
USENIX Association

Proceedings of the
5th Symposium on Operating Systems

Design and Implementation

Boston, Massachusetts, USA
December 9–11, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Supporting Time-Sensitive Applications on a Commodity OS

Ashvin Goel, Luca Abeni, Charles Krasic, Jim Snow, Jonathan Walpole
Department of Computer Science and Engineering

Oregon Graduate Institute, Portland
{ashvin,luca,jsnow,krasic,walpole}@cse.ogi.edu

Abstract

Commodity operating systems are increasingly being
used for serving time-sensitive applications. These ap-
plications require low-latency response from the kernel
and from other system-level services. In this paper, we
explore various operating systems techniques needed to
support time-sensitive applications and describe the de-
sign of our Time-Sensitive Linux (TSL) system. We
show that the combination of a high-precision timing fa-
cility, a well-designed preemptible kernel and the use of
appropriate scheduling techniques is the basis for a low-
latency response system and such a system can have low
overhead. We evaluate the behavior of realistic time-
sensitive user- and kernel-level applications on our sys-
tem and show that, in practice, it is possible to satisfy the
constraints of time-sensitive applications in a commod-
ity operating system without significantly compromising
the performance of throughput-oriented applications.

1 Introduction

Multimedia applications, and soft real-time applications
in general, are driven by real-world demands and are
characterized by timing constraints that must be satis-
fied for correct operation; for this reason, we call these
applications time-sensitive. Time-sensitive applications
may require, for example, periodic execution with low
jitter (e.g., soft modems [8]) or quick response to exter-
nal events such as frame capture (e.g., video conferenc-
ing).

To support these time-sensitive applications, a general-
purpose operating system (OS) must respect the appli-
cation’s timing constraints. To do so, resources must
be allocated to the application at the appropriate times.

This work was partially supported by DARPA/ITO under the In-
formation Technology Expeditions, Ubiquitous Computing, Quorum,
and PCES programs and by Intel.

This paper shows that there are three important require-
ments for achieving timely resource allocation: a high-
precision timing facility, a well-designed preemptible
kernel and the use of appropriate scheduling techniques.
Each of these requirements have been addressed in the
past with specific mechanisms, but unfortunately oper-
ating systems, such as Linux, often do not support or
integrate these mechanisms.

This paper focuses on three specific techniques that can
be integrated to satisfy the constraints of time-sensitive
applications. First, we present firm timers, an efficient
high-resolution timer mechanism. Firm timers incorpo-
rate the benefits of three types of timers, one-shot timers
available on modern hardware [7], soft timers [2], and
periodic timers to provide accurate timing with low over-
head. Second, we use fine-grained kernel preemptibility
to obtain a responsive kernel. Finally, we use both prior-
ity and reservation-based CPU scheduling mechanisms
for supporting various types of time-sensitive applica-
tions. We have integrated these techniques in our ex-
tended version of the Linux kernel, which we call Time-
Sensitive Linux (TSL).

Currently, commodity systems provide coarse-grained
resource allocation with the goal of maximizing system
throughput. Such a policy conflicts with the needs of
time-sensitive applications which require more precise
allocation. Thus, recently several approaches have been
proposed to improve the timing response of a commod-
ity system such as Linux [17, 22]. These approaches in-
clude improved kernel preemptibility and a more generic
scheduling framework. However, since their focus is
hard real-time, they do not evaluate the performance of
non-real time applications.

In contrast, TSL focuses on integrating efficient sup-
port for time-sensitive applications in a commodity OS
without significantly degrading the performance of tradi-
tional applications. Hence, one of the main contributions
of this paper is to show through experimental evaluation
that using the above techniques it is possible to provide
good performance to time-sensitive applications as well

as to throughput-oriented applications.

The rest of the paper is organized as follows. Section 2
investigates the factors that contribute to poor temporal
response in commodity systems. Section 3 describes the
techniques that we have used to implement TSL. Sec-
tion 4 evaluates the behavior of several time-sensitive
applications and presents overheads of TSL. Finally, in
Section 5, we state our conclusions.

1.1 Related Work

The scheduling problem has been extensively studied by
the real-time community [10, 19]. However, most of the
scheduling analysis is based on an abstract mathemati-
cal model that ignores practical systems issues such as
kernel non-preemptibility and interrupt processing over-
head. Recently, many different real-time algorithms
have been implemented in Linux and in other general-
purpose kernels. For example, Linux/RK [17] imple-
ments Resource Reservations in the Linux kernel, and
RED Linux [22] provides a generic real-time scheduling
framework. These kernels tackle the practical systems
issues mentioned above with techniques similar to the
techniques presented in this paper. For example, kernel
preemptibility is used by Timesys Linux and MontaVista
Linux [12]. However, while these kernels work well for
time-sensitive applications, their performance overhead
on throughput-oriented applications is not clear.

The SMaRT [16] and Linux-SRT [6] kernels share our
goal of supporting time-sensitive applications on com-
modity OSs. Before implementing SMaRT, Nieh, et
al. [15] showed that tuning the time-sharing or the real-
time priorities of applications required a great deal of
experimentation in SVR4 Unix and often lead to un-
predictable results. They showed empirically, similar to
our priority-assignment protocol, that assigning a higher
real-time priority to the X server improved the perfor-
mance of video. Later, Nieh implemented the SMaRT
real-time scheduler on Solaris that dynamically balances
between the needs of different jobs by giving propor-
tional shares to each job and a bias that improves the
responsiveness of interactive and real-time jobs. This
scheduler complements our approach of using priori-
ties or proportion-period scheduling, as appropriate, for
time-sensitive tasks.

Linux-SRT supports multiple real-time scheduling poli-
cies and implements a timing mechanism that is more
accurate than standard Linux. However, it doesn’t incor-
porate kernel preemption or discuss the issue of time-
sensitive performance under heavy system load. Linux-

SRT recognizes that the timing behavior of an appli-
cation depends on shared system services such as the
X server and thus modifies the X server to prioritize
graphics rendering based on the scheduling parameters
of tasks. We use a simpler priority-assignment protocol
to achieve the same effect without requiring any modifi-
cations to the X server.

A different approach for providing real-time perfor-
mance is used by systems such as RTLinux [4], which
decrease timing unpredictability in the system by run-
ning Linux as a background process over a small real-
time executive. This solution provides good real-time
performance, but does not provide it to Linux applica-
tions. Also, native real-time threads use a different and
less evolved application binary interface (ABI) as com-
pared to the Linux interface and do not have access to
Linux device drivers.

An accurate timing mechanism is crucial for supporting
time-sensitive applications. Thus most of the existing
real-time kernels or real-time extensions to Linux pro-
vide high resolution timers. The high resolution timers
concept was proposed by RT-Mach [18] and has subse-
quently been used by several other systems [17]. In a
general-purpose operating system, the overhead of such
timers can affect the performance of throughput-oriented
applications. This overhead is caused by the increased
number of interrupts generated by the fine-grained tim-
ing mechanism and can be mitigated by the soft-timer
mechanism [2]. Thus, our firm-timer implementation
uses soft timers.

Finally, the Nemesis operating system [9] is designed for
multimedia and other time-sensitive applications. How-
ever, its structure and API is very different from the stan-
dard programming environment provided by operating
systems such as Linux. Our goal is to minimize changes
to the programming environment to encourage the use
of time-sensitive applications in a commodity environ-
ment.

