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Abstract 

In a path-breaking paper last year Pat and 
Betty O’Neil and Gerhard Weikum pro 
posed a self-tuning improvement to the Least 
Recently Used (LRU) buffer management 
algorithm[l5]. Their improvement is called 
LRU/k and advocates giving priority to buffer 
pages baaed on the kth most recent access. 
(The standard LRU algorithm is denoted 
LRU/l according to this terminology.) If Pl’s 
kth most recent access is more more recent 
than P2’s, then Pl will be replaced after P2. 
Intuitively, LRU/k for k > 1 is a good strategy, 
because it gives low priority to pages that have 
been scanned or to pages that belong to a big 
randomly accessed file (e.g., the account file 
in TPC/A). They found that LRU/S achieves 
most of the advantage of their method. 

The one problem of LRU/S is the processor 
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overhead to implement it. In contrast to LRU, 
each page access requires log N work to manip- 
ulate a priority queue where N is the number 
of pages in the buffer. 

Question: is there low overhead way (constant 
overhead per access as in LRU) to achieve sim- 
ilar page replacement performance to LRU/S? 

Answer: Yes. 

Our “Two Queue” algorithm (hereafter 2Q) 
has constant time overhead, performs as well 
as LRU/B, and requires no tuning. These re- 
sults hold for real (DB2 commercial, Swiss 
bank) traces as well as simulated ones. Baaed 
on these experiments, we estimate that 2Q 
will provide a few percent improvement over 
LRU without increasing the overhead by more 
than a constant additive factor. 

1 Background 

Fetching data from disk requires at least a factor of 
1000 more time than fetching data from a RAM buffer. 
For this reason, good use of the buffer can signifi- 
cantly improve the throughput and response time of 
any data-intensive system. 

Until the early 80’s, the least recently used buffer 
replacement algorithm (replace the page that was least 
recently accessed or used) was the algorithm of choice 
in nearly all cases. Indeed, the theoretical community 
blessed it by showing that LRU never replaces more 
than a factor B as many elements as an optimal clair- 
voyant algorithm (where B is the size of the buffer) 
[19]. l 

‘A companion rest& is that LRU on a buffer of size B wiii 
never page more than twice as much as a clairvoyant algorithm 
on a buffer of size B f 2. 
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Factors this large can heavily influence the be- 
havior of a database system, however. Furthermore, 
database systems usually have access patterns in which 
LRU performs poorly, as noted by Stonebraker [21], 
Sacco and Schkolnick [18], and Chou and Dewitt [5]. 
As a result, there has been considerable interest in 
buffer management algorithms that perform well in a 
database system. 

Much of the work in database buffer management 
has tuned the buffer management algorithm to the 
expected reference pattern. keiter proposed the Do- 
main Separation algorithm [16], which separates the 
database pages into different pools. Each pool haa an 
allocation of buffers and a special purpose buff& man- 
agement strategy. The allocation of buffers to pools 
requires careful tuning for high performance [7,22] and 
is a well known headache for system administrators of 
database management systems such as DB2. 

A related approach is to let the query optimizer tell 
the buffer manager the plan of the query to be pro- 
cessed, so that the buffer manager can allocate and 
manage its buffers accordingly. Algorithms include 
the Hot Set model [18], the DBMIN algorithm [5] and 
related extensions [9, 13, 231, and hint passing algo- 
rithms [4, 12; 1, 10, 31. 

In [15], O’Neil, O’Neil and Weikum point out that 
it is difficult to design a query plan-based buffering al- 
gorithm that works well in a multitasking system. Se- 
quences of transactions, concurrent transactions, and 
partions of the current transaction plan can overlap 
in complicated ways. In addition, buffer partition- 
ing schemes reduce the effective available space, say, 
when one buffer is not fully utilized. New data ac- 
cess methods must use existing buffer management al- 
gorithms (which might not fit well), or have a new 
special-purpose algorithm written. 

