The LRU—K Page Replacement Algorithm
For Database Disk Buffering

Elizabeth J. O'Neil and Patrick E. O'Neil, UMass/Boston,
Gerhard Weikum, ETH Zurich

ABSTRACT

This paper introduces a new approach to database disk buffering, called the LRU—K method. The
basicideaof LRU—K isto keep track of thetimesof thelast K referencesto popular database pages,
using thisinformation to statistically estimate the interarrival time of such references on a page by
page basis. Although the LRU—K approach performs optimal statistical inference under relatively
standard assumptions, it isfairly ssmpleand incurslittle bookkeeping overhead. Aswe demonstrate
with simulation experiments, the LRU—K algorithm surpasses conventional buffering algorithmsin
discriminating between frequently and infrequently referenced pages. Infact, LRU—K can approach
the behavior of buffering a gorithmsinwhich page setswith known accessfrequenciesare manually
assigned to different buffer poolsof specifically tuned sizes. Unlike such customized buffering algo-
rithmshowever, the LRU—K method isself—tuning, inthe sensethat it doesnot rely on external hints
about workload characteristics. Furthermore, the LRU—K algorithm adaptsin real timeto changing
patterns of access.

The paper develops the details of the LRU—K method, and provides a probabilistic analysis of the
behavior of the LRU—K algorithm. In particular, it is proven that LRU—K is essentially optimal
among all replacement algorithms that are solely based on stochastic information about past refer-
ences. The LRU—K algorithm achieves significant savingsin termsof cost—performance, compared
totheclassical LRU algorithm and itsvariants, and these savings are demonstrated with simulation.

1. Introduction
1.1Problem Statement

All database systems retain disk pages in memory buffersfor aperiod of time after they have been
read in from disk and accessed by a particular application. The purpose is to keep popular pages
memory resident and reduce disk 1/0. Intheir " Five Minute Rule”, Gray and Putzolu pose the fol-
lowing tradeoff: We are willing to pay more for memory buffers up to a certain point, in order to
reducethecost of disk armsfor asystem ([GRAY PUT], seealso[CKS]). Thecritical buffering deci-
sion ariseswhen anew buffer slot is needed for apage about to beread in from disk, and all current
buffersare in use: What current page should be dropped from buffer? Thisis known as the page
replacement policy, and the different buffering al gorithmstaketheir namesfrom thetype of replace-
ment policy they impose (see, for example, [COFFDENN], [EFFEHAER]). Thea gorithm utilized
by almost all commercial systemsisknown asLRU, for Least Recently Used. When anew bufferis
needed, the LRU policy drops the page from buffer that has not been accessed for the longest time.
L RU buffering was developed originally for patternsof useininstruction logic (for example, [DEN-
NING], [COFFDENN]), and does not alwaysfit well into the database environment, as was noted
asoin [REITER], [STON], [SACSCH], and [CHOUDEW]. Infact, the LRU buffering algorithm
has aproblem which isaddressed by the current paper: that it decideswhat pageto drop from buffer
based ontoo littleinformation, limiting itself to only thetime of last reference. Specifically, LRU is
unable to differentiate between pages that have relatively frequent references and pages that have
very infrequent references until the system haswasted alot of resources keeping infrequently refer-
enced pages in buffer for an extended period.

Example1.1. Consider amulti—user database application, which references randomly chosen cus-
tomer recordsthrough aclustered B-treeindexed key, CUST—ID, toretrievedesired information (cf.
[TPC-A]). Assume simplistically that 20,000 customers exist, that a customer record is 2000 bytes
inlength, and that space needed for the B—treeindex at theleaf level, free spaceincluded, is20 bytes
for each key entry. Thenif disk pages contain 4000 bytes of usable space and can be packed full, we
require 100 pagesto hold theleaf |evel nodesof the B—treeindex (thereisasingle B-treeroot node),
and 10,000 pages to hold the records. The pattern of reference to these pages (ignoring the B—ree
root node) isclearly: 11, R1,12,R2,13, R3, .. ., aternate referencesto random index leaf pagesand
record pages. If we can only afford to buffer 101 pagesin memory for this application, the B—tree
root node is automatic; we should buffer all the B—tree leaf pages, since each of them isreferenced
with aprobability of .005 (once in each 200 general page references), whileit isclearly wasteful to
displace one of these leaf pages with adata page, since data pages have only .00005 probability of
reference (once in each 20,000 general page references). Using the LRU algorithm, however, the
pages held in memory bufferswill be the hundred most recently referenced ones. To afirst approxi-
mation, thismeans 50 B—tree leaf pages and 50 record pages. Given that apage gets no extracredit
for being referenced twice in the recent past and that thisis more likely to happen with B—tree | eaf
pages, therewill even be slightly more data pages present in memory than leaf pages. Thisisclearly
inappropriate behavior for avery common paradigm of disk access.g

Examplel.2. Asasecond scenariowhere L RU retainsinappropriate pagesin cache, consider amul-
ti—process database application with good " locality” of shared page reference, so that 5000 buffered
pages out of 1 million disk pages get 95% of the references by concurrent processes. Now if afew
batch processes begin ” sequential scans’ through all pages of the database, the pagesread in by the
sequential scanswill replace commonly referenced pagesin buffer with pages unlikely to be refer-
enced again. Thisisacommon complaintin many commercial situations: that cache swamping by
sequential scans causesinteractive response time to deteriorate noticeably. Response time deterio-
rates because the pages read in by sequential scans use disk arms to replace pages usually held in
buffer, leading to increased |/O for pagesthat usually remain resident, so that long 1/0 queuesbuild
up.g

Toreiterate the problem we seein thesetwo examples, LRU isunableto differentiate between pages
that have relatively frequent reference and pages that have very infrequent reference. Once apage
has been read in from disk, the LRU algorithm guaranteesit along buffer life, even if the page has
never been referenced before. Solutionsto this problem have been suggested in the literature. The
previous approaches fall into the following two major categories.

e Page Pool Tuning:
Reiter, in his Domain Separation algorithm [REITER], proposed that the DBA give better hints
about page pools being accessed, separating them essentially into different buffer pools. Thus
B—tree node pages would compete only against other node pages for buffers, data pages would
competeonly against other datapages, and the DBA could limit theamount of buffer spaceavail-
able for data pages if re—reference seemed unlikely. Such “pool tuning” capabilities are sup-
ported by some commercia database systems and are used in applications with high perfor-
mance requirements (see, e.g., [TENGGUM, DANTOWS, SHASHA]). The problem with this
approachisthat it requiresagreat deal of human effort, and doesnot properly handlethe problem
of evolving patterns of hot—spot access (locality within the data page pool, changing over time).

e Query Execution Plan Analysis:
Another suggestionwasthat the query optimizer should provide moreinformation about thetype
of use envisioned by aquery execution plan, so that the system will know if re-reference by the

2

planislikely and can act accordingly (see the Hot Set Model of [SACSCH], the DBMIN algo-
rithm of [CHOUDEW]) anditsextensions[FNS, NFS, Y UCORN], the hint—passing approaches
of [CHAKA, HAAS, ABG, JCL, COL] and the predictive approach of [PAZDOQ]). This ap-
proach can work well in circumstanceswherere—reference by the sameplanisthemainfactorin
buffering. In Example 1.2 above, we would presumably know enough to drop pagesread in by
sequential scans. The DBMIN algorithm would also deal well with the references of Example
1.1if the entire reference string were produced by asingle query. However, the query plansfor
the simple multi—user transactions of Example 1.1 give no preference to retaining B—tree pages
or datapagesin buffer, since each pageisreferenced exactly onceduring the plan. In multi—user
situations, query optimizer planscan overlap in complicated ways, and the query optimizer advi-
sory algorithmsdo not tell ushow to take such overlap into account. A moreglobal pagereplace-
ment policy must exist to make such a decision.

