
LIRS: An Efficient Low Inter-reference Recency Set
Replacement Policy to Improve Buffer Cache Performance ∗

Song Jiang

Department of Computer Science
College of William and Mary

Williamsburg, VA 23187-8795

sjiang@cs.wm.edu

Xiaodong Zhang

Department of Computer Science
College of William and Mary

Williamsburg, VA 23187-8795

zhang@cs.wm.edu

ABSTRACT
Although LRU replacement policy has been commonly used
in the buffer cache management, it is well known for its
inability to cope with access patterns with weak locality.
Previous work, such as LRU-K and 2Q, attempts to en-
hance LRU capacity by making use of additional history
information of previous block references other than only the
recency information used in LRU. These algorithms greatly
increase complexity and/or can not consistently provide per-
formance improvement. Many recently proposed policies,
such as UBM and SEQ, improve replacement performance
by exploiting access regularities in references. They only
address LRU problems on certain specific and well-defined
cases such as access patterns like sequences and loops. Mo-
tivated by the limits of previous studies, we propose an
efficient buffer cache replacement policy, called Low Inter-

reference Recency Set (LIRS). LIRS effectively addresses the
limits of LRU by using recency to evaluate Inter-Reference
Recency (IRR) for making a replacement decision. This is
in contrast to what LRU does: directly using recency to pre-
dict next reference timing. At the same time, LIRS almost
retains the same simple assumption of LRU to predict future
access behavior of blocks. Our objectives are to effectively
address the limits of LRU for a general purpose, to retain
the low overhead merit of LRU, and to outperform those
replacement policies relying on the access regularity detec-
tions. Conducting simulations with a variety of traces and
a wide range of cache sizes, we show that LIRS significantly
outperforms LRU, and outperforms other existing replace-
ment algorithms in most cases. Furthermore, we show that
the additional cost for implementing LIRS is trivial in com-
parison with LRU.

∗This work is supported in part by the U.S. National Science
Foundation under grants CCR-9812187, EIA-9977030, and
CCR-0098055.

1. INTRODUCTION
1.1 The Problems of LRU Replacement Policy
The effectiveness of cache block replacement algorithms is
critical to the performance stability of I/O systems. The
LRU (Least Recently Used) replacement is widely used to
manage buffer cache due to its simplicity, but many anoma-
lous behaviors have been found with some typical workloads,
where the hit rates of LRU may only slightly increase with
a significant increase of cache size. The observations reflect
LRU’s inability to cope with access patterns with weak lo-
cality such as file scanning, regular accesses over more blocks
than the cache size, and accesses on blocks with distinct fre-
quencies. Here are some representative examples reported
in the research literature, to illustrate how LRU poorly be-
haves.

1. Under the LRU policy, a burst of references to infre-
quently used blocks, such as “sequential scans” through
a large file, may cause replacement of commonly ref-
erenced blocks in the cache. This is a common com-
plaint in many commercial systems: sequential scans
can cause interactive response time to deteriorate no-
ticeably [14]. A wise replacement policy should pre-
vent “hot” blocks from being evicted by “cold” blocks.

2. For a cyclic (loop-like) pattern of accesses to a file that
is only slightly larger than the cache size, LRU always
mistakenly evicts the blocks that will be accessed soon-
est, because these blocks have not been accessed for the
longest time [18]. A wise replacement policy should
maintain a miss rate close to the buffer space shortage
ratio.

3. In an example of multi-user database application [14],
each record is associated with a B-tree index. There
are 20,000 records. The index entries can be packed
into 100 blocks, and 10,000 blocks are needed to hold
records. We use R(i) to represent an access to Record
i, and I(i) to Index i. The access pattern of the
database application alternates references to random
index blocks and record blocks by I(1), R(1), I(2),
R(2), I(3), R(3), Thus, index blocks will be ref-
erenced with a probability of 0.005, and data blocks
are with a probability of 0.00005. However, LRU will

keep an equal number of index and record blocks in
the cache, and perhaps even more record blocks than
index blocks. A wise replacement should select the
resident blocks according to the reference probabilities
of the blocks. Only those blocks with relatively high
probabilities deserve to stay in the cache for a long
period of time.

The reason for LRU to behave poorly in these situations is
that LRU makes a bold assumption – a block that has not
been accessed the longest would wait for relatively longest
time to be accessed again. This assumption cannot capture
the access patterns exhibited in these workloads with weak
locality. Generally speaking, there is less locality in buffer
caches than that in CPU caches or virtual memory systems
[17].

However, LRU has its distinctive merits: simplicity and
adaptability. It only samples and makes use of very limited
information – recency. However, while addressing the weak-
ness of LRU, existing policies either take more history in-
formation into consideration, such as LFU (Least Frequency
Least)-like ones in the cost of simplicity and adaptability, or
switch temporarily from LRU to other policies whenever reg-
ularities are detected. In the switch-based approach, these
policies actually act as supplements of LRU in a case-by-
case fashion. To make a prediction, these policies assume
the existence of relationship between the future reference
of a block with the behaviors of those blocks in its tempo-
ral or spatial locality scope, while LRU only associates the
future behavior of a block with its own history references.
This additional assumption increases the complexity of im-
plementations, as well as their performance dependence on
the specific characteristics of workloads. In contrast, our
LIRS essentially only samples and makes use of the same
history information as LRU does – recency, and almost re-
tains the simple assumption of LRU. Thus it is simple and
adaptive. In our design, LIRS is not directly targeted at spe-
cific LRU problems but fundamentally addresses the limits
of LRU.

1.2 An Executive Summary of Our Policy
We use recent Inter-Reference Recency (IRR) as the recorded
history information of each block, where IRR of a block
refers to the number of other blocks accessed between two
consecutive references to the block. Specifically, the recency
refers to the number of other blocks accessed from last ref-
erence to the current time. We call IRR between last and
penultimate (second-to-last) references of a block as recent
IRR, and simply call it IRR without ambiguity in the rest
of the paper. We assume that if the IRR of a block is large,
the next IRR of the block is likely to be large again. Follow-
ing this assumption, we select the blocks with large IRRs
for replacement, because these blocks are highly possible to
be evicted later by LRU before being referenced again un-
der our assumption. It is noted that these evicted blocks
may also have been recently accessed, i.e. each has a small
recency.

In comparison with LRU, by adequately considering IRR in
history information in our policy, we are able to eliminate
negative effects caused by only considering recency, such as

the problems presented in the above three examples. When
deciding which block to evict, our policy utilizes the IRR
information of blocks. It dynamically and responsively dis-
tinguishes low IRR (denoted as LIR) blocks from high IRR
(denoted as HIR) blocks, and keeps the LIR blocks in the
cache, where the recencies of blocks are only used to help
determine LIR or HIR statuses of blocks. We maintain an
LIR block set and an HIR block set, and manage to limit
the size of the LIR set so that all the LIR blocks in the set
can fit in the cache. The blocks in the LIR set are not cho-
sen for replacement, and there are no misses with references
to these blocks. Only a very small portion of the cache is
assigned to store HIR blocks. Resident HIR blocks may be
evicted at any recency. However, when the recency of an LIR
block increases to a certain point, and an HIR block gets ac-
cessed at a smaller recency than that of the LIR block, the
statuses of the two blocks are switched. We name the pro-
posed policy “Low Inter-reference Recency Set” (denoted as
LIRS) replacement, because the LIR set is what the algo-
rithm tries to identify and keep in the cache. The LIRS
policy aims at addressing three issues in designing replace-
ment policies: (1) how to effectively utilize multiple sources
of access information; (2) how to dynamically and respon-
sively distinguish blocks by comparing their possibilities to
be referenced in the near future; and (3) how to minimize
implementation overhead.

