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Abstract
With the ever-growing performance gap between memory sys-
tems and disks, and rapidly improving CPU performance, vir-
tual memory (VM) management becomes increasingly impor-
tant for overall system performance. However, one of its crit-
ical components, the page replacement policy, is still dom-
inated by CLOCK, a replacement policy developed almost
40 years ago. While pure LRU has an unaffordable cost in
VM, CLOCK simulates the LRU replacement algorithm with
a low cost acceptable in VM management. Over the last three
decades, the inability of LRU as well as CLOCK to handle
weak locality accesses has become increasingly serious, and
an effective fix becomes increasingly desirable.

Inspired by our I/O buffer cache replacement algorithm,
LIRS [13], we propose an improved CLOCK replacement pol-
icy, called CLOCK-Pro. By additionally keeping track of a
limited number of replaced pages, CLOCK-Pro works in a
similar fashion as CLOCK with a VM-affordable cost. Fur-
thermore, it brings all the much-needed performance advan-
tages from LIRS into CLOCK. Measurements from an imple-
mentation of CLOCK-Pro in Linux Kernel 2.4.21 show that
the execution times of some commonly used programs can be
reduced by up to 47%.

1 Introduction

1.1 Motivation

Memory management has been actively studied for decades.
On one hand, to use installed memory effectively, much work
has been done on memory allocation, recycling, and memory
management in various programming languages. Many so-
lutions and significant improvements have been seen in both
theory and practice. On the other hand, aiming at reducing the
cost of paging between memory and disks, researchers and
practitioners in both academia and industry are working hard
to improve the performance of page replacement, especially to
avoid the worst performance cases. A significant advance in

this regard becomes increasingly demanding with the contin-
uously growing gap between memory and disk access times,
as well as rapidly improving CPU performance. Although in-
creasing memory size can always reduce I/O pagings by giv-
ing a larger memory space to hold the working set, one cannot
cache all the previously accessed data including file data in
memory. Meanwhile, VM system designers should attempt
to maximize the achievable performance under different ap-
plication demands and system configurations. An effective
replacement policy is critical in achieving the goal. Unfor-
tunately, an approximation of LRU, the CLOCK replacement
policy [5], which was developed almost 40 years ago, is still
dominating nearly all the major operating systems including
MVS, Unix, Linux and Windows [7] � , even though it has ap-
parent performance disadvantages inherited from LRU with
certain commonly observed memory access behaviors.

We believe that there are two reasons responsible for the
lack of significant improvements on VM page replacements.
First, there is a very stringent cost requirement on the policy
demanded by the VM management, which requires that the
cost be associated with the number of page faults or a moder-
ate constant. As we know, a page fault incurs a penalty worth
of hundreds of thousands of CPU cycles. This allows a re-
placement policy to do its job without intrusively interfering
with application executions. However, a policy with its cost
proportional to the number of memory references would be
prohibitively expensive, such as doing some bookkeeping on
every memory access. This can cause the user program to
generate a trap into the operating system on every memory in-
struction, and the CPU would consume much more cycles on
page replacement than on user programs, even when there are
no paging requests. From the cost perspective, even LRU, a
well-recognized low-cost and simple replacement algorithm,
is unaffordable, because it has to maintain the LRU ordering
of pages for each page access. The second reason is that most
proposed replacement algorithms attempting to improve LRU

�
This generally covers many CLOCK variants, including Mach-style ac-

tive/inactive list, FIFO list facilitated with hardware reference bits. These
CLOCK variants share similar performance problems plaguing LRU.



performance turn out to be too complicated to produce their
approximations with their costs meeting the requirements of
VM. This is because the weak cases for LRU mostly come
from its minimal use of history access information, which mo-
tivates other researchers to take a different approach by adding
more bookkeeping and access statistic analysis work to make
their algorithms more intelligent in dealing with some access
patterns unfriendly to LRU.

1.2 The Contributions of this Paper

The objective of our work is to provide a VM page replace-
ment algorithm to take the place of CLOCK, which meets both
the performance demand from application users and the low
overhead requirement from system designers.

Inspired by the I/O buffer cache replacement algorithm,
LIRS [13], we design an improved CLOCK replacement,
called CLOCK-Pro. LIRS, originally invented to serve I/O
buffer cache, has a cost unacceptable to VM management,
even though it holds apparent performance advantages rela-
tive to LRU. We integrate the principle of LIRS and the way
in which CLOCK works into CLOCK-Pro. By proposing
CLOCK-Pro, we make several contributions: (1) CLOCK-
Pro works in a similar fashion as CLOCK and its cost is eas-
ily affordable in VM management. (2) CLOCK-Pro brings
all the much-needed performance advantages from LIRS
into CLOCK. (3) Without any pre-determined parameters,
CLOCK-Pro adapts to the changing access patterns to serve
a broad spectrum of workloads. (4) Through extensive sim-
ulations on real-life I/O and VM traces, we have shown the
significant page fault reductions of CLOCK-Pro over CLOCK
as well as other representative VM replacement algorithms.
(5) Measurement results from an implementation of CLOCK-
Pro in a Linux kernel show that the execution times of some
commonly used programs can be reduced by up to 47%.

2 Background

2.1 Limitations of LRU/CLOCK

LRU is designed on an assumption that a page would be re-
accessed soon after it was accessed. It manages a data struc-
ture conventionally called LRU stack, in which the Most Re-
cently Used (MRU) page is at the stack top and the Least Re-
cently Used (LRU) page is at the stack bottom. The ordering
of other in-between pages in the stack strictly follows their
last access times. To maintain the stack, the LRU algorithm
has to move an accessed page from its current position in the
stack (if it is in the stack) to the stack top. The LRU page
at the stack bottom is the one to be replaced if there is a page
fault and no free spaces are available. In CLOCK, the memory
spaces holding the pages can be regarded as a circular buffer
and the replacement algorithm cycles through the pages in the

circular buffer, like the hand of a clock. Each page is associ-
ated with a bit, called reference bit, which is set by hardware
whenever the page is accessed. When it is necessary to re-
place a page to service a page fault, the page pointed to by
the hand is checked. If its reference bit is unset, the page is
replaced. Otherwise, the algorithm resets its reference bit and
keeps moving the hand to the next page. Research and expe-
rience have shown that CLOCK is a close approximation of
LRU, and its performance characteristics are very similar to
those of LRU. So all the performance disadvantages discussed
below about LRU are also applied to CLOCK.

The LRU assumption is valid for a significant portion of
workloads, and LRU works well for these workloads, which
are called LRU-friendly workloads. The distance of a page
in the LRU stack from the stack top to its current position is
called recency, which is the number of other distinct pages
accessed after the last reference to the page. Assuming an
unlimitedly long LRU stack, the distance of a page in the
stack away from the top when it is accessed is called its reuse
distance, which is equivalent to the number of other distinct
pages accessed between its last access and its current access.
LRU-friendly workloads have two distinct characteristics: (1)
There are much more references with small reuse distances
than those with large reuse distances; (2) Most references
have reuse distances smaller than the available memory size
in terms of the number of pages. The locality exhibited in this
type of workloads is regarded as strong, which ensures a high
hit ratio and a steady increase of hit ratio with the increase of
memory size.

However, there are indeed cases in which this assumption
does not hold, where LRU performance could be unacceptably
degraded. One example access pattern is memory scan, which
consists of a sequence of one-time page accesses. These pages
actually have infinitely large reuse distance and cause no hits.
More seriously, in LRU, the scan could flush all the previously
active pages out of memory.