1.2 Contribution of the Paper

Both of the above categories of solutions take the viewpoint that, since LRU does not discriminate
well between frequently and infrequently referenced pages, it isnecessary to have some other agent
provide hintsof onekind or another. The contribution of the current paper isto deriveanew self—e-
liant page—replacement al gorithm that takesinto account more of the access history for each page, to
better discriminate pagesthat should bekept inbuffer. Thisseemsasensibleapproach sincethepage
history used by the LRU algorithm is quite limited: simply the time of last reference.

In this paper we carefully examine the idea of taking into account the history of the last two refer-
ences, or moregenerally thelast K references, K = 2. The specific algorithm devel oped in this paper
that takesinto account knowledge of thelast two referencesto apageisnamed L RU—2, and the natu-
ral generalizationisthe LRU—K algorithm; werefer to the classical LRU algorithm within thistax-
onomy as LRU-1. It turnsout that, for K > 2, the LRU—K algorithm provides somewhat improved
performance over LRU-2 for stable patterns of access, but is less responsive to changes in access
patterns, an important consideration for some applications.

Despite the fact that the LRU—K algorithm derives its benefits from additional information about
page access frequency, LRU—K is fundamentally different from the Least Frequently Used (LFU)
replacement algorithm. The crucial differenceisthat LRU—K hasabuilt—in notion of “aging”, con-
sidering only thelast K referencesto apage, whereas the LFU algorithm has no meansto discrimi-
nate recent versus past reference frequency of apage, and istherefore unable to cope with evolving
access patterns. LRU—K isalso quite different from more sophisticated L FU-based buffering algo-
rithms that employ aging schemes based on reference counters. This category of algorithms, which
includes, for example, GCLOCK andvariantsof LRD [EFFEHAER], dependscritically onacareful
choice of various workload—-dependent parametersthat guide the aging process. The LRU—K algo-
rithm, on the other hand, does not require any manual tuning of this kind.

The LRU-K agorithm has the following salient properties:

e Itdiscriminateswell between page setswith different levels of reference frequency (e.g., index
pages vs. data pages). Thus, it approaches the effect of assigning page sets to different buffer
pools of specifically tuned sizes. In addition, it adapts itself to evolving access patterns.

e |tdetectslocality of referencewithin query executions, acrossmultiple queriesinthesametrans-
action, and also locality across multiple transactions in a multi—user environment.

e |tissef—reliant inthat it does not need any external hints.

e Itisfairly smpleand incurslittle bookkeeping overhead.

Theremainder of thispaper hasthefollowing outline. In Section 2, we present the basi c concepts of
the LRU—K approach to disk page buffering. In Section 3 we give some mathematical underpin-

—3-

nings, and demonstrate that the LRU—K algorithm is optimal in a certain well defined sense, given
knowledge of themost recent K referencesto each page. In Section 4, we present simulation perfor-
mance results for LRU-2 and LRU—K in comparison with LRU-1. Section 5 has concluding re-
marks.

2. Conceptsof LRU-K Buffering

In the current paper we take a statistical view of page reference behavior, based on anumber of the
assumptions from the Independent Reference Model for paging, in Section 6.6 of [COFFDENN].
We start with an intuitive formulation; the mathematical development will be covered in greater
detail in Section 3. Assumewearegivenaset N={1, 2, ..., n} of disk pages, denoted by positive
integers, and that the database system under study makes a succession of references to these pages
specified by thereferencestring: ry,ro, ..., 1, ..., where r;=p (p CN) meansthat term numberedtin
thereferencesstring refersto disk page p. Notethat inthe original model of [COFFDENN], the ref-
erence string represented the page references by a single user process, so the assumption that the
string reflects all references by the systemisadeparture. Inthefollowing discussion, unless other-
wise noted, we will measure all timeintervalsin terms of counts of successive page accessesin the
reference string, which iswhy the generic term subscript isdenoted by 't’. Atany giveninstantt, we
assumethat each disk page p hasawell defined probability, ,, to be the next page referenced by the
system: Pr(ru1=p) =By, foral p CN. Thisimpliesthat the reference string is probabilistic, a se-
guence of random variables, but we leave thisas an informal idea until Section 3. Changing access
patterns may alter these page reference probabilities, but we assume that the probabilities B, have
relatively long periods of stable values, and start with the assumption that the probabilities are un-
changing for the length of the reference string; thus we assume that By, is independent of t.

Clearly, each disk page p has an expected referenceinterarrival time, 1, thetime between successive
occurrences of p inthereference string, and we have: |, = ;1. Weintend to have our database sys-
tem use an approach based on Bayesian statisticsto estimate these interarrival timesfrom observed
references. The system then attemptsto keep in memory buffersonly those pagesthat seemto have
aninterarrival timeto justify their residence, i.e. the pageswith shortest accessinterarrival times, or
equivalently greatest probability of reference. Thisisastatistical approximationtotheAgalgorithm
of [COFFDENN], which was shown to be optimal. The LRU-1 (classical LRU) algorithm can be
thought of as taking such a statistical approach, keeping in memory only those pages that seem to
have the shortest interarrival time; given the limitations of LRU-1 information on each page, the
best estimate for interarrival timeisthetimeinterval to prior reference, and pages with the shortest
such intervals are the ones kept in buffer.

Definition 2.1. Backwar d K—distanceby(p,K). Givenareferencestringknownuptotimet, ry, ro, ..
., I, thebackward K—distance b,(p,K) isthe distance backward to the Kt most recent referenceto the

page p:
b(p,K) = x, if rx hasthe vaue p and there have been exactly K—1 other valuesi
witht—x<i <t,where ri=p,
=, if pdoesnot appear at least K timesinry, ry, ..., 1@

Definition 2.2. LRU—K Algorithm. The LRU—K Algorithm specifies a page replacement policy
when a buffer slot is needed for anew page being read in from disk: the page p to be dropped (i.e.,
selected asareplacement victim) istheonewhose Backward K—distance, by(p,K), isthe maximum of
all pagesin buffer. Theonly timethe choiceisambiguousiswhen morethan one page hasby(p,K) =
». Inthiscase, asubsidiary policy may be used to select areplacement victim among the pageswith

—4—

infinite Backward K—distance; for example, classical LRU could be employed as a subsidiary
policy. Note that LRU-1 corresponds to the classical LRU algorithm.g

The LRU-2 algorithm significantly improves on L RU-1 because by taking into account thelast two
referencesto apage, weareablefor thefirst timeto estimate | , by measurement of an actual interarri-
val between references, rather than estimating simply by alower bound of the time back to the most
recent reference. We are using more information and our estimates are immensely improved as a
result, especially asregards pagesthat have long referenceinterarrival time and should therefore be
dropped from buffer quickly. Notethat we make no general assumptionsabout the probabilistic dis-
tribution of 1,. In Section 3, we will assume an exponential distribution for |, to demonstrate op-
timality of theLRU—K algorithm. Asalready mentioned, we model p, and therefore |, ashaving the
potential for occasional changesover time, only assuming that changes are infrequent enough that a
statistical approach to future page access based on past history isusually valid. These assumptions
seem justified for most situations that arise in database use.

