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Abstract 

This thesis introduces a novel approach to performance evaluation, called 

application-specific benchmarking, and presents techniques for designing and 

constructing meaningful benchmarks. 

A traditional benchmark usually includes a fixed set of programs that are run on 

different systems to produce a single figure of merit, which is then used to rank system 

performance. This approach often overlooks the relevance between the benchmark 

programs and the real applications they are supposed to represent. When the behaviors of 

the benchmark programs do not match those of the intended application, the benchmark 

scores are uninformative, and sometimes can be misleading. Furthermore, with the rapid 

pace of application development, it is impractical to create a new standard benchmark 

whenever a new “killer” application emerges. 

The application-specific benchmarking approach incorporates characteristics of 

the application of interest into the benchmarking process, yielding performance metrics 

that reflect the expected behavior of a particular application across a range of different 

platforms. It also allows benchmarks to evolve with applications and consequently the 

benchmarks are always up-to-date. 

This thesis applies the application-specific benchmarking methodology to a 

variety of domains covering Java Virtual Machines, garbage collection, and operating 

system. The result is a collection of benchmark suites that comprise the HBench 

framework, including HBench:Java, HBench:JGC, and HBench:OS. 
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This thesis demonstrates HBench’s superiority in predicting application 

performance over a more conventional benchmarking approach. It is shown that 

HBench:Java is able to correctly predict the rank of running times of three commercial 

applications on a variety of Java Virtual Machine implementations. In the realm of 

garbage collection, the predicted garbage collection times for a stop-the-world, mark-

sweep garbage collector closely match the actual times. In the domain of operating 

system, it is demonstrated that HBench:OS can be used to analyze performance 

bottlenecks and to predict performance gains resulting from a common optimization. 
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Chapter 1 
Introduction 

 “In the computer industry, there are three kinds of lies: lies, damn 

lies, and benchmarks.” 

- Unknown 

A benchmark is defined as a set of programs (or micro-programs) that are run on 

different systems to give a measure of their performance. Results of standard 

benchmarks, therefore, reflect only the performance of the set of programs on the system 

being measured. In reality, there is often a mismatch between programs included in 

standard benchmarks and real applications. Consequently, standard benchmark results 

can be uninformative, and sometimes even misleading. We identify two sources of this 

gap: 

First, the set of programs included in a standard benchmark is fixed. However, 

applications used by end-users can vary widely. Frequently, the programs included in 

standard benchmarks are not representative of real applications that end-users care about. 

The problem can be made worse by vendor over-optimization. As benchmark rating 

becomes a more important factor in the buying decision, vendors design their systems 

around popular benchmarks. Some vendors even over-optimize their systems for certain 

standard benchmark to gain a few percentages points in the benchmark score, often at the 

expense of the performance of real applications. Such incidents have been reported in 

graphics benchmarks, where graphics card vendors employ an “enhancement” technique 

to improve their results in the WinBench [62] Graphics WinMark benchmark, while 
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severely hampering the performance of other devices in realistic situations [26]. The fact 

that the set of programs included in standard benchmarks is generally fixed facilitates this 

over-optimization practice, making it even harder to judge the true performance of a 

system in the presence of a real application. It is therefore not surprising that many 

computer professionals take a cynical view of benchmarks. 

Secondly, as the trend of exponential growth in hardware speed and in software 

complexity continues, benchmark development has been lagging behind due to both 

economic and technical reasons. The cost of developing benchmarks has been increasing 

steadily due to the increasing complexity of applications. As a result benchmark 

development cycles have lengthened. On the other hand, fierce competitions force 

companies to roll out new versions of applications at an accelerated rate. The implied 

result is that standard benchmarks often lose out in the technology race and “represent 

yesterday’s workloads”, as observed by Dixit in a lecture given at the 2001 High 

Performance Computing Architecture conference [14]. The SPEC WEB99 [55] 

benchmark is a good example. SPEC WEB99 is a standard benchmark for measuring web 

server performance and is endorsed by major web-server vendors. The first version of 

SPEC WEB, SPEC WEB96, was introduced in 1996, three years after the world-wide-

web took off, and contained only static files in the workloads. The second version, SPEC 

WEB99, was introduced in 1999 and included dynamically generated contents. However 

it was again two years after popular usage of dynamic web pages. How long SPEC 

WEB99 can stay current (or whether it is still current today) remains to be seen. This 

imbalance between application development and benchmark development inevitably 
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leads to the situation that a gap forms between available benchmarks and state-of-the-art 

applications. 

