lec-
tured in several univer-
sities.

megiddo@almaden.ibm.com

dmodha@almaden.ibm.com

Introduction

The concept of caching dates back (at least) to von
Neumann's classic 1946 paper that laid the foundation
for modern practical computing. Today, caching is used
widely in storage systems, databases, Web servers, mid-
dleware, processors, file systems, disk drives, RAID con-
trollers, operating systems, and in varied and numerous
other applications.

Generically, a cache is a fast, usually small, memory in front of a
presumably slower but larger auxiliary memory. For our pur-
poses, both memories handle uniformly sized items called
pages. We also assume demand paging. Host requests for pages
are first directed to the cache for quick retrieval and, if the page
is not in the cache, then to the auxiliary memory. If an
uncached page is requested, one of the pages currently in the
cache must be replaced (often requiring that the page be flushed
back to the auxiliary memory, if it was written to by the host). A
replacement policy determines which page is evicted. LRU is the
most widely used replacement policy.

Until recently, attempts to outperform LRU in practice have not
fared well because of overhead issues and the need to pre-tune
various parameters. Adaptive Replacement Cache (ARC) is a
new adaptive, self-tuning replacement policy with a high hit
ratio and low overhead. It responds in real time to changing
access patterns, continually balancing between the recency and
frequency features of the workload, and demonstrates that
adaptation eliminates the need for workload-specific pre-tun-
ing. Like LRU, ARC can be easily implemented. Even better, its
per-request running time is essentially independent of the cache
size. Unlike LRU, ARC is “scan-tolerant” in that it allows one-
time sequential requests to pass through without polluting the
cache. ARC leads to substantial performance gains over LRU for
a wide range of workloads and cache sizes.

August 2003 jlogin: ONE UP ON LRU

ARC’s Paradigm

Suppose that a cache can hold ¢ pages. The ARC scheduler
maintains a cache directory that contains 2c pages, ¢ pages in
the cache and c history pages. ARC’s cache directory, referred to
as DBL, maintains two lists: L1 and L2. The first list contains
pages that have been seen only once recently, while L2 contains
pages that have been seen at least twice recently, The replace-
ment policy for managing DBL is: Replace the LRU page in L1 if
it contains exactly ¢ pages; otherwise, replace the LRU page in
LZ;

The ARC policy builds on DBL by carefully selecting ¢ pages
from the 2¢ pages in DBL. The basic idea is to divide L1 into a
top T1 and bottom B1 and to divide L2 into top T2 and bottom
B2. The pages in T1 are more recent than those in Bl; likewise
for T2 and B2. The algorithm includes a target size target_T1
for the T1 list. The replacement policy is simple: Replace the
LRU page in T1, if T1 contains at least target_T1 pages; other-
wise, replace the LRU page in T2.

The adaptation comes from the fact that the target size
target_T1 is continuously varied in response to an observed
workload. The adaptation rule is also simple: Tncrease
target_T1, if a hit in the history B1 is observed; similarly,
decrease target_T1, if a hit in the history B2 is observed.

LRU

Consider a very simple implementation of an LRU cache to
motivate ARC. A typical implementation maintains a cache
directory comprising cache directory blocks (CDB), often with
a structure like this:

STORAGE SYSTEMS

struct CDB {

long page_number; /* page's ID number */
struct cache_page *pointer; /* page's location in cache */
int ARC_where; /* not used for LRU */
int dirty; /* if dirty', write before replacing */
struct CDB *lrunext; /* for doubly linked list */
struct CDB *lruprev; /* for doubly linked list */
b
struct CDB *L; /* the LRU list */
long LlLength; /* length of list L */

LRU caches with ¢ pages require ¢ CDBs. The following code manages the LRU list and is invoked for each page request:
/* keep the cache descriptor list, L, in LRU order */

struct CDB *
LRU (long page_number, int dirty) {
struct CDB *temp;

temp = locate(page_number); /* search L for page #page_number */
if (temp = NULL) /* page in cache? */
remove_from_listitemp); /* page in cache: remove now, reinsert later */
else { /* page is not in cache ... */
if {LLength == ¢) { /* cache full? */
temp = lru_removel(L); /* cache full: remove the LRU page at end of list */
if (temp->dirty) /* dirty -> page out changed pages */
destage(temp);
} else { /* cache not yet full */
temp = get_new_CDB(); /* populate & bookkeep */
temp->pointer = get_new_page();
LLength++;
}
temp->page_number = page_number; /* bookkeep */
temp->dirty = dirty; /* bookkeep */

fetch(page_number, temp->pointer, dirty); /¥ put new page in place */
}
mru_insert{temp, L); /* this page now goes to head of LRU gueue */
return temp;
!

We leave the simple routines locate, remove_from_list, mru_insert, Iru_remove, destage, get_new_CDB, get_new_page, and fetch as
an exercise. If the page is dirty, that is, a write request, then the fetch routine simply uses the changed page supplied by the host if the
page is a read request, then the fetch routine reads the page from the auxiliary memory. Any existing LRU implementation already
has these routines.