The O’Neil-Weikum paper provides an alternative 
to buffer partitioning. They suggested a more-or-less 
self-tuning full buffer variant of LRU with many of 
the same virtues as the hybrid schemes. The essence 
of their scheme is that a page should not obtain buffer 
privileges merely because it is accessed once. What’s 
important is whether it has been popular over time. 
The version they advocate - called LRU/P - replaces 
the page whose penultimate (second-to-last) access 
is least recent among all penultimate accesses. 

In order to be able to find that page quickly, they 
organize pointers to the buffer pages in a priority queue 
based on penultimate access time. The operations are 
deletemin to get the page to replace and a promotion 
scheme to move a page that has been accessed to a new 
place in the queue. Priority queue operations entail a 
time complexity that grows with the log of the size of 
the buffer. 

They examine (i) a synthetic workload with refer- 

ences to two pools of pages one for an index and one 
for data pages; (ii) a synthetic workload with random 
references based on a Zipfian distribution of reference 
frequencies obeying the 80-20 rule on 1000 possible 
pages; and (iii) a commercial on-line transaction pro- 
cessing workload derived from a Swiss bank. In every 
case, they show a significant improvement over LRU, 
sometimes as high as 40%. 

While LRU/S is self-tuning in comparison to other 
buffer management algorithms, such as Gclock [20, 8, 
141, two delicate tuning parameters remain. The first 
is the Correlated Reference Period. This is a time pe 
riod during which a page is retained in the buffer once 
it has been accessed. In this way close-in-time subse- 
quent accesses from the same process (so-called “cor- 
related” accesses) find the page in the buffer. At the 
same time, multiple accesses within a correlation pe- 
riod count only as a single access from the point of 
view of replacement priority. The net effect is that if 
a page is referenced several times within a correlated 
reference period and then isn’t accessed for a while, it 
will have low buffer priority. 

The second tuning parameter is the Retained Infor- 
mation Period which is the length of time a page’s ac- 
cess history is remembered after it is ejected from the 
buffer. The authors recommend 200 seconds though 
higher values don’t hurt. 

A related paper is the frequency-baaed replacement 
algorithm of Robinson and Devarakonda [17’J. These 
authors found that by not counting correlated refer- 
ences, they could produce a buffering algorithm based 
on reference frequency counting that has better per- 
formance than LRU. 

Our contribution in this work is to provide a buffer 
management algorithm that is a8 good as the LRU/S 
algorithm, but which is simpler, requires no tuning, 
and is much faster to execute (constant time rather 
than logarithmic). Both LRU/P and 2& are “scan 
resistant” and effectively handle index accesses (as 
our results section shows), so they can be used in 
a database system without requiring hints from the 
database manager or the query planner. 

We note that 2Q can be used in conjunction with 
algorithms that use hints from the query planner, how- 
ever, such as DBMIN. Work exploring combinations of 
DBMIN and LRU/k or DBMIN and 2Q are on our fu- 
ture research agenda. 

2 2Q Algorithm Description 

LRU works well because it tends to remove cold pages 
from the buffer to make space for the faulted page. If 
the faulting page is cold, however, then LRU may dis- 
place a warmer page to make space for the cold one. 
Furthermore, the cold page will reside in the buffer 
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for a considerable amount of time. LRU/2 improves 
on LRU by using a more aggressive exit rule, thereby 
quickly removing cold pages from the buffer. Impl+ 
menting the exit rule requires priority queue manipu- 
lations. 

The way8 in which 2Q and LRU/S improve upon 
LRU are in 8ome sense complem&ary. Instead of 
cleaning cold pages from the main buffer, 2Q admits 
only hot pages to the main buffer. As with LRU/B, 2Q 
tests pages for their second reference time. Simplify- 
ing slightly, on the first reference to a page, 2Q place8 
it in a special buffer, the Al queue, which is managed 
as a FIFO queue. If the page is m-referenced during 
it8 Al residency, then it is probably a hot page. So, if 
a page in Al is referenced, the page is moved to the 
Am queue, which is managed as an LRU queue. If a 
page is not referenced while on Al, it is probably a 
cold page, 80 2Q removes it from the buffer. 