1.1 How Benchmark Results Can be Misleading – An Example 

The gap between standard benchmark results and real application performance 

can be demonstrated with the following simple example. Imagine a hypothetical scenario 

where you were a system administrator, and you were asked to buy a new mail server 

machine for your department. Suppose that you narrowed down the choice to two, system 

A and system B with similar price tags. Which one would you select as the mail server? 

A common approach is to run a standard generic benchmark on the two systems and pick 

the one with the higher rating. An alternative approach is to use a more specific 

benchmark that measures certain aspects of the system that are potentially important to 

the application’s performance. Table 1-1 shows the results for SPEC CPU95 [52], a 

Standard Benchmark Results 
System 

SPEC CPU95 PostMark 
(transaction/sec) 

Actual Results 
(email/sec) 

A 6.22 16 2.2 
B 6.23 6 4.6 
Winner none/both A B 

Table 1-1. Standard Benchmark Results vs. Actual Application Performance on 
Two Similarly Priced Systems. Both benchmarks were run in single-user mode. For 
the actual results, the same version of the sendmail mail server was used on both 
machines. A fast client machine sends email as quickly as the server machine can 
receive, via a dedicated 100Mb/s Ethernet switch. 
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widely used benchmark for measuring CPU performance1, and those for PostMark [30], a 

file system benchmark designed specifically for modern applications such as mail and 

news servers. The results of SPEC CPU95 suggest that the two systems are comparable. 

From the results of PostMark we can conclude that system A is a better choice. However, 

measurements of the actual mail server performance show that system B can handle more 

than twice the email traffic than system A can. This example demonstrates that standard 

benchmarks often do not represent the behavior of real applications. Consequently, the 

benchmark scores offer little indication of real applications’ performance. 

1.2 Thesis Contributions 

The goal of this thesis is to establish that traditional ways of performance 

evaluation is flawed, and that new approaches that can better predict application 

performance need to be developed. This thesis introduces one such approach called 

application-specific benchmarking, and presents techniques for designing and 

constructing benchmarks that reflect performance of real applications. 

The basic idea of application-specific benchmarking is to separate 

characterization of an application from that of the underlying platform and combine the 

two characterizations to form a prediction of the application’s performance. As the 

application of interest is incorporated into the “benchmarking” process, the resulting 

performance metrics reflects the expected behavior of the application on the given 

platform. 

                                                 
1 At the time this research started, there was no standard mail server benchmark. In January of 2001, SPEC 

released its first mail server benchmark, SPEC MAIL2001. 
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The main contributions of this thesis are as follows. This thesis applies the 

application-specific benchmarking methodology to a variety of domains covering Java 

Virtual Machines, garbage collection, and operating system. Two benchmark suites are 

created as a result of this, HBench:Java and HBench:JGC. This thesis also demonstrates 

HBench’s predictive power from three different perspectives. It is shown that 

HBench:Java is able to correctly predict the rank of running times of three commercial 

applications on a variety of Java Virtual Machine implementations. In the realm of 

garbage collection, the predicted garbage collection times for a stop-the-world, mark-

sweep garbage collector closely match the actual times. In the domain of operating 

system, it is demonstrated that HBench:OS can be used to analyze performance 

bottlenecks and to predict performance gains resulting from a common optimization. 

1.3 Thesis Outline 

The rest of this thesis is organized as follows. Chapter 2 starts with a brief 

overview of benchmarks in general and then describes some domain-specific benchmarks 

in the areas of Java Virtual Machine, garbage collection, and operating system. 

Chapter 3 describes the HBench approach and the methodology developed within 

the HBench framework for measuring systems with different degrees of complexity. One 

approach, the vector-based methodology, forms the foundation for the three benchmark 

suites presented in this thesis, namely, HBench:Java, HBench:JGC, and HBench:OS. 