2 Time-Sensitive Requirements

To satisfy a time-sensitive application’s temporal con-
straints, resources must be allocated at “appropriate”
times. These appropriate times are determined by events
of interest to the application, such as readiness of a video
frame for display. In response to these events, the appli-
cation is scheduled or activated. Hence, we view the
time-line of the application as a sequence of such events
and the corresponding activations. For example, Fig-

ure 1 shows an event and its activation. It depicts the
execution sequence in a system after a wall-clock time
event. We call the latency between the event and its ac-
tivation, kernel latency. Kernel latency should be low in
a time-sensitive system. As the figure shows, kernel la-
tency has three components that we call timer latency,
preemption latency and scheduling latency. To reduce
these components of kernel latency, there are three re-
quirements: 1) an accurate timing mechanism, 2) a re-
sponsive kernel and 3) an appropriate CPU scheduling
algorithm. These requirements are described below.

Another application
scheduled

Interrupt
Handler

Wall−clock time
event

Time

Scheduler Application scheduledTimer Interrupt
(activation)

Timer Latency Preemption Latency Scheduling Latency

Figure 1: Execution sequence after wall-clock time ex-
piration event.

Timing Mechanism: An accurate timing mechanism is
crucial for reducing latency since timer resolution
is the largest source of latency in an operating sys-
tem such as Linux [1]. Such a mechanism can be
implemented efficiently by using two techniques,
one-shot timers available on most common mod-
ern hardware and soft timers [2]. These techniques
are complementary and can be combined together.
One-shot timers can provide high accuracy, but, un-
like periodic timers, they require reprogramming
at each activation. On an x86 machine, one-shot
timers can be generated using the on-chip CPU Ad-
vanced Programmable Interrupt Controller (APIC).
This timer has very high resolution and can be re-
programmed cheaply in a few CPU cycles.

Soft timers check and run expired timers at strategic
points in the kernel and help in reducing the num-
ber of hardware generated timer interrupts and the
number of user-kernel context switches. We call the
combination of these two mechanisms, firm timers.
In Section 4.3, we show that the overhead of firm
timers is small.

Responsive Kernel: An accurate timing mechanism is
not sufficient for reducing latency. For example,
even if a timer interrupt is generated by the hard-
ware at the correct time, the activation could occur
much later because the kernel is unable to interrupt
its current activity. This problem occurs because
either the interrupt might be disabled or the ker-
nel is in a non-preemptible section. In traditional

kernels, a thread entering the kernel becomes non-
preemptible and must either yield the CPU or exit
the kernel before an activation can occur. The solu-
tion for improving kernel response is to reduce the
size of such non-preemptible sections as described
in Section 3.2.

CPU Scheduling Algorithm: The scheduling problem
for providing precise allocations has been exten-
sively studied in the literature but most of the work
relies on some strict assumptions such as full pre-
emptibility of tasks. A responsive kernel with an
accurate timing mechanism enables implementa-
tion of such CPU scheduling strategies because
it makes the assumptions more realistic and im-
proves the accuracy of scheduling analysis. In this
paper, we use two different real-time scheduling
algorithms: a proportion-period scheduler and a
priority-based scheduler.

The proportion-period scheduler provides tempo-
ral protection to tasks. With proportion-period, we
model application behavior by identifying a charac-
teristic delay that the application can tolerate. For
example, soft modems, which use the main proces-
sor to execute modem functions, require computa-
tional processing at least every 16 ms or else mo-
dem audio and other multimedia audio applications
can get impaired [8]. Then, we allocate a fixed pro-
portion of the CPU every delay period to each task
in the application. Alternatively, we assign priori-
ties to all tasks in some application-specific order
for use with the priority scheduler.

While each of these requirements have been addressed
in the past, they have generally been applied to specific
problems in limited environments. When applied in iso-
lation in the context of a general-purpose system, they
fail to provide good time-sensitive performance. For ex-
ample, a high resolution timer mechanism is not useful
to user-level applications without a responsive kernel.
This probably explains why soft timers [2] did not export
their functionality to the user level through the standard
POSIX API. Conversely, a responsive kernel without ac-
curate timing has only a few applications. For example,
the low-latency Linux kernel [13] provides low latency
only when an external interrupt source such as an audio
card is used.

Similarly, a scheduler that provides good theoretical
guarantees is not effective when the kernel is not re-
sponsive or its timers are not accurate. Conversely, a
responsive kernel with an accurate timing mechanism is
unable to handle a large class of time-sensitive appli-
cations without an effective scheduler. Unfortunately,

these solutions have generally not been integrated: on
one hand, real-time research has developed good sched-
ulers and analyzed them from a mathematical point of
view, and on the other hand, there are real systems that
provide a responsive kernel but provide simplistic sched-
ulers that are only designed to be fast and efficient [12].
Real-time operating systems integrate these solutions for
time-sensitive tasks but tend to ignore the performance
overhead of their solutions on throughput-oriented ap-
plications [17]. Our goal is to support both types of ap-
plications well.

It is worth noting that latency due to system services,
such as the X server for graphical display [21] on a
Linux system, has the same components of kernel la-
tency described above. In fact, the simple scheduling
models presented above assume that tasks are indepen-
dent. In a real application, tasks can be interdependent
which can cause priority inversion problems [15]. For
example, in Section 4.2.1 we show that a multimedia
player that uses the X server for display can perform
sub-optimally due to priority inversion, even if the ker-
nel allocates resources correctly. The X server operates
on client requests in an event-driven manner and the han-
dling of each event is non-preemptible and generally in
FIFO order. As a result, time-sensitive clients expecting
service from the server observe latencies that depend on
the time to service previous client requests: the perfor-
mance of time-sensitive applications depends on not just
kernel support for such applications but also the design
of other system services. Thus in Section 3.3, we en-
hance the priority scheduler with techniques that solve
priority inversion.

In the next section, we present Time-Sensitive Linux
(TSL) that provides accurate timers, a responsive ker-
nel, and time-sensitive scheduling algorithms to support
the requirements highlighted above.

3 Implementing Time-Sensitive Linux

We propose three specific techniques, firm timers,
fine-grained kernel preemptibility and proportion-period
CPU scheduling for reducing the three components of
kernel latency. We have integrated these techniques in
the Linux kernel to implement TSL.

3.1 Firm Timers

Firm timers provide an accurate timing mechanism
with low overhead by exploiting the benefits associated

with three different approaches for implementing timers:
one-shot timers, soft timers and periodic timers.

Traditionally, commodity operating systems have imple-
mented their timing mechanism with periodic timers.
These timers are normally implemented with periodic
timer interrupts. For example, on Intel x86 machines,
these interrupts are generated by the Programmable In-
terval Timer (PIT), and on Linux, the period of these
interrupts is 10 ms. As a result, the maximum timer
latency is 10 ms. This latency can be reduced by re-
ducing the period of the timer interrupt but this solution
increases system overhead because the timer interrupts
are generated more frequently.

To reduce the overhead of timers, it is necessary to
move from a periodic timer interrupt model to a one-
shot timer interrupt model where interrupts are gener-
ated only when needed. Consider two tasks with periods
5 and 7 ms. With periodic timers and a period of 1 ms,
the maximum timer latency would be 1 ms. In addition,
in 35 ms, 35 interrupts would be generated. With one-
shot timers, interrupts will be generated at 5 ms, 7 ms,
10 ms, etc., and the total number of interrupts in 35 ms is
11. Also, the timer latency will be close to the interrupt
service time, which is relatively small. Hence, one-shot
timers avoid unnecessary interrupts and reduce timer la-
tency.