2.1. Realistic Assumptions In Database Buffering

Thegeneral LRU-K a gorithm hastwo features, peculiar to the caseswhereK = 2, that require care-
ful consideration to ensure proper behavior in redlistic situations. The first, known as Early Page
Replacement, arises in situations where a page recently read into memory buffer does not merit
retention in buffer by standard LRU—K criteria, for example because the page has aby(p,K) value of
infinity. Weclearly want to drop this page from buffer relatively quickly, to save memory resources
for moredeserving disk pages. However weneedto allow for thefact that apagethat isnot generally
popular may still experience aburst of correlated references shortly after being referenced for the
first time. We deal with thisconcernin Section 2.1.1. A second feature that we need to deal within
caseswhereK = 2, isthefact that thereisaneedtoretain ahistory of referencesfor pagesthat are not
currently present inbuffer. Thisisadeparturefrom current pagereplacement algorithms, and will be
referred to asthe Page Reference Retained | nfor mation Problem, covered below in Section2.1.2. A
pseudo—code outline of the LRU—K buffering algorithm which deals with the concerns mentioned
aboveisgivenin Section 2.1.3.

2.1.1. Early Page Replacement and the Problem of Correlated References

Toavoidthewasteful use of memory buffersseenin Examples1.1and 1.2, LRU-K makesadecision
whether to drop apage p from residence after ashort time—out period from its most recent reference.
A canonical period might be 5 seconds. To demonstrate the need for such atime—out, we ask the
following question: What dowe mean by thelast two referencesto apage? Welist below four ways
that a pair of references might take place to the same disk page; the first three of these are called
correlated reference pairs, and are likely to take place in a short span of time.

(D) Intra—Transaction. A transaction accesses a page, then accesses the same page again before
committing. Thisislikely to happen with certain update transactions, first reading arow and later
updating a value in the row.

(2) Transaction—Retry. A transaction accesses a page, then aborts and is retried, and the retried
transaction accesses the page again for the same purpose.

(3) Intra—Process. A transaction references a page, then commits, and the next transaction by the
same process accesses the page again. This pattern of access commonly arises in batch update ap-
plications, which update 10 records in sequence, commit, then start again by referencing the next
record on the same page.

5

(4) Inter—Process. A transaction referencesapage, then a(frequently different) processreferences
the same pagefor independent reasons. (At least whilewedo not haveagreat deal of communication
between processeswhereinformation ispassed from one processto the other in database recordswe
can assume references by different processes are independent.)

Recall that our purposein buffering disk pagesin memory isto retain pageswith relative long—term
popularity to save disk 1/0. An example of such long—term popularity is given in Example 1.1,
where the 100 B—treeleaf pages are frequently referenced by concurrently acting transactions. The
point about correlated reference—pair types (1) through (3) aboveisthat if we take these reference
pairsinto account in estimating interarrival time I ,, we will often arrive at invalid conclusions. For
example, reference—pair type (1) may beacommon pattern of access, soif wedrop apagefrom buff-
er right away after thefirst reference of type (1) because we have not seen it before, wewill probably
havetoreaditinagain for the second reference. On the other hand, after the second reference, with
thetransaction committed, if we say that thispage hasashort interarrival timeand keep it around for
ahundred seconds or so, thisislikely to beamistake; thetwo correlated references are insufficient
reason to conclude that independent references will occur. There are severa obvious ways to ad-
dress the problems of correlated references, the most basic of which isthis: the system should not
drop apageimmediately after itsfirst reference, but should keep the page around for a short period
until thelikelihood of adependent follow—up referenceisminimal; thenthepage canbedropped. At
the same time, interarrival time should be calculated based on non—correlated access pairs, where
each successive access by the same processwithin atime—out period isassumed to be correlated: the
relationship istransitive. We refer to this approach, which associates correlated references, asthe
Time—Out Correlation method; and werefer to thetime—out period asthe Correl ated Reference Peri-
od Theideaisnot new; in [ROBDEV] an equivaent proposal is made in Section 2.1, under the
heading: Factoring out Locality.

The implication of a Correlated Reference Period of this kind on the mathematical formulation is
simply this. Thereferencestring, ry, 1, . . ., It, iSredefined each time the most recent referencer;
passes through the time—out period, in order to collapse any sequence of correlated referencesto a
timeinterval of zero. If areferenceto apage p is made several timesduring a Correlated Reference
Period, we do not want to penalize or credit the pagefor that. Basically, we estimatetheinterarrival
timel, by thetimeinterval from the end of one Correlated Reference Period to the beginning of the
next. Itisclearly possibleto distinguish processesmaking pagereferences; for simplicity, however,
we will assume in what follows that references are not distinguished by process, so any reference
pairs within the Correlated Reference Period are considered correl ated.

Another alternativeisto vary the Time—Out Correlation approach based on more knowledge of sys-
tem events. For example, we could say that the time—out period ends after the transaction that ac-
cessed it and the following transaction from the same process commit successfully (to rule out cases
(1) and (3) above), or else after aretry of the first transaction has been abandoned (to rule out case
(2)); however there might be other correlated reference pair scenarios not covered by these three
cases. Another ideaisto allow the DBA to overrideadefault Correl ated Reference Period by setting
a parameter for a particular table being processed.

2.1.2. The Page Reference Retained Information Problem

We claim that thereisaneed inthe LRU—K agorithm, whereK = 2, to retain in memory ahistory of
referencesfor pagesthat are not themsel ves present in buffer, adeparture from most buffer replace-
ment algorithms of the past. To see why thisis so, consider the following scenario in the LRU-2
algorithm. Each time a page p isreferenced, it is made buffer resident (it might already be buffer

—6-

resident), and we haveahistory of at |east onereference. If theprior accessto pagep wassolongago
that we have no record of it, then after the Correlated Reference Period we say that our estimate of
bi(p,2) isinfinity, and make the containing buffer slot available on demand. However, athough we
may drop p from memory, we need to keep history information about the page around for awhile;
otherwise we might reference the page p again relatively quickly and once again have no record of
prior reference, drop it again, referenceit again, etc. Though the pageisfrequently referenced, we
would have no history about it to recognizethisfact. For thisreason, we assumethat the systemwill
maintain history information about any pagefor someperiod after itsmost recent access. Werefer to
this period as the Retained Information Period.

If adisk page pthat hasnever been referenced before suddenly becomespopul ar enoughto bekeptin
buffer, we should recognize thisfact aslong as two references to the page are no more than the Re-
tained Information Period apart. Thoughwedrop the page after thefirst reference, wekeep informa-
tion around in memory to recogni ze when asecond reference gives aval ue of by(p,2) that passes our
LRU-2criterionfor retentionin buffer. Thepagehistory information keptinamemory resident data
structureisdesignated by HI ST(p), and containsthelast two reference string subscriptsi and j, where
ri=r;=p, orjust thelast referenceif only oneisknown. Theassumption of amemory resident infor-
mation structure may requireabit of justification. For example, why not keep theinformation about
the most recent referencesin the header of the pageitself? Clearly any timetheinformation isneed-
ed, the page will be buffer resident. The answer isthat such a solution would require that the page
alwaysbewritten back to disk when dropped from buffer, because of updatesto HIST (p); inapplica-
tionswith alarge number of read—only accessesto infrequently referenced pages, which could other-
wise simply be dropped from buffer without disk writes, thiswould add alarge amount of overhead
1/O.