Chapter 4 applies the vector-based methodology to the domain of Java Virtual 

Machines. It describes the challenges faced during the design process of HBench:Java 

and the solutions to these issues. It also describes the microbenchmark suite included in 
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HBench:Java and the profiler implementation on Sun Microsystems JDK1.2.2 platform. 

Results on a variety of JVMs demonstrate HBench:Java’s superiority over traditional 

benchmarking approaches in predicting real application performance and its ability to 

pinpoint performance problems. 

Chapter 5 applies the vector-based methodology to evaluating garbage collector 

performance. Although the discussion is restricted to the context of garbage collection in 

the Java Virtual Machine, techniques presented in this chapter apply to garbage collection 

in general. Experimental results on the Sun JDK1.2.2 JVM implementation on three 

machine configurations show that the predicted garbage collection times track the actual 

elapsed times closely. 

Chapter 6 applies the methodology to evaluating operating system performance in 

the context of the Apache web server. It is shown that HBench:OS can be used to analyze 

performance bottlenecks and to predict performance gains resulting from a common 

optimization. 

Chapter 7 summarizes the research findings and lessons learned and presents 

some new research directions. 
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Chapter 2 
Background and Related Work 

This chapter first gives an overview of computer benchmarks in general and then 

discusses traditional benchmarks in three specific areas, namely, Java Virtual Machines, 

garbage collection, and operating systems, for which we have implemented benchmark 

suites using the application-specific benchmarking methodology and evaluated their 

effectiveness. 

2.1 Computer Benchmarks in General 

2.1.1 Types of Benchmarks 

There are two categories of benchmarks in terms of benchmark size and 

complexity, namely, microbenchmarks and macrobenchmarks. Microbenchmarks 

measure performance of primitive operations supported by an underlying platform, 

whether hardware or software. Sometimes microbenchmarks also include short sequences 

of code (kernels) that solve small and well-defined problems. Typically the mean 

(typically geometric mean) of the individual times (or scores as a function of the time) is 

reported. Examples of primitive operations include the time it takes to fetch a data item 

from cache/memory, or the time it takes to draw a line on a graphical terminal. 

Microbenchmarks reveal a great deal of information about the fundamental costs of a 

system and are useful in comparing low-level operations of different systems, but it is 

difficult to relate them to actual application performance in a quantitative way. 

Macrobenchmarks consist of one or more medium-scale to large-scale programs 

that are usually derived from real applications. Macrobenchmarks usually come with 
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input data that are supposedly representative of typical situations. When the benchmark is 

run, the input data are fed to the programs and the total running time is collected. As 

macrobenchmarks are typically derived from real applications, they place a significant 

amount of stress on the underlying system like real applications do. Therefore, the 

benchmark result can be a good indication of the system’s performance, if the normal 

load on the system is the same as the programs included in the benchmark. 

2.1.2 Examples of Current Standard Benchmarks 

Several standard institutes are in charge of the process of defining and distributing 

standard benchmarks. Some of the well-known standard entities are: SPEC [56] (System 

Performance Evaluation Corporation) and TPC [57] (Transaction Processing 

Performance Council). 

SPEC defines a wide variety of standard benchmarks, ranging from high-

performance computing to network file servers. Among those, the SPEC CPU benchmark 

suite [52] is probably the most widely used benchmark in computer literature. SPEC CPU 

is a macrobenchmark that is further divided into two macrobenchmarks, the integer suite 

and the floating-point suite. The integer benchmark suite consists of popular UNIX 

desktop applications such as gzip [21], a GNU compression program, gcc [17], a GNU 

C language compiler, and perl [60], a scripting language created by Larry Wall. 

