
X3: A Low Overhead High Performance Buffer
Management Replacement Algorithm *

Theodore Johnson
University of Florida
Gainesville, FL 32611

Dennis Shasha
Courant Institute, New York University

New York, NY 10012 ’
and

Novell, Inc.
Summit, NJ 07901

Abstract

In a path-breaking paper last year Pat and
Betty O’Neil and Gerhard Weikum pro
posed a self-tuning improvement to the Least
Recently Used (LRU) buffer management
algorithm[l5]. Their improvement is called
LRU/k and advocates giving priority to buffer
pages baaed on the kth most recent access.
(The standard LRU algorithm is denoted
LRU/l according to this terminology.) If Pl’s
kth most recent access is more more recent
than P2’s, then Pl will be replaced after P2.
Intuitively, LRU/k for k > 1 is a good strategy,
because it gives low priority to pages that have
been scanned or to pages that belong to a big
randomly accessed file (e.g., the account file
in TPC/A). They found that LRU/S achieves
most of the advantage of their method.

The one problem of LRU/S is the processor

*Supported by U.S. Office of Naval Research #N00014-91-E
1472 and #N99914-92-J-1719, U.S. National Science Foundation
grants #CC%9103953 and IFlI-9224691, and USBA #5555-19.
Part of this work was performed while Theodore Johnson was a
1993 ASEE Summer Faculty Fellow at the National Space Sci-
ence Data Center of NASA Goddard Space Flight Center.

t Authors’ e-mail addresses : ted@cis.ufi.edu and
shasha@cs.nyu.edu

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and ite date appear, and notice is
given that copying is bq permission of the Very Large Data Base
Endowment. To copy otherwise, 07 to republish, requires a fee
and/or special pemirsion from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

overhead to implement it. In contrast to LRU,
each page access requires log N work to manip-
ulate a priority queue where N is the number
of pages in the buffer.

Question: is there low overhead way (constant
overhead per access as in LRU) to achieve sim-
ilar page replacement performance to LRU/S?

Answer: Yes.

Our “Two Queue” algorithm (hereafter 2Q)
has constant time overhead, performs as well
as LRU/B, and requires no tuning. These re-
sults hold for real (DB2 commercial, Swiss
bank) traces as well as simulated ones. Baaed
on these experiments, we estimate that 2Q
will provide a few percent improvement over
LRU without increasing the overhead by more
than a constant additive factor.

1 Background

Fetching data from disk requires at least a factor of
1000 more time than fetching data from a RAM buffer.
For this reason, good use of the buffer can signifi-
cantly improve the throughput and response time of
any data-intensive system.

Until the early 80’s, the least recently used buffer
replacement algorithm (replace the page that was least
recently accessed or used) was the algorithm of choice
in nearly all cases. Indeed, the theoretical community
blessed it by showing that LRU never replaces more
than a factor B as many elements as an optimal clair-
voyant algorithm (where B is the size of the buffer)
[19]. l

‘A companion rest& is that LRU on a buffer of size B wiii
never page more than twice as much as a clairvoyant algorithm
on a buffer of size B f 2.

439

Factors this large can heavily influence the be-
havior of a database system, however. Furthermore,
database systems usually have access patterns in which
LRU performs poorly, as noted by Stonebraker [21],
Sacco and Schkolnick [18], and Chou and Dewitt [5].
As a result, there has been considerable interest in
buffer management algorithms that perform well in a
database system.

Much of the work in database buffer management
has tuned the buffer management algorithm to the
expected reference pattern. keiter proposed the Do-
main Separation algorithm [16], which separates the
database pages into different pools. Each pool haa an
allocation of buffers and a special purpose buff& man-
agement strategy. The allocation of buffers to pools
requires careful tuning for high performance [7,22] and
is a well known headache for system administrators of
database management systems such as DB2.

A related approach is to let the query optimizer tell
the buffer manager the plan of the query to be pro-
cessed, so that the buffer manager can allocate and
manage its buffers accordingly. Algorithms include
the Hot Set model [18], the DBMIN algorithm [5] and
related extensions [9, 13, 231, and hint passing algo-
rithms [4, 12; 1, 10, 31.

In [15], O’Neil, O’Neil and Weikum point out that
it is difficult to design a query plan-based buffering al-
gorithm that works well in a multitasking system. Se-
quences of transactions, concurrent transactions, and
partions of the current transaction plan can overlap
in complicated ways. In addition, buffer partition-
ing schemes reduce the effective available space, say,
when one buffer is not fully utilized. New data ac-
cess methods must use existing buffer management al-
gorithms (which might not fit well), or have a new
special-purpose algorithm written.