ARC

ARC requires 2*c CDBs. The extra directory entries maintain a history of certain recently evicted pages. The key new idea is the use
of this history to guide an adaptation process. The cache directory consists of four disjoint doubly linked LRU lists along with their
lengths:

struct CDB *T1, *B1, *T2, *B2;
long T1Length, T2Length, B1Length, B2Length;

Any given CDB will occupy a spot on one of the four lists. The field ARC_where will be set to 0, 1, 2, or 3, depending on the list in
which it appears (T1, B1, T2, or B2, respectively).

Vol. 28, No. 4 ;login:

The T1 and T2 lists describe ¢ pages currently resident in the cache. The B1 and B2 lists contain ¢, a “history” of pages that were very
recently evicted from the cache.

Furthermore, the T1 and B1 lists contain those pages that have been seen only once recently, while the T2 and B2 lists contain those
pages that have been seen at least twice recently. The B1 list contains those pages evicted from T1, while B2 contains those pages that
are evicted from T2.

The T1 and B1 lists capture “recency” information, while the T2 and B2 lists capture “frequency” information,

The algorithm adaptively — in a workload-specific fashion — balances between the recency and frequency lists to achieve a high hit
ratio. It tries to maintain the number of pages in the T1 list to contain target_T1 pages. This parameter is adapted on virtually every
request.

When the cache is full, the page to be evicted will be either the LRU page in T1 or the LRU page in T2.
This code demonstrates the page replacement procedure:

#define _T1_ 0
#define _T2_ 2
#define _B1_ 1
#define _B2_ 3

struct cache _page *
replace() {
struct CDB* temp;
if (T1Length >= max(1,target_T1)){ /*T1's size exceeds target? */
/* yes:T1 is too big */
/* grab LRU from T1 */
/* put it on B1 %/
/* note that fact */
/™ bookkeep */

temp = lru_remove(T1);
mru_insert{temp, B1);
temp->ARC_where = _B1_;
TiLength—; B1length++;
} else {
/* na: T1 is not too big */
/* grab LRU page of T2 */
/* put it on B2 ¥/

temp = lru_remove(T2);
mru_insert(temp, B2);

« STORAGE SYSTEMS

temp->ARC_where = _B2_:
T2Length—; B2Length++;

/* note that fact */
/* bookkeep */

}
if (temp->dirty) destage({temp);
return temp->pointer;

1

The main algorithm comprises five cases which correspond to
whether a page request is found in one of the four lists or in
none of them. Only hits in T1 and T2 are actual cache hits. Hits
in B1 and B2 are “phantom” hits that affect adaptation.

In particular, the cache parameter target_T1 is incremented for a
hit in B1 and decremented for a hit in B2. This means that B1
hits favor recency while B2 hits favor frequency. The cumulative
effect of the continual adaptation leads to an algorithm that
adapts quickly to evolving workloads.

If a page is not in any of the four lists, then it is put at the MRU
position in T1. From there it ultimately makes its way to the LRU
position in T1 and eventually B1, unless requested once again
prior to being evicted from B1, so it never enters T2 or B2.
Hence, a long sequence of read-once requests passes through T1
and B1 without flushing out possibly important pages in T2. In

August 2003 dogin:

/* if dirty, evict before overwrite */

this sense, ARC is “scan-tolerant.” Arguably, when a scan begins,
fewer hits occur in B1 compared to B2. Hence, by the effect of
the adaptation of target_T1, the list T2 will grow at the expense
of the list T1. This further accentuates the tolerance of ARC to
scans.

1f the list B1 produces a lot of hits, then ARC grows T1 to make

room for what appears to be localized requests, and, hence,
favors recency. If the list BZ produces a lot of hits, then ARC
grows T2 to favor frequency. ARC continually balances between
recency and frequency in a dynamic, real-time, and self-tuning
fashion, making it very suitable for workloads with a priori
unknown characteristics or workloads that fluctuate from
recency to frequency. ARC requires no magic parameters that
need to be manually tuned or reset.

Here's the straightforward code that implements this procedure:

ONE UP ON LRU

10

ARCllong page_number, int dirty) {
struct CDB *temp, *temp2;
temp = locate(page_number);
if (temp 1= NULL) {
switch (temp->ARC_where} {
case _T1_:
T1Length—; T2Length++;
/* fall through */
case _T2_:
remove_from_list{temp);
mru_insert{temp, T2};
temp->ARC_where = _T2_;
if (dirty) temp->dirty = dirty;
break;

case _B1_:
case B2 _:
if (temp->ARC_where == _B1_) {

/* find the requested page */
/* found in cache directory? */
/* yas, which list? */

/* take off whichever list */

/™ seen twice recently, putonT2 */
/* note that fact */

/™ bookkeep dirty */

/* B1 hit: favor recency */

target_T1 = min(target_T1 + max(B2Length/B1Length, 1), c);

B1Length—;
}else {

/* adapt the target size */
/* bookkeep */
/* B2 hit: favor frequency */

target_T1 = max(target_T1 - max(B1Length/BZLength, 1), 0);