Tosizethe Retained I nformation Period, we suggest using the Five Minute Rule of [GRAY PUT] asa
guideline. Thecost/benefit tradeoff for keeping a4 Kbyte pagepinmemory buffersisaninterarrival

time |, of about 100 seconds. Returning to discussion of LRU-2, alittle thought suggests that the
Retained | nformation Period shoul d be about twicethisperiod, since we are measuring how far back
we need to go to see two references before we drop the page. So acanonical value for the Retained
Information Period could be about 200 seconds. We believethat thisisareasonablerule of thumbfor
most database applications. High—performance applications may, however, choose to increase the
buffer pool beyond the economically oriented size that would follow from the Five Minute Rule. In
such applications, the Retained I nformation Period should be set higher accordingly. To determinea
reasonablevalue, consider the maximum Backward K—distance of all pagesthat wewant to ensureto
be memory—resident. Thisvalueisan upper bound for the Retained | nformation Period, because no
conceivablestring of new referencesto apageafter thisperiod will enablethe pageto passthecriteri-
on for retention in buffer.

Procedure to be invoked upon a reference to page p at tinme t:

if pis already in the buffer
t hen
/* update history information of p */
if t — LAST(p) > Correlated Reference Period
t hen
/* a new, uncorrelated reference */
correl ati on_period_of _referenced_page := LAST(p) — HI ST(p, 1)

for i :=2to Kdo
H ST(p,i) := H ST(p,i—-1) + correlation_period_of_referenced_page
od
H ST (p,1) :=t
LAST(p) :=t
el se
/* a correlated reference */
LAST(p) :=t
fi
el se
/* select replacenment victim*/
mn:=t

for all pages g in the buffer do

if t — LAST(q) > Correlated Reference Period /*eligible for replacenent*/

and H ST(q,K) < min /* maxi num Backward K-di stance so far */
t hen
victim:= ¢
mn := H ST(q, K)
f
od
if victimis dirty then wite victimback into the database f
/* now fetch the referenced page */
fetch p into the buffer frane that was previously held by victim
if H ST(p) does not exi st
t hen
/* initialize history control block */
al l ocate H ST(p)

for i :=2 to Kdo H ST(p,i) := 0 od
el se
for i :=2 to Kdo H ST(p,i) := H ST(p,i-1) od
fi
H ST(p,1) =t
LAST(p) :=t

fi

Figure 2.1. Pseudo—code Outline of the LRU-K Buffering Algorithm, Explained in Section
2.13

2.1.3. Schematic Outline of the LRU—K Buffering Algorithm

The LRU—K algorithm of Figure 2.1 is based on the following data structures:

» HIST(p) denotes the history control block of page p; it contains the times of the K most recent

references to page p, discounting correlated references. HIST(p,1) denotes the last reference,
HIST(p,2) the second to the last reference, etc.

LAST(p) denotesthe time of the most recent reference to page p, regardless of whether thisisa
correlated reference or not.

8-

These two data structures are maintained for all pages with a Backward K—distance that is smaller
than the Retained | nformation Period. An asynchronousdemon process should purge history control
blocks that are no longer justified under the retained information criterion.

Based onthese datastructures, aconceptual outline of the LRU—K algorithmin pseudo—codeformis
giveninFigure 2.1. Notethat thisoutlinedisregards|/O latency; areal implementation would need
moreasynchronousunitsof work. Also, to simplify thepresentation, the outlinedisregardsaddition-
al data structures that are needed to speed up search loops; for example, finding the page with the
maximum Backward K—distance would actually be based on asearch tree. Despite the omission of
such details, it is obvious that the LRU—K algorithm isfairly simple and incurs little bookkeeping
overhead.

3. Mathematical Analysis

In thissection, we demonstrate that the LRU—-2 algorithm provides essentially optimal buffering be-
havior based on the information given; the proof generalizeseasily to LRU—K. Inour analysis, we
will assume for simplicity that the Correlated Reference Period is zero, and that this causes no ill
effects; essentially we assume that correlated references have been factored out.

Asbefore, wetake asa starting point for our analysisthe Independent Reference Model for paging,
presented in Section 6.6 of [COFFDENN]. Wetake our notation from thisreferenceand makeafew
departuresfrom the model presented there. Webeginwithaset N={1,2,...,n} of disk pagesanda
set M ={1,2,..., m} of memory buffers, L<m<n. A system’s paging behavior over timeisde-
scribed by its (page) referencestring: ry, 1, ..., Iy, . . ., where ry=p meansthat disk pagep, p [N} is
referenced by the system at timet. According to theindependent reference assumption, thereference
string is a sequence of independent random variables with the common stationary distribution { g,
B2, ..., Bn, one probability for each of the n disk pages, where Pr(r. = p) = By, for al p CNiand all
subscriptst. Lettherandom variabled,(p) denotethetimeinterval forward to the next occurrence of
p inthereference string after ry; from the assumptions above, di(p) hasthe stationary geometric dis-
tribution:

(31) PP =K = BA—p)Lk=12,. ..

with mean valuel, = 1/p,. Note that because of the stationary assumption, Pr(d:(p) = k) isindepen-
dent of t. Further note that the independent reference assumption imposes a probability distribution
p(w) on all reference stringsof any givenlengthT. If w=ry, 1y, ..., rr, thenp(w) =B Bra-- - - - Brr, the
product of the probabilities of the individual references making up reference string w.

Definition 3.1. TheAqBuffering Algorithm. Let Ay denote the buffering algorithm that replaces
the buffered page p in memory whose expected value |, isamaximum, i.e., the page for which B, is
smallest.g

Theorem 3.2. (Theorem 6.3 in [COFFDENN].) Algorithm Aqisoptimal with respect to the proba-
bility distribution p(w) of reference strings implied by the independent reference assumption.

Proof. See[COFFDEN], [ADU]a@

The Ap algorithm can be described as an optimal strategy with probabilistic information but without
anoracle. Alternatively, Belady’s algorithm [BELADY], designated as Bo in [ADU] and [COFF-
DENN], assumes complete knowledge of a specific reference string w, and takes the strategy of re-
taining in memory those pagesthat will be re—referenced again the shortest timeinthefuture. Refer-

9

ring to Example 1.1, therewill clearly be occasional circumstanceswhereit ispreferableto drop one
of the 100 index pagesfrom buffer infavor of retaining one of the 10,000 data pages, becausethedata
pagein question will be re—referenced sooner. However, to make aprediction such asthis, Belady’s
algorithm requires an oracle that can look into the future; complete knowledge of all details of the
probabilistic situation will not allow usto arrive at such conclusions. For thisreason we claim that
Belady’soptimal strategy isunapproachableinreal situations, and that we should usethe A strategy
as the proper measure of how closely a strategy approaches optimal behavior. Thisassumptionis
reflected in interpreting the experiments of Section 4.