3.1.1 Firm Timers Design

Firm timers, at their core, use one-shot timers for effi-
cient and accurate timing. One-shot timers generate a
timer interrupt at the next timer expiry. At this time,
expired timers are dispatched and then finally the timer
interrupt is reprogrammed for the next timer expiry.
Hence, there are two main costs associated with one-
shot timers, timer reprogramming and fielding timer in-
terrupts. Unlike periodic timers, one-shot timers have
to be continuously reprogrammed for each timer event.
More importantly, as the frequency of timer events in-
creases, the interrupt handling overhead grows until it
limits timer frequency. To overcome these challenges,
firm timers use inexpensive reprogramming available
on modern hardware and combine soft timers (origi-
nally proposed by Aron and Druschel [2]) with one-shot
timers to reduce the number of hardware generated timer
interrupts. Below, we discuss these points in more detail.

While timer reprogramming on traditional hardware has
been expensive (and has thus encouraged using periodic
timers), it has become inexpensive on modern hardware
such as Intel Pentium II and later machines. For ex-

ample, reprogramming the standard programmable in-
terval timer (PIT) on Intel x86 is expensive because it re-
quires several slow out instructions on the ISA bus. In
contrast, our firm-timers implementation uses the APIC
one-shot timer present in newer Intel Pentium class ma-
chines. This timer resides on-chip and can be repro-
grammed in a few cycles without any noticeable perfor-
mance penalty.

Since timer reprogramming is inexpensive, the key over-
head for the one-shot timing mechanism in firm timers
lies in fielding interrupts. Interrupts are asynchronous
events that cause an uncontrolled context switch and re-
sult in cache pollution. To avoid interrupts, firm timers
use soft timers, which poll for expired timers at strategic
points in the kernel such as at system call, interrupt, and
exception return paths. At these points, the working set
in the cache is likely to be replaced anyway and hence
polling and dispatching timers does not cause significant
additional overhead. In essence, soft timers allow volun-
tary switching of context at “convenient” moments.

While soft timers reduce the costs associated with inter-
rupt handling, they introduce two new problems. First,
there is a cost in polling or checking for timers at each
soft-timer point. Later, in Section 4.3.2, we analyze this
cost in detail and show that it can be amortized if a cer-
tain percentage of checks result in the firing of timers.
Second, this polling approach introduces timer latency
when the checks occur infrequently or the distribution of
the checks and the timer deadlines are not well matched.

Firm timers avoid the second problem by combining
one-shot timers with soft timers by exposing a system-
wide timer overshoot parameter. With this parameter,
the one-shot timer is programmed to fire an overshoot
amount of time after the next timer expiry (instead of
exactly at the next timer expiry). In some cases, an in-
terrupt, system call, or exception may happen after a
timer has expired but before the one-shot APIC timer
generates an interrupt. At this point, the timer expira-
tion is handled and the one-shot APIC timer is again re-
programmed an overshoot amount of time after the next
timer expiry event. When soft-timers are effective, firm
timers repeatedly reprogram the one-shot timer for the
next timer expiry but do not incur the overhead associ-
ated with fielding interrupts.

The timer overshoot parameter allows making a trade-
off between accuracy and overhead. A small value of
timer overshoot provides high timer resolution but in-
creases overhead since the soft timing component of firm
timers are less likely to be effective. Conversely, a large
value decreases timer overhead at the cost of increased
maximum timer latency. The overshoot value can be

changed dynamically. With a zero value, we obtain one-
shot timers (or hard timers) and with a large value, we
obtain soft timers. A choice in between leads to our hy-
brid firm timers approach. This choice depends on the
timing accuracy needed by applications.

3.1.2 Firm Timers Implementation

Firm timers in TSL maintain a timer queue for each pro-
cessor. The timer queue is kept sorted by timer expiry.
The one-shot APIC timer is programmed to generate an
interrupt at the next timer expiry event. When the APIC
timer expires, the interrupt handler checks the timer
queue and executes the callback function associated with
each expired timer in the queue. Expired timers are re-
moved while periodic timers are re-enqueued after their
expiration field is incremented by the value in their pe-
riod field. The APIC timer is then reprogrammed to gen-
erate an interrupt at the next timer event.

The APIC is set by writing a value into a register which
is decremented at each memory bus cycle until it reaches
zero and generates an interrupt. Given a 100 MHz mem-
ory bus available on a modern machine, a one-shot timer
has a theoretical accuracy of 10 nanoseconds. However,
in practice, the time needed to field timer interrupts is
significantly higher and is the limiting factor for timer
accuracy.

Soft timers are enabled by using a non-zero timer over-
shoot value, in which case, the APIC timer is set an over-
shoot amount after the next timer event. Our current im-
plementation uses a single global overshoot value. It is
possible to extend this implementation so that each timer
or an application using this timer can specify its desired
overshoot or timing accuracy. In this case, only applica-
tions with tighter timing constraints cause the additional
interrupt cost of more precise timers. The overhead in
this alternate implementation involves keeping an addi-
tional timer queue sorted by the timer expiry plus over-
shoot value.

The data structures for one-shot timers are less efficient
than for periodic timers. For instance, periodic timers
can be implemented using calendar queues [5] which op-
erate in O(1) time, while one-shot timers require priority
heaps which require O(log(n)) time, where n is the num-
ber of active timers. This difference exists because peri-
odic timers have a natural bucket width (in time) that is
the period of the timer interrupt. Calendar queues need
this fixed bucket width and derive their efficiency by pro-
viding no ordering to timers within a bucket. One-shot
fine-grained timers have no corresponding bucket width.

To derive the data structure efficiency benefits of pe-
riodic timers, firm timers combine the periodic tim-
ing mechanism with the one-shot timing mechanism for
timers that need a timeout longer than the period of the
periodic timer interrupt. A firm timer for a long timeout
uses a periodic timer to wake up at the last period be-
fore the timer expiration and then sets the one-shot APIC
timer. Consequently, our firm timers approach only has
active one-shot timers within one tick period. Since the
number of such timers, n, is decreased, the data structure
implementation becomes more efficient. Note that oper-
ating systems generally perform periodic activity such as
time keeping, accounting and profiling at each periodic
tick interrupt and thus the dual wakeup does not add any
additional cost. An additional benefit of this approach is
that timer drift in firm timers is limited to a small fraction
of the period of the periodic timer interrupt assuming, as
in Linux, that the periodic interrupt is synchronized to
the global NTP protocol while the APIC timer is not.

The firm timer expiration times are specified as CPU
clock cycle values. In an x86 processor, the current time
in CPU cycles in stored in a 64 bit register. Timer expira-
tion values can be stored as 64 bit quantities also but this
choice involves expensive 64 bit time conversions from
CPU cycles to memory cycles needed for programming
the APIC timer. A more efficient alternative for time
conversion is to store the expiration times as 32 bit quan-
tities. However, this approach leads to quick roll over on
modern CPUs. For example, on a two GHz processor,
32 bits roll over every second. Fortunately, firm timers
are still able to use 32 bit expiration times because they
use periodic timers for long timeouts and use one-shot
timer expiration values only within a periodic tick.

We want to provide the benefits of the firm timer ac-
curate timing mechanism to standard user-level appli-
cations. These applications use the standard POSIX
interface calls such as nanosleep(), pause(),
setitimer(), select() and poll(). We have
modified the implementation of these system calls in
TSL to use firm timers without changing the interface
of these calls. As a result, unmodified applications auto-
matically get increased timer accuracy in our system as
shown in Section 4.2.

3.2 Fine-Grained Kernel Preemptibility

A kernel is responsive when its non-preemptible sec-
tions, which keep the scheduler from being invoked to
schedule a task, are small. There are two main reasons
why the scheduler may not be able to run. One is that
interrupts might be disabled. For example, if the timer

interrupt in Figure 1 is disabled, the timer task can only
enter the ready queue when the interrupt is re-enabled.
Another, potentially more significant reason is that an-
other thread may be executing in a critical section in
the kernel. For example, the timer task upon entering
the ready queue will be scheduled only when the other
thread exits its non-preemptible critical section.