Simplified 2Q 

if p is on the Am queue 
then 

put p on the front of the Am queue 
/* Am is managed as an LRU queue*/ 

else if p is on the Al queue 
then 

remove p from the Al queue 
put p on the front of the Am queue 

else /* first access we know about concerning p */ 
/* find a free page slot for p */ 
if there are free page slots available 
then 

put p in a free page slot 
else if Al’s size is above a (tunable) threshold 

delete from the tail of Al 
put p in the freed page slot 

else 
delete from the tail of Am 
put p in the freed page slot 

end if 
put p on the front of the Al queue 

end if 

When we experimented with the above algorithm, 
we found that tuning it was difficult. If the maximum 
size of Al is set too small, the test for hotness is too 
strong and the buffer will take too long to load in the 
hot data items. If the maximum size of Al is set too 
large, then Al steals page slot8 from Am, and perfor- 
mance degrades because the buffer for the hot pages 
is small. 

A solution to the tuning problem8 is to store point- 
ers to the page8 in Al instead of the page8 themselves. 
This solution lets Al remember enough past references 
to be responsive to moderately hot pages, yet preserve 

ail page slot8 for the Am queue. We found that this so- 
lution works well for traces generated from stationary 
distributions, but performs poorly for actual traces. 
In real access patterns, the locality of reference can 
change very quickly. A common occurrence is for a 
page to receive many references for a short period of 
time (i.e., correlated references), then no references for 
a long time. When a new page is accessed, it should be 
retained for a period of time to satisfy the correlated 
references, then ejected from the buffer if it does not 
receive any further references 

2Q, Full Version 

To resolve the above problems we partition Al into 
Alin and Alout. The most recent first. accesses will 
be in the memory (up to a certain threshold), but then 
older first accesses will be thrown out of memory but 
remembered in Alout. (Remembering a page address 
requires only a few bytes (fewer than lo).) Given a 
buffer size B, one divides it into Am, Alin (of max- 
imum size Kin and minimum size l), and Alout (of 
maximum size Kout). Fixing these parameter8 is per 
tentially a tuning question though the following val- 
ues work well: Kin should be 25% of the page slot8 
and Kout should hold identifier8 for as many pages as 
would fit on 50% of the buffer. 

This algorithm solves the correlated reference prob- 
lem by retaining newly referenced pages in Alin to sat- 
isfy repeated requests. If a page in Alin is accessed, it 
isn’t promoted to Am, because the second access may 
simply be a correlated reference. The Alout buffer, 
by contrast, is used to detect page8 that have high 
long-term access rates. 
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// If there is space, we give it to X. 
// If there is no space, we free a page slot to 
// make room for page X. 
reclaimfor(page X) 
begin 

if there are free page slots then 
put X into a free page slot 

else if( ]Alin] >Kin) 
page out the tail of Alin, call it Y 
add identifier of Y to the head of Alout 
if(]Alout] >Kout) 

remove identifier of Z from 
the tail of Alout 

end if 
put X into the reclaimed page slot 

else 
page out the tail of Am, call it Y 
// do not put it on Alout; it hasn’t been 
// accessed for a while 
put X into the reclaimed page slot 

end if 
end 

On accessing a page X : 
begin 

if X is in Am then 
move X to the head of Am 

else if (X is in Alout) then 
reclaimfor 
add X to the head of Am 

else if (X is in Alin) // do nothing 
else // X is in no queue 

reclaimfor 
add X to the head of Alin 

end if 
end 

3 Experimental Results 

In this section, we show that 2Q is better than LRU 
and Gclock, and is comparable to LRU/B. In all our 
experiments, we tried to represent LRU/2 as fairly as 
possible, but it was difficult to model the tunables of 
that algorithm exactly. 

The LRU/2 algorithm keeps a page in the buffer 
for a grace period (the Correlated Reference Period) 
and considers a second access to be a legitimate second 
access only if it arrived after that period. It also re 
members pages that have been ejected for 200 seconds. 
To implement the LRU/2 algorithm with a correlated 
reference period, we used the Alin queue. On its first 
access, a page is added to the Alin queue. The page 

it displaces is inserted into the LRU/2 priority queue, 
and a deletemin operation (on the penultimate access 
time) is run to determine a page to eject from the 
buffer (perhaps the one just inserted from the Alin 
queue). References to a page in the Alin queue are 
not counted. We adjusted the size of the Alin queue 
to obtain the best performance for the LRU/P algo- 
rithm. 

