
An Investigation of the Call Integrity of the Linux
System
Dayle G. Majors

University of Missouri - Rolla

Abstract— The internal calls of a version of the Linux operating
system were evaluated with the assistance of ITS4 source code
scanner to identify security exposures such as buffer overflows.
Some vulnerabilities were identified and some suggestions for
improvements made.

I. INTRODUCTION

The research discussed here was performed at the University
of Missouri Rolla under the guidance of Dr. Ann Miller, Tang
Professor Computer Engineering, with input from Dr. Bruce
McMillin, Professor Computer Science. The Linux kernel calls
were analyzed to determine if they presented the potential
for exploitable security vulnerabilities. A version of Linux
had been certified under the Department of Defense Trusted
Computer System Evaluation Criteria[1], also known as the
DOD Orange Book. However, an evaluation of a generally
available commercial version was desirable.

The Orange Book stated, as a point of concern for security
and integrity, that calls made by users should be evaluated. It
specified what should or should not happen. The calls internal
to the operating system were used to accomplish the task
specified by the external calls. Very infrequently could a task
be accomplished without calling other functions. Calls passed
data to the called routine and usually expected a response. If
the passed data were larger than the called routine expected,
the called routine could overflow a buffer.

II. KERNEL ANALYSIS

Calls could be identified easily but the volume would be
very large. To assist in the analysis, all of the Linux kernel
data was processed by a package developed by John Viega and
Gary McGraw called It’s the Software Stupid Security Scanner,
abbreviated ITS4. ITS4: A Static Vulnerability Scanner for C
and C++[2] discussed the package. ITS4 contained a list of
calls that were known to be potential risks in C or C++. The
printk function was added to this list since its parameters were
essentially the same as the printf function. This reduced the
number of calls that would need to be examined manually.

For each call to a function in ITS4’s list of functions with
integrity concerns, the call was assigned a severity based on
the call parameters. This severity reflects how much potential
existed for the suspected vulnerability to cause problems. Only
the higher severity calls were examined. The list of functions
included file open functions, random number functions, task
initiation functions and string processing functions including
printf and printk. The kernel code contained few file opens
but many device opens. Device opens did not have the same

exposure to be exploited as file opens. Most of the calls
highlighted by ITS4 involved variable length string processing.

III. OBSERVATIONS

In evaluating the highlighted calls, it was apparent that
the Linux developers were not significantly concerned with
ensuring their code did not have exploitable security vulner-
abilities. Certainly kernel code should be coded so as not to
have performance problems, but there is a fine balance that
must be maintained between performance and integrity. They
frequently did not verify the length of a string before calling
sprintf. Such calls could modify the data beyond the receiving
buffer. This would be a buffer overflow. By using snprintf
instead of sprintf such modifications could be prevented. If that
is perceived as a performance problem then perhaps snprintf
should be improved, or it least shown not to have significant
performance penalties.

Another example of a potential security vulnerability was
a kernel functions that used the memcpy function to move
parameter data from the application area to kernel area. To
accomplish this move, the kernel function used the length
of the data in the application area to allocate space in the
kernel area. The memcpy function then used the length of the
receiving area to move the data. That receiving area was passed
to another function as a parameter. If this called program did
not expect an input that large, then the called program could
fail.

IV. CONCLUSIONS

There were about 3 percent of the kernel calls, excluding
device drivers, which contained variable length strings as
parameters where the function had not insured that the call
would not overflow a buffer. Most of these calls could be fixed.
Whether all have been fixed in the certified Fermi RedHat
v7.3.1 version of Linux is not known.

ACKNOWLEDGEMENT

This research was partially supported by a Graduate Assis-
tantship in Areas of National Need (GAANN) from the United
States Department of Education.

REFERENCES

[1] Department of Defense Trusted Computer System Evaluation Crite-
ria, United States National Security Agency, Washington, District of
Columbia, Dec. 1985.

[2] J. Viega, J. T. Bloch, T. Kohno, and G. McGraw, “ITS4: A static
vulnerability scanner for C and C++ code,” in 16th Annual Computer
Security Applications Conference. ACM, Dec. 2000. [Online]. Available:
ftp://ftp.rstcorp.com/pub/papers/its4.pdf

Copyright 2003 Chillarege Press Fast Abstract ISSRE 2003