The O’Neil-Weikum paper provides an alternative
to buffer partitioning. They suggested a more-or-less
self-tuning full buffer variant of LRU with many of
the same virtues as the hybrid schemes. The essence
of their scheme is that a page should not obtain buffer
privileges merely because it is accessed once. What’s
important is whether it has been popular over time.
The version they advocate - called LRU/P - replaces
the page whose penultimate (second-to-last) access
is least recent among all penultimate accesses.

In order to be able to find that page quickly, they
organize pointers to the buffer pages in a priority queue
based on penultimate access time. The operations are
deletemin to get the page to replace and a promotion
scheme to move a page that has been accessed to a new
place in the queue. Priority queue operations entail a
time complexity that grows with the log of the size of
the buffer.

They examine (i) a synthetic workload with refer-

ences to two pools of pages one for an index and one
for data pages; (ii) a synthetic workload with random
references based on a Zipfian distribution of reference
frequencies obeying the 80-20 rule on 1000 possible
pages; and (iii) a commercial on-line transaction pro-
cessing workload derived from a Swiss bank. In every
case, they show a significant improvement over LRU,
sometimes as high as 40%.

While LRU/S is self-tuning in comparison to other
buffer management algorithms, such as Gclock [20, 8,
141, two delicate tuning parameters remain. The first
is the Correlated Reference Period. This is a time pe
riod during which a page is retained in the buffer once
it has been accessed. In this way close-in-time subse-
quent accesses from the same process (so-called “cor-
related” accesses) find the page in the buffer. At the
same time, multiple accesses within a correlation pe-
riod count only as a single access from the point of
view of replacement priority. The net effect is that if
a page is referenced several times within a correlated
reference period and then isn’t accessed for a while, it
will have low buffer priority.

The second tuning parameter is the Retained Infor-
mation Period which is the length of time a page’s ac-
cess history is remembered after it is ejected from the
buffer. The authors recommend 200 seconds though
higher values don’t hurt.

A related paper is the frequency-baaed replacement
algorithm of Robinson and Devarakonda [17’J. These
authors found that by not counting correlated refer-
ences, they could produce a buffering algorithm based
on reference frequency counting that has better per-
formance than LRU.

Our contribution in this work is to provide a buffer
management algorithm that is a8 good as the LRU/S
algorithm, but which is simpler, requires no tuning,
and is much faster to execute (constant time rather
than logarithmic). Both LRU/P and 2& are “scan
resistant” and effectively handle index accesses (as
our results section shows), so they can be used in
a database system without requiring hints from the
database manager or the query planner.

We note that 2Q can be used in conjunction with
algorithms that use hints from the query planner, how-
ever, such as DBMIN. Work exploring combinations of
DBMIN and LRU/k or DBMIN and 2Q are on our fu-
ture research agenda.

2 2Q Algorithm Description

LRU works well because it tends to remove cold pages
from the buffer to make space for the faulted page. If
the faulting page is cold, however, then LRU may dis-
place a warmer page to make space for the cold one.
Furthermore, the cold page will reside in the buffer

440

for a considerable amount of time. LRU/2 improves
on LRU by using a more aggressive exit rule, thereby
quickly removing cold pages from the buffer. Impl+
menting the exit rule requires priority queue manipu-
lations.

The way8 in which 2Q and LRU/S improve upon
LRU are in 8ome sense complem&ary. Instead of
cleaning cold pages from the main buffer, 2Q admits
only hot pages to the main buffer. As with LRU/B, 2Q
tests pages for their second reference time. Simplify-
ing slightly, on the first reference to a page, 2Q place8
it in a special buffer, the Al queue, which is managed
as a FIFO queue. If the page is m-referenced during
it8 Al residency, then it is probably a hot page. So, if
a page in Al is referenced, the page is moved to the
Am queue, which is managed as an LRU queue. If a
page is not referenced while on Al, it is probably a
cold page, 80 2Q removes it from the buffer.

Simplified 2Q

if p is on the Am queue
then

put p on the front of the Am queue
/* Am is managed as an LRU queue*/

else if p is on the Al queue
then

remove p from the Al queue
put p on the front of the Am queue

else /* first access we know about concerning p */
/* find a free page slot for p */
if there are free page slots available
then

put p in a free page slot
else if Al’s size is above a (tunable) threshold

delete from the tail of Al
put p in the freed page slot

else
delete from the tail of Am
put p in the freed page slot

end if
put p on the front of the Al queue

end if

When we experimented with the above algorithm,
we found that tuning it was difficult. If the maximum
size of Al is set too small, the test for hotness is too
strong and the buffer will take too long to load in the
hot data items. If the maximum size of Al is set too
large, then Al steals page slot8 from Am, and perfor-
mance degrades because the buffer for the hot pages
is small.