The length of non-preemptible sections in a kernel de-
pends on the strategy that the kernel uses to guarantee
the consistency of its internal structures and on the inter-
nal organization of the kernel. Traditional commodity
kernels disable preemption for the entire period of time
when a thread is in the kernel, i.e., when an interrupt
fires or for the duration of a system call, except before
certain well-known long operations are invoked by the
kernel. For example, they generally allow preemption
before invoking disk I/O operations. Unfortunately, with
this structure, preemption latency under standard Linux
can be greater than 30 ms [1].

One approach that reduces preemption latency is explicit
insertion of preemption points at strategic points inside
the kernel so that a thread in the kernel explicitly yields
the CPU to the scheduler when it reaches these preemp-
tion points. In this way, the size of non-preemptible
sections is reduced. The choice of preemption points
depends on system call paths and has to be manually
placed after careful auditing of system code. This ap-
proach is used by some real-time versions of Linux, such
as RED Linux [17] and by Andrew Morton’s low-latency
project [13]. Preemption latency in such a kernel de-
creases to the maximum time between two preemption
points.

Another approach, used in most real-time systems, is
to allow preemption anytime the kernel is not access-
ing shared data structures. To support this fine level of
kernel preemptibility, shared kernel data must be explic-
itly protected using mutexes or spinlocks. The Linux
preemptible kernel project [11] uses this approach and
disables kernel preemption only when a spinlock is held
or an interrupt handler is executing to protect the consis-
tency of shared kernel data structures. In a preemptible
kernel, preemption latency is determined by the maxi-
mum amount of time for which a spinlock is held inside
the kernel and the maximum time taken by interrupt ser-
vice routines.

The preemptible kernel approach can have high preemp-
tion latency when spinlocks are held for a long time.
To address this problem, a third approach combines ex-
plicit preemption with the preemptible kernel approach
by releasing (and reacquiring) spin-locks at strategic
points in long code sections that access shared data

structures within spinlocks. This approach is used by
Robert Love’s lock-breaking preemptible kernel patch
for Linux [11].

Our previous evaluation [1] shows that these approaches
work fairly well for reducing preemption latency and
should be incorporated in the design of any responsive
kernel. As expected, the combined preemption approach
is slightly superior to the first two approaches and, con-
sequently, we have incorporated Robert Love’s lock-
breaking preemptible kernel patch in TSL for improv-
ing kernel responsiveness. Our experiments with real
applications on TSL in Section 4.2 show that a respon-
sive kernel complements an accurate timing mechanism
to help improve time-sensitive application performance.

3.3 CPU Scheduling

The CPU scheduling algorithm should ensure that time-
sensitive tasks obtain their correct allocation with low
scheduling latency. We use a combination of the
proportion-period and priority models, described in Sec-
tion 2, to schedule time-sensitive applications. The
proportion-period model provides temporal protection
to applications and allows balancing the needs of time-
sensitive applications with non-real time applications
but requires specification of proportion and period
scheduling parameters of each task. The priority model
has a simpler programming interface and provides com-
patibility with applications based on a POSIX sched-
uler, but assumes that the timing needs of tasks are well-
behaved.

3.3.1 Proportion-Period CPU Scheduling

For a single independent task, the simplest scheduling
solution is to assign the highest priority to the task. How-
ever, with this solution, a misbehaving task that does not
yield the CPU can starve all other tasks in the system.
A commodity time-sensitive system should provide tem-
poral protection to tasks so that misbehaved tasks that
consume “too much” execution time do not affect the
schedule of other tasks.

The proportion-period allocation model automatically
provides temporal protection because each task is allo-
cated a fixed proportion of the CPU at each task period.
The period of a task is related to some application-level
delay requirement of the application, such as the period
or the jitter requirements of a task. The proportion is the
amount of CPU allocation required every period for cor-
rect task execution. The proportion-period model can be

effectively implemented using well known results from
real-time scheduling research [10, 19].

We implemented a proportion-period CPU scheduler in
Linux by using real-time scheduling techniques (EDF
priority assignment) and by allowing a task to execute
as a real-time task for a time Q every period T. The re-
served time Q is equal to the product of the task’s pro-
portion P and its period T, and the end of each period is
used as a deadline. After executing for a time Q, the task
is blocked (or scheduled as a non real-time task) until its
next period. When two tasks have the same deadline, the
one with the smallest remaining capacity is scheduled to
reduce the average finishing time.

The proportion-period model and its variants have been
implemented and used extensively in the past [9]. While
several of these schedulers are more sophisticated that
ours, the main focus of this paper is to show that these
schedulers can be implemented accurately in TSL and
hence can improve the accuracy of scheduling analysis.

3.3.2 Priority CPU Scheduling

In the priority model, real-time priorities are assigned
to time-sensitive tasks based on application needs [10].
Since the fixed priority model does not provide tempo-
ral protection, TSL schedules fixed priority tasks in the
background with respect to proportion-period tasks. The
only exception to this rule is with shared server tasks be-
cause they can cause priority inversion, and we must use
a proper resource sharing protocol to bound its effects.
In general, priority inversion occurs when an application
is composed of multiple tasks that are interdependent.
For example, consider a simple example of a video ap-
plication consisting of a client and an X server. Let us
assume that the client has been assigned the highest pri-
ority because it is time-sensitive. It displays graphics by
requesting services from the X server. When it needs to
display a video frame, it sends the frame to the server
and then blocks waiting for the display to complete. If
the X server has a priority lower than the client’s priority,
then it can be preempted by another task with a medium
priority. Hence the medium priority task is delaying the
server and thus delaying the high-priority client task.

We use a variant of the priority ceiling protocol [19]
called the highest locking priority (HLP) protocol to
cope with priority inversion. The HLP protocol works
as follows: when a task acquires a resource, it automat-
ically gets the highest priority of any task that can ac-
quire this resource. In the example above, the display is
the shared resource and thus the X server must have the

highest priority among all time-sensitive clients access-
ing it. In this way, the X server cannot be preempted by
the medium priority task.

The HLP protocol is very general and works with across
multiple servers. Interestingly, this protocol handles
the FIFO ordering problem in server queues mentioned
in Section 3. Since servers have the highest priority
among all their potential clients, they are able to serve
each request immediately after it is enqueued and thus
the queue size is never more than one and the queuing
strategy is not relevant. After servicing the request, the
next highest-priority client is scheduled and the latency
caused by the server is minimized.

3.3.3 TSL Scheduling Model

If fixed priority tasks are the only ones accessing the X
server, then the server can be scheduled with the maxi-
mum fixed priority, but in the background with respect
to the proportion-period tasks. If, on the other hand,
proportion-period tasks require access to the X server,
then it must be scheduled with the highest priority in
the system. This is the exception to the rule of schedul-
ing fixed priority tasks in the background with respect
to proportion-period tasks. Due of this exception, the
shared server can jeopardize the proportion-period guar-
antee. Hence, the server must be “trusted”, i.e., its exe-
cution time must be known or at least bounded.

Using real-time terminology, the shared server causes
blocking time on proportion-period tasks. If this block-
ing time is known, it can be accounted in the guarantee
of proportion-period tasks [19, 3]. Otherwise, the only
safe thing to do is to leave some “unreserved CPU time”.
Hence, the admission test for proportion-period tasks is
not
����� �����

, but
�	�
� ������������	�

. We have found
that

������������ �
is a reasonable value and works well

in practice.1

4 Evaluation

This section describes the results of experiments we
performed to evaluate 1) the behavior of time-sensitive
applications running on TSL, and 2) the overheads of
TSL. In these experiments TSL is derived from Linux
version 2.4.16. It incorporates our firm timers, Robert
Love’s lock-breaking preemptible kernel patch and our

1Note that if the blocking times are unknown it is impossible to
provide a hard guarantee.

proportion-period scheduler. Our experiments focus on
evaluating the behavior of realistic time-sensitive appli-
cations running on a loaded general-purpose environ-
ment, and were run on a 1.5 GHz Pentium-4 Intel pro-
cessor with 512 MB of memory.