In the next section, we give an elaborate description of the
related work, and our technical contributions. The algo-
rithm of the proposed policy is given in Section 3. In Sec-
tion 4, we report trace-driven simulation results for perfor-
mance evaluation and comparisons. We present sensitivity
and overhead analysis of the proposed replacement policy in
Section 5. We conclude the paper in Section 6.

2. RELATED WORK
LRU replacement is widely used for the management of vir-
tual memory, file caches, and data buffers in databases.
The three typical problems described in the previous sec-
tion are found in different application fields. A lot of efforts
have been made to address the problems of LRU. We clas-
sify existing schemes into three categories: (1) replacement
schemes based on user-level hints; (2) replacement schemes
based on tracing and utilizing history information of block
accesses; and (3) replacement schemes based on regularity
detections.

2.1 User-level Hints
Application-controlled file caching [3] and application-informed
prefetching and caching [16] are the schemes based on user-
level hints. These schemes identify blocks with low possi-
bility to be accessed in the near future based on available
hints provided by users. To provide appropriate hints, users
need to understand the data access patterns, which adds to
the programming burden. In [13], Mowry et. al. attempt
to abstract hints by compilers to facilitate I/O prefetching.
Although their methods are orthogonal to our LIRS replace-
ment, the collected hints may help us ensure the existence
of the correlation of consecutive IRRs. However, in most
cases, the LIRS algorithm can adapt its behavior to differ-
ent access patterns without explicit hints.

2.2 Tracing and Utilizing History Information

Realizing that LRU only utilizes limited access information,
researchers have proposed several schemes to collect and use
“deeper” history information. Examples are LFU-like algo-
rithms such as FBR, LRFU, as well as LRU-K and 2Q. We
take a similar direction by effectively collecting and utilizing
access information to design the LIRS replacement.

Robinson and Devarakonda propose a frequency-based re-
placement algorithm (FBR) by maintaining reference counts
for the purpose to “factor out” locality [17]. However it is
slow to react to reference popularity changes and some pa-
rameters have to be found by trial and error. Having ana-
lyzed the advantages and disadvantages of LRU and LFU,
Lee et, al. combine them by weighing recency factor and fre-
quency factor of a block [12]. The performance of the LRFU
scheme largely depends on a parameter called λ, which de-
cides the weight of LRU or LFU, and which has to be ad-
justed according to different system configurations, even ac-
cording to different workloads.

The LRU-K scheme [14] addresses the LRU problems pre-
sented in the Examples 1 and 3 in the previous section.
LRU-K makes its replacement decision based on the time of
the Kth-to-last reference to the block. After such a com-
parison, the oldest resident block is evicted. For simplicity,
the authors recommended K = 2. By taking the time of
the penultimate reference to a block as the basis for com-
parisons, LRU-2 can quickly remove cold blocks from the
cache. However, for blocks without significant differences of
reference frequencies, LRU-2 does not work well. In addi-
tion, the overhead of LRU-2 is expensive: each block access
requires log(N) operations to manipulate a priority queue,
where N is the number of blocks in the cache.

Johnson and Shasha propose the 2Q scheme that has over-
head of a constant time [10]. The authors claim that the
scheme performs as well as LRU-2. The 2Q scheme can
quickly remove sequentially-referenced blocks and cyclically-
referenced blocks with long intervals from the cache. This
is done by using a special buffer, called the A1in queue,
in which all missed blocks are initially placed. When the
blocks are replaced from the A1in queue in the FIFO or-
der, the addresses of those replaced blocks are temporarily
placed in a ghost buffer called A1out queue. When a block is
re-referenced, if its address is in the A1out queue, it is pro-
moted to a main buffer called Am, where frequently accessed
blocks are stored. In this way they are able to distinguish
between frequently and infrequently referenced blocks. By
setting thresholds Kin and Kout for the sizes of A1in and
A1out, respectively, 2Q provides a victim block either from
A1in or Am. However, Kin and Kout are pre-determined
parameters in 2Q, which need to be carefully tuned, and
are sensitive to the types of workloads. Although both 2Q
and LIRS have implementations with low overheads, our al-
gorithm has overcome the drawbacks of 2Q by a properly
updating of the LIR block set.

Inter-Reference Gap (IRG) for a block is the number of
the references between consecutive references to the block,
which is different from IRR on whether duplicate references
to a block are counted. Phalke and Gopinath consider the
correlation between history IRGs and future IRG [15]. The
past IRG string for each block is modeled by Markov chains

to predict the next IRG. However, just as Smaragdakis et.
al. indicate, replacement algorithms based on Markov mod-
els are not practical because they try to solve a much harder
problem than the replacement problem itself [18]. An ap-
parent difference in their scheme from our LIRS algorithm
is on how to measure the distance between two consecu-
tive references to a block. Our study shows that IRR is
more justifiable than IRG in this circumstance. First, IRR
only counts the distinct blocks and filters out high-frequency
events, which may be volatile with time. Thus an IRR is
more relevant to the next IRR than an IRG to the next
IRG. Moreover, it is the “recency” but not “gap” informa-
tion that is used by LRU. An elaborate argument favoring
IRR in the context of virtual memory page replacement can
be found in [18]. Secondly, IRR can be easily dealt with
under the LRU stack model [2], on which most popular re-
placements are based.

2.3 Detection and Adaptation of Access Reg-
ularities

More recently, researchers take another approach to detect
access regularities from the history information by relating
the accessing behavior of a block to those of the blocks in its
temporal or spatial locality scope. Then different replace-
ments, such as MRU, can be applied to the blocks with
specific access regularities.

Glass and Cao propose adaptive replacement SEQ for page
replacement in virtual memory management [9]. It detects
sequential address reference patterns. If long sequences of
page faults are found, MRU is applied to such sequences. If
no sequences are detected, SEQ performs LRU replacement.
Smaragdakis et. al. argue that the address-based detec-
tion lacks generality, and advocate using recency informa-
tion to distinguish between pages [18]. Their EELRU exam-
ines aggregate recency distributions of referenced pages and
changes the page eviction points using an on-line cost/benefit
analysis by assuming the correlation among temporally con-
tiguously referenced pages. With an aggregate analysis,
EELRU can not quickly respond to the changing access pat-
terns. Without spatial or temporal detections, our LIRS
uses independent recency events of each block to effectively
characterize their references.

Choi et. al. propose a new adaptive buffer management
scheme called DEAR that automatically detects the block
reference patterns of applications and applies different re-
placement policies to different applications based on the
detected reference patterns [5]. Further, they propose an
Application/File-level Characterization (AFC) scheme in [4].
The Unified Buffer Management (UBM) scheme by Kim et.
al. also detects patterns in the recorded history [11]. Though
their elaborate detections of block access patterns provide a
large potential to high performance, they address the prob-
lems in a case-by-case fashion and have to cope with the
allocation problem, which does not appear in LRU. To fa-
cilitate the on-line evaluation of buffer usage, certain pre-
measurements are needed to set some pre-defined parame-
ters used in the buffer allocation scheme [4, 5]. Our LIRS
does not have the design challenge. Just like LRU, it chooses
the victim block in the global stack. However, it can use the
advantages provided by the detection-based schemes.