3.1Estimating Page Reference Probability Based on History

In the devel opment that follows, we take as a given that the independent reference model holds for
our referencestring w=ry, Iy, ..., ..., withsomereference probability vector B={p1,Bo, ..., Bn for
the n disk pages of N. To reflect the normal state of ignorance concerning reference probabilities
with which abuffering algorithm starts, we do not assume foreknowledge of the proper ordering of
thepages,i=1,2,...n, wheretheprobability P(i) of areferenceto pagei obeys. P(i) =g;. Rather,we
simply assumethereissome permutation mapping, X: N—> N, initially unknownto us, such that P(i)
= Bxqi)- INwhat follows, we attempt to statistically estimate P(i) for each pagei, based on ahistory of
references to the page and a knowledge of the vector . Redlistically, the buffering algorithm will
al so haveno knowledge of the probability vector g, but it turnsout that theanal ysisto derive astatisti-
cal estimate of P(i) allows us to derive certain ordinal properties of these quantities. In particular,
given any reference probability vector g with at least two distinct val ues, we are ableto conclude that
for any two disk pages x and y, if by(x,K) < by(y,K), then the page x has a higher estimate P(x) for
probability of reference.

Aswerecall from Definition 2.1, by(i,K) standsfor the backward K—distance at timet to the K" most
recent reference to pagei. In addition, we use the following notation.

H(K,t) History data: designates a conjunction of events, alist of the times of the most recent K
referencesto all pagesi [N, asof timet in the reference string w.

E(P(i) | by(i,K) =k): an estimate (expected value) at timet of the probability P(i) based on therefer-
ence probability vector g and given knowledge of the event by(i,K) = k.

We areassuming for simplicity that all pagesi CNIhave been referenced at least K timesasof timet.
If we denote by H(0,0) an empty history at timet =0, then all n pageswill have equal apriori proba-
bilitiesof reference: E(P(i) [NO INFORMATION) = 1/n. Aswegain moreinformation about refer-
encesto the various pages, we will use Bayesian statistical inference[HODLEH] to concludethat a
pagei, which seemsto be morefrequently referenced than all other pages(i.e., by(i,K) issmaller than
by(j,K) for other pagesj), ismorelikely to correspond to thelarger B, values. From thiswe conclude
that the estimate of the probability, E(P(i)| bx(i,K) = k) for pagei, islarger than the estimate for other
pages. Note that we are imposing arather artificial restriction on our knowledge H(Kt), that we
remember only themaost recent K referencesto all pagesat timet, not theentire history of references;
at time t+1 after another reference to some page i has occurred, we will have forgotten the oldest
reference to pagei. The justification for this definition is that page reference probabilities might
change over time; the stationary reference probability assumption is only an approximation to the
real situation, and so wewant to wei ght recent referencesmore heavily than older ones. However, no
justification is needed to prove our result mathematically, given the definition of H(K,t).

Lemma3.3, BasicLemmafor LRU-2. Weare given apermutation mapping, X: N —>N unknown
tous, suchthat for each pagei [N, the probability of reference, P(i), isgiven by By, andapriori, we

~10-

assume that all possible permutation mappings x have equal probabilities. For any pagei and any
subscript v of component B, wemay cal cul atethe probability that x(i) = v, giventhat the second most
recent referenceto i, by(i,2), has the value k, by the formula:

Bv? (1—Py)*?
D, BRA-p)<t

l<j=n

(3.2 Px@i) =v|b(i,2) =k) =

Proof. We use Bayesian statisticsto provethisresult. Let A;for anarbitrary subscriptj of p;bethe
event that x(i) =j. Sinceall permutationsx have equal apriori probabilities and the events A; parti-
tion the permutationsinto n sets of equal cardinality, the apriori probabilities P(A;) are all equal to
1n. Letthereferencestringw=ry,r,,. .., I, begiventhrough timet, and assumethat referenceshave
been taking placefor sufficient timethat all pageshave been referenced twice. L et theevent B repre-
sent thefact that by(i,2) = k. Bayes Theorem tellsusthat we can calculate P(A, | B), the probability
that x(i) = given that by(i,2) = k, by the formula:

P(BIAYP(A.)
> P(BIA)PA)
j

(33) PAJB) =

See Section 4.4 of [HODLEH] for an explanation of BayesLaw. Now P(A,) and P(A;) (apriori prob-
abilities with no prior history) are all equal, as explained above. To calculate P(BJA,), we need to
evauate the probability that the page p with reference probability g, has by(p,2) = k. To do thiswe
start by specifyingthelast two referencesto pagei, k and h, and eval uate the probability that the page
p with reference probability g, haditslast two referencesin positionsr and r_n, where t—k <t—h.
Togivethisevent aname, wecall it Xy, (all other factorsarefixed, thepagei, thevaluek, the subscript
v, but h ranges between t—k+1 and t), and evaluate P(A,|X}), for specific h:

(34) P(XnlA) = By*(1=Py)kt

We see thisis true because there are two specified positions in w where the page p with reference
probability g, must bereferenced, and k —1 positionswhereit must not bereferenced. Now theevent
B that by(i,2) =k isreally aunion of thedig oint events Xy, ash rangesfromt—k+1tot, and thuswecan
express P(B|A,) ask timesthe value of P(XA,), givenin (3.4).

(35) P(BIA) = P(b(i.2) =k|x()=v) = k B, (1-Pv)et

Theformula(3.5) holdsfor arbitrary valuesv =, and thedesired result of the Lemma, equation (3.2),
follows by substituting (3.5) in (3.3). Notethat thevaluefor h hasdisappeared in (3.5), arather sur-
prising fact known asthe memoryless property, implying that intermediate referencesto apagei do
not add to theinformation given by by(i,2) inadistribution with exponential arrival distribution. Nat-
urally, theinformation must be kept anyway, because intermediate reference times becomein their
turn the oldest reference as new references to a page occur.g

Lemma 3.3 generalizes, from LRU-2 to LRU—K.

Lemma 3.4, Basic Lemmafor LRU—K. With the same assumptions given in Lemma 3.3, except
that the Kth most recent referenceto i, by(i,K), is given by the value k, we have:

By (1—Py)k*+t
ﬁjK (1 _ Bj)k—K+1

l<j=n

(3.6) Pr(x(i) =v | b(i,K) = k) =

11—

We omit the proof, which is analogous to Lemma 3.3.¢

Now with Lemma 3.4, we can evaluate the a posteriori probability for a specific pagei, given its
history over the last K references, that x(i) = v, i.e. P(i) = B,. Since the page i must be mapped onto
exactly one of the g indices| by the permutation x, and we know the probability P(i) of referencein
each case, it seemsclear that we can eval uate the expected value of P(i) for any given history of refer-
ences, given thelast K referencesto the pagei.

Lemma3.5, A Posteriori Estimateof P(i). Weusethenotation E¢(P(i)) for short, to stand for E(P(i)
| bi(i,K) = k), the expected value of P(i) given by(i,K) = k. We have the following formula.

Z Bik+1(1— Byt

3.7) E(P»)) = v Prx()=v | by(i, K)=k) = 1<j=n
0 o0 152Sn[3 =V (LK) z BiK (1—B,)k-x+t

1<j=n

The proof isimmediate from Equation (3.6).g

Notethat thisestimate of P(i) isan expected val ue of probabilitiesbased on the underlying reference
probability vector g, and thereforeisaprobability itself; indeed itisour best guessat P(i) based on
thehistory of referencesto pagei and aknowledge of thevaluesof 3. Normally wedo not know theg,
values, and therefore cannot evaluate formula (3.7) precisely. However we have the following re-
sult,

Lemma3.6. If by(x,K) < by(y,K), then E/(P(x)) > E«(P(y)), for any underlying reference probability
vector g with at least two unequal values.