As an example, in Linux the memory management for
process-mapped program memory and file I/O buffer cache is
unified, so the memory can be flexibly allocated between them
according to their respective needs. The allocation balancing
between program memory and buffer cache poses a big prob-
lem because of the unification. This problem is discussed in
[22]. We know that there are a large amount of data in file sys-
tems, and the total number of accesses to the file cache could
also be very large. However, the access frequency to each
individual page of file data is usually low. In a burst of file ac-
cesses, most of the memory could serve as a file cache. Mean-
while, the process pages are evicted to make space for the ac-
tually infrequently accessed file pages, even though they are
frequently accessed. An example scenario on this is that right
after one extracts a large tarball, he/she could sense that the
computer becomes slower because the previous active work-
ing set is replaced and has to be faulted in. To address this
problem in a simple way, current Linux versions have to in-



troduce some “magic parameters” to enforce the buffer cache
allocation to be in the range of 1% to 15% of memory size by
default [22]. However, this approach does not fundamentally
solve the problem, because the major reason causing the allo-
cation unbalancing between process memory and buffer cache
is the ineffectiveness of the replacement policy in dealing with
infrequently accessed pages in buffer caches.

Another representative access pattern defeating LRU is
loop, where a set of pages are accessed cyclically. Loop and
loop-like access patterns dominate the memory access behav-
iors of many programs, particularly in scientific computation
applications. If the pages involved in a loop cannot completely
fit in the memory, there are repeated page faults and no hits at
all. The most cited example for the loop problem is that even
if one has a memory of 100 pages to hold 101 pages of data,
the hit ratio would be ZERO for a looping over this data set
[9, 24]!

2.2 LIRS and its Performance Advantages

A recent breakthrough in replacement algorithm designs,
called LIRS (Low Inter-reference Recency Set) replacement
[13], removes all the aforementioned LRU performance limi-
tations while still maintaining a low cost close to LRU. It can
not only fix the scan and loop problems, but also can accu-
rately differentiate the pages based on their locality strengths
quantified by reuse distance.

A key and unique approach in handling history access in-
formation in LIRS is that it uses reuse distance rather than
recency in LRU for its replacement decision. In LIRS, a page
with a large reuse distance will be replaced even if it has a
small recency. For instance, when a one-time-used page is re-
cently accessed in a memory scan, LIRS will replace it quickly
because its reuse distance is infinite, even though its recency
is very small. In contrast, LRU lacks the insights of LIRS:
all accessed pages are indiscriminately cached until either of
two cases happens to them: (1) they are re-accessed when
they are in the stack, and (2) they are replaced at the bot-
tom of the stack. LRU does not take account of which of the
two cases has a higher probability. For infrequently accessed
pages, which are highly possible to be replaced at the stack
bottom without being re-accessed in the stack, holding them
in memory (as well as in stack) certainly results in a waste of
the memory resources. This explains the LRU misbehavior
with the access patterns of weak locality.

3 Related Work

There have been a large number of new replacement algo-
rithms proposed over the decades, especially in the last fif-
teen years. Almost all of them are proposed to target the per-
formance problems of LRU. In general, there are three ap-
proaches taken in these algorithms. (1) Requiring applications

to explicitly provide future access hints, such as application-
controlled file caching [3], and application-informed prefetch-
ing and caching [20]; (2) Explicitly detecting the access pat-
terns failing LRU and adaptively switching to other effective
replacements, such as SEQ [9], EELRU [24], and UBM [14];
(3) Tracing and utilizing deeper history access information
such as FBR [21], LRFU [15], LRU-2 [18], 2Q [12], MQ
[29], LIRS [13], and ARC [16]. More elaborate description
and analysis on the algorithms can be found in [13]. The
algorithms taking the first two approaches usually place too
many constraints on the applications to be applicable in the
VM management of a general-purpose OS. For example, SEQ
is designed to work in VM management, and it only does its
job when there is a page fault. However, its performance de-
pends on an effective detection of long sequential address ref-
erence patterns, where LRU behaves poorly. Thus, SEQ loses
generality because of the mechanism it uses. For instance, it is
hard for SEQ to detect loop accesses over linked lists. Among
the algorithms taking the third approach, FBR, LRU-2, LRFU
and MQ are expensive compared with LRU. The performance
of 2Q has been shown to be very sensitive to its parameters
and could be much worse than LRU [13]. LIRS uses reuse
distance, which has been used to characterize and to improve
data access locality in programs (see e.g. [6]). LIRS and ARC
are the two most promising candidate algorithms that have a
potential leading to low-cost replacement policies applicable
in VM, because they use data structure and operations similar
to LRU and their cost is close to LRU.

ARC maintains two variably-sized lists holding history ac-
cess information of referenced pages. Their combined size is
two times of the number of pages in the memory. So ARC
not only records the information of cached pages, but also
keeps track of the same number of replaced pages. The first
list contains pages that have been touched only once recently
(cold pages) and the second list contains pages that have been
touched at least twice recently (hot pages). The cache spaces
allocated to the pages in these two lists are adaptively changed,
depending on in which list the recent misses happen. More
cache spaces will serve cold pages if there are more misses in
the first list. Similarly, more cache spaces will serve hot pages
if there are more misses in the second list. However, though
ARC allocates memory to hot/cold pages adaptively accord-
ing to the ratio of cold/hot page accesses and excludes tunable
parameters, the locality of pages in the two lists, which are
supposed to hold cold and hot pages respectively, can not di-
rectly and consistently be compared. So the hot pages in the
second list could have a weaker locality in terms of reuse dis-
tance than the cold pages in the first list. For example, a page
that is regularly accessed with a reuse distance a little bit more
than the memory size can have no hits at all in ARC, while
a page in the second list can stay in memory without any ac-
cesses, since it has been accepted into the list. This does not
happen in LIRS, because any pages supposed to be hot or cold
are placed in the same list and compared in a consistent fash-



ion. There is one pre-determined parameter in the LIRS al-
gorithm on the amount of memory allocation for cold pages.
In CLOCK-Pro, the parameter is removed and the allocation
becomes fully adaptive to the current access patterns.

Compared with the research on the general replacement al-
gorithms targeting LRU, the work specific to the VM replace-
ments and targeting CLOCK is much less and is inadequate.
While Second Chance (SC) [28], being the simplest variant of
CLOCK algorithm, utilizes only one reference bit to indicate
recency, other CLOCK variants introduce a finer distinction
between page access history. In a generalized CLOCK version
called GCLOCK [25, 17], a counter is associated with each
page rather than a single bit. Its counter will be incremented
if a page is hit. The cycling clock hand sweeps over the
pages decrementing their counters until a page whose counter
is zero is found for replacement. In Linux and FreeBSD, a
similar mechanism called page aging is used. The counter
is called age in Linux or act count in FreeBSD. When scan-
ning through memory for pages to replace, the page age is
increased by a constant if its reference bit is set. Otherwise
its age is decreased by a constant. One problem for this kind
of design is that they cannot consistently improve LRU per-
formance. The parameters for setting the maximum value
of counters or adjusting ages are mostly empirically decided.
Another problem is that they consume too many CPU cycles
and adjust to changes of access patterns slowly, as evidenced
in Linux kernel 2.0. Recently, an approximation version of
ARC, called CAR [2], has been proposed, which has a cost
close to CLOCK. Their simulation tests on the I/O traces indi-
cate that CAR has a performance similar to ARC. The results
of our experiments on I/O and VM traces show that CLOCK-
Pro has a better performance than CAR.