A solution to the tuning problem8 is to store point-
ers to the page8 in Al instead of the page8 themselves.
This solution lets Al remember enough past references
to be responsive to moderately hot pages, yet preserve

ail page slot8 for the Am queue. We found that this so-
lution works well for traces generated from stationary
distributions, but performs poorly for actual traces.
In real access patterns, the locality of reference can
change very quickly. A common occurrence is for a
page to receive many references for a short period of
time (i.e., correlated references), then no references for
a long time. When a new page is accessed, it should be
retained for a period of time to satisfy the correlated
references, then ejected from the buffer if it does not
receive any further references

2Q, Full Version

To resolve the above problems we partition Al into
Alin and Alout. The most recent first. accesses will
be in the memory (up to a certain threshold), but then
older first accesses will be thrown out of memory but
remembered in Alout. (Remembering a page address
requires only a few bytes (fewer than lo).) Given a
buffer size B, one divides it into Am, Alin (of max-
imum size Kin and minimum size l), and Alout (of
maximum size Kout). Fixing these parameter8 is per
tentially a tuning question though the following val-
ues work well: Kin should be 25% of the page slot8
and Kout should hold identifier8 for as many pages as
would fit on 50% of the buffer.

This algorithm solves the correlated reference prob-
lem by retaining newly referenced pages in Alin to sat-
isfy repeated requests. If a page in Alin is accessed, it
isn’t promoted to Am, because the second access may
simply be a correlated reference. The Alout buffer,
by contrast, is used to detect page8 that have high
long-term access rates.

441

// If there is space, we give it to X.
// If there is no space, we free a page slot to
// make room for page X.
reclaimfor(page X)
begin

if there are free page slots then
put X into a free page slot

else if(]Alin] >Kin)
page out the tail of Alin, call it Y
add identifier of Y to the head of Alout
if(]Alout] >Kout)

remove identifier of Z from
the tail of Alout

end if
put X into the reclaimed page slot

else
page out the tail of Am, call it Y
// do not put it on Alout; it hasn’t been
// accessed for a while
put X into the reclaimed page slot

end if
end

On accessing a page X :
begin

if X is in Am then
move X to the head of Am

else if (X is in Alout) then
reclaimfor
add X to the head of Am

else if (X is in Alin) // do nothing
else // X is in no queue

reclaimfor
add X to the head of Alin

end if
end

3 Experimental Results

In this section, we show that 2Q is better than LRU
and Gclock, and is comparable to LRU/B. In all our
experiments, we tried to represent LRU/2 as fairly as
possible, but it was difficult to model the tunables of
that algorithm exactly.

The LRU/2 algorithm keeps a page in the buffer
for a grace period (the Correlated Reference Period)
and considers a second access to be a legitimate second
access only if it arrived after that period. It also re
members pages that have been ejected for 200 seconds.
To implement the LRU/2 algorithm with a correlated
reference period, we used the Alin queue. On its first
access, a page is added to the Alin queue. The page

it displaces is inserted into the LRU/2 priority queue,
and a deletemin operation (on the penultimate access
time) is run to determine a page to eject from the
buffer (perhaps the one just inserted from the Alin
queue). References to a page in the Alin queue are
not counted. We adjusted the size of the Alin queue
to obtain the best performance for the LRU/P algo-
rithm.

We implemented the Gclock algorithm as described
in [14]: every page has a history count attached. When
a page is referenced, we set the history count of its
buffer to init-count. If a free page is required, we scan
through the pages (starting from the previous stop-
ping point) and examine the history counts. If the
history count of a page is non-zero, then we decre-
ment the history count and move on to the next page.
Otherwise, we choose that page for replacement. We
tested Gclock with an init-count parameter set to 2
and 4, and report the best results. Gclock usually has
a slightly lower hit rate than LRU, and is never higher
than 2Q, so we report Gclock results in the tables only,
since it is not a serious contender.

We also tested the Second Chance algorithm, which
is similar to Gclock but is designed for a virtual mem-
ory system. When a page is referenced, its reference
bit is set. During a scan for replacement: if the refer-
ence bit of a page is set then its reference bit is cleared
and its history bit is set; if its history bit is set, the
bit is reset; if neither its reference bit nor its history
bit is set, the page is selected for replacement.

3.1 Simulation Experiments

The experiments in this subsection are from artificially
generated traces. They give some intuition about the
behavior of LRU, LRU/2, and 2Q, but do not neces-
sarily represent a real application’s behavior.