Proof. We claim that the expression of Lemma 3.5 for Ei(P(i)) is monotonically decreasing in k,
unlessall thep, areidentical. Consider thep; valuesintheexpression aspointsinthep-interval [0,1].
Then the full expression is the center of mass of a set of n point masses with values pjK-(1— pj)kX+1
located at the pointsp;. Increasing k by one multipliesthe masseseach by (1-8;), which moresignifi-
cantly decreasesthe massesat pointsfurther from zero and thusmovesthe center of masstotheleft.g

Lemma 3.5 givesusastatistical best estimatefor all page reference probabilities P(i), giventhe his-
tory H(K,t), intermsof component values of thevector B. These estimates, E(P(i)), form aperfectly
good reference probability distributionintheir ownright. Although we do not know the component
valuesof B, Lemma3.6 showsthat thepagei withlargest by(i,K) valuewill havethesmallest valuefor
Ei(P(i)). Sincethealgorithm Aq providesoptimal behavior by alwaysdropping from buffer the page
of lowest probability, thiswould seem toimply that the LRU—K a gorithm which dropsthe pagewith
largest by(i,K) isoptimal (using the best P(i) distribution we can derive with the given history infor-
mation). However, the proof of Ay optimality in[ADU] makesan additional assumption (the Almost
Stationary Case) that the relative probabilities of page reference maintain their relative order with
respect totime. Unfortunately, thisassumptionfailsfor the Ei(P(i)) estimateswehavederived, sowe
must be satisfied with adlightly lessencompassing result. We start with arelatively straightforward
definition, based on [ADU].

Definition 3.7. Given a page reference probability vector g, and a paging algorithm A which re-
spondstoreferencestringw=ry, o, ..., I, ..., by making the set of pages S; buffer resident at timet,
|Si| = m, we define the Expected Cost at timet for the algorithm A to be:

(38) CAS0=1-38

ies

12—

Thisisthe probability that the next page referenced isnot in buffer, and thus representsthe expected
number of disk I/Os on the next reference (clearly less than one).g

Theorem 3.8. Under theindependent page reference assumption, given knowledge H(K ,t) at timet,
the expected cost resulting from the LRU-K algorithm acting with m memory buffersis less than
that resulting from any other algorithm A acting with m—1 memory buffers. ThusLRU—K actsopti-
mally in all but (perhaps) one of its m buffer slots, an insignificant cost increment for large m.

Proof. It can easily be demonstrated under the model we have developed that the expected cost,
given knowledge H(K t), of algorithm A with the set of pages S buffer resident at timet, is:

(39) CA, S «)=1- > E(P()
ies

where the underlying (unknown) probabilities in (3.8) have been replaced by the best estimates,
E:(P(i)), given knowledge H(K,t). Now itiseasily seen by induction that at any timet, the LRU-K
algorithmwill havein buffer: (1) themost recent pagep to bebrought infrom disk, and (2) asidefrom
p, the m—1 pageswith minimum valuesfor by(i,K). In particular, LRU-K will always have the m-1
pageswith minimum by(i,K), and thereforethe m—1 pageswith maximum values Ey(P(i)). Clearly no
other algorithm A with m—1 buffer pages can improve on thisto achieve lesser cost, since the mini-
mum value of (3.9) isachieved for |S| = m—1 with these precise pages.@d

Notethat all LRU—K resultsapply equally to LRU-1. In particular, the LRU agorithmisseento act
optimally (under theindependent page reference assumption), given the limited knowledge it has of
the most recent reference time.

4. Performance Characteristics.

A prototype implementation of the LRU-2 algorithm wasfunded by the Amdahl Corporation toin-
vestigate optimal aternatives for efficient buffer behavior in the Huron database product. Minor
aterationsinthe prototype permitted usto ssmulate LRU-K behavior, K > 1, in several situations of
interest. We investigated three types of workload situations:

e asynthetic workload with referencesto two poolsof pagesthat have different reference frequen-
cies, modeling Example 1.1,

= asyntheticworkload with random referencesto aset of pageswith aZipfian distribution of refer-
ence frequencies, and

e area-life OLTP workload sample with random, sequential, and navigational referencesto a
CODASYL database.

These three experiments are discussed in the following three subsections.
4.1 Two Pool Experiment

We considered two pools of disk pages, Pool 1 with N; pages and Pool 2 with N, pages, with N; <
N». Inthistwo pool experiment, alternating references are made to Pool 1 and Pool 2; then apage
fromthat pool israndomly chosen to bethe sequence element. Thuseach page of Pool 1 hasaproba-
bility of reference g, = 1/(2N,) of occurring asany element of thereference string w, and each page of
Pool 2 hasprobability g, =1/(2N,). Thisexperiment ismeant to model the alternating referencesto
index and record pages of Example1.1: 11, R1,12, R2,13,R3, We wish to demonstrate how
LRU—K algorithmswith varying K discriminate between pages of the two pools, and how well they

13-

performinretaining themorefrequently referenced pool pages(the hotter pool pages) inbuffer. The
buffer hit ratiosfor the various algorithmsin identical circumstances give us agood measure of the
effectivenessof theLRU—K algorithm, for varying K. Theoptimal algorithm A which automatical-
ly keeps the maximum possible set of pool 1 pages buffer resident was also measured.

Thebuffer hitratiofor each algorithmwasevaluated by first allowing thealgorithm to reach aquasi—
stablestate, dropping theinitial set of 10-N; references, and then measuringthenext T =30N, refer-
ences. If the number of such references finding the requested page in buffer isgiven by h, then the
cache hit ratio C is given by:

C=h/T

In additionto measuring cache hit ratios, thetwo algorithms L RU—1 and L RU-2 were al so compared
in terms of their cost/performance ratios, as follows. For a given N;, N, and buffer size B(2), if
LRU-2 achievesacache hit ratio C(2), we expect that LRU—1 will achieveasmaller cachehit ratio.
But by increasing the number of buffer pages available, LRU-1 will eventually achieve an equiva
lent cache hit ratio, and we say that this happenswhen the number of buffer pagesequalsB(1). Then
theratio B(1)/B(2), of buffer sizeswhich givethesameeffectivehit ratio, isameasure of comparable
buffering effectivenessof thetwo algorithms. Weexpect that B(1)/B(2) > 1.0, and avaueof 2.0, for
example, indicates that while LRU—-2 achieves a certain cache hit ratio with B(2) buffer pages,
LRU-1 must use twice as many buffer pages to achieve the same hit ratio.

The results of this simulation study are shown in Table 4.1, where N; = 100 and N, = 10,000.

B CRU-1 | LRU=2 | LRU=3 Ao |B(/B() |

60 0.14 0.291 0.300 0.300 2.3

80 0.18 0.382 0.400 | 0.400 2.6
100 0.22 0.459 0.495 | 0500 3.0
120 0.26 0.496 0501 | 0501 33
140 0.29 0.502 0.502 0.502 32
160 0.32 0.503 0503 | 0503 2.8
180 0.34 0.504 0504 | 0504 25
200 0.37 0.505 0505 | 0505 2.3
250 0.42 0.508 0508 | 0508 2.2
300 0.45 0.510 0510 | 0510 2.0
350 0.48 0.513 0513 | 0513 1.9
400 0.49 0.515 0515 | 0515 1.9
450 0.50 0.517 0518 | 0518 1.8

Table 4.1. Simulation results of the two pool experiment, with N; = 100, N, = 10,000

Consider B(1)/B(2) onthetop row of Table4.1. The B(2) value correspondsto the B of that row, 60,
wherewe measure LRU-2 having acachehit ratio of 0.291; to achievethe samecachehit ratiowith
LRU-1 requires approximately 140 pages (therefore B(1) = 140), and so 2.3 = 140/60. LRU-2 out-
performs LRU-1 by more than afactor of 2 with respect to this cost/performance metric. We also
note from this experiment that the results of LRU-3 are even closer to those of the optimum policy
Ao, comparedtotheresultsof LRU-2. Infact, itispossibleto prove, with stable page accesspatterns,

14—

that LRU—K approaches Ag with increasing value of K. For evolving access patterns, however,
LRU-3 isless responsive than LRU-2 in the sense that it needs more references to adapt itself to
dynamic changes of reference frequencies. For thisreason, we advocate LRU-2 asagenerally effi-
cient policy. The general LRU—K with K > 2, could be of value for special applications, but thisre-
quires further investigation.