In the design of VM replacements it is difficult to obtain
much improvement in LRU due to its stringent cost constraint,
yet this problem remains a demanding challenge in the OS
development.

4 Description of CLOCK-Pro

4.1 Main Idea

CLOCK-Pro takes the same principle as that of LIRS – it uses
the reuse distance (called IRR in LIRS) rather than recency in
its replacement decision. When a page is accessed, the reuse
distance is the period of time in terms of the number of other
distinct pages accessed since its last access. Although there
is a reuse distance between any two consecutive references
to a page, only the most current distance is relevant in the
replacement decision. We use the reuse distance of a page at
the time of its access to categorize it either as a cold page if
it has a large reuse distance, or as a hot page if it has a small
reuse distance. Then we mark its status as being cold or hot.
We place all the accessed pages, either hot or cold, into one

single list � in the order of their accesses � . In the list, the
pages with small recencies are at the list head, and the pages
with large recencies are at the list tail.

To give the cold pages a chance to compete with the hot
pages and to ensure their cold/hot statuses accurately reflect
their current access behavior, we grant a cold page a test period
once it is accepted into the list. Then, if it is re-accessed during
its test period, the cold page turns into a hot page. If the cold
page passes the test period without a re-access, it will leave the
list. Note that the cold page in its test period can be replaced
out of memory, however, its page metadata remains in the list
for the test purpose until the end of the test period or being
re-accessed. When it is necessary to generate a free space, we
replace a resident cold page.

The key question here is how to set the time of the test pe-
riod. When a cold page is in the list and there is still at least
one hot page after it (i.e., with a larger recency), it should turn
into a hot page if it is accessed, because it has a new reuse
distance smaller than the hot page(s) after it. Accordingly, the
hot page with the largest recency should turn into a cold page.
So the test period should be set as the largest recency of the
hot pages. If we make sure that the hot page with the largest
recency is always at the list tail, and all the cold pages that
pass this hot page terminate their test periods, then the test pe-
riod of a cold page is equal to the time before it passes the tail
of the list. So all the non-resident cold pages can be removed
from the list right after they reach the tail of the list. In prac-
tice, we could shorten the test period and limit the number of
cold pages in the test period to reduce space cost. By imple-
menting this testing mechanism, we make sure that “cold/hot”
are defined based on relativity and by constant comparison in
one clock, not on a fixed threshold that are used to separate
the pages into two lists. This makes CLOCK-Pro distinctive
from prior work including 2Q and CAR, which attempt to use
a constant threshold to distinguish the two types of pages, and
to treat them differently in their respective lists (2Q has two
queues, and CAR has two clocks), which unfortunately causes
these algorithms to share some of LRU’s performance weak-
ness.

4.2 Data Structure

Let us first assume that the memory allocations for the hot and
cold pages, ��� and ��	 , respectively, are fixed, where �
���
� 	 is the total memory size � ( ���� � ��� 	 ). The number
of the hot pages is also � � , so all the hot pages are always
cached. If a hot page is going to be replaced, it must first
change into a cold page. Apart from the hot pages, all the other
accessed pages are categorized as cold pages. Among the cold
pages, ��	 pages are cached, another at most � non-resident

�
Actually it is the metadata of a page that is placed in the list.�
Actually we can only maintain an approximate access order, because we

cannot update the list with a hit access in a VM replacement algorithm, thus
losing the exact access orderings between page faults.



Figure 1: There are three types of pages in CLOCK-Pro, hot pages marked
with “H”, cold pages marked with “C” (shadowed circles for resident cold
pages, non-shadowed circles for non-resident cold pages). Around the clock,
there are three hands: HAND ����� pointing to the list tail (i.e. the last hot page)
and used to search for a hot page to turn into a cold page, HAND ����� � pointing
to the last resident cold page and used to search for a cold page to replace, and
HAND ����� � pointing to the last cold page in the test period, terminating test
periods of cold pages, and removing non-resident cold pages passing the test
period out of the list. The “ ! ” marks represent the reference bits of 1.

cold pages only have their history access information cached.
So totally there are at most "#� metadata entries for keeping
track of page access history in the list. As in CLOCK, all the
page entries are organized as a circular linked list, shown in
Figure 1. For each page, there is a cold/hot status associated
with it. For each cold page, there is a flag indicating if the
page is in the test period.

In CLOCK-Pro, there are three hands. The HAND �%$�&
points to the hot page with the largest recency. The position
of this hand actually serves as a threshold of being a hot page.
Any hot pages swept by the hand turn into cold ones. For the
convenience of the presentation, we call the page pointed to
by HAND �%$'& as the tail of the list, and the page immediately
after the tail page in the clockwise direction as the head of the
list. HAND 	($')+* points to the last resident cold page (i.e., the
furthest one to the list head). Because we always select this
cold page for replacement, this is the position where we start
to look for a victim page, equivalent to the hand in CLOCK.
HAND &-,'. & points to the last cold page in the test period. This
hand is used to terminate the test period of cold pages. The
non-resident cold pages swept over by this hand will leave the
circular list. All the hands move in the clockwise direction.

4.3 Operations on Searching Victim Pages
Just as in CLOCK, there are no operations in CLOCK-Pro for
page hits, only the reference bits of the accessed pages are

set by hardware. Before we see how a victim page is gen-
erated, let us examine how the three hands move around the
clock, because the victim page is searched by coordinating the
movements of the hands.

HAND 	($�)+* is used to search for a resident cold page for
replacement. If the reference bit of the cold page currently
pointed to by HAND 	($')/* is unset, we replace the cold page
for a free space. The replaced cold page will remain in the list
as a non-resident cold page until it runs out of its test period,
if it is in its test period. If not, we move it out of the clock.
However, if its bit is set and it is in its test period, we turn the
cold page into a hot page, and ask HAND �%$�& for its actions,
because an access during the test period indicates a competi-
tively small reuse distance. If its bit is set but it is not in its
test period, there are no status change as well as HAND �0$�&
actions. In both of the cases, its reference bit is reset, and we
move it to the list head. The hand will keep moving until it
encounters a cold page eligible for replacement, and stop at
the next resident cold page.

As mentioned above, what triggers the movement of
HAND �%$'& is that a cold page is found to have been accessed
in its test period and thus turns into a hot page, which maybe
accordingly turns the hot page with the largest recency into a
cold page. If the reference bit of the hot page pointed to by
HAND �%$'& is unset, we can simply change its status and then
move the hand forward. However, if the bit is set, which indi-
cates the page has been re-accessed, we spare this page, reset
its reference bit and keep it as a hot page. This is because the
actual access time of the hot page could be earlier than the cold
page. Then we move the hand forward and do the same on the
hot pages with their bits set until the hand encounters a hot
page with a reference bit of zero. Then the hot page turns into
a cold page. Note that moving HAND �%$'& forward is equiva-
lent to leaving the page it moves by at the list head. Whenever
the hand encounters a cold page, it will terminate the page’s
test period. The hand will also remove the cold page from the
clock if it is non-resident (the most probable case). It actually
does the work on the cold page on behalf of hand HAND &-,'.(& .
Finally the hand stops at a hot page.