We implemented the Gclock algorithm as described 
in [14]: every page has a history count attached. When 
a page is referenced, we set the history count of its 
buffer to init-count. If a free page is required, we scan 
through the pages (starting from the previous stop- 
ping point) and examine the history counts. If the 
history count of a page is non-zero, then we decre- 
ment the history count and move on to the next page. 
Otherwise, we choose that page for replacement. We 
tested Gclock with an init-count parameter set to 2 
and 4, and report the best results. Gclock usually has 
a slightly lower hit rate than LRU, and is never higher 
than 2Q, so we report Gclock results in the tables only, 
since it is not a serious contender. 

We also tested the Second Chance algorithm, which 
is similar to Gclock but is designed for a virtual mem- 
ory system. When a page is referenced, its reference 
bit is set. During a scan for replacement: if the refer- 
ence bit of a page is set then its reference bit is cleared 
and its history bit is set; if its history bit is set, the 
bit is reset; if neither its reference bit nor its history 
bit is set, the page is selected for replacement. 

3.1 Simulation Experiments 

The experiments in this subsection are from artificially 
generated traces. They give some intuition about the 
behavior of LRU, LRU/2, and 2Q, but do not neces- 
sarily represent a real application’s behavior. 

Zipf Distributions 

Figures 1 and 2 compare the performance of LRU, 
LRU/B, and 2Q on a Zipfian input distribution [ll] 
with parameter (Y = 0.5 and (Y = 0.86 respectively. 
That is, if there are N pages, the probability of access- 
ing a page numbered i or less is (i/N)Q. A setting of 
(Y = 0.86 gives an 80/20 distribution, while a setting of 
(Y = .5 give a less skewed distribution (about 45/20). 
These obey the independent reference model[2], i.e., 
each page has a single stationary probability to be ac- 
cessed at any point in time. We set Kin to 1 (since 
there are no correlated references) and Kout to 50% 
of the number of page slots in the buffer. We run the 
simulator for one million references, and report the 
number of hits divided by one million. We explicitly 
include the effects of the startup transient to provide 
a fair comparison, since both 2Q and LRU/2 sacri- 

442 



Hit rate vs. number of buffer Daaes hit rate vs. scan length 
a=.5, 20% of all pages can fit in buffer 
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Figure 1: Zipf input comparison with parameter 0.5 

hit rate vs. number of buffer pages 

hit rate 
, - . . . . . . . . . . . _ 

0.4 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~ 

0.2 - . . . . . . . . . .._ 

0 1 
0 5 10 15 20 25 30 35 40 

percent of pages in butter 

Figure 2: Zipf input comparison with parameter 0.8 
fice responsiveness to achieve a higher long-term hit 
rate. We simulated a database of 50,000 pages and 
buffer sizes ranging from 2,500 page slots to 20,000 
page slots. 

As a reference point, we included the hit rate of 
the A0 algorithm (A0 always replaces the page whose 
probability of access is lowest) which is known to be 
optimal for stable probability distributions[b]. These 
charts show that 2Q provides a substantial improve- 
ment over LRU, and has performance comparable to 
that of LRU/S. The performance improvement is high- 
est when the number of page slots is small. 

Mixed Zipf/Scans 

Both the LRU/P and the 2Q algorithms are designed 
to give low priority to scanned pages. We modified 
the Zipf simulator so that it would occasionally start 
a scan. When simulating a scan, no page in the scan 
is repeated. We adjusted the probability of starting a 
scan so that one third of the references generated are 

- . 
0 i i s i 

scan length (Thousands) 

-20 1 +lmJ 
* LRU/Z 

Figure 3: l/3 Scan Input Mixed with Zipf Input Hav- 
ing Parameter 0.5 

due to scans. 