For readerswhofeel that poolsof 100 pagesand 10,000 pages, aswell asabuffer count B intherange
of 100 are unrealistically small for modern applications, note that the same results hold if al page
numbers, N1, N, and B aremultiplied by 1000. Thesmaller numberswere used in simulationto save
effort.

4.2 Zipfian Random Access Experiment

The second experiment investigated the effectiveness of LRU—K for a single pool of pages with
skewed random access. We generated referencesto N = 1000 pages (numbered 1 through N) with a
Zipfiandistribution of referencefrequencies; that is, the probability for referencing apagewith page
number less than or equal to i is (i / N) 109 @ /109 B with constants o and B between 0 and 1 [CKS,
KNUTH, p. 398]. Themeaning of the constantsa and 3 isthat afraction a of thereferences accesses
afraction 3 of theN pages (and the samerel ationship holdsrecursively within thefraction 3 of hotter
pages and the fraction 13 of colder pages). Table 4.2 compares the buffer hit ratios for LRU-1,
LRU-2, and A, at different buffer sizes, aswell asthe equi—effective buffer sizeratio B(1)/B(2) of
LRU-1 versus LRU-2 for a = 0.8 and 3 = 0.2 (i.e., 80-20 skew).

B | LRU-1 | LRU=2 | Ao B(1)/B(2) |
40 0.53 0.61 0.640 2.0
60 057 065 | 0.677 2.2
80 0.61 0.67 0.705 2.1

100 0.63 068 | 0.727 1.6
120 0.64 071 | 0.745 1.5
140 0.67 0.72 0.761 1.4
160 0.70 074 | 0.776 1.5
180 0.71 073 | 0.788 1.2
200 0.72 076 | 0.825 1.3
300 0.78 0.80 | 0.846 1.1
500 0.87 0.87 0.908 1.0

Table 4.2. Simulation results of random access with Zipfian frequencies (N=1000)

Asinthetwo pool experiment of Section 4.1, LRU—-2 achieved significant improvementsinterms of
the hit ratio at afixed buffer size and also in terms of the cost/performance ratio. Compared to the
resultsof Section 4.1, thegainsof LRU-2 arealittler lower, becausethe skew of thisZipfian random
accessexperiment isactually milder than the skew of thetwo pool experiment. (Thetwo pool work-
load of Section 4.1 roughly correspondsto a = 0.5 and 3 = 0.01; however, within the 3 and 13
fractions of pages, the references are uniformly distributed.)

4.3 OLTP Trace Experiment

Thethird experiment was based on a one-hour page reference trace of the production OLTP system
of alarge bank. Thistrace contained approximately 470,000 page referencesto aCODASY L data-

~15-

basewith atotal size of 20 Gigabytes. Thetracewasfed into our simulation model, and we compared
theperformanceof LRU-2, classical LRU-1, andalso LFU. Theresultsof thisexperiment, hit ratios
for different buffer sizes B and the equi—effective buffer size ratio B(1)/B(2) of LRU-1 versus
LRU-2, are shown in Table 4.3.

LRU-2 was superior to both LRU and L FU throughout the spectrum of buffer sizes. At small buffer
sizes (< 600), LRU—-2 improved the buffer hit ratio by more than afactor of 2, compared to LRU-1.
Furthermore, the B(1)/B(2) ratios in this range of buffer sizes show that LRU-1 would haveto in-
crease the buffer size by more than afactor of 2 to achieve the same hit ratio as LRU-2.

B |LRU-1| LRU-2 | LFU |B(1)/B(2) |
100 | 0.005 | 0.07 0.07 45
200 | 0.01 0.15 0.11 3.25
300 | 0.02 0.20 0.15 3.0
400 | 0.06 0.23 0.17 2.75
500 | 0.09 0.24 0.19 2.4
600 | 0.13 0.25 0.20 2.16
800 | 0.18 0.28 0.23 1.9
1000 | 0.22 0.29 0.25 1.6
1200 | 024 | 031 0.27 1.66
1400 | 0.26 0.33 0.30 1.5
1600 | 0.29 0.34 0.31 1.5
2000 | 0.31 0.36 0.33 1.3
3000 | 0.38 0.40 0.39 1.1
5000 | 0.46 0.47 0.44 1.05

Table 4.3. Simulation results of the OLTP trace experiment

The performance of LFU was surprisingly good. The LFU policy to keep the pages with the highest
reference frequency is indeed the right criterion for stable access patterns. However, the inherent
drawback of LFU isthat it never “forgets’ any previousreferenceswhen it comparesthe prioritiesof
pages, so it does not adapt itself to evolving access patterns. For this reason, LFU performed still
significantly worse than the LRU-2 algorithm, which dynamically tracks the recent reference fre-
guenciesof pages. Note, however, that the OLTP workload in thisexperiment exhibited fairly stable
access patterns. In applications with dynamically moving hot spots, the LRU-2 algorithm would
outperform LFU even more significantly.

At large buffer sizes (= 3000), the differencesin the hit ratios of the three policies becameinsignifi-
cant. So one may wonder if the superiority of LRU-2 at small buffer sizesisindeed relevant. The
answer to thisquestionisinthe characteristics of the OLTPtrace (whichisprobably quitetypical for
alargeclassof application workloads). Thetrace exhibitsan extremely high access skew for the hot-
test pages:. for example, 40% of the references access only 3% of the database pages that were ac-
cessed in thetrace. For higher fractions of the references, this access skew flattens out: for example,
90% of the references access 65% of the pages, which would no longer be considered as heavily
skewed. An analysis of the trace showed that only about 1400 pages satisfy the criterion of the Five
Minute Rule to be kept in memory (i.e., are re—referenced within 100 seconds, see Section 2.1.2).
Thus, a buffer size of 1400 pages is actually the economically optimal configuration. There is no
point in increasing the buffer size to keep additiona pages once locality flattens out. The LRU-2

16—

algorithm keepsthispool of 1400 hot pages memory resident, at amemory cost of only two thirds of
the cost of the classical LRU agorithm (i.e., B(1)/B(2) = 1.5 for B=1400).

5. Concluding Remarks

In this paper we have introduced a new database buffering algorithm named LRU—K. Our ssimula-
tion results provide evidence that the LRU—K algorithm has significant cost/performance advan-
tages over conventional algorithms like LRU, since LRU—K can discriminate better between fre-
guently referenced and infrequently referenced pages. Unlike the approach of manually tuning the
assignment of page pools to multiple buffer pools, our algorithm is self—reliant in that it does not
depend on any external hints. Unlike the approaches that aim to derive hints to the buffer manager
automatically from the analysis of query execution plans, our algorithm considers also inter—trans-
action locality in multi—user systems. Finally, unlike LFU and itsvariants, our algorithm copeswel
with evolving access patterns such as moving hot spots.