2.4 Working Set Models
Lastly, we would like to compare our work with the working
set model, an early work by Denning [6]. A working set of
a program is a set of its recently used pages. Specifically, at
virtual time t, a program’s working set Wt(θ) is the subset of
all pages of the program, which have been referenced in the
previous θ virtual time units (the working set window). A
working set replacement algorithm is used to ensure that no
pages in the working set of a running program are replaced
[7]. Estimating the current memory demand of a running
program in the system, the model does not incorporate the
available cache size. When the working set is greater than
the cache size, the working set replacement algorithm would
not work properly. Another difficulty with the working set
model is its weak ability to distinguish recently referenced
“cold” blocks from “hot” blocks. Our LIRS algorithm en-
sures that LIR block set size is less than the available cache
size and keeps the set in the cache. IRR helps to distinguish
the “cold” blocks from “hot” ones: a recently referenced
“cold” block could have a small recency, but would have a
large IRR.

3. THE LIRS ALGORITHM
3.1 General Idea
We divide the referenced blocks into two sets: High Inter-
reference Recency (HIR) block set and Low Inter-reference
Recency (LIR) block set. Each block with history informa-
tion in cache has a status – either LIR or HIR. Some HIR
blocks may not reside in the cache, but have entries in the
cache recording their status as HIR of non-residence. We
also divide the cache, whose size in blocks is L, into a ma-
jor part and a minor part in terms of the size. The major
part with the size of Llirs is used to store LIR blocks, and
the minor part with the size of Lhirs is used to store blocks
from HIR block set, where Llirs + Lhirs = L. When a miss
occurs and a free block is needed for replacement, we choose
an HIR block that is resident in the cache. LIR block set
always resides in the cache and there are no misses for the
references to LIR blocks. However, a reference to an HIR
block would likely to encounter a miss, because Lhirs is very
small (its practical size can be as small as 1% of the cache
size).

Table 1 gives a simple example to illustrate how a replaced
block is selected by the LIRS algorithm and how LIR/HIR
statuses are switched. In Table 1, symbol “X” represents
that a block is accessed at a virtual time unit 1. For example,
block A is accessed at time units 1, 6, and 8. Based on the
definition of recency and IRR in Section 1.2, at time unit
10, blocks A, B, C, D, E have their recency values of 1,
3, 4, 2, and 0, respectively, and have their IRR values of
1, 1, “infinite”, 3, and “infinite”, respectively. We assume
Llirs = 2 and Lhirs = 1, and at time 10 the LIRS algorithm
leaves two blocks in LIR set = {A, B}. The rest of the blocks
go to HIR set = {C, D, E}. Because block E is the most
recently referenced, it is the only resident HIR block due to
Lhirs = 1. If there is a reference to an LIR block, we just
leave it in the LIR block set. If there is a reference to an
HIR block, we need to know whether we should change its
status to LIR.

1Virtual time is defined on the reference sequence, where a
reference represents a time unit.

The key to successfully make the LIRS idea work in practice
rests on whether we can dynamically and responsively main-
tain the LIR block set and HIR block set. When an HIR
block is referenced at a recency, it gets a new IRR, which is
equal to its recency. Then we determine whether the newly
born IRR is small enough compared with some current refer-
ence statistics of existing LIR blocks, so that we can decide
whether we need to change its status to LIR. Here we have
two options: to compare it either with the IRRs or recen-
cies of the LIR blocks. We choose the recency information
of LIR blocks for the comparison. There are two reasons
for this: (1) The IRRs are generated before their respective
recencies, and they are outdated. So they are not directly
relevant to the new IRR of the HIR block. A recency of a
block is determined not only by its own reference activity,
but also the recent activities of other blocks. The result of
the comparisons between the new IRR and recencies of the
LIR blocks determines the eligibility of the HIR block to be
considered as a “hot block”. Though we claim that IRRs are
used to determine which block should be replaced, it is the
newly born IRRs that are directly used in the comparisons.
(2) If the new IRR of the HIR block is smaller than the re-
cency of an LIR block, it will be smaller than the coming
IRR of the LIR block. This is because the recency of the
LIR block is a portion of its coming IRR, and not greater
than the IRR. Thus the comparisons with the recencies are
actually the comparisons with the relevant IRRs. Once we
know that the new IRR of the HIR block is smaller than
the maximum recency of all the LIR blocks, we switch the
LIR/HIR statuses of the HIR block and the LIR block with
the maximum recency. Following this rule, we can (1) allow
an HIR block with a relatively small IRR to join LIR block
set in a timely way by removing an LIR block from the set;
(2) keep the size of LIR block set no larger than Llirs, thus
the entire set can reside in the cache.

Again in the example of Table 1, if there is a reference to
block D at time 10, then a miss occurs. LIRS algorithm
evicts resident HIR block E, instead of block B, which would
be evicted by LRU due to its largest recency. Furthermore,
because block D is referenced, its new IRR becomes 2, which
is smaller than the recency of LIR block B (=3), indicating
that coming IRR of block B will not be smaller than 3. So
the status of block D is switched to LIR, and the block joins
the LIR block set, while block B becomes an HIR block.
Since block B becomes the only resident HIR block, it is
going to be evicted from the cache once another free block
is requested. If at virtual time 10, block C with its recency
4, rather than block D with its recency 2, gets referenced,
there will be no status switching. Then block C becomes a
resident HIR block, though the replaced block is still E at
virtual time 10. The LIR block set and HIR block set are
formed and dynamically maintained in this way.

3.2 An Implementation Using the LRU Stack
The LIRS algorithm can be efficiently built on the model of
LRU stack, which is an implementation structure of LRU.
The LRU stack is a cache storage containing L entries, each
of which represents a block2. In practice, L is the cache size
in blocks. LIRS algorithm makes use of the stack to record

2For simplicity, in the rest of the paper we just say without
ambiguity “a block in the stack” instead of “the entry of a
block in the stack” .

Recency IRR

E x 0 inf
D x x 2 3
C x 4 inf
B x x 3 1
A x x x 1 1

Blocks / Virtual time 1 2 3 4 5 6 7 8 9 10

Table 1: An example to explain how a victim block is selected by the LIRS algorithm and how LIR/HIR
statuses are switched. An “X” means the block of the row is referenced at the virtual time of the column.
The recency and IRR columns represent the corresponding values at virtual time 10 for each block. We
assume Llirs = 2 and Lhirs = 1. At time 10 LIR set = {A, B}, HIR set = {C, D, E}, and the only resident
HIR block is E.

the recency, and to dynamically maintain the LIR block set
and HIR block set. Not adopting the LRU stack, where
only resident blocks are managed by LRU replacement in
the stack, we store LIR blocks, and HIR blocks with their
recency less than the maximum recency of LIR blocks in
a stack called LIRS stack S, which follows the LRU stack
operation principle but has a varying size. With this im-
plementation, we are able to remove the possible burden of
explicitly keeping track of the IRR and recency values and
searching the maximum recency value. Each entry in the
stack records the LIR/HIR status and residence status in-
dicating whether or not the block resides in the cache. To
facilitate the search of resident HIR blocks, we link all these
blocks into a small list Q with its maximum size Lhirs. Once
a free block is needed, the LIRS algorithm removes a resi-
dent HIR block from the front of the list for replacement.
However, the replaced HIR block remains in the stack S

with its residence status changed to non-residence, if it is
originally in the stack. We ensure the block in the bottom
of the stack S is an LIR block by removing HIR blocks after
it. Once an HIR block in the LIRS stack gets referenced,
which means there is at least one LIR block, such as the one
in the bottom, whose coming IRR will be greater than the
new IRR of the HIR block, we switch the LIR/HIR statuses
of the two blocks. The LIR block in the bottom is evicted
from the stack S and goes to the end of the list Q as a res-
ident HIR block. This block is going to be replaced out of
the cache soon due to the small size of the list Q (at most
Lhirs).