Zipf Distributions

Figures 1 and 2 compare the performance of LRU,
LRU/B, and 2Q on a Zipfian input distribution [ll]
with parameter (Y = 0.5 and (Y = 0.86 respectively.
That is, if there are N pages, the probability of access-
ing a page numbered i or less is (i/N)Q. A setting of
(Y = 0.86 gives an 80/20 distribution, while a setting of
(Y = .5 give a less skewed distribution (about 45/20).
These obey the independent reference model[2], i.e.,
each page has a single stationary probability to be ac-
cessed at any point in time. We set Kin to 1 (since
there are no correlated references) and Kout to 50%
of the number of page slots in the buffer. We run the
simulator for one million references, and report the
number of hits divided by one million. We explicitly
include the effects of the startup transient to provide
a fair comparison, since both 2Q and LRU/2 sacri-

442

Hit rate vs. number of buffer Daaes hit rate vs. scan length
a=.5, 20% of all pages can fit in buffer

hlt rate
0.3 ,..-

hlt rate
0.7 _

rJ.6 . :::?

Ol 40

percent of pages that are buffered

+2a

*LRlJ

* LRu2

+A0

Figure 1: Zipf input comparison with parameter 0.5

hit rate vs. number of buffer pages

hit rate
, - _

0.4 - ..~

0.2 -_

0 1
0 5 10 15 20 25 30 35 40

percent of pages in butter

Figure 2: Zipf input comparison with parameter 0.8
fice responsiveness to achieve a higher long-term hit
rate. We simulated a database of 50,000 pages and
buffer sizes ranging from 2,500 page slots to 20,000
page slots.

As a reference point, we included the hit rate of
the A0 algorithm (A0 always replaces the page whose
probability of access is lowest) which is known to be
optimal for stable probability distributions[b]. These
charts show that 2Q provides a substantial improve-
ment over LRU, and has performance comparable to
that of LRU/S. The performance improvement is high-
est when the number of page slots is small.

Mixed Zipf/Scans

Both the LRU/P and the 2Q algorithms are designed
to give low priority to scanned pages. We modified
the Zipf simulator so that it would occasionally start
a scan. When simulating a scan, no page in the scan
is repeated. We adjusted the probability of starting a
scan so that one third of the references generated are

- .
0 i i s i

scan length (Thousands)

-20 1 +lmJ
* LRU/Z

Figure 3: l/3 Scan Input Mixed with Zipf Input Hav-
ing Parameter 0.5

due to scans.

We ran two experiments, each of which had a
database size of 50,000. In the first experiment (Fig-
ure 3), we used a Zipf distribution with parameter
cr = .5 and 10,000 page slots. In the second exper-
iment (Figure 4) we used Q = .86 and 5,000 page
slots. In both experiments we varied the scan length
and reported the hit rates of LRU, LRU/S, and 2Q
(with]Alin]=l and]Alout]=50% of the number of
page slots).

The experiments show that 2Q and LRU/B have a
considerably higher hit rate than LRU. The hit rates
are lower than in the no-scan case, however. This is to
be expected because there is little hope of getting a hit
on a scan. However, we notice that the the hit rate of
2Q suffers less than the hit rate of LRU. The hit rate
of 2Q is about 70% of its n-scan hit rate, while the
hit rate of LRU is about 60% of its no-scan hit rate.
Thus, 2Q provides a kind of “scan resistance.”

Online Transaction Processing-style Index Accesses

A nice observation of the LRU/2 paper is that ran-
domly accessed data pages get an excessively high
priority under LRU. The authors posited an exam-
ple where there are 100 index pages and 10,000 data
pages. References come in pairs, one page selected
uniformly at random from the set of index pages and
one selected uniformly at random from the set of data
pages. The number of available page slots varies from
less than 100 to greater than 100. They showed that
LRU/2 gives priority to the index pages as it should,
since their hit rate with 100 page slots is almost l/2.
We ran a simulation with identical parameters, and we
found that 2Q also gives preference to index pages (see
Figure 5).

443

hit rate vs. scan length
a=.s6, 10% of all pages can fit in buffer

hit rate

- ,
0 ; i Ii e

scan length (Thousands)

Figure 4: l/3 Scan Input Mixed with Zipf Input Hav-
ing Parameter 0.8

hit rate vs. number of buffer pages
Two-pool experiment

hit rate
0.6 -..