TPC is another standard entity that specializes in benchmarks for transaction 

processing and database systems. TPC has produced widely used benchmarks such as 

TPC-A, TPC-B, and their successors TPC-C and TPC-D. TPC-C is an OLTP (OnLine 

Transaction Processing) benchmark that emulates an interactive order processing system. 
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TPC-D is decision support benchmark that contains a set of complex business-oriented 

queries. The most prominent feature of TPC benchmarks is that they report 

price/performance ratio in the benchmark results, a useful metric that helps customers 

balance additional performance and cost of the system. The ratio is reported in the form 

of dollars per tpm (transaction per minute). Current versions of TPC benchmarks require 

significant effort to set up and run. The cost for a TPC-C run, for example, can reach a 

half million dollars [19]. 

2.2 Non-Traditional Approaches to Benchmarking 

Many researchers have realized the problem with fixed-workload 

benchmarks [41] and have proposed different solutions to this problem [20][51]. 

In recent work [20], Gustafson et al. present a novel approach of measuring 

machine performance that, instead of fixing the task size of the benchmark programs, 

fixes the time and measures the amount of work that gets done during the fixed time 

period. The benchmark program (called HINT for Hierarchical INTegration) tries to use 

interval subdivision to find rational bounds on the integral of the function (1-x)/(1+x) 

where x ∈  [0,1]. The amount of work being done in each step is measured by the 

improvement on quality of the bound (i.e., the distance between upper and lower 

bounds). Because there is no upper limit to the tightness of the bound (subject to the 

available precision), HINT is able to scale with the power of the computer being 

measured. A fundamental difference between HINT and HBench is that the HINT 

program consists of a fixed mix of instructions (e.g., the ratio of computation operations 

to memory operations is about 1). HINT is a good performance indicator for applications 
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that have a similar instruction mix, but not necessarily for applications with different 

instruction mixes. HBench, on the other hand, is a general framework that adapts to a 

specific application. 

Dujmovic et al. [15] propose a systematic approach to constructing benchmark 

programs. They employ a block-frame-kernel (BFK) model that recursively constructs 

benchmark programs using basic building blocks such as control structures and kernels, 

which are either simple statements or a short sequence of code that implements a specific 

function. A benchmark program consists of a number of blocks containing one or more 

frames, each of which in turn may include kernels or blocks. Parameters of the models 

include block breadth, which denotes the number of frames included in the block, and 

block depth, which denotes the level of nesting. A benchmark program is characterized 

by the probability distributions of these two parameters, the probability distribution of 

control structures, and the kernel code. The authors suggest that by carefully selecting 

kernels to be included in the benchmark, they can construct benchmark programs that 

model any kind of workload. 

This approach could conceivably reduce benchmarking development time greatly, 

resulting in much shorter benchmark production cycle. However, this approach represents 

only an incremental step in the science of benchmarking. Even though benchmark 

programs can be produced more quickly, they still need to be run on all possible target 

configurations to determine the performance. If the application behavior changes, a new 

benchmark must be constructed and run again on each target configuration. HBench, on 

the other hand, tries to predict application performance. As we shall see in Chapter 3, 

with HBench, once system performance data is collected on a target machine, there is no 
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need to run the application or benchmark on the target machine to obtain a prediction on 

the particular machine’s performance with regard to the application, even if the 

application of interest changes over time. 

2.3 Performance Evaluation of Java Virtual Machines 

Introduced by Sun Microsystems Inc. in the late 90’s, Java quickly became the 

popular programming language for the Internet age. The Java concept contains three 

parts, the Java programming language, the Java bytecode, and the Java Virtual Machine 

(JVM) [2]. Programs written in the Java programming language are compiled into 

hardware-independent Java bytecodes, which run on Java Virtual Machines. Java 

bytecode is a stack-based language that contains a small set of instructions. Java Virtual 

Machine, whose implementation is hardware-dependent, can understand and execute 

programs in bytecode format. The hardware-independency of Java bytecode has proved 

to be a big win – once a Java application is compiled into bytecode, it can be executed 

anywhere a JVM is present. This releases programmers from the mundane task of porting 

code to different platforms and allows rapid application development. 

There has been a proliferation of Java Virtual Machine implementations and Java 

benchmarks since the introduction of the Java technology. By and large the benchmarks 

can be classified into three groups, microbenchmark, macrobenchmark, and a 

combination of the two. 