4.1 Micro Benchmarks

Before evaluating the impact of the latency reduction
techniques used in TSL on real applications, we per-
formed micro-benchmarks for evaluating the compo-
nents of kernel latency, as described in Section 2. These
components consist of timer latency, preemption latency
and scheduling latency. We evaluated the first two com-
ponents in isolation by running a time-sensitive process
that needs to sleep for a specified amount of time (using
the nanosleep() system call) and measures the time
that it actually sleeps. In our first set of experiments,
we evaluated timer latency and showed that it is 10 ms
in standard Linux while firm timers reduce it to a few
microseconds on TSL.

Next, we evaluated preemption latency when a num-
ber of different system loads are run in the background.
We compared preemption latency under Linux, An-
drew Morton’s Linux with explicit preemption [13] and
Robert Love’s preemptible kernel and lock-breaking
preemptible kernels [11]. The first interesting result was
that on standard Linux the worst case preemption latency
can be larger than 100 ms (when the kernel copies large
amounts of data between kernel and user space) but in
the common case preemption latency is less than 10 ms
and is generally hidden by timer latency. However, when
firm timers are used, preemption latency becomes more
visible, and it is easy for latencies to be larger than 5 ms.
Using the explicit preemption and kernel preemptibility
techniques described in Section 3.2, preemption latency
can be greatly reduced, and thus TSL provides a maxi-
mum kernel latency of less than 1 ms on our test machine
even when the system is heavily loaded. The full details
of these experiments and more results are presented in
our previous paper [1], which we have briefly summa-
rized here for the reader’s convenience.

4.2 Latency in Real Applications

After evaluating kernel latency in isolation through
micro-benchmarks, we performed experiments on two
real applications, mplayer and our proportion-period
scheduler which is a kernel-level application. We choose
audio/video synchronization skew as the latency met-

ric for mplayer. The latency metric for the proportion-
period scheduler is maximum error in the allocation and
period boundary.

4.2.1 Mplayer

Mplayer [14] is an audio/video player that can handle
several different media formats. Mplayer synchronizes
audio and video streams by using time-stamps that are
associated with the audio and video frames. The au-
dio card is used as a timing source and when a video
frame is decoded, its time-stamp is compared with the
time-stamp of the currently playing audio sample. If the
video time-stamp is smaller than the audio time-stamp
then the video frame is late and the video is immediately
displayed. Otherwise, the system sleeps until the time
difference between the video and audio time-stamps and
then displays the video.

On a responsive kernel with sufficient available CPU ca-
pacity, audio/video synchronization can be achieved by
simply sleeping for the correct amount of time. Unfor-
tunately, if the kernel is unresponsive or has a coarse
timing mechanism, mplayer will not be able to sleep for
the correct amount of time leading to poor audio/video
synchronization and high jitter in the inter-frame display
times. Synchronization skew and display jitter are cor-
related and hence this paper only presents results for au-
dio/video synchronization skew.

We compare the audio/video skew of mplayer between
standard Linux and TSL under three competing loads:
1) non-kernel CPU load, 2) kernel CPU load, and 3)
file-system load. For non-kernel load, a user-level CPU
stress test is run in the background. For kernel CPU
load, a large memory buffer is copied to a file, where
the kernel uses CPU to move data from the user to the
kernel space. Standard Linux does this activity in a non-
preemptible section. This load spends 90% of its exe-
cution time in kernel mode. For the file system load,
a large directory is copied recursively and the file sys-
tem is flushed multiple times to create heavy file system
activity. In each of these tests, mplayer is run for 100
seconds at real-time priority.

Non-kernel CPU load Figure 2 shows the audio/video
skew in mplayer on Linux and on TSL when a CPU
stress test is the competing load. This competing load
runs an infinite loop consuming as much CPU as possi-
ble. Figure 2(a) shows that for standard Linux the maxi-
mum skew is large and ranges from -5 ms to 50 ms when
the X server is run at a non-real time priority. Although

not shown here, mplayer compensates for Linux’s 10 ms
timer resolution, and hence the skew under Linux with-
out any competing load lies between -5 ms to 5 ms. Fig-
ure 2(b) shows that the skew for TSL, when X is run at
a non-real time priority, is still as large as 35 ms. How-
ever, in this case, mplayer does not have to compensate
for coarse timer resolution and thus most skew points lie
close to 0 ms. Finally, Figure 2(c) shows that the skew
for TSL improves considerably and is less than 250 us
when the X server runs at real-time priority. The real-
time priority value of X is the same as the priority as-
signed to mplayer.

These figures show that TSL works well on a non-kernel
CPU load as long as the HLP protocol, described in Sec-
tion 3.3.2, is used to assign priorities to time-sensitive
tasks and to server tasks with the shared resources. Note
that Linux with the X server at real-time priority still has
a skew between -5 ms to 5 ms because of the timer reso-
lution (not shown here).

As a result of this experiment, the rest of the experiments
in this section are run with both mplayer and X at real-
time priority to avoid any user-level priority inversion
effects.

Kernel CPU Load The second experiment compares
the audio/video skew in mplayer between Linux and
TSL when the background load copies a large 8 MB
memory buffer to a file with a single write system
call. Figure 3(a) shows that the audio/video skew is
as large as 90000 � s for Linux. In this case, the ker-
nel moves the data from the user to the kernel space
in a non-preemptible section. Figure 3(b) shows that
the maximum skew is less than 400 � s for TSL. This
improvement occurs as a result of improved kernel pre-
emptibility for large write calls in TSL.

File System Load The third experiment compares the
audio/video skew in mplayer between Linux and TSL
when the background load repeatedly copies a com-
piled Linux kernel sources directory recursively and then
flushes the file system. This directory has 13000 files
and 180 MB of data and is stored on the Linux ext2
file system. The kernel uses DMA for transferring disk
data. Figure 4(a) shows that the skew under Linux can be
as high as 12000 � s while Figure 4(b) shows that skew is
less than 500 us under TSL. This result shows that TSL
can provide low latencies even under heavy file-system
and disk load.

-10000

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

a) Linux, X server non-real time

0

5000

10000

15000

20000

25000

30000

35000

40000

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

(b) TSL, X server non-real time

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

(c) TSL, X server real-time

Background load is a CPU stress test that run an empty loop. Note that the three figures have different scales, and
that the maximum skew in Figure (c) is much smaller than the maximum skew in the other two cases.

Figure 2: Audio/Video Skew on Linux and on TSL with user-level CPU load.

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

Firm Timers

(a) Linux

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

Firm Timers

(b) TSL

Background load copies a 8 MB buffer from user level to a file with a single write call. Note that the two figures
have different scales, and that the maximum skew in Figure (b) is much smaller than in Figure (a).

Figure 3: Audio/Video Skew on Linux and on TSL with kernel CPU load.

-20000

0

20000

40000

60000

80000

100000

120000

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

(a) Linux

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

Video Frame Number

Audio/Video Synchronization

(b) TSL

Background load repeatedly copies a compiled Linux kernel sources directory recursively and then flushes the file
system. Note that the two figures have different scales, and that the maximum skew in Figure (b) is much smaller
than in Figure (a).