0. , -

o-l 1
60 70 90 90 100 110 120 130 140 150 160

number of pages In buffer

Figure 5: Behavior of Algorithms on Index Accesses
to Data Pages

3.2 Experiments on Real Data

Colleagues at IBM and Novell (UNIX Systems Group)
kindly supplied traces of a commercial DB2 database
application and of hits on program text for a window-
ing graphics application, respectively. We ran experi-
ments using the same parameters for these two (very
different) applications. 2Q performed well on both.

For these experiments we set Kout to 50% of the
total number of page slots (we arrived at this setting
based on our simulation studies, described in the next
section). We set Kin to 20% and 30% of the total
number of page slots to test the sensitivity of the 2Q
algorithm to the Kin parameter. Since the differences
among the various algorithms sometimes fall below 5%
we represent these results with tables.

Trace Data from a DB2 Commercial Application

The DB2 trace data came from a commercial instal-
lation of DB2. We received a trace file containing
500,000 references to 75514 unique pages. The file was
fed to our buffer management simulators. The results
in Table 1 show that both 2Q and LRU/S provide a
significantly higher hit rate than LRU and Gclock.

The best performance is obtained when the size of
Kin is matched to the amount of correlated reference
activity, though the sensitivity is slight enough to be
ignored.

Trace Data from Program Text Accesses of a Window-
ing Application

Colleagues at the UNIX Systems Group of Novell sup-
plied us with a trace of program references made on a
windowing application. We received a trace file con-
taining 427,618 references to 290 256 byte pages. The
results in Table 2 show again that both LRU/B and 2Q
provide a significantly higher hit rate than LRU and
Gclock.

Trace Data from an On-line Transaction Processing
System

Gerhard Weikum supplied us with the trace he used
to validate the performance of the LRU/S algorithm
[15], a one hour page reference trace to a CODASYL
database. The trace consists of of 914145 references
to 186880 distinct pages. The results in Table 3 fur-
ther validate our results. We note that our results on
this trace are different than those reported in [15] be-
cause the LRU/k authors removed some references in
their preprocessing. However, our conclusions about
relative performance are the same.

444

I Number of page slots
I

LRU/S LRU Gclock 2nd Chance 2& 2Q
Kin=30% Kin=20% I

1

50 .345 .317 .313 .313 .349 .349
100 .432 .413 .407 .407 ,444 .430
200 .516 .512 .506 .506 .521 .510
500 .610 .606 .602 .602 .624 .611
700 .639 .630 .627 .627 .658 .648
1000 .665 .654 .651 .651 .686 .681
1200 .678 .667 .664 .664 .698 .695

Table 1: DB2 trace hit rate comparison of LRU, LRU/2, and 2Q.

Rerunning the Synthetic Experiments with Default
Tuning Parameters

Since 2Q with a single set of parameters works so well
with trace files from very different sources and with
very different characteristics, we conjectured that our
suggested parameter settings are almost always good
and 2Q needs little tuning. To confirm our conjecture,
we ran the simulations with a Zipf distribution with
Kin set to 25% of the page slots and Kout set to 50% of
the page slots. For a fair comparison, we used an Alin
queue for the LRU/S algorithm. The results are in
Table 4. In spite of the fact that there are no correlated
references in the reference string, both 2Q and LRU/2
show a substantial improvement over LRU and Gclock.

4 Setting the Parameters

Recall that the 2Q algorithm has a queue called Am for
pages hit at least two and possibly more times, a queue
Alin that stores pages that have been hit only once
(in recent memory), and a queue Alout that stores
pointers of pages that have been hit only once. TO
gain intuition about the sensitivity to various sizes,
we performed the following experiments.

The Size of Alout

When we developed the Simplified 2Q algorithm, we
ran experiments to determine if the pages in Al should

be stored, or if only the tags should be stored. If Al
holds pages, then a page in Al will not cause a page
fault if it is m-referenced, but will steal pages from Am.
We ran experiments to see which approach (pages or
tags) was better. A Zipf distribution on 50,000 data
items was given to the 2Q algorithm. In the first ex-
periment, the parameter of the Zipf distribution is set
to a = .86 and 10,000 page slots are used. In the sec-
ond experiment, (Y = .5 and 5,000 page slots are used.
In both experiments, we made all Al entries store ei-
ther pages or tags. The results are in Figure 6. We
found that the storing the Al tags is is considerably
better than storing the Al pages. Further, the perfor-
mance of 2Q algorithm is not sensitive to the size of
Al when Al stores tags, while the algorithm is highly
sensitive when Al stores pages.

For this reason, the Full 2Q algorithm uses tags (i.e.,
Alout) to filter the pages that are admitted to Am.
The Alin queue is used to handle correlated references
only.