CaffeineMark [9] is a typical example of microbenchmarks. It measures a set of 

JVM primitive operations such as method invocation, string manipulation procedures, 

arithmetic and graphics operations. CaffeineMark was once a popular benchmark for 
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JVMs embedded in web browsers, when the most usage of Java came from Java applet, a 

small program in bytecode format that can be downloaded and executed in the local 

browser environment. CaffeineMark runs as an applet and requires minimum 

configuration to run. 

There are many macrobenchmarks for Java, among which SPEC JVM98 is 

probably the most popular [53]. The SPEC JVM98 suite includes a set of programs 

similar to those found in the SPEC CPU suite, such as a compression program, and a Java 

compiler, all written in Java. VolanoMark [59] from Volano LLC is another popular Java 

macrobenchmark. VolanoMark is designed to address performance concerns of the 

company’s Java-based VolanoChat™ server. As a server benchmark, VolanoMark 

focuses on a JVM’s ability to handle long-lasting network connections and threads. 

The JavaGrande benchmark suite [8][38] consists of both microbenchmarks and 

macrobenchmarks. Designed to compare the ability of different Java Virtual Machines to 

run large-scale scientific applications, the JavaGrande benchmark suite contains three 

sections. The first section consists of microbenchmarks that measure low-level operations 

of a Java Virtual Machine. Examples include arithmetic operations such as addition, 

multiplication and division, mathematical functions such as sin() and cos(), and exception 

handling, etc. The second section consists of kernels, each of which contains a type of 

computation likely to appear in large scientific programs. Examples include Fourier 

(Fourier coefficients computation) and Crypt (IDEA encryption and decryption), etc. The 

final section includes realistic applications, such as a financial simulation based on Monte 

Carlo techniques. 
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This hybrid approach of combining micro and macro benchmarking provides the 

ability to reason about performance disparities between Java Virtual Machines, and is 

particularly useful in pinpointing performance anomalies in immature Java Virtual 

Machine implementations. For example, based on the results of the JavaGrande suite, the 

authors pointed out that the IBM HPJ compiler performs worse than the other JVMs in 

the Fourier kernel benchmark, mainly due to an inferior performance in mathematical 

functions [8]. 

This type of reasoning, although proved useful in the domain of scientific 

applications, has its limitations. In order to associate the performance of the micro-

benchmarks with that of the application, the user is assumed to have intimate knowledge 

about the application, which is seldom true in practice, especially for large and 

complicated applications. Even if the user knows the application well, when the 

application’s performance depends on more than a handful of primitive operations, it’s 

hard to explain what causes the differences and to predict the application’s performance 

on a new JVM. 

2.4 Garbage Collector Performance Evaluation 

Garbage collection is a well-known technique for automatic memory 

management. Automatic memory management frees programmers from the burden of 

explicitly maintaining reachability information of the data structures and remembering to 

free those data structures when they become unreachable. Garbage collection is 

commonly used in functional languages such as Lisp, Scheme and ML. As garbage 

collection technology advances, the speed of garbage collection has improved 
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significantly over the years and is almost comparable to the speed of explicit memory 

management [67]. Since automatic memory management provides additional advantages 

of improved programming productivity and less error-prone code, garbage collection is 

employed in many modern object-oriented languages such as Java and Smalltalk. Even 

system programming languages such as C++ have started to use garbage collectors. 

Many researchers have studied the performance of dynamic memory management 

[13][67][49]. This literature provides a good foundation for understanding the inherent 

cost of dynamic storage allocation. Our approach differs in the goals we try to achieve. 

We emphasize predictability — the ability to predict application performance on different 

GC implementations without running the application on the target implementations. In 

contrast, past research has focused on comparing the cost of memory management by 

running a set of popular applications on target memory management implementations. 

Knuth presents a comprehensive analysis and comparison of the time complexity 

of several dynamic storage management algorithms [31]. This systematic approach to 

benchmarking memory management algorithms offers insight into the efficiency of these 

algorithms and helps explain the performance differences. However, the analysis assumes 

certain statistical properties for both memory allocation and liberation patterns and only 

applies when the system reaches equilibrium. 