Such a scheme is also intuitive from the perspective of LRU
replacement behavior: if a block gets evicted in the bottom
of LRU stack, it means it holds a buffer during the period of
time when it moves from the top to the bottom of the stack
without being referenced. Why should we afford a buffer for
another long idle period when the block is loaded again into
the cache? The rationale behind this is the assumption that
temporal IRR locality holds for block references.

3.3 A Detailed Implementation Description
We define an operation called “stack pruning” on the LIRS
stack S, which removes the HIR blocks in the bottom of
the stack until an LIR block sits in the stack bottom. This
operation serves for two purposes: (1) We ensure the block in
the bottom of the stack always belongs to the LIR block set.
(2) After the LIR block in the bottom is removed, those HIR
blocks contiguously located above it will not have chances to

R

R

...
R

R
R R ...

list Q

R

R

R

LIRS stack S

: resident HIR block

: non−resident HIR block

: LIR block (all LIR blocks are resident)

frontend

top

bottom

Figure 1: The LIRS stack S holds LIR blocks as well
as HIRS blocks with or without resident status, and
a list Q holds all the resident HIR blocks.

change their status from HIR to LIR, because their recencies
are larger than the new maximum recency of LIR blocks.

When LIR block set is not full, all the referenced blocks are
given an LIR status until its size reaches Llirs. After that,
HIR status is given to any blocks that are referenced for the
first time, and to the blocks that have not been referenced
for a long time so that they are not in stack S any longer.

Figure 1 describes a scenario where stack S holds three kinds
of blocks: LIR blocks, resident HIR blocks, non-resident HIR
blocks, and a list Q holds all of the resident HIR blocks.
Each HIR block could either be in stack S or not. Figure
1 does not depict non-resident HIR blocks that are not in
stack S. There are three cases with various references to
these blocks.

1. Upon accessing an LIR block X: This access is
guaranteed to be a hit in the cache. We move it to the
top of stack S. If the LIR block is originally located in
the bottom of the stack, we conduct a stack pruning.

2. Upon accessing an HIR resident block X: This
is a hit in the cache. We move it to the top of stack
S. There are two cases for block X: (1) If X is in the
stack S, we change its status to LIR. This block is also
removed from list Q. The LIR block in the bottom of
S is moved to the end of list Q with its status changed
to HIR. A stack pruning is then conducted. (2) If X

is not in stack S, we leave its status in HIR and move
it to the end of list Q.

3. Upon accessing an HIR non-resident block X:
This is a miss. We remove the HIR resident block
at the front of list Q (it then becomes a non-resident
block), and replace it out of the cache. Then we load
the requested block X into the freed buffer and place
it on the top of stack S. There are two cases for block
X: (1) If X is in stack S, we change its status to LIR
and move the LIR block in the bottom of stack S to
the end of list Q with its status changed to HIR. A
stack pruning is then conducted. (2) If X is not in
stack S, we leave its status in HIR and place it in the
end of list Q.

4. PERFORMANCE EVALUATION
4.1 Experimental Settings
To validate our LIRS algorithm and to demonstrate its strength,
we use trace-driven simulations with various types of work-
loads to evaluate and compare it with other algorithms. We
have adopted many application workload traces used in pre-
vious literature aiming at addressing the limits of LRU. We
have also generated a synthetic trace. Among these traces,
cpp, cs, glimpse, and postgres are used in [4, 5] (“cs” is
named as “cscope” and “postgres” is named as “postgres2”
there), sprite is used in [12], multi1, multi2, multi3 are used
in [11]. We briefly describe the workload traces here.

1. 2-pools is a synthetic trace, which simulates appli-
cation behavior of the example 3 in Section 1.1 with
100,000 references.

2. cpp is a GNU C compiler pre-processor trace. The
total size of C source programs used as input is roughly
11 MB.

3. cs is an interactive C source program examination tool
trace. The total size of the C programs used as input
is roughly 9 MB.

4. glimpse is a text information retrieval utility trace.
The total size of text files used as input is roughly 50
MB.

5. postgres is a trace of join queries among four relations
in a relational database system from the University of
California at Berkeley.

6. sprite is from the Sprite network file system, which
contains requests to a file server from client worksta-
tions for a two-day period.

7. multi1 is obtained by executing two workloads, cs and
cpp, together.

8. multi2 is obtained by executing three workloads, cs,
cpp, and postgres, together.

9. multi3 is obtained by executing four workloads, cpp,
gnuplot, glimpse, and postgres, together.

Through an elaborate investigation, Choi et. al. classify the
file cache access patterns into four types [4]:

• Sequential references: all blocks are accessed one after
another, and never re-accessed;

• Looping references: all blocks are accessed repeatedly
with a regular interval (period);

• Temporally-clustered references: blocks accessed more
recently are the ones more likely to be accessed in the
near future;

• Probabilistic references: each block has a stationary
reference probability, and all blocks are accessed inde-
pendently with the associated probabilities.

The classification serves as a basis for access pattern de-
tections and for adapting different replacement policies in
their AFC scheme. For example, MRU applies to sequential
and looping patterns, LRU applies to temporally-clustered
patterns, and LFU applies to probabilistic patterns. Though
our LIRS policy does not depend on such a classification, we
would like to use it to present and explain our experimental
results. Because a sequential pattern is a special case of the
looping pattern (with an infinite interval), we only use the
last three groups: looping, temporally-clustered, and prob-
abilistic patterns.

Policies LRU, LRU-2, 2Q, and LRFU belong to the same
category of replacement policies as LIRS. In other words,
these policies take the same technical direction — predict-
ing the access possibility of a block through its own history
access information. Thus, we focus our performance com-
parisons between ours and these policies. As representative
policies in the category of regularity detections, we choose
two schemes for comparisons: UBM for its spatial regularity
detection, and EELRU for its temporal regularity detection.
UBM simulation asks for file IDs, offsets, and process IDs
of a reference. However, some traces available to us only
consists of logical block numbers, which are unique numbers
for accessed blocks. Thus, we only include the UBM exper-
imental results for the traces used in paper [11], which are
multi1, multi2, multi3. We also include the results of OPT,
an optimal, off-line replacement algorithm [2] for compar-
isons.

