
and Dharmendra 5. \

ARCS Pardillam
The concept of caching dates back (at least) to von sup& tbata.&e hold c pages. The ARC scheduler -
~eumann'i classic 1946 paper that laid the foundation cachedirectorythat contains2c pagerc pagesin

the cache and chistory pages. ARC'S cache directpry, refeued to for modern practical computing. Today, caching is used
as DBLmain~Stwolists: L1 and list contains

widely in storage systems, databases, Web servers, mtd- pee have bees seen o+, teCetrdy, while contains
dleware, processors, file systems, disk drives, RAID con- p a w thathavebem seen k t hrice recefitly. B~ npIaEe-
trollers, operating systems, and in varied and numerous ment policyformanaging DBL is: Replace the LRUpage inLlif
other applications. it contains exactly c pages; otherwise, replace the LRU page in ."

PIIgeS. We also assume demand paging, Host requests for pages
are first directed to the cache fer quick retrieval and, if the page
is not in the c a c h ~ then to the auxiliary memory. If an
uncached page is requested, one of the pages cnrren+ in the
cashe must be replaced (oFten requiring tbat the page be flusbed
badc to the a m memory, if it was written to by the host]. A
replacement policy determjnes which page is evicted. L W is the
most widely 4 replacement policy.

Until recendy, attempts to outperform LRU in practice have not
fared well became af overhead issues and the need to pfe-tune
various parameters. Adaptme Replacement Cache (ARC) is a
newadaptive, self-tuning replacementpolicywith a high hit
ratio and low mrhead. Itrwposds in real tirw to changing
access pattems, continually balancing between the recency and
frequencyfeatures of the workloa& and demonstrates that
adaptation eliminates the need for workload-specific pre-tun-
ing. Like LRU, ARC can be eady Lnplanented. Even better, its
per-requestmnnhg time is essentially indepeadent of the cache
size. UaWGe LRU, ARC is"scan-tolerant" in that it alIow8 one-
time spqnential mquests tepassthrough without polluting the
cache. ARC leads ro substantial performmce gains over LRLT for
a wide range of workloads and cache sires.

u.
Generically, a cache is a fast, usually small, memory in front of a
presumably slower but lager a t d i a r y memory. For ourpur- The ARC PO^ b a O ~ D B L by ~ e f o l l ~ = ~ ~ c pages
poses, bofhmemories handle uniformly sized items Caned from the 2c pages In DBL. The basic id& is to divide L1 into a

' top T1 and bottom Bland to divide L2 into top T2 and bottom
BZ. The pages in T1 are more recent rhan those in 81; likovie
for T2 and B2. The a l g o r b includes a target size targetTl
for the 'I7 kt. The replacement policy is simple: Replace the
LRUpagein Tl, i f l l contains at leasttarget-TI pages; other-
wise, replace the LRU page in T2.

The adaptation comes fmm the fact that the t w e t size
targeLT1 is continuously vgliedin response to an observed
workload. The adaptation rule is also si.lpI: Itlcrease
target-Tl, if a hit i i ~ the historp 81 is obsercrrd; similarlp,
decrease tarw~T1, if a hit in the history 82 is observed

LRtl
Consider avery simple implementation of an LRUcacbe to
motivate ARC. A typical implementation maintains a cache
directory comprising cache directory blocks (CDB), often with
a structure like this:

August 2063 &#k

I* titke off whichever lrst .I
I" seen twice recently, put onT2 "I
I' note that tact * I
1- bookkeep dirty *t

I' adapt the target she *I
I' bwkkeepPl

I* rake off whichever list ' 1
P find a p h 70 put new page Y
I* bookkeep ' I
I' bookkeep ' I
1' seen twice recently. put onT2 *I
I' note that faix *4
I* load page Into cache 7

I* page 1s not in oaaache directory .I
I- e l +n 1u1i7 -1
P Still room inTl? '1
I' yes: take page off BT *J
1. bookkeep that *J
1" flnd new place to put page 'I
P no: Bl must be empty *.I
1- take page offTt 'I
P Ef dirty, eviot before overwrite Y
I* bookkeep that *I

I* $1 + Tl have less than c pages */
I* oacrhef~ll? Y

/* find and reuse 82% LRU *I

I' eadw directory not full, easy case *I

I* new plaa, for m e * I
/' cache not full, easy case 'F

I* seen once recentlv, put onTl ' I
I* baokkeep: .I

P l a d page im cache Y

The W in the ,Pu@i~
Altbough ARC uses four Iists, the total amount of movement
between lists is comparable to LRU. The space overhead ofARC
due to extra cache diictory entries is only marginaly higher -
typicallyl~ss than 1%. Hence, we say that ARC is low-overhead.

To assess ARC'S performance, we conducted trace-driven simu-
lations, results of which popdate Table I. ARC outperfontls
LRU for a wide range of red-lie workloads - sometimes quite
dramaticaUy. For breviv, wehawshown only one typical cache
sue for each workload Tn fact, ARC outpetformsLRU across
the entire range of cache sues for wetyworkload in o w test1

Traces P I 4 1 4 were coUected by using m a c e over several
months •’tom Wmdows NT workstations running real-life
applications. GonCat was obtained by concatenating the traces
PI-P14, whileMerge(P) was obtained bpmergingfhem. DSt is
a men-day trace taken from a database server at a major insur-
ance company. The page size fof all theye (slightly older) traces
was 512 bytes, We captured a trace of the SPCl (Storage Perfor-
mance Council) synthetic benchmadr, which is designed to
contain long sequentialscans in addition to random accesses.
The page size for this trace was 4KB. Finaly,we considered
three traces - Sl,S2, and 53 -that were &&-read acceses initi-
ated bya large commercial search epgine in response to various
Web search repnests over several hours. The pagesize for these
traces was also 4KB. The trace Mege(5) was obtained $ merg-
ing the traces 9 4 3 using timestamps on each of the requests.

Conclusion
ARC is an easily implemented, new, &tuning, low-ehead,
~aa-tolerant ache replacement policy that seems to outper-
form LRU on awide range of real-life workloads. We have out-
lined a simple implementation that may be adapted to a variety
of applications. The reader interested in a farmal presentation
of ARC, a detailed literature review, and extensive simulation
results can consult the full paper, 'ARC: A Self-Th&g, LOW
Overhead Replacement Cache,= in USENIX Conference on File
and Storage Technologies (FAST '031, March 31-April 2,2003, .able I. At-a-glance camparison of LRO and ARC for various
San ran&, CA (h&:~www.mkor~/even~a~f03fi~ workloads. ItIt&m be seen that ARC outpetforms LRU, zome-

times quite dramatically.