Cohen et al. compare performance of four compacting algorithms using analytical 

models [12]. The analytical models are parameterized by the amount of work to be done, 

such as the number of cells (objects), number of pointers (links) and related information, 

and the time to perform the basic operations common to all compactors, such as the time 
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to test a conditional expression. Their goal is similar to ours in that they also try to 

estimate GC execution times “without resorting to empirical tests”. The main difference 

lies in the level of abstraction used for the primitive (elementary) operations. Their 

primitive operations are low-level machine instructions, whereas we conglomerate all 

machine instructions performed on an object into a single per-object operation (e.g., per-

live-object overhead). Because their primitives are at such a low-level, their models are 

more elaborate and require intimate knowledge of the algorithms (i.e., the complete 

source code). Furthermore, as computer architectures become more advanced, machine-

level optimizations and the memory cache hierarchy could introduce significant side 

effects such that the analytical model will no longer be applicable. In our case, the cost of 

primitives is measured explicitly by microbenchmarks and therefore includes these side 

effects. 

2.5 Operating System Benchmarking 

Microbenchmarks that measure the costs of basic kernel primitives, such as thread 

creation and inter-process communication latencies, are often used for characterizing 

performance of operating systems, especially microkernels [4] [22]. Ousterhout presented 

a comparison of operating system performance using a test suite mostly comprised of 

kernel microbenchmarks [42]. The benchmark results revealed differences between RISC 

and CISC architectures in terms of OS performance, and provided insights into why 

speed-ups in hardware do not translate to the same speed-up in operating systems. 

Lmbench, created by Larry McVoy [39], represents more recent development in kernel 

microbenchmarking. Lmbench contains a richer set of OS and hardware primitives and is 

more portable, making it a valuable tool for analyzing system performance. As in the case 
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of Java microbenchmarks, although kernel microbenchmarks reveal important 

performance details about the primitive operations, they alone are not sufficient to 

determine how fast a given application would run on the operating system in question. 

Another school of OS benchmarks concentrates on a particular subsystem such as 

file system and network system. The Postmark benchmark [30], for example, is a file 

system benchmark designed to model the file access patterns of mail servers. Subsystem 

benchmarks are similar to kernel microbenchmarks, but typically allow one to specify 

probability (weight) for each operation so that the mix of operations more closely 

approximates the real workloads. However, the results usually provide only a partial 

picture on the overall performance. 

When comparing operating system performance, researchers often measure end-

to-end performance of kernel-intensive applications. Benchmarks of this sort are by 

definition, macrobenchmarks. Web servers are a popular choice, although more often 

researchers just use ad-hoc programs. It is extremely difficult to develop 

macrobenchmarks for real-world applications, as can be seen from the lack of standard 

news server and mail server benchmarks until fairly recently [47] [54]. 

2.6 Performance Prediction Using Queueing Models 

Queueing models have been used extensively in performance modeling and 

analysis. They are based on the client-server scenario, where clients arrive at a certain 

rate, possibly wait in the queue for a certain amount of time, and are then served by the 

server for a fixed amount of time. Some systems, such as transaction processing systems, 

network channels, and time-sharing computing servers, naturally fit into this client-server 
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scenario. One advantage of a queueing model is its simplicity. The number of parameters 

in a typical queueing model is quite small, and they can usually be estimated with 

sufficient accuracy from known performance characteristics of the computer hardware. 

For systems whose performance can be described with a simple queueing network model, 

i.e., they satisfy certain assumptions, the queueing models could produce quite accurate 

results – past research indicates that the expected accuracy of queueing network models 

is between 10% and 30% for response time [32]. This level of accuracy is sufficient for 

most cases. 

However, not all systems can be described with a queueing model. A garbage 

collector, for example, is not a client-server type of application by its nature. In that 

sense, we believe that the HBench approach is complimentary to the queueing model 

approach to performance evaluation. 