4.2 Performance Evaluation Results
We divide the 9 traces into 4 groups based on their access
patterns. Traces cs, postgres, and glimpse belong to the
looping type, traces cpp and 2-pools belong to the proba-
bilistic type, trace sprite belongs to the temporally-clustered
type, and traces multi1, multi2, and multi3 belong to the
mixed type. For the policies with pre-determined parame-
ters, we used the parameters presented in their related pa-
pers. The only parameter of the LIRS algorithm, Lhirs, is
set as 1% of the cache size, or Llirs = 99% of the cache size.
This selection results from a sensitivity analysis to Lhirs,
which is described in Section 5.1. Figure 2 shows hit rates
for each workload as the cache size increases for various re-
placement policies.

4.2.1 Replacement Performance on Looping Patterns
Traces cs, glimpse, and postgres have looping patterns with
long intervals. As expected, LRU performs poorly for these
workloads with the lowest hit rates among the policies. Let
us take cs as an example, which has a pure looping pattern.
Each of its blocks is accessed almost with the same interval.

Since all blocks with looping accesses have the same eligibil-
ity to be kept in the cache, it is desirable to keep the same
set of blocks in the cache no matter what blocks are ref-
erenced currently. That is just what LIRS does: the same
LIR blocks are fixed in the cache because HIR blocks do
not have IRRs small enough to change their status. In the
looping pattern, recency predicts the opposite of the future
reference time of a block: the larger the recency of a block
is, the sooner the block will be re-referenced. The hit rate
of LRU for cs is almost 0% until the cache size approaches
1,400 blocks, which can hold all the blocks referenced in
the loop. It is interesting to see that the hit rate curve of
LRU-2 overlaps with the LRU curve. This is because LRU-2
chooses the same victim block as the one chosen by LRU for
replacement. When making a decision, LRU-2 compares the
penultimate reference time, which is the recency plus the re-
cent IRG. However, the IRGs are of the same value for all
the blocks at any time after the first reference. Thus, LRU-2
relies only on recency to make its decision, the same as LRU
does. In general, when recency makes a major contribution
to the penultimate reference time, LRU-2 behaves similarly
to LRU.

Except for cs, the other two workloads have mixed looping
patterns with different intervals. LRU presents stair-step
curves to increase the hit rates for those workloads. LRU
is not effective until all the blocks in its locality scope are
brought into the cache. For example, only after the cache
can hold 355 blocks does the LRU hit rate of postgres have
a sharp increase from 16.3% to 48.5%. Because LRU-2 con-
siders the last IRG in addition to the recency, it is easier
for it to distinguish blocks in the loops with different inter-
vals than LRU does. However, LRU-2 lacks the capability
to deal with these blocks when varying recency is involved.
Our experiments show that the achieved performance im-
provements by LRU-2 over LRU are limited.

It is illuminating to observe the performance difference be-
tween 2Q and LIRS, because both employ two linear data
structures following a similar principle that only re-referenced
blocks deserve to be kept in the cache for a long period of
time. We can see that the hit rates of 2Q are significantly
lower than those of LIRS for all the three workloads. As the
cache size increases, 2Q even performs worse than LRU for
workloads glimpse and postgres. Another observation of 2Q
on glimpse and postgres is a serious “Belady’s anomaly”[1]:
increasing the cache size may increase the number of misses.
The reason is as follows: 2Q relies on queue A1out to de-
cide whether a block is qualified to promote to stack Am so
that it can stay in the cache for long time, or consequently
to decide whether a block in Am should be demoted out of
Am. Actually if the blocks in Am are relatively frequently
referenced, it should be hard for the blocks out of Am to
join Am. Otherwise, it should become easy for these blocks
to join Am. On the other hand, the larger A1out is, the
more easily a block is promoted into Am; and the smaller,
the more difficult. So A1out should vary its size threshold
Kout dynamically reflecting the relative frequencies in the
access patterns of blocks in and out of Am. However, in
2Q it is a fixed pre-determined parameter. LIRS policy can
be viewed to integrate A1in, A1out and Am into an LIRS
stack, whose size varies according to the current access pat-
terns. We provide an effective criterion – only when an HIR

block gets accessed and generates a new IRR less than the
recency of an LIR block, do we promote it to be an LIR
block and demote an LIR block to be an HIR one.

LRFU, which combines LRU and LFU, is not effective on a
workload with a looping pattern. The LRFU and LRU hit
rate curves for workload cs are overlapped.

Our trace-driven simulation results show LIRS significantly
outperforms all of the other policies, and its hit rate curves
are very close to that of OPT. LIRS can make a more accu-
rate prediction on the future LIR/HIR status of each block
for cs and postgres than glimpse, because the intervals of
loops in cs and postgres are of less variance, and the consec-
utive IRRs are of less variance (See the performance differ-
ence between cs, postgres and glimpse in Figure 2). How-
ever, the LIRS algorithm is not sensitive to the variance of
IRRs, which is reflected by its good performance on work-
load glimpse. We explain it as follows.

We denote the recency of the LIR block in the bottom of
LIRS stack S as Rmax. When there are no free block
buffers, Rmax is larger than the cache size in blocks. Only
when the two consecutive IRRs of references to a block vary
across value Rmax, is the status prediction of the LIRS al-
gorithm based on the last IRR wrong, including two cases:
(1) an IRR less than Rmax is succeeded by another IRR
greater than Rmax, and (2) an IRR greater than Rmax is
succeeded by another IRR less than Rmax. All other IRR
variances, no matter how much they are, would impose no
mishandling of the LIRS replacement. Let us take a close
look at the penalty from a wrong LIR/HIR status decision:
(1) If a block is mistakenly labeled as LIR due to previous
small IRR, LIRS will evict the block in the bottom of the
stack without being referenced. However, if it would be in
its status HIR, it was evicted much earlier after being loaded
into the cache to produce a free block. Keeping a block in
the cache until it is evicted in the bottom is just what LRU
does to every block. Thus such a mis-labeled block incurs
a comparable performance loss with that of LRU. (2) If a
block is mistakenly labeled as HIR due to previous large
IRR, LIRS will evict the block far before its reaching the
bottom. However, if it would be in its status LIR, it was
referenced before being evicted from the cache. Thus LIRS
would incur an extra miss if the block had been evicted from
HIR resident list Q. However, because the number of block
buffers assigned to list Q (Lhirs) is very small, which is only
1% of total cache size in our experiments, HIR blocks would
be replaced very soon, which reduces the chance for the re-
placed block to be re-referenced shortly after its eviction.
The free block buffer for the period between the early evic-
tion and its next reference helps to reduce the penalty from
the extra misses.