We keep track of the number of non-resident cold pages.
Once the number exceeds � , the memory size in the number
of pages, we terminate the test period of the cold page pointed
to by HAND &-,'. & . We also remove it from the clock if it is a
non-resident page. Because the cold page has used up its test
period without a re-access and has no chance to turn into a hot
page with its next access. HAND &-,'. & then moves forward and
stops at the next cold page.

Now let us summarize how these hands coordinate their op-
erations on the clock to resolve a page fault. When there is a
page fault, the faulted page must be a cold page. We first run
HAND 	($')/* for a free space. If the faulted cold page is not in
the list, its reuse distance is highly likely to be larger than the
recency of hot pages 1 . So the page is still categorized as a2

We cannot guarantee that it is a larger one because there are no opera-



cold page and is placed at the list head. The page also initiates
its test period. If the number of cold pages is larger than the
threshold ( ��	3��� ), we run HAND &-,'.(& . If the cold page is in
the list 4 , the faulted page turns into a hot page and is placed
at the head of the list. We run HAND �%$�& to turn a hot page
with a large recency into a cold page.

4.4 Making CLOCK-Pro Adaptive

Until now, we have assumed that the memory allocations for
the hot and cold pages are fixed. In LIRS, there is a pre-
determined parameter, denoted as 56�07/89. , to measure the per-
centage of memory that are used by cold pages. As it is shown
in [13], 5:�07/89. actually affects how LIRS behaves differently
from LRU. When 5:�07+8�. approaches 100%, LIRS’s replace-
ment behavior, as well as its hit ratios, are close to those of
LRU. Although the evaluation of LIRS algorithm indicates
that its performance is not sensitive to 56�;7/8�. variations within
a large range between 1% and 30%, it also shows that the hit
ratios of LIRS could be moderately lower than LRU for LRU-
friendly workloads (i.e. with strong locality) and increasing
5 �07+8�. can eliminate the performance gap.

In CLOCK-Pro, resident cold pages are actually managed
in the same way as in CLOCK. HAND 	($')+* behaves the same
as what the clock hand in CLOCK does: sweeping across the
pages while sparing the page with a reference bit of 1 and
replacing the page with a reference bit of 0. So increasing �<	 ,
the size of the allocation for cold pages, makes CLOCK-Pro
behave more like CLOCK.

Let us see the performance implication of changing mem-
ory allocation in CLOCK-Pro. To overcome the CLOCK per-
formance disadvantages with weak access patterns such as
scan and loop, a small �
	 value means a quick eviction of cold
pages just faulted in and the strong protection of hot pages
from the interference of cold pages. However, for a strong
locality access stream, almost all the accessed pages have rel-
atively small reuse distance. But, some of the pages have to
be categorized as cold pages. With a small � 	 , a cold page
would have to be replaced out of memory soon after its being
loaded in. Due to its small reuse distance, the page is probably
faulted in the memory again soon after its eviction and treated
as a hot page because it is in its test period this time. This ac-
tually generates unnecessary misses for the pages with small
reuse distances. Increasing �
	 would allow these pages to be
cached for a longer period of time and make it more possible
for them to be re-accessed and to turn into hot pages without
being replaced. Thus, they can save additional page faults.

For a given reuse distance of an accessed cold page, �<	
decides the probability of a page being re-accessed before its

tions on hits in CLOCK-Pro and we limit the number of cold pages in the
list. But our experiment results show this approximation minimally affects
the performance of CLOCK-Pro.=

The cold page must be in its test period. Otherwise, it must have been
removed from the list.

being replaced from the memory. For a cold page with its
reuse distance larger than its test period, retaining the page in
memory with a large ��	 is a waste of buffer spaces. On the
other hand, for a page with a small reuse distance, retaining the
page in memory for a longer period of time with a large �>	
would save an additional page fault. In the adaptive CLOCK-
Pro, we allow ��	 to dynamically adjust to the current reuse
distance distribution. If a cold page is accessed during its test
period, we increment � 	 by 1. If a cold page passes its test
period without a re-access, we decrement � 	 by 1. Note the
aforementioned cold pages include resident and non-resident
cold pages. Once the � 	 value is changed, the clock hands of
CLOCK-Pro will realize the memory allocation by temporally
adjusting the moving speeds of HAND �%$�& and HAND 	($')+* .

With this adaptation, CLOCK-Pro could take both LRU ad-
vantages with strong locality and LIRS advantages with weak
locality.

5 Performance Evaluation

We use both trace-driven simulations and prototype imple-
mentation to evaluate our CLOCK-Pro and to demonstrate its
performance advantages. To allow us to extensively compare
CLOCK-Pro with other algorithms aiming at improving LRU,
including CLOCK, LIRS, CAR, and OPT, we built simulators
running on the various types of representative workloads pre-
viously adopted for replacement algorithm studies. OPT is an
optimal, but offline, unimplementable replacement algorithm
[1]. We also implemented a CLOCK-Pro prototype in a Linux
kernel to evaluate its performance as well as its overhead in a
real system.

5.1 Trace-Driven Simulation Evaluation

Our simulation experiments are conducted in three steps with
different kinds of workload traces. Because LIRS is origi-
nally proposed as an I/O buffer cache replacement algorithm,
in the first step, we test the replacement algorithms on the I/O
traces to see how well CLOCK-Pro can retain the LIRS per-
formance merits, as well as its performance with typical I/O
access patterns. In the second step, we test the algorithms on
the VM traces of application program executions. Integrated
VM management on file cache and program memory, as is im-
plemented in Linux, is always desired. Because of the concern
for mistreatment of file data and process pages as mentioned
in Section 2.1, we test the algorithms on the aggregated VM
and file I/O traces to see how these algorithms respond to the
integration in the third step. We do not include the results of
LRU in the presentation, because they are almost the same as
those of CLOCK.
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Figure 2: Hit ratios of the replacement algorithms OPT, CLOCK-Pro, LIRS, CAR, and CLOCK on workloads ?A@CB�D:EGF�H and DJIG@CKLBLM .

5.1.1 Step 1: Simulation on I/O Buffer Caches

The file I/O traces used in this section are from [13] used
for the LIRS evaluation. In their performance evaluation, the
traces are categorized into four groups based on their access
patterns, namely, loop, probabilistic, temporally-clustered and
mixed patterns. Here we select one representative trace from
each of the groups for the replacement evaluation, and briefly
describe them here.

1. glimpse is a text information retrieval utility trace. The
total size of text files used as input is roughly 50 MB. The
trace is a member of the loop pattern group.

2. cpp is a GNU C compiler pre-processor trace. The total
size of C source programs used as input is roughly 11
MB. The trace is a member of the probabilistic pattern
group.

3. sprite is from the Sprite network file system, which con-
tains requests to a file server from client workstations
for a two-day period. The trace is a member of the
temporally-clustered pattern group.

4. multi2 is obtained by executing three workloads, cs, cpp,
and postgres, together. The trace is a member of the
mixed pattern group.

These are small-scale traces with clear access patterns. We
use them to investigate the implications of various access pat-
terns on the algorithms. The hit ratios of NPO-Q��SRUT0V and �XWUO-Y(Q("
are shown in Figure 2. To help readers clearly see the hit ratio
difference for Z(RGR and T�R\[%Q Y'V , we list their hit ratios in Tables
1 and 2, respectively. For LIRS, the memory allocation to HIR
pages ( 5]�07/89. ) is set as 1% of the memory size, the same value
as it is used in [13]. There are several observations we can
make on the results.