We ran two experiments, each of which had a 
database size of 50,000. In the first experiment (Fig- 
ure 3), we used a Zipf distribution with parameter 
cr = .5 and 10,000 page slots. In the second exper- 
iment (Figure 4) we used Q = .86 and 5,000 page 
slots. In both experiments we varied the scan length 
and reported the hit rates of LRU, LRU/S, and 2Q 
(with ]Alin]=l and ]Alout]=50% of the number of 
page slots). 

The experiments show that 2Q and LRU/B have a 
considerably higher hit rate than LRU. The hit rates 
are lower than in the no-scan case, however. This is to 
be expected because there is little hope of getting a hit 
on a scan. However, we notice that the the hit rate of 
2Q suffers less than the hit rate of LRU. The hit rate 
of 2Q is about 70% of its n-scan hit rate, while the 
hit rate of LRU is about 60% of its no-scan hit rate. 
Thus, 2Q provides a kind of “scan resistance.” 

Online Transaction Processing-style Index Accesses 

A nice observation of the LRU/2 paper is that ran- 
domly accessed data pages get an excessively high 
priority under LRU. The authors posited an exam- 
ple where there are 100 index pages and 10,000 data 
pages. References come in pairs, one page selected 
uniformly at random from the set of index pages and 
one selected uniformly at random from the set of data 
pages. The number of available page slots varies from 
less than 100 to greater than 100. They showed that 
LRU/2 gives priority to the index pages as it should, 
since their hit rate with 100 page slots is almost l/2. 
We ran a simulation with identical parameters, and we 
found that 2Q also gives preference to index pages (see 
Figure 5). 
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hit rate vs. scan length 
a=.s6, 10% of all pages can fit in buffer 

hit rate 

- , 
0 ; i Ii e 

scan length (Thousands) 

Figure 4: l/3 Scan Input Mixed with Zipf Input Hav- 
ing Parameter 0.8 

hit rate vs. number of buffer pages 
Two-pool experiment 
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Figure 5: Behavior of Algorithms on Index Accesses 
to Data Pages 

3.2 Experiments on Real Data 

Colleagues at IBM and Novell (UNIX Systems Group) 
kindly supplied traces of a commercial DB2 database 
application and of hits on program text for a window- 
ing graphics application, respectively. We ran experi- 
ments using the same parameters for these two (very 
different) applications. 2Q performed well on both. 

For these experiments we set Kout to 50% of the 
total number of page slots (we arrived at this setting 
based on our simulation studies, described in the next 
section). We set Kin to 20% and 30% of the total 
number of page slots to test the sensitivity of the 2Q 
algorithm to the Kin parameter. Since the differences 
among the various algorithms sometimes fall below 5% 
we represent these results with tables. 

Trace Data from a DB2 Commercial Application 

The DB2 trace data came from a commercial instal- 
lation of DB2. We received a trace file containing 
500,000 references to 75514 unique pages. The file was 
fed to our buffer management simulators. The results 
in Table 1 show that both 2Q and LRU/S provide a 
significantly higher hit rate than LRU and Gclock. 

The best performance is obtained when the size of 
Kin is matched to the amount of correlated reference 
activity, though the sensitivity is slight enough to be 
ignored. 

Trace Data from Program Text Accesses of a Window- 
ing Application 

Colleagues at the UNIX Systems Group of Novell sup- 
plied us with a trace of program references made on a 
windowing application. We received a trace file con- 
taining 427,618 references to 290 256 byte pages. The 
results in Table 2 show again that both LRU/B and 2Q 
provide a significantly higher hit rate than LRU and 
Gclock. 

Trace Data from an On-line Transaction Processing 
System 

Gerhard Weikum supplied us with the trace he used 
to validate the performance of the LRU/S algorithm 
[15], a one hour page reference trace to a CODASYL 
database. The trace consists of of 914145 references 
to 186880 distinct pages. The results in Table 3 fur- 
ther validate our results. We note that our results on 
this trace are different than those reported in [15] be- 
cause the LRU/k authors removed some references in 
their preprocessing. However, our conclusions about 
relative performance are the same. 
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I Number of page slots 
I 

LRU/S LRU Gclock 2nd Chance 2& 2Q 
Kin=30% Kin=20% I 

1 

50 .345 .317 .313 .313 .349 .349 
100 .432 .413 .407 .407 ,444 .430 
200 .516 .512 .506 .506 .521 .510 
500 .610 .606 .602 .602 .624 .611 
700 .639 .630 .627 .627 .658 .648 
1000 .665 .654 .651 .651 .686 .681 
1200 .678 .667 .664 .664 .698 .695 

Table 1: DB2 trace hit rate comparison of LRU, LRU/2, and 2Q. 