Figure 4: Audio/Video Skew on Linux and TSL with file-system load.

Comparison with Linux-SRT We also performed the
previous experiments on Linux-SRT [6], which im-
proves support for real-time applications by providing
finer-grained timing than standard Linux, a reservation
scheduler, and a modification to the X server to prioritize
graphics rendering based on the scheduling parameters
of tasks. Figure 5 shows the results of the experiments.
For the non-kernel CPU load, the audio/video skew in
Linux-SRT, when the X server was run at real-time pri-
ority, was generally less than 2 ms although the worst
case latency is 7 ms. In this test, latency is dominated
by timer latency, which is 1 ms on Linux-SRT. With
the kernel CPU load test, the worst case latency was
60 ms, while the file-system test produced worst case
latencies of 30 ms. These latter tests stress kernel pre-
emption while Linux-SRT is a non-preemptive kernel.
These results show that real-time scheduling and more
precise timers are insufficient for time-sensitive applica-
tions, and that a responsive kernel is also required.

4.2.2 Proportion-Period Scheduler

As explained earlier, the proportion-period sched-
uler provides temporal protection when multiple time-
sensitive tasks are run together. Our original motivation
for implementing the TSL system was to provide an ac-
curate implementation of a proportion-period scheduler.
We use this scheduler to provide a fine-grained reser-
vation mechanism for a higher-level feedback-based
real-rate scheduler [20]. The problem with standard
proportion-period scheduling is that it is difficult to cor-
rectly estimate a thread’s proportion and period require-
ments in a general-purpose environment. To address
this problem, the real-rate scheduler uses an application-
specific progress rate metric in time-sensitive tasks to
automatically assign correct allocations to such tasks.
For example, the progress of a producer or consumer of
a bounded buffer can be inferred by measuring the fill-
level of the bounded buffer. If the buffer is full, the con-
sumer is falling behind and needs more resources while
the producer needs to be slowed down.

The accuracy of allocating resources using a feedback
controller depends, among other factors, on the accu-
racy of actuating proportions. There are three sources
of inaccuracy in our proportion-period scheduler im-
plementation on standard Linux: 1) the period bound-
aries are quantized to multiples of the timer resolution
or 10 ms, 2) the policing of proportions is also limited
to the same value because timers have to be used to im-
plement policing, and 3) heavy loads cause long non-
preemptible paths and thus large jitter in period bound-
aries and proportion policing. These inaccuracies intro-

duce noise in the system that can cause large allocation
fluctuations even when the input progress signal can be
captured perfectly and the controller is well-tuned.

The proportion-period scheduler implementation on
TSL uses firm-timers for implementing period bound-
aries and proportion policing. To evaluate the accuracy
of this scheduler when multiple time-sensitive applica-
tions are scheduled together, we ran two time-sensitive
processes with proportions of 40% and 20% and periods
of 8192 � s and 512 � s respectively.2 These processes
were run first on an unloaded system to verify the cor-
rectness of the scheduler. Then, we evaluated the sched-
uler behavior when the same processes were run with
competing file system load (described in Section 4.2.1).
In this experiment each process runs a tight loop that
repeatedly invokes the gettimeofday system call to
measure the current time and stores this value in an ar-
ray. The scheduler behavior is inferred at the user-level
by simply measuring the time difference between suc-
cessive elements of the array.

Table 1 shows the maximum (not the average) deviation
in the proportion allocated and the period boundary for
each of the two processes over the entire experiment.
This table shows that the proportion-period scheduler al-
locates resources with a very low deviation of less than
25 � s on a lightly loaded system. Under heavy file sys-
tem load the results show larger deviations. These de-
viations occur because execution time is “stolen” by the
kernel interrupt handling code which runs at a higher
priority than user-level processes in Linux. The maxi-
mum period deviation of 534 � s gives a lower bound on
the latency tolerance of time-sensitive applications. For
example, soft modems require periodic processing every
4 ms to 16 ms [8] and thus could be supported on TSL at
the application level even under heavy file system load.

Figure 1 shows that while the maximum amount of time
stolen is 490 � s and 20 � s for tasks 1 and 2, this time
is over different periods. In particular, the interrupt han-
dling code steals a maximum of 4-6% allocation time
from the proportion-period processes. Note that this
stolen time is due to interrupts other than the APIC timer
interrupts since we maintain precise CPU cycle counter
times for accounting purposes.

Currently, we provide the value of the stolen time to
proportion-period applications or our feedback sched-
uler so that they can deal with it, for example by increas-
ing thread allocations. This choice was motivated by

2The current proportion-period scheduler allows task periods that
are multiples of 512 � s. While this period alignment restriction is not
needed for a proportion-period scheduler, it simplifies feedback-based
adjustment of task proportions.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000

A
ud

io
/V

id
eo

 S
ke

w
 (

us
ec

)

Video Frame Number

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000

A
ud

io
/V

id
eo

 S
ke

w
 (

us
ec

)

Video Frame Number

(a) User-level CPU load

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000

A
ud

io
/V

id
eo

 S
ke

w
 (

us
ec

)

Video Frame Number

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000

A
ud

io
/V

id
eo

 S
ke

w
 (

us
ec

)

Video Frame Number

(b) Kernel CPU load

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500 3000

A
ud

io
/V

id
eo

 S
ke

w
 (

us
ec

)

Video Frame Number

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500 3000

A
ud

io
/V

id
eo

 S
ke

w
 (

us
ec

)

Video Frame Number

(c) File-system load

Figure 5: Audio/Video Skew on Linux-SRT with user-level CPU load, kernel CPU load and file-system load.

No Load File System Load

Max Proportion Max Period Max Proportion Max Period

Deviation Deviation Deviation Deviation

Thread 1

Proportion: 40%, 3276.8 � s 0.3% (� 25 � s) 5 � s 6% (� 490 � s) 534 � s

Period: 8192 � s

Thread 2

Proportion: 20%, 102.4 � s 0.7% (� 3 � s) 10 � s 4% (� 20 � s) 97 � s

Period: 512 � s

Table 1: Deviation in proportion and period when two processes are run under the proportion-period scheduler in
TSL.

the idea that the feedback scheduler should be informed
about scheduling “errors” as much as possible, which
was especially important because, before TSL, these er-
rors were significantly larger. In the future, we plan
to investigate improving the performance of proportion-
period scheduling in the presence of heavy file system
load by explicitly scheduling interrupt processing.

4.3 System Overhead

In this section, we focus on the performance overheads
of TSL. There are two main sources of overhead in TSL
as compared to standard Linux: 1) the cost of executing
code at the newly inserted preemption points, and 2) the
cost of executing firm timers.

4.3.1 Checking for Preemption

At each preemption point, there is a cost associated
with checking for preemption, and then if scheduling is
needed, there is a cost for executing preemption. We
do not explicitly measure the second cost because it de-
pends on the workload. However, one instance where

we expect that more preemption will occur in TSL is
when firm timers are used, since firm timers can cause
preemption at a finer granularity. Hence, we discuss this
cost later when we present the overhead of firm timers.

We measured the cost of the additional preemption
checks in TSL by running a set of benchmarks that are
known to stress preemption latency in Linux [1]. In
particular, we ran three separate tests, a memory access
test, a fork test and a file-system access test. Note that
these tests are designed to stress preemption checks and
thus measure their worst-case overhead. We expect that
these checks will have a smaller impact on real appli-
cations. The memory test sequentially accesses a large
integer array of 128 MB and thus produces several page
faults in succession. The fork test creates 512 processes
as quickly as possible. The file-system test repeatedly
copies data from a 2 MB user buffer to a file that is 8 MB
long and flushes the buffer cache. By running these
tests, we expect to hit the various additional preemption
checks that exist in TSL as compared to Linux. We mea-
sured the ratio of the completion times of these tests un-
der TSL and under Linux in single user mode. Since no
other process is running, these tests do not cause addi-
tional preemption and thus we are able to evaluate the
cost of checking the additional preemption points. Firm

timers were disabled in this experiment because we did
not want to measure the cost of checking for soft timers.