4.2.2 Replacement Performance on Probabilistic Pat-
terns

According to the detection results in [4], workload cpp ex-
hibits probabilistic reference pattern. The cpp hit rate in
Figure 2 shows that before the cache size increases to 100
blocks, the hit rate of LRU is much lower than that of LIRS
for cpp. For example, when the cache size is 50 blocks, hit
rate of LRU is 9.3%, while hit rate of LIRS is 55.0%. This
is because holding a major reference locality needs about

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400

H
it
 R

a
te

 (
%

)

Cache Size (# of blocks)

Cs

OPT
LIRS

LRU-2
2Q

LRFU
EELRU

LRU

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500

H
it
 R

a
te

 (
%

)
Cache Size (# of blocks)

Glimpse

OPT
LIRS

LRU-2
2Q

LRFU
EELRU

LRU

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000

H
it
 R

a
te

 (
%

)

Cache Size (# of blocks)

Postgres

OPT
LIRS

LRU-2
2Q

LRFU
EELRU

LRU

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900

H
it
 R

a
te

 (
%

)

Cache Size (# of blocks)

Cpp

OPT
LIRS

LRU-2
2Q

LRFU
EELRU

LRU

10

15

20

25

30

35

40

45

50

55

60

65

50 100 150 200 250 300 350 400 450

H
it
 R

a
te

 (
%

)

Cache Size (# of blocks)

2-pools

OPT
LIRS

LRU-2
2Q

LRFU
EELRU

LRU

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

H
it
 R

a
te

 (
%

)

Cache Size (# of blocks)

Sprite

OPT
LIRS
LRU

LRU-2
2Q

LRFU
EELRU

LRU

30

40

50

60

70

80

90

200 400 600 800 1000 1200 1400 1600 1800 2000

H
it
 R

a
te

 (
%

)

Cache Size (# of blocks)

Multi1(cs+cpp)

OPT
LIRS
UBM

LRU-2
2Q

LRFU
EELRU

LRU
10

20

30

40

50

60

70

80

500 1000 1500 2000 2500 3000

H
it
 R

a
te

 (
%

)

Cache Size (# of blocks)

Multi2 (cs+cpp+postgres)

OPT
LIRS
UBM

LRU-2
2Q

LRFU
EELRU

LRU

10

20

30

40

50

60

70

80

500 1000 1500 2000 2500 3000 3500 4000

H
it
 R

a
te

 (
%

)

Cache Size (# of blocks)

Multi3 (cpp+gnuplot+glimpse+postgres)

OPT
LIRS
UBM

LRU-2
2Q

LRFU
EELRU

LRU

Figure 2: Hit rate curves by various replacement policies on various workloads. Workloads cs, postgres, and
glimpse belong to the looping type, workloads cpp and 2 − pools belong to the probabilistic type, workload
sprite belongs to the temporally-clustered type, and workloads multi1, multi2, and multi3 belong to the mixed
type.

100 blocks. LRU can not exploit locality until enough cache
space is available to hold all the recently referenced blocks.
However, the capability for LIRS to exploit locality does not
depend on the cache size – when it is identifying the LIR
set to keep them in the cache, it always let set size match
the cache size. Workload 2-pools is generated to evaluate
replacement policies on their abilities to recognize the long-
term reference behaviors. Though the reference frequencies
are largely different between record blocks and index blocks,

it is hard for LRU to distinguish them when the cache size
is relatively small compared with the number of referenced
blocks. This is because LRU takes only recency into con-
sideration. LRU-2, 2Q, and LIRS algorithms take one more
previous references into consideration — the time for the
penultimate reference to a block is involved. Even though
the reference events to a block are randomized (the IRRs
of a block are random with a certain fixed frequency, which
is unfavorable to LIRS.), LIRS still outperforms LRU-2 and

2Q. However, LRFU utilizes “deeper” history information.
Thus, the constant long-term frequency becomes more vis-
ible, and is ready to be utilized by the LFU-like scheme.
The performance of LRFU is a slightly better than that
of LIRS. It is not surprising to see the hit rate curve of
EELRU performs poorly and overlaps with that of LRU,
because EELRU relies on an analysis of a temporal recency
distribution to decide whether to conduct an early point
eviction. In workload 2-pools, the blocks with high access
frequency and blocks with low access frequency are alterna-
tively referenced, thus no sign of an early point eviction can
be detected.

4.2.3 Replacement Performance on Temporally-Clustered
Patterns

Workload sprite exhibits temporally-clustered reference pat-
terns. The sprite result in Figure 2 shows that the LRU hit
rate curve smoothly climbs with the increase of the cache
size. Although there is still a gap between the LRU and
OPT, the slope of the LRU is close to that of OPT. Sprite
is a so called LRU-friendly workload [18], which seldom ac-
cesses more blocks than the cache size over a fairly long
period of time. For this type of workload, the behavior of
all the other policies should be similar to that of LRU, so
that their hit rates could be close to that of LRU. Before
the cache size reaches 350 blocks, the hit rates of LIRS are
higher than those of LRU. After this point, the hit rates
of LRU are slightly higher. Here is a reason for the slight
performance degradation of LIRS beyond that cache size:
whenever there is a locality scope shift or transition, i.e.
some HIR blocks get referenced, one more miss than would
occur in LRU may be experienced by each HIR block. Only
the next reference to the block in the near future after the
miss makes it switch from HIR to LIR status and then re-
main in the cache. However, because of the strong locality,
it does not have frequent locality scope changes, and the
negative effect of the extra misses is very limited.

4.2.4 Replacement Performance on Mixed Patterns
Multi1, multi2, and multi3 are the traces with mixed ac-
cess patterns. The authors in [11] provide a detailed discus-
sion why their UBM shows the best performance among the
polices they have considered – UBM, SEQ, 2Q, EELRU,
and LRU. Here we focus on performance differences be-
tween LIRS and UBM. UBM is a typical spatial regularity
detection-based replacement policy that conducts exhaus-
tive reference pattern detections. UBM tries to identify
sequential and looping patterns and applies MRU to the
detected patterns. UBM further measures looping inter-
vals and conducts period-based replacements. For uniden-
tified blocks, LRU is applied. A dynamical buffer alloca-
tion among blocks managed by different policies is employed.
Without devoting specific effort to specific regularities, LIRS
outperforms UBM for all the three mixed type workloads,
which shows that our assumption on IRR well holds and
LIRS is able to cope with weak locality reference in the
workloads with mixed type patterns.

5. SENSITIVITY/OVERHEAD ANALYSIS
5.1 Size Selections of Lhirs

Lhirs is the only parameter in the LIRS algorithm, which
is the maximum size of list Q holding resident HIR blocks.

The blocks in the LIR block set can stay in the cache for
longer time than those in the HIR block set and experience
less misses. A sufficiently large Llirs (the cache size for
LIR blocks) ensures there are a large number of LIR blocks.
For this purpose, we set Llirs to be 99% of the cache size,
Lhirs to be 1% of the cache size in our experiments, and
achieve expected performance. From the other perspective,
an increased Lhirs may be beneficial to the performance: it
reduces the first time reference misses. For a longer list Q

(larger Lhirs), it is more possible that an HIR block will
be re-accessed before it is evicted from the list, which can
help such HIR blocks change into the LIR status without
experiencing extra misses. However, the benefit of large
Lhirs is very limited, because the number of this kind of
hits is small.

We select two workloads, a non-LRU-friendly workload, post-
gres, and an LRU-friendly workload, sprite, to observe the
effects of changing Lhirs. We change Lhirs from 2 blocks, to
1%, 10%, 20%, and 30% of the cache size. Figure 3 presents
the results of the sensitivity study. For each workload, we
measure the hit rates of OPT, LRU, and LIRS with different
Lhirs sizes by increasing the cache size. We have following
two observations. First, for both workloads, we find that
LIRS is not sensitive to the increase of Lhirs. Even for a
very large Lhirs that is not in favor of LIRS, the performance
of LIRS with different cache sizes is still quite acceptable.
With the increase of Lhirs, the hit rates of LIRS approach
that of LRU. Secondly, our experiments indicate that in-
creasing Lhirs lowers the performance of LIRS for workload
postgres, but slightly improves the performance of LIRS for
workload sprite.