Rerunning the Synthetic Experiments with Default 
Tuning Parameters 

Since 2Q with a single set of parameters works so well 
with trace files from very different sources and with 
very different characteristics, we conjectured that our 
suggested parameter settings are almost always good 
and 2Q needs little tuning. To confirm our conjecture, 
we ran the simulations with a Zipf distribution with 
Kin set to 25% of the page slots and Kout set to 50% of 
the page slots. For a fair comparison, we used an Alin 
queue for the LRU/S algorithm. The results are in 
Table 4. In spite of the fact that there are no correlated 
references in the reference string, both 2Q and LRU/2 
show a substantial improvement over LRU and Gclock. 

4 Setting the Parameters 

Recall that the 2Q algorithm has a queue called Am for 
pages hit at least two and possibly more times, a queue 
Alin that stores pages that have been hit only once 
(in recent memory), and a queue Alout that stores 
pointers of pages that have been hit only once. TO 
gain intuition about the sensitivity to various sizes, 
we performed the following experiments. 

The Size of Alout 

When we developed the Simplified 2Q algorithm, we 
ran experiments to determine if the pages in Al should 

be stored, or if only the tags should be stored. If Al 
holds pages, then a page in Al will not cause a page 
fault if it is m-referenced, but will steal pages from Am. 
We ran experiments to see which approach (pages or 
tags) was better. A Zipf distribution on 50,000 data 
items was given to the 2Q algorithm. In the first ex- 
periment, the parameter of the Zipf distribution is set 
to a = .86 and 10,000 page slots are used. In the sec- 
ond experiment, (Y = .5 and 5,000 page slots are used. 
In both experiments, we made all Al entries store ei- 
ther pages or tags. The results are in Figure 6. We 
found that the storing the Al tags is is considerably 
better than storing the Al pages. Further, the perfor- 
mance of 2Q algorithm is not sensitive to the size of 
Al when Al stores tags, while the algorithm is highly 
sensitive when Al stores pages. 

For this reason, the Full 2Q algorithm uses tags (i.e., 
Alout) to filter the pages that are admitted to Am. 
The Alin queue is used to handle correlated references 
only. 

Responsiveness 

The chart in the previous experiment suggests that 
the best setting of the size of Alout is about 5% of 
the number of page slots in Am. However, we found 
that such a small Alout queue did not give good per- 
formance on real input. The problem with using such 
a small Alout queue is that it admits pages too se 
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Table 2: Windowing code trace hit rate comparison of LRU, LRU/B, and 2Q. 

hit rate vs. Simplified 2Q Al size 
20% buffers 

hit rate 
0.8 - . . . . . . . . . . . . . . . . . . . . . . . . 
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0.4-.................................................. 
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lJ.2- . . w 
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0. , , , , , , , 
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sire of Al In percent of buffer 

Figure 6: The Effect of the Size of Alin on the Hit 
Rate, assuming Zipf 0.5 

lectively into the Am queue, and cannot respond to 
changes in locality. 

To investigate the responsiveness of this algorithm 
to changes in locality, we ran the algorithms for 
l,OOO,OOO Zipf references, then made a random permu- 
tation of the probabilities sssigned to the items (thus 
effecting a change in locality). Figures 7 and 8 show hit 
rates as a function of time after the permutation. The 
LRU algorithm recovers very quickly from a change in 
locality (which makes LRU harder to beat in practice 
than in theory). The LRU/S algorithm algorithm re- 
covers quickly, but not as fast as LRU. Thus, LRU/Z 
has sacrificed some responsiveness for a greater long- 
term hit rate. When the 2Q algorithm uses a small 
Alout (5% of the Am page slots), the responsiveness 
is very poor, and the hit rate still has not recovered 
after l,OOO,OOO references2 When a moderately large 
Alout is used (50% of the number of page slots in 
Alin), 2Q is almost as responsive as LRU/P. Since 
the long-term performance suffers little when the size 
of Alout is increased from 5% to 50% but the respon- 
siveness is greatly increased, we have used an Alout 
size of 50% in our performance comparisons. 