The memory test under TSL has an overhead of
��� �����

���
	��
percent while the fork test has an overhead of������������ ���

percent. The file system test did not have
a significant overhead (in terms of confidence intervals).
These tests indicate that the overhead of checking for
preemption points in TSL compared to standard Linux
is very low.

4.3.2 Firm Timers

The second cost in TSL is associated with executing firm
timers. Firm timers provide an accurate timing mecha-
nism which allows high frequency timer programming.
However, increasing the timer frequency can increase
system overhead because each timer event can cause a
one-shot timer interrupt, which results in cache pollu-
tion. To mitigate this overhead, our firm timers imple-
mentation combines one-shot (or hard) timers and soft
timers. In this section, we present experiments to high-
light the advantages of firm timers as compared to hard
timers and show that the overhead of firm timers on
throughput-based applications is small even when firm
timers are used heavily.

The cost of firm timers can be broken into three parts:
1) costs associated with hard timers exclusively, 2) costs
that hard and soft timers have in common, and 3) costs
associated with soft timers exclusively. The first cost
occurs due to interrupt handling and the resulting cache
pollution. The second cost lies in manipulating and dis-
patching timers from the timer queue and executing pre-
emption for an expired timer thread. The third cost is
in checking for soft timers. Note that the cost of exe-
cuting preemption is present in both cases and thus the
experiments presented below account for this cost when
firm timers are used. Based on this breakup, it should
be obvious that the soft timing component of firm timers
will have lower overhead than hard timers if the cost for
checking for timer expiry is less than the additional cost
of interrupt handling in the pure hard timer case. This
relation is derived in more detail below.

We will first compare the performance overhead of firm
timers under TSL versus standard timers in Linux. This
comparison is performed using multiple applications
that each require 10 ms periodic timing. This case is
favorable to Linux because the periodic timing mecha-
nism in Linux synchronizes all the timers and generates
one timer interrupt for all the threads, although at the
expense of timer latency. In contrast, firm timers pro-

vide accurate timing but can generate multiple interrupts
within each 10 ms period. Then we will evaluate the
performance of firm timers for applications that require
tighter timing than standard Linux can support.

In the following experiments, we measure the execu-
tion time of a throughput-oriented application when one
or more time-sensitive processes are run in the back-
ground to stress the firm timers mechanism. We imple-
ment a time-sensitive process as a simple periodic task
that wakes up on a signal generated by a firm timer (us-
ing the setitimer() system call), measures the cur-
rent time and then immediately goes to sleep each pe-
riod. In the rest of this section, we refer to this task as
a timer process. For the throughput application, we se-
lected povray, a ray-tracing application and used it to
render a standard benchmark image called skyvase.
We chose povray because it is a compute intensive job
with a large memory footprint. Thus our experiments
account for the effects of cache pollution due to the fine-
grained timer interrupts. The performance overhead of
firm timers is defined as the ratio of the time needed
by povray to render the image in TSL versus the time
needed to render the same image in standard Linux.

Comparison with Standard Linux We first compare
the performance overhead of firm timers on TSL with
standard timers running on Linux. To do so, we run
timer processes with a 10 ms period because this period
is supported by the tick interrupt in Linux. As explained
above, we expect additional overhead in the firm timers
case because, unlike with the periodic timers in Linux,
the expiration times of the firm timers are not aligned.
To stress the firm timers mechanism and clearly estab-
lish the performance difference, we ran two experiments
with a large number of 20 and 50 timers processes.

Figure 6 shows the performance overhead of firm timers
as compared to standard Linux timers when 20 timer
processes are running simultaneously. This figure shows
the overhead of TSL with hard timers, firm timers with
different overshoot values (0 � s, 50 � s, 100 � s, 500 � s)
and pure soft timers. Each experiment was run 8 times
and the 95% confidence intervals are shown at the top
of each bar. The figure shows that pure soft timers have
an insignificant overhead compared to standard Linux
while hard and firm timers have a 1.5 percent overhead.
In this case, increasing the overshoot parameter of firm
timers produces only a small improvement.

Figure 7 shows the results of the same experiment but
with 50 timers. Once again soft timers have an insignif-
icant overhead. In addition, the decrease in overhead
of firm timers with increasing overshoot is more pro-

0.995

1

1.005

1.01

1.015

1.02

linux hard firm 0 firm 50 firm 100 firm 500 soft

N
or

m
al

iz
ed

 F
in

is
hi

ng
 T

im
es

povray with 20, 10 ms period timers

Figure 6: Overhead of firm timers in TSL as compared
to standard Linux with 20 timer processes.

0.995

1

1.005

1.01

1.015

1.02

linux hard firm 0 firm 50 firm 100 firm 500 soft

N
or

m
al

iz
ed

 F
in

is
hi

ng
 T

im
es

povray with 50, 10 ms period timers

Figure 7: Overhead of firm timers in TSL as compared
to standard Linux with 50 timer processes.

nounced in this case. The reason is that with increas-
ing number of timers, timers are more likely to fire due
to soft timers than the more expensive hardware APIC
timer.

Interestingly, in Figure 7, the povray program com-
pletes faster on TSL with 500 � s firm-timer overshoot
than on a standard Linux kernel. The reason for this ap-
parent discrepancy is that the standard Linux scheduler
does not scale well with large numbers of processes. On
Linux, all 50 processes are woken at the same time (at
the periodic timer interrupt boundary) and thus Linux
has to schedule 50 processes at the same time. In com-
parison, on a firm timers kernel the 50 timers have pre-
cise 10 ms expiration times and are not synchronized.
Hence, the scheduler generally has to schedule one or
a small number of processes when a firm timer expires.
In this case, the overhead of the scheduler on standard
Linux dominates the overhead of the firm timers mecha-
nism in TSL.

-2

0

2

4

6

8

10

hard firm 0 firm 50 firm 100 firm 500Im
pr

ov
em

en
t i

n
Fi

ni
sh

in
g

T
im

es
 (

%
) povray with 20, 1 ms period timers

Figure 8: Comparison between hard and firm timers with
different overshoot values on TSL.

Overhead at High Frequencies We also performed
the same experiment but with periodic processes run-
ning at higher frequencies to simulate time-sensitive ap-
plications that have periodic timing requirements tighter
than standard Linux can support. Figure 8 shows the im-
provement in time to render the image when 20 periodic
processes are run with a period of 1 ms. We do not com-
pare these results with Linux because Linux does not
support 1 ms timer accuracy. Similarly, pure soft timers
are not shown in this figure because they do not guaran-
tee that each timer fires every 1 ms. This figure shows
the improvement in finishing time of povray with firm
timers with different overshoot values compared to hard
timers. The benefit of the firm timers mechanism for
improving throughput becomes more obvious with in-
creasing overshoot when the process periods are made
shorter. For example, there is an 8% improvement with
a 500 � s overshoot value while the corresponding im-
provement in Figures 6 and 7 is 0.5% and 1.6%.

Discussion The previous experiments show that pure
hard timers have lower overhead in some cases and firm
timers have lower overhead in other cases. This result
can be explained by the fact that there is a cost asso-
ciated with checking whether a soft timer has expired.
Thus, the soft timers mechanism is effective in reducing
overhead when enough of these checks result in the fir-
ing of a soft timer. Otherwise the firm-timer overhead as
compared to pure hard timers will be higher.