5.2 Thresholds for LIR/HIR Switching
In the LIRS algorithm, we use maximum recency among
those of the LIR blocks, Rmax, as a threshold value for
LIR/HIR status switching. Any HIR block has a new IRR
smaller than the threshold will change into LIR status, and
demote an LIR block into HIR status. The threshold con-
trols how easily an HIR block may become an LIR block,
or how difficult it is for an LIR block to become an HIR
one. We would like to vary the threshold value to get in-
sights into the relationship of LRU and LIRS. Lowering the
threshold value, we are able to strengthen the stability of
the LIR block set by making it more difficult for HIR blocks
to switch their status into LIR. It also prevents LIRS from
responding to the relatively small IRR variance. Increas-
ing the threshold value, we go in the opposite direction. In
fact, LRU can be considered as a special case of LIRS algo-
rithm with a sufficiently large threshold value, which always
gives a block LIR status and keeps it in the cache until it
is evicted in the bottom of stack, no matter how large the
block’s recency is when the block gets accessed.

Figure 4 presents the results of a sensitivity study of the
threshold value. We again use workloads postgres and sprite
to observe the effects of changing the threshold values from
50%, 75%, 100%, 125% to 150% of Rmax. For postgres, we
include a huge threshold value – 550% of Rmax to hightlight
the relationship between LIRS and LRU. We have two obser-
vations. First, LIRS is not sensitive to the threshold values
across a large range. In postgres, curves for the threshold
values of 100%, 125%, 150% of Rmax are almost overlapped,

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000

H
it

R
a
te

 (
%

)

Cache Size (# of blocks)

Postgres

OPT
LIRS 2

LIRS 1%
LIRS 10%
LIRS 20%
LIRS 30%

LRU

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

H
it

R
a
te

 (
%

)

Cache Size (# of blocks)

Sprite

OPT
LIRS 2

LIRS 1%
LIRS 10%
LIRS 20%
LIRS 30%

LRU

Figure 3: The hit rate curves of workload postgres (left figure) and workload sprite (right figure) by varying
the size of list Q (Lhirs, the number of cache buffers assigned to HIR block set) of LIRS algorithm, as well as
the curves for OPT and LRU. “LIRS 2” means size of Q is 2, “LIRS x%” means size of Q is x% of the cache
size in blocks.

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000

H
it

R
a
te

 (
%

)

Cache Size (# of blocks)

Postgres

OPT
LIRS 50%
LIRS 75%

LIRS 100%
LIRS 125%
LIRS 150%
LIRS 550%

LRU

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

H
it

R
a
te

 (
%

)

Cache Size (# of blocks)

Sprite

OPT
LIRS 50%
LIRS 75%

LIRS 100%
LIRS 125%
LIRS 150%

LRU

Figure 4: The hit rate curves of workload postgres (left figure) and workload sprite (right figure) by varying
the ratios between threshold values for LIR/HIR status switching and Rmax in LIRS, as well as the curves
for OPT and LRU.

and curves for 50%, 75% of Rmax are slightly lower than
the curve with 100% of Rmax threshold. Specifically for
sprite, an LRU-friendly workload, increasing the threshold
value, the LIRS hit rate curves move very slowly close to
that of LRU. Secondly, the LIRS algorithm can simulate
LRU behavior by largely increasing the threshold value. As
the threshold value increases to 550% of Rmax, LIRS curve
of workload postgres is very similar to that of LRU in its
shape, and close to it in its values. (See the left figure of
Figure 4.) Further increasing the threshold value, LIRS be-
comes LRU.

5.3 Overhead Analysis
LRU is known for its simplicity and efficiency. Comparing
the time and space overhead of LIRS and LRU, we show
that LIRS keeps the LRU merit of low overhead. The time
overhead of LIRS algorithm is O(1), which is almost the
same as that of LRU with a few additional operations such
as those on the list Q for resident HIR blocks. The extended
portion of the LIRS stack S is the additional space overhead

of the LIRS algorithm.

The stack S contains entries for the blocks with their recen-
cies less than Rmax. We have conducted experiments on all
the traces to observe the variance of the ratios between the
LIRS stack size, Rmax, and the size of the LRU stack in
the LRU algorithm, L (or the cache size in blocks). Figure
5 shows when we fix the cache size at 500 blocks, the vary-
ing ratios between Rmax and L for workloads postgres and
sprite with the virtual time. We find that the ratio is an in-
herent reflection of the LRU capability to exploit locality of
a workload. References to blocks with strong locality leave
only a small number of HIR blocks in stack S and the size
of stack S is shrinked, because most of references are to LIR
blocks. If the size of stack S is close to that of LRU stack,
LRU stack can hold sufficient history reference information,
thus LRU has a good performance. For example, we observe
the ratios of postgres are close to 1 between virtual times
1000 and 1300, between virtual times 4900 and 5300, and be-
tween virtual times 8500 and 8900. Analyzing its reference

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2000 4000 6000 8000 10000 12000

R
a
tio

 o
f
st

a
ck

 s
iz

e
 b

e
tw

e
e
n
 L

IR
S

 a
n
d
 L

R
U

Virtual time

Postgres (cache size = 500)

0

0.5

1

1.5

2

2.5

3

3.5

0 20000 40000 60000 80000 100000 120000 140000

R
a
tio

 o
f
st

a
ck

 s
iz

e
 b

e
tw

e
e
n
 L

IR
S

 a
n
d
 L

R
U

Virtual time

Sprite (cache size = 500)

Figure 5: The ratios between Rmax and cache size in blocks (L) for workload postgres (left figure) and
workload sprite (right figure). Rmax is the size of LIRS stack, which changes with the virtual time. Cache
size is 500 blocks.

steam in the trace, we know that these are the periods when
postgres has just experienced relatively strong locality. For
other periods with large ratios, LRU could not exploit the
weak locality. In contrast, Figure 5 shows that for sprite
with the cache size 500, the ratios are not far from 1 for
the most of period of time, which implies that it has strong
locality, and the LRU stack is able to keep the frequently
referenced blocks in the cache. Thus LRU is performance
effective. It can be seen that the ratio is a good indicator of
the LRU-friendliness of a workload.

When there is a burst of first-time (or “fresh”) block refer-
ences, the LIRS stack could be extended to be unacceptably
large. To give a size limit is a practical issue in the imple-
mentation of the LIRS algorithm. In an updated version of
LIRS, the LIRS stack has a size limit that is larger than L,
and we remove the HIR blocks close to the bottom out of
the stack once the LIRS stack size exceeds the limit. We
have tested a range of small stack size limits, from 1.5 times
to 3.0 times of L. From Figure 6, we can observe that even
with these strict space restrictions, LIRS retains its desired
performance. As expected, the results are consistent with
the ones when we reduce the threshold values in Section 5.2.
In addition, a stack entry only consists of several bytes, it
is quite affordable to have LIRS stack size limit much more
than three times of LRU stack size. With such large lim-
its, there is little negative effect on LIRS performance by
removing HIR block entries close to the stack bottom due
to the size limit.

While LRU can be seen as a special case of LIRS by lim-
iting the LIRS stack size as L, moderately extending the
LRU stack size makes a large difference on its performance.
This is because our solution effectively addresses the critical
limits of LRU.