2 This counter-intuitive phenomena occurs because we tuned 
the 24 algorithm to quickly Cll up when empty. Flushing cold 
pages takes longer. 
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Number of page slots LRU/2 LRU Gclock 2nd Chance 2& 2Q 
Kin=30% Kin=20% 

100 .086 .083 .083 .083 .096 .090 
200 .164 .144 .144 .141 .196 .181 
500 .284 .234 .236 .223 .334 .329 
1000 .384 .328 .327 .318 .405 .405 
2000 .454 .425 .425 .418 .465 .464 
5000 ,544 .537 .538 .532 .556 .557 
10000 .616 .607 .607 ,602 .626 .624 
20000 .678 .671 .671 .665 .681 .680 

Table 3: OLTP trace hit rate comparison of LRU, LRU/S, and 2Q. 

1 Number of page slots I LRU/S LRU Gclock 2Q 1 
a = .5 

5% .141 .105 .104 .162 
10% .222 .183 .181 .238 
20% .347 .313 .311 .356 
40% .544 .529 .519 .535 

a = .86 t 
5% .584 .528 .524 ,595 
10% .661 .618 .613 .667 
20% .745 .718 .713 .744 
40% .838 .826 .821 .827 

Table 4: Independent Zipf hit rate comparison of LRU, LRU/2, and 2Q. 

hit rate vs. time after permutation hit rate vs. time after permutation 
a=& 20% buffers a=.86, 20% buffers 

hit rate 

20 40 60 50 100 
percent of run 

+2Q 5% in Alout 
-2Q 25% in Alout -7 *2Q 50% in Alout 

*LRtJ 
~LRW? 

Figure 7: Responsiveness and the Size of Al, with Zipf Figure 8: Responsiveness and the Size of Al, with Zipf 
0.5 0.8 

hit rate 
0.8 

0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..- 
ol--- 

0 20 40 60 so 100 
percent of run 

+20 5% in Aloul 
-20 25% In Alout 
*2Q 60% In Alout 

*LRu 
-, LFw2 
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4.1 Theoretical Setting for 2Q Parameters 

On a static reference stream, the A0 algorithm [6] is 
optimal. That algorithm effectively locks the B-l data 
items with the highest access probability into memory, 
and use the last page slot to service page faults. LRU 
works well because it tends to keep hot items near the 
front of the queue, removing the cold ones. However, 
LRU is too trusting. It will admit a cold item into 
the buffer on the first hit and kick out a hotter item 
to make room. LRU/S tries to avoid this problem by 
preferentially cleaning cold pages from the buffer. We 
would like to filter the items that are admitted to the 
Am queue, to ensure that we make room only for pages 
that are hot over the long term. 

To help this goal, we could in principle look at the 
inter-reference times (coming from different threads of 
execution). If a data item has a short inter-reference 
time, we can feel confident that it is a hot item, and 
thus feel confident that we will not remove a hot page 
from the buffer to make room for a cold page. We have 
not done that in these traces, because it appeared not 
to be necessary. 

In the Simplified 2Q algorithm, the Al queue acts 
as a filter, as does the Alout queue in the Full 2Q al- 
gorithm. An item will be admitted to the Am queue 
only if it receives a second reference before being re- 
moved from the Alout queue. We would like the most 
popular pages to be in that queue. Suppose that the 
miss rate (the fraction of references that are misses 
using the A0 algorithm) is m, and there are f spaces 
available in the Alout area. We have observed that 
the Alout queue is usually full (the miss rate is much 
greater than the Alout hit rate). Thus, an item is ad- 
mitted to the Am queue if it receives a second reference 
within f/m page references of entering Alout. Let us 
call this probability pace+. Suppose that item i is ref- 
erenced with probability pi. The probability that item 
i gains admission to the Am queue on the kth reference 
after entering Alout is pi(l - pi)L-‘. Therefore, 

Paccept = C[~~pi(l-pi)L-l = l-(l-pi)jlm 

The probability of admission is close to one for large 
values of pi, then drops off rapidly to zero when pi 
becomes small. Thus, the Alout queue does indeed 
act as a filter, admitting hot items into the queue and 
ejecting cold items. 