Responsiveness

The chart in the previous experiment suggests that
the best setting of the size of Alout is about 5% of
the number of page slots in Am. However, we found
that such a small Alout queue did not give good per-
formance on real input. The problem with using such
a small Alout queue is that it admits pages too se

445

Table 2: Windowing code trace hit rate comparison of LRU, LRU/B, and 2Q.

hit rate vs. Simplified 2Q Al size
20% buffers

hit rate
0.8 - .

.~Y~._(L .~.-.l.~--.~-lu_l.~_l.~.-.l.~;

0.6 _a

0.5 _

0.4-..

lJ.3-
---c--------3--------~

lJ.2- . . w

0. , -

0. , , , , , , ,
0 10 20 30 40 50 60 70

sire of Al In percent of buffer

Figure 6: The Effect of the Size of Alin on the Hit
Rate, assuming Zipf 0.5

lectively into the Am queue, and cannot respond to
changes in locality.

To investigate the responsiveness of this algorithm
to changes in locality, we ran the algorithms for
l,OOO,OOO Zipf references, then made a random permu-
tation of the probabilities sssigned to the items (thus
effecting a change in locality). Figures 7 and 8 show hit
rates as a function of time after the permutation. The
LRU algorithm recovers very quickly from a change in
locality (which makes LRU harder to beat in practice
than in theory). The LRU/S algorithm algorithm re-
covers quickly, but not as fast as LRU. Thus, LRU/Z
has sacrificed some responsiveness for a greater long-
term hit rate. When the 2Q algorithm uses a small
Alout (5% of the Am page slots), the responsiveness
is very poor, and the hit rate still has not recovered
after l,OOO,OOO references2 When a moderately large
Alout is used (50% of the number of page slots in
Alin), 2Q is almost as responsive as LRU/P. Since
the long-term performance suffers little when the size
of Alout is increased from 5% to 50% but the respon-
siveness is greatly increased, we have used an Alout
size of 50% in our performance comparisons.

2 This counter-intuitive phenomena occurs because we tuned
the 24 algorithm to quickly Cll up when empty. Flushing cold
pages takes longer.

446

Number of page slots LRU/2 LRU Gclock 2nd Chance 2& 2Q
Kin=30% Kin=20%

100 .086 .083 .083 .083 .096 .090
200 .164 .144 .144 .141 .196 .181
500 .284 .234 .236 .223 .334 .329
1000 .384 .328 .327 .318 .405 .405
2000 .454 .425 .425 .418 .465 .464
5000 ,544 .537 .538 .532 .556 .557
10000 .616 .607 .607 ,602 .626 .624
20000 .678 .671 .671 .665 .681 .680

Table 3: OLTP trace hit rate comparison of LRU, LRU/S, and 2Q.

1 Number of page slots I LRU/S LRU Gclock 2Q 1
a = .5

5% .141 .105 .104 .162
10% .222 .183 .181 .238
20% .347 .313 .311 .356
40% .544 .529 .519 .535

a = .86 t
5% .584 .528 .524 ,595
10% .661 .618 .613 .667
20% .745 .718 .713 .744
40% .838 .826 .821 .827

Table 4: Independent Zipf hit rate comparison of LRU, LRU/2, and 2Q.

hit rate vs. time after permutation hit rate vs. time after permutation
a=& 20% buffers a=.86, 20% buffers

hit rate

20 40 60 50 100
percent of run

+2Q 5% in Alout
-2Q 25% in Alout -7 *2Q 50% in Alout

*LRtJ
~LRW?

Figure 7: Responsiveness and the Size of Al, with Zipf Figure 8: Responsiveness and the Size of Al, with Zipf
0.5 0.8

hit rate
0.8

0.2 ..-
ol---

0 20 40 60 so 100
percent of run

+20 5% in Aloul
-20 25% In Alout
*2Q 60% In Alout

*LRu
-, LFw2

447

4.1 Theoretical Setting for 2Q Parameters

On a static reference stream, the A0 algorithm [6] is
optimal. That algorithm effectively locks the B-l data
items with the highest access probability into memory,
and use the last page slot to service page faults. LRU
works well because it tends to keep hot items near the
front of the queue, removing the cold ones. However,
LRU is too trusting. It will admit a cold item into
the buffer on the first hit and kick out a hotter item
to make room. LRU/S tries to avoid this problem by
preferentially cleaning cold pages from the buffer. We
would like to filter the items that are admitted to the
Am queue, to ensure that we make room only for pages
that are hot over the long term.