6. CONCLUSIONS AND FUTURE WORK
We make two contributions in this paper by proposing the
LIRS algorithm: (1) We show that LRU limits with weak
locality workloads can be successfully addressed without re-
lying on the explicit regularity detections. Not depending
on the detectable pre-defined regularities in the reference of

workloads, our LIRS catches more opportunities to improve
LRU performance. (2) We show earlier work on improving
LRU such as LRU-K, 2Q can be evolved into one algorithm
with consistently superior performance, without tuning or
adapting sensitive parameters. The efforts of these algo-
rithms, which only trace their own history information of
each referenced block, are promising because it is very likely
to produce a simple and low overhead algorithm just like
LRU. We have shown the LIRS algorithm accomplishes this
goal.

In summary, our LIRS algorithm assumes that there ex-
ists stability on the IRR of a block over certain time. This
certainly holds for the access patterns with strong locality,
where LRU works well. The strong point of LIRS lies on
its ability to deal with access patterns with weak locality.
By extending LRU stack into LIRS stack, we successfully
make LRU a special case of LIRS. LRU uses the LRU stack
to capture the working set and then keep it in the cache.
Weak locality actually enlarges the working set. Once the
LRU stack cannot hold it, the performance of LRU could be
much worse than expected. However, LIRS uses the LIRS
stack to capture the working set, and uses the LIR block set
to hold its portion most deserved to be in the cache under
the assumption. Algorithms like LRU-K, and 2Q make their
efforts for the similar purpose. However, without an effective
mechanism to identify the most deserved portion matching
the currently available cache size, they either significantly
increase the cost and/or introduce workload sensitive pa-
rameters.

Our LIRS algorithm can be effectively applied in the virtual
memory management for its simplicity and its LRU-like as-
sumption on workload characteristics. Currently we are de-
signing and implementing an LIRS approximation with re-
duced overhead comparable to that of LRU approximations,
such as the clock, second chance algorithms.

Acknowledgments: We are grateful to Dr. Sam H. Noh at
Hong-Ik University, Drs. Jong M. Kim, Donghee Lee, Jong-
moo Choi, Sang L. Min, Yookun Cho, and Chong S. Kim
at the Seoul National University, to provide us with their

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000

H
it

R
a
te

 (
%

)

Cache Size (# of blocks)

Postgres

OPT
LIRS

LIRS 1.5
LIRS 2.0
LIRS 2.5
LIRS 3.0

LRU

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

H
it

R
a
te

 (
%

)

Cache Size (# of blocks)

Sprite

OPT
LIRS

LIRS 1.5
LIRS 2.0
LIRS 2.5
LIRS 3.0

LRU

Figure 6: The hit rate curves of workload postgres (left figure) and workload sprite (right figure) by varying
the LIRS stack size limits, as well as the curves for OPT and LRU. The limits are represented by the ratios
between the LIRS stack size limit in blocks and the cache size in blocks (L).

traces and simulators used in their papers [4], [11], and [12].
The comments from the anonymous referees are construc-
tive and helpful. We thank our colleague Bill Bynum to
read the paper and his comments. Finally, this work is also
a part of an independent research project sponsored by the
National Science Foundation for its program directors and
visiting scientists.

7. REFERENCES
[1] L. A. Belady, R. A. Nelson, and G. S. Shedler, “An

Anomaly in Space-Time Characteristics of Certain
Programs Running in a Paging Machine”, Communication
of the ACM, Vol. 12, June 1969, pp. 349-353.

[2] E. G. Coffman and P. J. Denning, “Operating Systems
Theory”, Prentice-Hall, 1973

[3] P. Cao, E. W. Felten and K. Li, “Application-Controlled
File Caching Policies”, Proceedings of the USENIX
Summer 1994 Technical Conference, 1994, pp. 171-182.

[4] J. Choi, S. H. Noh, S. L. Min, and Y. Cho, “Towards
Application/File-Level Characterization of Block
References: A Case for Fine-Grained Buffer Management”,
Proceedings of 2000 ACM SIGMETRICS Conference on
Measuring and Modeling of Computer Systems, June 2000,
pp. 286-295.

[5] J. Choi, S. H. Noh, S. L. Min, Y. Cho, “An
Implementation Study of a Detection-Based Adaptive
Block Replacement Scheme”, Proceedings of the 1999
Annual USENIX Technical Conference, 1999, pp. 239-252.

[6] P. J. Denning, “The Working Set Model for Program
Behavior”, Communications of the ACM, Vol. 11, No. 5,
May, 1968, pp. 323-333.

[7] P. J. Denning, “Virtual Memory”, Computer Survey Vol. 2,
No. 3, 1970, pp. 153-189.

[8] W. Effelsberg and T. Haerder, “Principles of Database
Buffer Management”, ACM Transaction on Database
Systems, Dec, 1984, pp. 560-595.

[9] G. Glass and P. Cao, “Adaptive Page Replacement Based
on Memory Reference Behavior”, Proceedings of 1997
ACM SIGMETRICS Conference on Measuring and
Modeling of Computer Systems, May 1997, pp. 115-126.

[10] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm”,
Proceedings of the 20th International Conference on
VLDB, 1994, pp. 439-450.

[11] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C. S. Kim “A Low-Overhead, High-Performance
Unified Buffer Management Scheme that Exploits
Sequential and Looping References”, Proceedings of the 4th
USENIX Symposium on Operating System Design and
Implementation, October 2000, pp. 119-134.

[12] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho
and C. S. Kim, “On the Existence of a Spectrum of
Policies that Subsumes the Least Recently Used (LRU)
and Least Frequently Used (LFU) Policies”, Proceeding of
1999 ACM SIGMETRICS Conference on Measuring and
Modeling of Computer Systems, May 1999, pp. 134-143.

[13] T. C. Mowry, A. K. Demke and O.Krieger, “Automatic
Compiler-Inserted I/O Prefetching for Out-of-Core
Application”, Proceedings of the Second USENIX
Symposium on Operating Systems Design and
Implementation, 1993, pp. 297-306.

[14] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K
Page Replacement Algorithm for Database Disk
Buffering”, Proceedings of the 1993 ACM SIGMOD
Conference, 1993, pp. 297-306.

[15] V. Phalke and B. Gopinath, “An Inter-Reference Gap
Model for Temporal Locality in Program Behavior”,
Proceeding of 1995 ACM SIGMETRICS Conference on
Measuring and Modeling of Computer Systems, 1995, pp.
291-300.

[16] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky
and J. Zelenka, “Informed Prefetching and Caching”,
Proceedings of the 15th Symposium on Operating System
Principles, 1995, pp. 79-95.

[17] J. T. Robinson and M. V. Devarakonda, “Data Cache
Management Using Frequency-Based Replacement”,
Proceeding of 1990 ACM SIGMETRICS Conference on
Measuring and Modeling of Computer Systems, May 1990,
pp. 134-142.

[18] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU:
Simple and Effective Adaptive Page Replacement”,
Proceedings of 1999 ACM SIGMETRICS Conference on
Measuring and Modeling of Computer Systems, May 1999,
pp. 122-133.

[19] J. R. Spirn, “Distance String Models for Program
Behavior”, IEEE Computer, Vol. 9, 1976, pp.14-20.