B2Length—;
}
remove_from_listitemp);
temp->pointer = replace();
temp->page_number = page_number;
temp->dirty = dirty;
mru_insert(ternp, T2},
temp->ARC_where = _T2_;

fetch{page_number, temp->pointer, dirty);

break;
}
}else |
if (T1Length + B1Length == ¢) {
if (T1Length < ¢) {
temp = lru_remove({B1);
B1Length—;
temp->pointer = replace();
) else |
temp = lru_remove(T1);
if (temp->dirty) destage(temp);
T1Length—;
}

| else {

if (T1Length + T2Length + B1Length + B2Length >= ¢} {

/¥ Yes, cache full: %/

it (T1Length + T2Length + BilLength + B2Length == 2*¢) {

/* directory is full: */

B2Length—;
temp = Iru_remove(B2);
| else

temp = get_new_CDBI();
temp->pointar = replace();
}else {
temp = get_new_CDBI);
temp->pointer = get_new_pagel(),
}
}
mru_insertitemp, T1);
Tilength++;
temp->ARC_where = _T1_;
temp->page_number = page_number;
temp->dirty = dirty;
fetch(pagé_number, temp->pointer, dirty);

/* adapt the target size */
/* bookkeep*/

/* take off whichever list */

/* find a place to put new page */
/* bookkeep */

/* bookkeep */

/* seen twice recently, put on T2 */
/* note that fact */

/* load page into cache */

/* page Is not in cache directory */
/* B1 +T1 full? =/

/* Still room inT1? */

/* yes: take page off B1 */

/* bookkeep that */

/* find new place to put page */

/* no: B1 must be empty */

/* take page off T1 */

/* if dirty, evict before overwrite */
/* bookkeep that */

/* B1 +T1 have less than c pages */
/* cache full? */

/* find and reuse B2's LRU */
/* cache directory not full, easy case */

/* new place for page */
/* cache not full, easy case */

/* seen once recently, put onT1 %/
/¥ bookkeep: */

/* load page into cache */

Vol. 28, No. 4 jlegin:

The Proof Is in the Pudding

Although ARC uses four lists, the total amount of movement
between lists is comparable to LRU. The space overhead of ARC
due to extra cache directory entries is only marginally higher —

typically less than 1%. Hence, we say that ARC is low-overhead.

To assess ARC's performance, we conducted trace-driven simu-
lations, results of which populate Table 1. ARC outperforms
LRU for a wide range of real-life workloads — sometimes quite
dramatically. For brevity, we have shown only one typical cache
size for each workload. In fact, ARC outperforms LRU across
the entire range of cache sizes for every workload in our test!

Traces P1-P14 were collected by using VTrace over several
months from Windows N'T' workstations running real-life
applications. ConCat was obtained by concatenating the traces
P1-P14, while Merge(P) was obtained by merging them. DS1 is
a seven-day trace taken from a database server at a major insur-
ance company. The page size for all these (slightly older) traces
was 512 bytes. We captured a trace of the SPC1 (Storage Perfor-
mance Council) synthetic benchmark, which is designed to
contain long sequential scans in addition to random accesses.
The page size for this trace was 4KB. Finally, we considered
three traces — S1, 52, and S3 — that were disk-read accesses initi-
ated by a large commercial search engine in response to various
Web search requests over several hours. The page size for these
traces was also 4KB. The trace Merge(S) was obtained by merg-
ing the traces S1-53 using timestamps on each of the requests.

Conclusion

ARC is an easily implemented, new, self-tuning, low-overhead,
scan-tolerant cache replacement policy that seems to outper-
form LRU on a wide range of real-life workloads. We have out-
lined a simple implementation that may be adapted to a variety
of applications. The reader interested in a formal presentation
of ARC, a detailed literature review, and extensive simulation
results can consult the full paper, "ARC: A Self-Tuning, Low
Overhead Replacement Cache,” in USENIX Conference on File
and Storage Technologies (FAST '03), March 31-April 2, 2003,
San Francisco, CA (http://www.usenix.org/events/fast03/).

August 2003 ;login:

WORKLOAD Size LRU ARC
(MB) (% HITS) (% HITS)

P1 16 16.55 28.26

P2 16 18.47 27.38

B3 16 3.57 17.12

P4 16 5.24 11.24

P5 16 6.73 14.27

P& 16 4.24 23.84

P7 16 345 13.77

P8 16 17.18 27.51

P9 16 8.28 1973

P10 16 2.48 9.46

P11 16 20.92 26.48

P12 16 8.93 15.94

P13 16 7.83 16.60

P14 16 15.73 20.52

ConCat 16 14.38 21.67

Merge(P) 128 38.05 39.91

DS1 1024 11.65 22.52

SPCI 4096 9.19 20.00

S1 2048 2371 3343

52 2048 25.91 40.68

83 2048 25.26 40.44

Merge(S) 4096 27.62 40.44

Table 1. At-a-glance comparison of LRU and ARC for various
workloads. It can be seen that ARC outperforms LRU, some-
times quite dramatically.

ONE UP ON LRU =

» STORAGE SYSTEMS

11