First, even though CLOCK-Pro does not responsively deal
with hit accesses in order to meet the cost requirement of VM
management, the hit ratios of CLOCK-Pro and LIRS are very
close, which shows that CLOCK-Pro effectively retains the

blocks OPT CLOCK-Pro LIRS CAR CLOCK
20 26.4 23.9 24.2 17.6 0.6
35 46.5 41.2 42.4 26.1 4.2
50 62.8 53.1 55.0 37.5 18.6
80 79.1 71.4 72.8 70.1 60.4

100 82.5 76.2 77.6 77.0 72.6
300 86.5 85.1 85.0 85.6 83.5
500 86.5 85.9 85.9 85.8 84.7
700 86.5 86.3 86.3 86.3 85.4
900 86.5 86.4 86.4 86.4 85.7

Table 1: Hit ratios (%) of the replacement algorithms OPT, CLOCK-Pro,
LIRS, CAR, and CLOCK on workload ^_E`E .

blocks OPT CLOCK-Pro LIRS CAR CLOCK
100 50.8 24.8 25.1 26.1 22.8
200 68.9 45.2 44.7 43.0 43.5
400 84.6 70.1 69.5 70.5 70.9
600 89.9 82.4 80.9 82.1 83.3
800 92.2 87.6 85.6 87.3 88.1
1000 93.2 89.7 87.6 89.6 90.4

Table 2: Hit ratios (%) of the replacement algorithms OPT, CLOCK-Pro,
LIRS, CAR, and CLOCK on workload F-Eba�B�K_H .

performance advantages of LIRS. For workloads NPO-Q �cRdT;V and
�eWdO_Y(Q'" , which contain many loop accesses, LIRS with a small
5]�07/89. is most effective. The hit ratios of CLOCK-pro are a
little lower than LIRS. However, for the LRU-friendly work-
load, T�R\[%Q Y'V , which consists of strong locality accesses, the
performance of LIRS could be lower than CLOCK (see Ta-
ble 2). With its memory allocation adaptation, CLOCK-Pro
improves the LIRS performance.

Figure 3 shows the percentage of the memory allocated to
cold pages during the execution courses of �eWdO_Y(Q'" and T�Rf[%Q�Y'V
for a memory size of 600 pages. We can see that for T�Rf[%Q�Y'V ,
the allocations for cold pages are much larger than 1% of the
memory used in LIRS, and the allocation fluctuates over the
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Figure 3: Adaptively changing the percentage of memory allocated to cold blocks in workloads DgIG@hKLB�M and FiEba�B�K_H .

time adaptively to the changing access patterns. It sounds
paradoxical that we need to increase the cold page allocation
when there are many hot page accesses in the strong locality
workload. Actually only the real cold pages with large reuse
distances should be managed in a small cold allocation for
their quick replacements. The so-called “cold” pages could
actually be hot pages in strong locality workloads because the
number of so-called “hot” pages are limited by their alloca-
tion. So quickly replacing these pseudo-cold pages should
be avoided by increasing the cold page allocation. We can
see that the cold page allocations for �XWUO-Y(Q(" are lower than
T�Rf[%Q�Y'V , which is consistent with the fact that �XWUO-Y(Q'" access
patterns consist of many long loop accesses of weak locality.

Second, regarding the performance difference of the algo-
rithms, CLOCK-Pro and LIRS have much higher hit ratios
than CAR and CLOCK for NPO-Q��SRUT0V and �eWdO_Y(Q'" , and are close
to optimal. For strong locality accesses like T�R\[%Q Y'V , there is lit-
tle improvement either for CLOCK-Pro or CAR. This is why
CLOCK is popular, considering its extremely simple imple-
mentation and low cost.

Third, even with a built-in memory allocation adaption
mechanism, CAR cannot provide consistent improvements
over CLOCK, especially for weak locality accesses, on which
a fix is most needed for CLOCK. As we have analyzed, this
is because CAR, as well as ARC, lacks a consistent locality
strength comparison mechanism.

5.1.2 Step 2: Simulation on Memory for Program Exe-
cutions

In this section, we use the traces of memory accesses of
program executions to evaluate the performance of the algo-
rithms. All the traces used here are also used in [10] and many
of them are also used in [9, 24]. However, we do not include
the performance results of SEQ and EELRU in this paper be-
cause of their generality or cost concerns for VM manage-
ment. In some situations, EELRU needs to update its statis-
tics for every single memory reference, having the same over-

head problem as LRU [24]. Interested readers are referred
to the respective papers for detailed performance descriptions
of SEQ and EELRU. By comparing the hit ratio curves pre-
sented in those papers with the curves provided in this pa-
per about CLOCK-Pro (these results are comparable), read-
ers will reach the conclusion that CLOCK-Pro provides better
or equally good performance compared to SEQ and EELRU.
Also because of overhead concern, we do not include the LRU
and LIRS performance. Actually LRU has its hit ratio curves
almost the same as those of CLOCK in our experiments.

Table 3 summarizes all the program traces used in this pa-
per. The detailed program descriptions, space-time memory
access graphs, and trace collection methodology, are described
in [10, 9]. These traces cover a large range of various ac-
cess patterns. After observing their memory access graphs
drawn from the collected traces, the authors of paper [9] cat-
egorized programs Z`j%[bkPO , �XlmlmnoT;Q � , and �eWU[�RUp\Q as hav-
ing “no clearly visible patterns” with all accesses temporarily
clustered together, categorized programs qrO_Q(stsmkt[bu , RfV0[bO , and
T;vwQ � as having “patterns at a small scale”, and categorized
the rest of programs as having “clearly-exploitable, large-scale
reference patterns”. If we examine the program access behav-
iors in terms of reuse distance, the programs in the first cat-
egory are the strong locality workloads. Those in the second
category are moderate locality workloads. And the remaining
programs in the third category are weak locality workloads.
Figure 4 shows the number of page faults per million of in-
structions executed for each of the programs, denoted as page
fault ratio, as the memory increases up to the its maximum
memory demand. We exclude cold page faults which occur
on their first time accesses. The algorithms considered here
are CLOCK, CLOCK-Pro, CAR and OPT.

The simulation results clearly show that CLOCK-Pro sig-
nificantly outperforms CLOCK for the programs with weak
locality, including programs k0RGRUO_W , NPWfxyRUO-j%Y , Q_z;RfV;N , T0j%[ ,
Y([%{mNPY�T0O , and vJkm|PVb} . For NtWUxyRfOij%Y and T0j%[ , which have very
large loop accesses, the page fault ratios of CLOCK-Pro are
almost equal to those of OPT. The improvements of CAR over
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Figure 4: The page faults of CLOCK, CAR, CLOCK-Pro and OPT.



Program Description Size (in Millions of Instructions) Maximum Memory Demand (KB)
applu Solve 5 coupled parabolic/elliptic PDE 1,068 14,524

blizzard Binary rewriting tool for software DSM 2,122 15,632
coral Deductive database evaluating query 4,327 20,284

gnuplot PostScript graph generation 4,940 62,516
ijpeg Image conversion into IJPEG format 42,951 8,260

m88ksim Microprocessor cycle-level simulator 10,020 19,352
murphi Protocol verifier 1,019 9,380

perl Interpreted scripting language 18,980 39,344
sor Successive over-relaxation on a matrix 5,838 70,930

swim Shallow water simulation 438 15,016
trygtsl Tridiagonal matrix calculation 377 69,688
wave5 plasma simulation 3,774 28,700

Table 3: A brief description of the programs used in Section 5.1.2.