To help this goal, we could in principle look at the
inter-reference times (coming from different threads of
execution). If a data item has a short inter-reference
time, we can feel confident that it is a hot item, and
thus feel confident that we will not remove a hot page
from the buffer to make room for a cold page. We have
not done that in these traces, because it appeared not
to be necessary.

In the Simplified 2Q algorithm, the Al queue acts
as a filter, as does the Alout queue in the Full 2Q al-
gorithm. An item will be admitted to the Am queue
only if it receives a second reference before being re-
moved from the Alout queue. We would like the most
popular pages to be in that queue. Suppose that the
miss rate (the fraction of references that are misses
using the A0 algorithm) is m, and there are f spaces
available in the Alout area. We have observed that
the Alout queue is usually full (the miss rate is much
greater than the Alout hit rate). Thus, an item is ad-
mitted to the Am queue if it receives a second reference
within f/m page references of entering Alout. Let us
call this probability pace+. Suppose that item i is ref-
erenced with probability pi. The probability that item
i gains admission to the Am queue on the kth reference
after entering Alout is pi(l - pi)L-‘. Therefore,

Paccept = C[~~pi(l-pi)L-l = l-(l-pi)jlm

The probability of admission is close to one for large
values of pi, then drops off rapidly to zero when pi
becomes small. Thus, the Alout queue does indeed
act as a filter, admitting hot items into the queue and
ejecting cold items.

We can define the Alout filter’s cutoff hotness as
the reference probability, pcutojj, at which paeeept =
l/2. The derivative of poccept is large at this point,
and an item with reference probability p,,toff will be
admitted to Am after three references instead of two.

So, we solve

for the value of interest. Given f and m, we can ask for
the access probability of the coldest item which has a
50% chance of being admitted to the Am queue. Then

Pcutojj = 1 - (l/2)“/’

m m WWf
(The approximation is by taking a Taylor series and
has less than 4% error when m/f 5 .l).

We note that the Alout filter is self-adjusting.
When the miss rate is high, peutojj is relatively high,
so the queue will admit only the hottest items. When
the miss rate is low, pcutoff is relatively small, so that
only the moderately hot items that should be admitted
to the queue have a chance of gaining admission.

Next, given pi and m, we can ask what f = f,+t
gives paeeept = .5. We find that

f&t =
mln 2

-1n l-p; Tlf

M m ln(2)/pi

The approximation follows because ln(l-pi) m -pi.
If we know the access probability of the coldest item
that should be in the Am queue, we can solve for f.
However, we typically do not know the access proba-
bilities ahead of time (otherwise we’d use the A0 algo-
rithm). For a rough estimate off, let us find a value of
f 2 foppror , that will admit an item of average hotness
to the Am queue 50% of the time. If the miss rate is
m and there are B page slots in Am, the average ac-
cess probability for an item in the buffer is (1 - m)/B.
Substituting for pi in the formula for ferit, we find that

f approl! =
ln(2)mB

l-m

Since this formula requires an a priori estimate of
the miss rate, it is of little use in practical tuning.
However, it suggests that the size of Alout should be
a fixed fraction of the size of the buffer, B. Our sim-
ulation experiments indicate that this fraction should
be about l/2 for values of m between 10% and 90%.
For systems with a lower miss rate, the formula implies
that a smaller Alout queue is better.

The number of page slots is usually a small fraction
of the database size. Let D be the number of data
items, and let B = rD. Then:

pcutojj = 2m W)/(rD)

The average reference probability of a cold data item
is m/(1 - r)D. If we let X = m/D, then we find that
the average cold data item has a reference probability
of &X, and that:

Pcutoff _ w2)X
r 1 - (1 - pi)“” = l/2

448

Since r is small, y >> &. Thus, setting f =
B/2 filters out the average cold data item as long as
r is small. Furthermore, fapproz/B = l/2 when m =
l/(1 + 2 ln(2)) M .419. The value of fapproo does not
vary rapidly with m as long as m is not large (if m
is large, little can be done). We conclude that the
performance of the algorithm is” not sensitive to the
exact setting of f, and that f = B/2 is almost always
a good choice.

5 Conclusion

2& is a good buffering algorithm (giving a 5-10% im-
provement in hit rate over LRU for a wide variety of
applications and buffer sizes and never hurting), hav-
ing constant time overhead, and requiring little or no
tuning. It works well for the same intuitive reason that
LRU/B works well: it bases buffer priority on sustained
popularity rather than on a single access.

2Q seems to behave as well as LRU/S in our tests
(slightly better usually, in fact) can be implemented in
constant time using conventional list operations rather
than in logarithmic time using a priority queue, and
both analysis and experiment suggest it requires lit-
tle or no tuning. Finally, it can potentially be com-
bined with buffer hint-passing algorithms of the DB-
MIN family.