The previous behavior can be explained as follows. Let���
be the total number of timers that must fire in a

given interval of time,
���

the number of hard timers
that fire,

���
the number of soft timers that fire (hence,���	�
��������

) and
���

the number of checks for soft
timers expirations. Let � � be the cost for firing a hard
timer, � � be the cost of firing a soft timer, and � � be the

cost of checking if some soft timer has expired. Note
that we described the components of these costs in the
beginning of this section. The total cost of firing firm
timers is ������������	
��	��������� . If pure hard timers
are used then the cost is ��	
��� . Hence, firm timers re-
duce overhead if ������
����	��	���������������	
��� . After
substituting ��������	����� , this equation simplifies to
� ��� � � � � ���"! � 	�# � ��$.
Hence, when the ratio of the number of the soft timers
that fire to the number of soft timer checks is suffi-
ciently large (i.e., it is larger than � ���%! � 	�# � ��$), then
firm timers are effective in reducing the overhead of
one-shot timers. From our experiments, we have ex-
trapolated that � 	 �'&)(s, � � �+*�(s, and � � �,%- */.�(s, hence the firm timers mechanism becomes ef-
fective when �� � �� � ,0- *1. �"! & # * $ � ,0- ,32 * , or when
more than 2.1% of the soft timer checks result in the fir-
ing of a soft timer.

Note that the number of checks �4� depends on the
amount of interrupts and system calls that occur in the
machine, whereas the number of soft timers that fire � �
depends on how the checks and the timers’ deadlines
are distributed in time and the overshoot value. Aron
and Druschel’s original work on soft timers [2] studied
these distributions for a number of workloads. Their
results show that for many workloads the distributions
are such that checks often occur close to deadlines (thus
increasing �� � ���), although how close is very work-
load dependent. Firm timers have the benefit of assuring
low timer latency even for workloads with poor distri-
butions, yet retaining the performance benefits of soft
timers when the workload permits.

Note that soft timer checks are normally placed at ker-
nel exit points where kernel critical sections end and
where the scheduler function can be invoked. The use
of a preemptible kernel design in TSL reduces the gran-
ularity of non-preemptible sections in the kernel and po-
tentially allows more frequent soft timer checks at the
end of spinlocks and hence can provide better timing ac-
curacy. The key issue here is the overhead of this ap-
proach, which depends on the ratio �4� � �� , i.e., whether
sufficient additional soft timers fire as a result of the ad-
ditional soft checks. While our current firm timer imple-
mentation does not check for timers at the end of each
spinlock, we plan to evaluate this approach in the future.

5 Conclusions

This paper describes the design and implementation of a
Time-Sensitive Linux (TSL) system that can support ap-
plications requiring fine-grained resource allocation and
low-latency response. The three key techniques that we
have investigated in the context of TSL are firm timers
for accurate timing, fine-grained kernel preemptibility
for improving kernel responsiveness and proportion-
period scheduling for providing precise allocations to
tasks. Our experiments show that integrating these tech-
niques helps provide allocations to time-sensitive tasks
with a variation of less than 400 us even under heavy
CPU, disk and file system load. We show that the over-
head of TSL on throughput-oriented applications is low
and thus such a system is truly a general-purpose system
since it can be used effectively for both time-sensitive
and traditional interactive and long-running batch appli-
cations.

Although the first results presented in this paper are
promising, TSL still need further investigation, since
there are open issues related to interrupt service times,
fine-grained accounting of time, latencies caused by net-
work processing, and firm timers performance. For
firm timers in particular, we are interested in investi-
gating whether real workloads commonly lead to the
��� � ��� �65 condition under which firm timers are ef-
fective.

Acknowledgments

Andrew Black, Wu-chi Feng and Wu-chang Feng pro-
vided many useful suggestions on the initial draft of the
paper. We would like to thank the reviewers, especially
our shepherd, Timothy Roscoe, for taking the time and
suggesting numerous improvements to the paper.

References

[1] Luca Abeni, Ashvin Goel, Charles Krasic, Jim Snow,
and Jonathan Walpole. A measurement-based analysis
of the real-time performance of the Linux kernel. In Real
Time Technology and Applications Symposium (RTAS),
September 2002.

[2] Mohit Aron and Peter Druschel. Soft timers: Efficient
microsecond software timer support for network process-
ing. ACM Transactions on Computer Systems, August
2000.

[3] T. P. Baker. Stack-based scheduling of realtime pro-
cesses. Journal of Real-Time Systems, pages 67–99,
1991.

[4] Michael Barabanov and Victor Yodaiken. Real-time
Linux. Linux Journal, March 1996.

[5] Randy Brown. Calendar queues: A fast O(1) priority
queue implementation for the simulation event set prob-
lem. CACM, 31(10):1220–1227, October 1988.

[6] Stephan Childs and David Ingram. The Linux-SRT inte-
grated multimedia system: Bringing QoS to the desktop.
In Real-Time Technology and Applications Symposium,
May 2001.

[7] Intel Corporation, editor. Pentium Pro Family Devel-
oper’s Manual, chapter 7.4.15. Intel, December 1995.

[8] Michael B. Jones and Stefan Saroiu. Predictability re-
quirements of a soft modem. In ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer Sys-
tems, Cambridge, MA, June 2001.

[9] Ian M. Leslie, Derek McAuley, Richard Black, Timothy
Roscoe, Paul T. Barham, David Evers, Robin Fairbairns,
and Eoin Hyden. The design and implementation of an
operating system to support distributed multimedia ap-
plications. IEEE Journal of Selected Areas in Communi-
cations, 14(7):1280–1297, 1996.

[10] C. L. Liu and J. Layland. Scheduling algorithm for mul-
tiprogramming in a hard real-time environment. Journal
of the ACM, 20(1):46–61, Jan 1973.

[11] Robert Love. The Linux kernel preemption project.
http://kpreempt.sf.net.

[12] Montavista Software - Powering the embedded revolu-
tion. http://www.mvista.com.

[13] Andrew Morton. Linux scheduling latency.
http://www.zip.com.au/~akpm/linux/
schedlat.html.

[14] Mplayer - Movie player for linux. http://www.
mplayerhq.hu.

[15] Jason Nieh, James G. Hanko, J. Duane Northcutt, and
Gerard A. Wall. SVR4 UNIX scheduler unacceptable for
multimedia applications. In NOSSDAV, November 1993.

[16] Jason Nieh and Monica Lam. The design, implementa-
tion and evaluation of SMART: A scheduler for multi-
media applications. In Symposium on Operating Systems
Principles, October 1997.

[17] Shui Oikawa and Raj Rajkumar. Linux/RK: A portable
resource kernel in Linux. In IEEE Real-Time Systems
Symposium, December 1998. Work-In-Progress Session.

[18] S. Savage and H. Tokuda. RT-Mach timers: Exporting
time to the user. In USENIX 3rd Mach Symposium, April
1993.

[19] Lui Sha, Raghunathan Rajkumar, and John Lehoczky.
Priority inheritance protocols: An approach to real-
time synchronization. IEEE Transactions on Computers,
39(9):1175–1184, September 1990.

[20] David Steere, Ashvin Goel, Joshua Gruenberg, Dy-
lan McNamee, Calton Pu, and Jonathan Walpole.
A feedback-driven proportion allocator for real-rate
scheduling. In Operating Systems Design and Implemen-
tation, February 1999.

[21] The X window system. http://www.x.org.

[22] Yu-Chung and Kwei-Jay Lin. Enhancing the real-time
capability of the Linux kernel. In IEEE Real Time Com-
puting Systems and Applications, October 1998.