CLOCK are far from being consistent and significant. In many
cases, it performs worse than CLOCK. The poorest perfor-
mance of CAR appears on traces NPWfxyRUO-j%Y and T0j%[ – it cannot
correct the LRU problems with loop accesses and its page fault
ratios are almost as high as those of CLOCK.

For programs with strong locality accesses, including ZAj%[%kPO ,
�XlmlmnoT;Q � and �eWU[�RUp\Q , there is little room for other replace-
ment algorithms to do a better job than CLOCK/LRU. Both
CLOCK-Pro and ARC retain the LRU performance advan-
tages for this type of programs, and CLOCK-Pro even does
a little bit better than CLOCK.

For the programs with moderate locality accesses, including
qrO_Q(stsmkt[bu , RUV;[bO and T;vwQ � , the results are mixed. Though we
see the improvements of CLOCK-Pro and CAR over CLOCK
in the most cases, there does exist a case in T;vwQ � with small
memory sizes where CLOCK performs better than CLOCK-
Pro and CAR. Though in most cases CLOCK-Pro performs
better than CAR, for RfV0[bO and TAvgQ�� with small memory sizes,
CAR performs moderately better. After examining the traces,
we found that the CLOCK-Pro performance variations are due
to the working set shifting in the workloads. If a workload
frequently shifts its working set, CLOCK-Pro has to actively
adjust the composition of the hot page set to reflect current
access patterns. When the memory size is small, the set of
cold resident pages is small, which causes a cold/hot status ex-
change to be more possibly associated with an additional page
fault. However, the existence of locality itself confines the
extent of working set changes. Otherwise, no caching policy
would fulfill its work. So we observed moderate performance
degradations for CLOCK-Pro only with small memory sizes.

To summarize, we found that CLOCK-Pro can effectively
remove the performance disadvantages of CLOCK in case
of weak locality accesses, and CLOCK-Pro retains its per-
formance advantages in case of strong locality accesses. It
exhibits apparently more impressive performance than CAR,
which was proposed with the same objectives as CLOCK-Pro.

5.1.3 Step 3: Simulation on Program Executions with In-
terference of File I/O

In an unified memory management system, file buffer cache
and process memory are managed with a common replace-
ment policy. As we have stated in Section 2.1, memory com-
petition from a large number of file data accesses in a shared
memory space could interfere with program execution. Be-
cause file data is far less frequently accessed than process VM,
a process should be more competitive in preventing its mem-
ory from being taken away to be used as file cache buffer.
However, recency-based replacement algorithms like CLOCK
allow these file pages to replace process memory even if they
are not frequently used, and to pollute the memory. To pro-
vide a preliminary study on the effect, we select an I/O trace
(WebSearch1) from a popular search engine [26] and use its
first 900 second accesses as a sample I/O accesses to co-occur
with the process memory accesses in a shared memory space.
This segment of I/O trace contains extremely weak locality –
among the total 1.12 millions page accesses, there are 1.00
million unique pages accessed. We first scale the I/O trace
onto the execution time of a program and then aggregate the
I/O trace with the program VM trace in the order of their ac-
cess times. We select a program with strong locality accesses,
�XlmlmnoT;Q � , and a program with weak locality accesses, T0j%[ ,
for the study.

Tables 4 and 5 show the number of page faults per mil-
lion of instructions (only the instructions for �~lGlmn\TAQ � or T;j%[
are counted) for �~lGltnoT;Q � and T0j%[ , respectively, with various
memory sizes. We are not interested in the performance of the
I/O accesses. There would be few page hits even for a very
large dedicated memory because there is little locality in their
accesses.

From the simulation results shown in the tables, we ob-
served that: (1) For the strong locality program, �XlmlmnoT;Q � ,
both CLOCK-Pro and CAR can effectively protect program
execution from I/O access interference, while CLOCK is not
able to reduce its page faults with increasingly large memory
sizes. (2) For the weak locality program, T0j%[ , only CLOCK-



Memory(KB) CLOCK-Pro CLOCK-Pro w/IO CAR CAR w/IO CLOCK CLOCK w/IO
2000 9.6 9.94 9.7 10.1 9.7 11.23
3600 8.2 8.83 8.3 9.0 8.3 11.12
5200 6.7 7.63 6.9 7.8 6.9 11.02
6800 5.3 6.47 5.5 6.8 5.5 10.91
8400 3.9 5.22 4.1 5.8 4.1 10.81

10000 2.4 3.92 2.8 4.9 2.8 10.71
11600 0.9 2.37 1.4 4.2 1.4 10.61
13200 0.2 0.75 0.7 3.9 0.7 10.51
14800 0.1 0.52 0.7 3.6 0.7 10.41
16400 0.1 0.32 0.6 3.3 0.7 10.31
18000 0.0 0.22 0.6 3.1 0.6 10.22
19360 0.0 0.19 0.0 2.9 0.0 10.14

Table 4: The performance (number of page faults in one million of instructions) of algorithms CLOCK-Pro, CAR and CLOCK on program D��r�r�bF'B�D with
and without the interference of I/O file data accesses.

Memory(KB) CLOCK-Pro CLOCK-Pro w/IO CAR CAR w/IO CLOCK CLOCK w/IO
4000 11.4 11.9 12.1 12.2 12.1 12.2

12000 10.0 10.7 12.1 12.2 12.1 12.2
20000 8.7 9.6 12.1 12.2 12.1 12.2
28000 7.3 8.6 12.1 12.2 12.1 12.2
36000 5.9 7.5 12.1 12.2 12.1 12.2
44000 4.6 6.5 12.1 12.2 12.1 12.2
52000 3.2 5.4 12.1 12.2 12.1 12.2
60000 1.9 4.4 12.1 12.2 12.1 12.2
68000 0.5 3.4 12.1 12.2 12.1 12.2
70600 0.0 3.0 0.0 12.2 0.0 12.2
74000 0.0 2.6 0.0 12.2 0.0 12.2

Table 5: The performance (number of page faults in one million of instructions) of algorithms CLOCK-Pro, CAR and CLOCK on program F��9a with and
without the interference of I/O file data accesses.

Pro can protect program execution from interference, though
its page faults are moderately increased compared with its
dedicated execution on the same size of memory. However,
CAR and CLOCK cannot reduce their faults even when the
memory size exceeds the program memory demand, and the
number of faults on the dedicated executions has been zero.

We did not see a devastating influence on the program ex-
ecutions with the co-existence of the intensive file data ac-
cesses. This is because even the weak accesses of �XlmlmnoT;Q �
are strong enough to stave off memory competition from file
accesses with their page re-accesses, and actually there are al-
most no page reuses in the file accesses. However, if there are
quiet periods during program active executions, such as wait-
ing for user interactions, the program working set would be
flushed by file accesses under recency-based replacement al-
gorithms. Reuse distance based algorithms such as CLOCK-
Pro will not have the problem, because file accesses have to
generate small reuse distances to qualify the file data for a
long-term memory stay, and to replace the program memory.