6 Acknowledgments

Many thanks to Ted Messinger of IBM and Steve Pen-
dergrast of Novell and Gerhard Weikum for supplying
us with real data. Thanks also to Gerhard Weikum,
Pat and Betty O’Neil for friendly discussions and pro-
gram code - would that all algorithmic competitions
were so civil.

References

PI

PI

[31

PI

R. Alonso, D. Barbara, and H. Garcia-Molina.
Data caching issues in an information retrieval
system. ACM Transactions on Database Systems,
15(3):359-384,199O.

D.I. Aven, E.G. Coffman, and Y.A. Kogan.
Stochastic Analysis of Computer Storage. D. Rei-
de1 Publishing, 1987.

C.Y. Chan, B.C. Ooi, and H. Lu. Extensible
buffer management of indexes. In Proc. 18th Int’l
Conf. on Very Large Data Bases, pages 444-454,
1992.

E.E. Chang and R.H. Katz. Exploiting inheri-
tance and structure semantics for effective clus-
tering and buffering in an object-oriented dbms.

[51

F-31

VI

PI

PI

PO1

[ill

WI

P31

1141

P51

I161

P71

In Proc. 1989 ACM SIGMOD Conf., pages 348-
357, 1989.

H.T. Chou and D. Dewitt. An evaluation
of buffer management strategies for relational
database systems. In Proc. 11th ACM SIGMOD
Conf., pages 127-141,1985.

E.G. Coffman and P.J. Denning. Operating Sys-
tem Theory. Prentice-Hall, 1973.

A. Dan and D. Towsley. An approximate anal-
ysis of lru and fifo buffer replacement schemes.
In Proc. 1990 ACM SIGMETRICS Conf., pages
143-149, 1990.

W. Effelsberg and T. Haerder. Principles of
database buffer management. ACM Transactions
on Database Systems, 9(9):560-595, 1984.

C. Faloustos, R. Ng, and T. Sellis. Predictive load
control for flexible buffer allocation. In Proc. 17th
Conf. on Very Large Data Bases, pages 265-274,
1991.

R. Juahari, M. Carey, and M. Linvy. Priority
hints: An algorithm fir priority-based buffer man-
agement. In Proc. 16th Int’l Conf. on Very Large
Data Bases, 1990.

D. Knuth. The Art of Computer Programming,
volume 3. Addison Wesley, 1973.

L.A. Hass et al. Starburst midflight: As the dust
clears. IEEE Trans. on Knowledge and Database
Systems, 2(1):143-160,199O.

R. Ng, C. Faloustos, and T. Sellis. Flexible buffer
management based on marginal gains. In 1991
ACM SIGMOD Conf., pages 387-396, 1991.

V.F. Nicola, A. Dan, and D.M. Dias. Analysi of
the generalized clock buffer replacement scheme
for database transaction processing. In Proc. 1992
ACM SIGMETRICS Conf, pages 35-46,1992.

E.J. O’Neil, P.E. O’Neil, and G. Weikum. The Iru-
k page replacement algorithm for database disk
buffering. In Proceedings of the 1993 ACM Sig-
mod International Conference on Management of
Data, pages 297-306, 1993.

R. Reiter. A study of buffer management policies
for data management systems. Technical Report
1619, University of Wisconson (Madison) Mathe-
matics Research Center, 1976.

J.T. Robinson and M.V. Devarakonda. Data
cache management using frequency-baaed re-
placement. In ACM SIGMETRICS Conference,
pages 134-143,199O.

449

[l&3] G.M. Sacco and M. Schkolnick. Buffer man-
agement in relational database systems. ACM
Transactions on Database Systems, 11(4):473-
498, 1986.

[19] D.D. Sleator and R.T. Tarjan. Amortized effi-
ciency of list update and paging rules. Commu-
nications of the ACM, 28(2):202-208, 1985.

[20] A.J. Smith. Sequentiality and prefetching
in database systems. ACM !&ansactions on
Database Systems, 3(3):223-247, 1978.

[21] M. Stonebraker. Operating system support for
database management. Communications of the
ACM, 24(7):412428,1981.

[22] J.Z. Teng and R.A. Gumaer. Managing IBM
Database 2 buffers to maximize performance.
IBM Systems Journal, 23(2):211-218, 1984.

[23] P.S. Yu and D.W. Cornell. Optimal buffer alloca-
tion in a multi-query environment. In Pwc. 7th
Int? Conf. on Data Engineering, pages 622-631,
1991.

450