We can define the Alout filter’s cutoff hotness as 
the reference probability, pcutojj, at which paeeept = 
l/2. The derivative of poccept is large at this point, 
and an item with reference probability p,,toff will be 
admitted to Am after three references instead of two. 

So, we solve 

for the value of interest. Given f and m, we can ask for 
the access probability of the coldest item which has a 
50% chance of being admitted to the Am queue. Then 

Pcutojj = 1 - (l/2)“/’ 

m m WWf 
(The approximation is by taking a Taylor series and 
has less than 4% error when m/f 5 .l). 

We note that the Alout filter is self-adjusting. 
When the miss rate is high, peutojj is relatively high, 
so the queue will admit only the hottest items. When 
the miss rate is low, pcutoff is relatively small, so that 
only the moderately hot items that should be admitted 
to the queue have a chance of gaining admission. 

Next, given pi and m, we can ask what f = f,+t 
gives paeeept = .5. We find that 

f&t = 
mln 2 

-1n l-p; Tlf 

M m ln( 2)/pi 

The approximation follows because ln( l-pi) m -pi. 
If we know the access probability of the coldest item 
that should be in the Am queue, we can solve for f. 
However, we typically do not know the access proba- 
bilities ahead of time (otherwise we’d use the A0 algo- 
rithm). For a rough estimate off, let us find a value of 
f 2 foppror , that will admit an item of average hotness 
to the Am queue 50% of the time. If the miss rate is 
m and there are B page slots in Am, the average ac- 
cess probability for an item in the buffer is (1 - m)/B. 
Substituting for pi in the formula for ferit, we find that 

f approl! = 
ln(2)mB 

l-m 

Since this formula requires an a priori estimate of 
the miss rate, it is of little use in practical tuning. 
However, it suggests that the size of Alout should be 
a fixed fraction of the size of the buffer, B. Our sim- 
ulation experiments indicate that this fraction should 
be about l/2 for values of m between 10% and 90%. 
For systems with a lower miss rate, the formula implies 
that a smaller Alout queue is better. 

The number of page slots is usually a small fraction 
of the database size. Let D be the number of data 
items, and let B = rD. Then: 

pcutojj = 2m W)/(rD) 

The average reference probability of a cold data item 
is m/(1 - r)D. If we let X = m/D, then we find that 
the average cold data item has a reference probability 
of &X, and that: 

Pcutoff _ w2)X 
r 1 - (1 - pi)“” = l/2 
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Since r is small, y >> &. Thus, setting f = 
B/2 filters out the average cold data item as long as 
r is small. Furthermore, fapproz/B = l/2 when m = 
l/( 1 + 2 ln(2)) M .419. The value of fapproo does not 
vary rapidly with m as long as m is not large (if m 
is large, little can be done). We conclude that the 
performance of the algorithm is” not sensitive to the 
exact setting of f, and that f = B/2 is almost always 
a good choice. 

5 Conclusion 

2& is a good buffering algorithm (giving a 5-10% im- 
provement in hit rate over LRU for a wide variety of 
applications and buffer sizes and never hurting), hav- 
ing constant time overhead, and requiring little or no 
tuning. It works well for the same intuitive reason that 
LRU/B works well: it bases buffer priority on sustained 
popularity rather than on a single access. 

2Q seems to behave as well as LRU/S in our tests 
(slightly better usually, in fact) can be implemented in 
constant time using conventional list operations rather 
than in logarithmic time using a priority queue, and 
both analysis and experiment suggest it requires lit- 
tle or no tuning. Finally, it can potentially be com- 
bined with buffer hint-passing algorithms of the DB- 
MIN family. 
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