5.2 CLOCK-Pro Implementation and its Eval-
uation

The ultimate goal of a replacement algorithm is to reduce ap-
plication execution times in a real system. In the process of
translating the merits of an algorithm design to its practical
performance advantages, many system elements could affect
execution times, such as disk access scheduling, the gap be-
tween CPU and disk speeds, and the overhead of paging sys-
tem itself. To evaluate the performance of CLOCK-Pro in a
real system, we have implemented CLOCK-Pro in Linux ker-
nel 2.4.21, which is a well documented recent version [11, 23].

5.2.1 Implementation and Evaluation Environment

We use a Gateway PC, which has its CPU of Intel P4 1.7GHz,
its Western Digital WD400BB hard disk of 7200 RPM, and
its memory of 256M. It is installed with RedHat 9. We are
able to adjust the memory size available to the system and
user programs by preventing certain portion of memory from
being allocated.

In Kernel 2.4, process memory and file buffer are under an
unified management. Memory pages are placed either in an
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Figure 5: Measurements of the page faults of programs ?`�tIAE#@h�9K , ?A�rB�E , and ?A��E on the original system and the system adopting CLOCK-Pro.

 0

 5

 10

 15

 20

 25

 100  110  120  130  140  150  160  170  180  190

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Memory Size (MB)

GNUPLOT

Kernel 2.4.21
Modified Kernel w/CLOCK-Pro

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 80  90  100  110  120  130  140  150

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Memory Size (MB)

GZIP

Kernel 2.4.21
Modified kernel w/CLOCK-Pro

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100  110  120  130  140  150  160  170  180

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Memory Size (MB)

GAP

Kernel 2.4.21
Modified kernel w/CLOCK-Pro

Figure 6: Measurements of the execution times of programs ?A�mIAEG@h�9K , ?;�rB�E , and ?;��E on the original system and the system adopting CLOCK-Pro.

active list or in an inactive list. Each page is associated with a
reference bit. When a page in the inactive list is detected being
referenced, the page is promoted into the active list. Periodi-
cally the pages in the active list that are not recently accessed
are removed to refill the inactive list. The kernel attempts to
keep the ratio of the sizes of the active list and inactive list
as 2:1. An active list is organized as a clock, where its pages
are scanned for demoting into the inactive list. An inactive
list behaves much as a FIFO buffer for its page reclamations.
We notice that this kernel has adopted an idea similar to the
2Q replacement [12], by separating the pages into two lists to
protect hot pages from being flushed by cold pages. However,
a critical question still remains unanswered: how are the hot
pages correctly identified from the cold pages?

This issue has been addressed in CLOCK-Pro, where we
place all the pages in one single clock list, so that we can com-
pare their hotness in a consistent way. To facilitate an efficient
clock hand movement, each group of pages (with their statuses
of hot, cold, and/or on test) are linked separately according to
their orders in the clock list. The ratio of cold pages and hot
pages is adaptively adjusted. CLOCK-Pro needs to keep track
of a certain number of pages that have already been replaced
from memory. We use their positions in the respective backup
files to identify those pages, and maintain a hash table to effi-
ciently retrieve their metadata when they are faulted in.

We ran SPEC CPU2000 programs and some commonly
used tools to test the performance of CLOCK-Pro as well
as the original system. We observed consistent performance
trends while running programs with weak, moderate, or strong
locality on the original and modified systems. Here we present
the representative results for three programs, each from one of
the locality groups. Apart from Ntx�WtRfOij%Y , a widely used in-
teractive plotting program with its input data file of 16 MB,
which we have used in our simulation experiments, the other
two are from SPEC CPU2000 benchmark suite [27], namely,
NPsmQ�R and NPk0R . NysGQ�R is a popular data compression program,
showing a moderate locality. Nyk0R is a program implement-
ing a language and library designed mostly for computing in
groups, showing a strong locality. Both take the inputs from
their respective training data sets.

5.2.2 Experimental Measurements

Figures 5 and 6 show the number of page faults and the execu-
tion times of programs NPx�WtRfO-j%Y , NysGQ�R , and NPk0R on the original
system and the modified system adopting CLOCK-Pro. In the
simulation-based evaluation, only page faults can be obtained.
Here we also show the program execution times, which in-
clude page fault penalties and system paging overhead. It is
noted that we include cold page faults in the statistics, be-
cause they contribute to the execution times. We see that the



variations of the execution times with memory size generally
keep the same trends as those of page fault numbers, which
shows that page fault is the major factor to affect system per-
formance.

The measurements are consistent with the simulation results
on the program traces shown in Section 5.1.2. For the weak lo-
cality program NPx�WmRUO-j%Y , CLOCK-Pro significantly improves
its performance by reducing both its page fault numbers and its
execution times. The largest performance improvement comes
at around 160MB, the available memory size approaching the
memory demand, where the time for CLOCK-Pro (11.7 sec) is
reduced by 47% when compared with the time for the original
system (22.1 sec). There are some fluctuations in the execu-
tion time curves. This is caused by the block layout on the
disk. A page faulted in from a disk position sequential to the
previous access position has a much smaller access time than
that retrieved from a random position. So the penalty varies
from one page fault to another. For programs NysmQ/R and Nyk0R
with a moderate or strong locality, CLOCK-Pro provides a
performance as good as the original system.

Currently this is only a prototype implementation of
CLOCK-Pro, in which we have attempted to minimize the
changes in the existing data structures and functions, and make
the most of the existing infrastructure. Sometimes this means
a compromise in the CLOCK-Pro performance. For example,
the hardware MMU automatically sets the reference bits on
the pte (Page Table Entry) entries of a process page table to in-
dicate the references to the corresponding pages. In kernel 2.4,
the paging system works on the active or inactive lists, whose
entries are called page descriptors. Each descriptor is asso-
ciated with one physical page and one or more (if the page is
shared) pte entries in the process page tables. Each descriptor
contains a reference flag, whose value is transfered from its as-
sociated pte when the corresponding process table is scanned.
So there is an additional delay for the reference bits (flags) to
be seen by the paging system. In kernel 2.4, there is no infras-
tructure supporting the retrieval of pte through the descriptor.
So we have to accept this delay in the implementation. How-
ever, this tolerance is especially detrimental to CLOCK-Pro
because it relies on a fine-grained access timing distinction to
realize its advantages. We believe that further refinement and
tuning of the implementation will exploit more performance
potential of CLOCK-Pro.

5.2.3 The Overhead of CLOCK-Pro

Because we almost keep the paging infrastructure of the origi-
nal system intact except replacing the active/inactive lists with
an unified clock list and introducing a hash table, the addi-
tional overhead from CLOCK-Pro is limited to the clock list
and hash table operations.