Oneof the new conceptsof our approachisthat page history information iskept past pageresidence.
But clearly thisisthe only way we can guarantee that a page referenced with metronome-like regu-
larity at intervalsjust aboveitsresidenceperiod will ever benoticed asreferenced twice. Itisanopen
issue how much space we should set aside for history control blocks of non—resident pages. While
estimates for an upper bound can be derived from workload properties and the specified Retained
Information Period, abetter approach would beto turn buffer framesinto history control blocks dy-
namically, and vice versa.

The development of the LRU—K algorithm was mostly motivated by OLTP applications, decision—
support applications on large relational databases, and especially combinations of these two work-
load categories. Webelieve, however, that the potential leverage of our algorithm may beeven high-
er for non—conventional engineering and scientific databases. Thereasonisthat buffer management
for such applicationsisinherently harder because of the higher diversity of accesspatterns. Thepage
pool tuning approach outlinedin Section Lisclearly infeasiblefor thispurpose. Theapproachesthat
derive buffer manager hintsfrom the analysis of query execution plans are questionable, too, for the
following reason. Non—conventional database applications of the mentioned kind will probably
make heavy use of user—defined functions, as supported by object—oriented and extensible database
systems. Unlike relational queries, the access patterns of these user—defined functions cannot be
pre—analyzed if the functions are coded in a general—purpose programming language (typically, in
C++). Thus, advanced applications of post—relational database systemscall for atruly self—reliant
buffer management algorithm. The LRU—K algorithm is such a self—tuning and adaptive buffering
agorithm, eveninthe presence of evolving accesspatterns. Webelievethat LRU—K isagood candi-
date to meet the challenges of next—generation buffer management.

References

[ABG] Rafael Alonso, Daniel Barbara, Hector Garcia—Molina, Data Caching Issuesin an Informa-
tion Retrieval System, ACM Transactions on Database Systems, v. 15, no. 3, pp. 359-384, Septem-
ber 1990.

[ADU] Alfred V. Aho, Peter J. Denning, and Jeffrey D. Ullman: Principles of Optimal Page Re-
placement. J. ACM, v. 18, no. 1, pp. 80-93, 1971.

[BELADY] L.A.Belady, A Study of Replacement Algorithmsfor Virtual Storage Computers, IBM
Systems Journal, v. 5, no. 2, pp. 78-101, 1966.

[CHAKA] EllisE. Chang, Randy H. Katz, Exploiting Inheritance and Structure Semanticsfor Ef-
fective Clustering and Buffering in an Object—Oriented DBM S, Proceedings of the 1989 ACM SIG-
MOD Conference, pp. 348-357.

17—

[CHOUDEW] Hong-Tai Chou and David J. DeWitt: An Evaluation of Buffer Management Strate-
giesfor Relational Database Systems. Proceedings of the Eleventh I nternational Conferenceon Very
Large Databases, pp. 127-141, August 1985.

[CKS] George Copeland, Tom Keller, and Marc Smith: Database Buffer and Disk Configuring and
the Battle of the Bottlenecks. Proceedings of the Fourth International Workshop on High Perfor-
mance Transaction Systems, September 1991.

[COL] C.Y.Chan, B.C. Oai, H. Lu, Extensible Buffer Management of Indexes, Proceedings of the
Eighteenth International Conference on Very Large Data Bases, pp. 444-454, August 1992.
[COFFDENN] Edward G. Coffman, Jr. and Peter J. Denning: Operating SystemsTheory. Prentice—
Hall, 1973.

[DANTOWS] Asit Danand Don Towsley: An Approximate Analysisof the LRU and FIFO Buffer
Replacement Schemes. Proceedings of the 1990 ACM Sigmetrics Conference, v. 18, No. 1, pp.
143-149.

[DENNING] P.J. Denning: TheWorking Set Model for Program Behavior. Communicationsof the
ACM, v. 11, no. 5, pp. 323-333, 1968.

[EFFEHAER] Wolfgang Effel shergand Theo Haerder: Principlesof Database Buffer Management.
ACM Transactions on Database Systems, v. 9, no. 4, pp. 560-595, December 1984.

[[FNS] Christos Faloutsos, Raymond Ng, and Timos Sellis, Predictive Load Control for Flexible
Buffer Allocation, Proceedings of the Seventeenth International Conference on Very Large Data
Bases, pp. 265274, September 1991.

[GRAYPUT] Jim Gray and Franco Putzolu: The Five Minute Rule for Trading Memory for Disk
Accessesand The 10 Byte Rulefor Trading Memory for CPU Time. Proceedings of the 1987 ACM
SIGMOD Conference, pp. 395-398.

[HAAS] LauraM. Haas et al., Starburst Mid—Flight: As the Dust Clears, IEEE Transactions on
Knowledge and Data Engineering, v. 2, no. 1, pp. 143-160, March 1990.

[HODLEH] J.L.Hodges, Jr. and E.L. Lehmann: Basic Conceptsof Probability and Statistics, Sec-
ond Edition. Holden-Day, 1970.

[JCL] R. Jauhari, M. Carey, M. Livny, Priority—Hints: An Algorithm for Priority—Based Buffer
Management, Proceedingsof the Sixteenth International Conference on Very Large DataBases, Au-
gust 1990.

[KNUTH] D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Ad-
dison-Wesley, 1973.

[NFS] Raymond Ng, Christos Faloutsos, T. Sellis, Flexible Buffer Allocation Based on Marginal
Gains, Proceedings of the 1991 ACM SIGMOD Conference, pp. 387—-396.

[PAZDQO] Mark Palmer, Stanley B. Zdonik, Fido: A Cache That Learnsto Fetch, Proceedingsof the
Seventeenth International Conference on Very Large Databases, pp. 255-264, September 1991.
[REITER] AllenReiter: A Study of Buffer Management Policies for Data Management Systems.
Tech. Summary Rep. No. 1619, Mathematics Research Center, Univ. of Wisconsin, Madison, March
1976.

[ROBDEV] John T. Robinson and Murtha V. Devarakonda: Data Cache Management Using Fre-
gquency—Based Replacement. Proceedings of the 1990 ACM Sigmetrics Conference, v. 18, No. 1,
pp. 134-142.

[SACSCH] Giovanni Mario Sacco and Mario Schkolnick: Buffer Management in Relational Data-
base Systems, ACM Transactions on Database Systems, v. 11, no. 4, pp. 473-498, December 1986.
[SHASHA] Dennis E. Shasha, Database Tuning: A Principled Approach, Prentice Hall, 1992.
[STON] Michael Stonebraker: Operating System Support for Database M anagement. Communica
tions of the ACM, v. 24, no. 7, pp. 412-418, July 1981.

18-

[TENGGUM] J.Z. Teng, R.A. Gumaer, Managing IBM Database 2 Buffers to Maximize Perfor-
mance, IBM Systems Journal, v. 23, n. 2, pp. 211-218, 1984.

[TPC-A] Transaction Processing Performance Council (TPC): TPC BENCHMARK A Standard
Specification. The Performance Handbook: for Database and Transaction Processing Systems,
Morgan Kaufmann 1991.

[YUCORN] PS. Yu, D.W. Cornell, Optimal Buffer AllocationinaMulti—query Environment, Pro-
ceedings of the Seventh International Conference on Data Engineering, pp. 622—631, April 1991.