We measure the average number of entries the clock hands
sweep over per page fault on the lists for the two systems. Ta-
ble 6 shows a sample of the measurements. The results show

Memory (MB) 110 140 170
Kernel 2.4.21 12.4 14.2 6.9
CLOCK-Pro 16.2 20.6 18.5

Table 6: Average number of entries the clock hands sweep over per page
fault in the original kernel and CLOCK-Pro with different memory sizes for
program ?`�tIAE#@h�9K .

that CLOCK-Pro has a number of hand movements compa-
rable to the original system except for large memory sizes,
where the original system significantly lowers its movement
number while CLOCK-Pro does not. In CLOCK-Pro, for ev-
ery referenced cold page seen by the moving HAND 	($�)+* , there
is at least one HAND �%$�& movement to exchange the page sta-
tuses. For a specific program with a stable locality, there are
fewer cold pages with a smaller memory, as well as less pos-
sibility for a cold page to be re-referenced before HAND 	($�)+*
moves to it. So HAND 	($�)+* can take a small number of move-
ments to reach a qualified replacement page, and the num-
ber of additional HAND �%$�& movements per page fault is also
small. When the memory size is close to the program memory
demand, the original system can take less hand movements
during its search on its inactive list, due to the increasing
chance of finding an unreferenced page. However, HAND 	($�)+*
would encounter more referenced cold pages, which causes
additional HAND �%$�& movements. We believe that this is not a
performance concern, because one page fault penalty is equiv-
alent to the time of tens of thousands of hand movements. We
also measured the bucket size of the hash table, which is only
4-5 on average. So we conclude that the additional overhead
is negligible compared with the original replacement imple-
mentation.

6 Conclusions
In this paper, we propose a new VM replacement policy,
CLOCK-Pro, which is intended to take the place of CLOCK
currently dominating various operating systems. We believe
it is a promising replacement policy in the modern OS de-
signs and implementations for the following reasons. (1) It
has a low cost that can be easily accepted by current systems.
Though it could move up to three pointers (hands) during one
victim page search, the total number of the hand movements is
comparable to that of CLOCK. Keeping track of the replaced
pages in CLOCK-Pro doubles the size of the linked list used
in CLOCK. However, considering the marginal memory con-
sumption of the list in CLOCK, the additional cost is negligi-
ble. (2) CLOCK-pro provides a systematic solution to address
the CLOCK problems. It is not just a quick and experience-
based fix to CLOCK in a specific situation, but is designed
based on a more accurate locality definition – reuse distance
and addresses the source of the LRU problem. (3) It is fully
adaptive to strong or weak access patterns without any pre-



determined parameters. (4) Extensive simulation experiments
and a prototype implementation show its significant and con-
sistent performance improvements.

Acknowledgments

We are grateful to our shepherd Yuanyuan Zhou and the
anonymous reviewers who helped further improve the quality
of this paper. We thank our colleague Bill Bynum for reading
the paper and his comments. The research is partially sup-
ported by the National Science Foundation under grants CNS-
0098055, CCF-0129883, and CNS-0405909.

References
[1] L. A. Belady “A Study of Replacement Algorithms for Virtual

Storage”, IBM System Journal, 1966.

[2] S. Bansal and D. Modha, “CAR: Clock with Adaptive Replace-
ment”, Proceedings of the 3nd USENIX Symposium on File and
Storage Technologies, March, 2004.

[3] P. Cao, E. W. Felten and K. Li, “Application-Controlled File
Caching Policies”, Proceedings of the USENIX Summer 1994
Technical Conference, 1994.

[4] J. Choi, S. Noh, S. Min, Y. Cho, “An Implementation Study of a
Detection-Based Adaptive Block Replacement Scheme”, Pro-
ceedings of the 1999 USENIX Annual Technical Conference,
1999, pp. 239-252.

[5] F. J. Corbato, “A Paging Experiment with the Multics System”,
MIT Project MAC Report MAC-M-384, May, 1968.

[6] C. Ding and Y. Zhong, “Predicting Whole-Program Locality
through Reuse-Distance Analysis”, Proceedings of ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation, June, 2003.

[7] M. B. Friedman, “Windows NT Page Replacement Policies”,
Proceedings of 25th International Computer Measurement
Group Conference, Dec, 1999, pp. 234-244.

[8] W. Effelsberg and T. Haerder, “Principles of Database Buffer
Management”, ACM Transaction on Database Systems, Dec,
1984, pp. 560-595.

[9] G. Glass and P. Cao, “Adaptive Page Replacement Based on
Memory Reference Behavior”, Proceedings of 1997 ACM SIG-
METRICS Conference, May 1997, pp. 115-126.

[10] G. Glass, “Adaptive Page Replacement”. Master’s Thesis, Uni-
versity of Wisconsin, 1997.

[11] M. Gorman, “Understanding the Linux Virtual Memory Man-
ager”, Prentice Hall, April, 2004.

[12] T. Johnson and D. Shasha, “2Q: A Low Overhead High Per-
formance Buffer Management Replacement Algorithm”, Pro-
ceedings of the 20th International Conference on VLDB, 1994,
pp. 439-450.

[13] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-
reference Recency Set Replacement Policy to Improve Buffer
Cache Performance”, In Proceeding of 2002 ACM SIGMET-
RICS, June 2002, pp. 31-42.

[14] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim
“A Low-Overhead, High-Performance Unified Buffer Man-
agement Scheme that Exploits Sequential and Looping Refer-
ences”, 4th Symposium on Operating System Design & Imple-
mentation, October 2000.

[15] D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho and C. Kim,
“On the Existence of a Spectrum of Policies that Subsumes the
Least Recently Used (LRU) and Least Frequently Used (LFU)
Policies”, Proceeding of 1999 ACM SIGMETRICS Conference,
May 1999.

[16] N. Megiddo and D. Modha, “ARC: a Self-tuning, Low Over-
head Replacement Cache”, Proceedings of the 2nd USENIX
Symposium on File and Storage Technologies, March, 2003.

[17] V. F. Nicola, A. Dan, and D. M. Dias, “Analysis of the General-
ized Clock Buffer Replacement Scheme for Database Transac-
tion Processing”, Proceeding of 1992 ACM SIGMETRICS Con-
ference, June 1992, pp. 35-46.

[18] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering”, Pro-
ceedings of the 1993 ACM SIGMOD Conference, 1993, pp.
297-306.

[19] V. Phalke and B. Gopinath, “An Inter-Reference gap Model for
Temporal Locality in Program Behavior”, Proceeding of 1995
ACM SIGMETRICS Conference, May 1995.

[20] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky and J.
Zelenka, “Informed Prefetching and Caching”, Proceedings of
the 15th Symposium on Operating System Principles, 1995, pp.
1-16.

[21] J. T. Robinson and N. V. Devarakonda, “Data Cache Man-
agement Using Frequency-Based Replacement”, Proceeding of
1990 ACM SIGMETRICS Conference, 1990.

[22] R. van Riel, “Towards an O(1) VM: Making Linux Virtual
Memory Management Scale Towards Large Amounts of Physi-
cal Memory”, Proceedings of the Linux Symposium, July 2003.

[23] R. van Riel, “Page Replacement in Linux 2.4 Memory Man-
agement”, Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, June, 2001.

[24] Y. Smaragdakis, S. Kaplan, and P. Wilson, “The EELRU adap-
tive replacement algorithm”, Performance Evaluation (Else-
vier), Vol. 53, No. 2, July 2003.

[25] A. J. Smith, “Sequentiality and Prefetching in Database Sys-
tems”, ACM Trans. on Database Systems, Vol. 3, No. 3, 1978,
pp. 223-247.

[26] Storage Performance Council,
http://www.storageperformance.org

[27] Standard Performance Evaluation Corporation,
SPEC CPU2000 V1.2, http://www.spec.org/cpu2000/

[28] A. S. Tanenbaum and A. S. Woodhull, Operating Systems, De-
sign and Implementation, Prentice Hall, 1997.

[29] Y. Zhou, Z. Chen and K. Li. “Second-Level Buffer Cache Man-
agement”, IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 15, No. 7, July, 2004.