2.7 Conclusions 

There is no lack of benchmarks in any field of computer science2. However, 

traditional benchmarks fail to address the issue of relevance to real applications. Real-

world applications are so diverse that it is difficult, if not impossible, to find a set of 

workloads that are representative of all the important applications, even within a sub-

field. If the behavior of the benchmark’s workloads does not match that of the intended 

application, then the benchmark might give misleading information regarding which 

platform is the best for the application of interest. This is precisely the problem that the 

                                                 
2 The benchmarks discussed in this chapter are by no means a comprehensive list of benchmarks used in the 

industry and the research community. Readers are recommended to read [18] and [19] for a more detailed 
coverage about this topic. 
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application-specific benchmarking approach tries to tackle. I hope that the techniques for 

application-specific benchmarking presented in this thesis will help computer scientists 

conduct more meaningful performance comparisons and encourage the industry to 

participate in searching for better benchmarking methodologies. 
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Chapter 3 
Application-Specific Benchmarking: the HBench Approach 

This chapter presents the design of HBench, our approach to application-specific 

benchmarking, and describes the vector-based methodology that forms the basis of the 

three benchmark suites included in this thesis. 

3.1 The HBench Approach 

HBench is designed with the belief that systems should be measured in the 

context of applications in which end-users are interested. HBench achieves this by 

incorporating the application of interest into the benchmarking process. The process 

consists of three stages. First, we characterize the system using well-defined and 

application-independent metrics based on standard specifications that summarize the 

fundamental performance of the system. For example, hard drive vendors describe the 

performance of a hard disk in standard terms such as RPM (Rotations Per Minute) and 

seek latency of the disk head. Next, we characterize applications with a system-

independent model that captures the amount of demand that the application places on a 

system in terms of the standard metrics for system characterizations. Finally we combine 

the two characterizations using an analyzer to predict the running time of the application 

on the given system. Figure 3-1 depicts the schema of the HBench process. Because 

HBench incorporates application characteristics into the benchmarking process, HBench 

can provide performance metrics that reflect the expected behavior of a particular 

application on a particular platform. 
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Different systems have varying degrees of complexity, requiring different 

techniques for application and system characterization and for combining the two 

characterizations. HBench includes three methodologies, namely, the vector-based 

methodology, the trace-based methodology, and the hybrid methodology. This thesis 

primarily focuses on the vector-based methodology. The other two are included in this 

discussion for the purpose of completeness. The following subsections describe them in 

detail. 

3.1.1 The Vector-Based Methodology 

In general, a system’s performance can be determined by the performance of each 

individual primitive operation that it supports. A given application’s performance can 

then be determined by how much it utilizes the primitive operations of the underlying 

system. As the name “vector-based” indicates, we use a vector [ ]ns vvvV ,...,, 21= , to 

represent the performance characteristics of an underlying system, with each entry vi 

representing the performance of a primitive operation of the system. We call this vector 

Vs a system vector, and it is obtained by running a set of microbenchmarks. 

Application Application
Characterization

System System
Characterization

Analyzer

Control Information

Predicted
Running

Time

Application Application
Characterization

System System
Characterization

Analyzer

Control Information

Predicted
Running

Time

 

Figure 3-1. Schematic View of the HBench Process 



 

 21

HBench uses an application vector, [ ]nA uuuV ,...,, 21=  to represent the load an 

application places on the underlying system. Each element ui represents the number of 

times that the corresponding ith primitive operation was performed. The application 

vector is typically obtained through profiling. The dot product of the two vectors 

produces the predicted running time of the application on a given system. 

The vector-based approach has been applied to a number of platforms including 

Java Virtual Machines [65], garbage collectors [66] and operating systems and has 

demonstrated excellent predictive power. In the domain of operating systems, the 

primitives are system calls and popular functions in standard C libraries. 

The complicated structure of JVMs presents some challenges for identifying the 

primitives. Currently HBench focuses on two components of the JVM – standard Java 

class APIs and the garbage collector. Chapter 4 describes in detail how HBench applies 

the vector-based methodology to JVMs using Java class method APIs as primitive 

operations. Chapter 5 presents techniques for application-independent characterization of 

garbage collectors, for characterizing applications’ memory behavior independent of the 

underlying garbage collector, and for combining the two characterizations to form a 

figure of merit. 

Primitives of a garbage collector are operations performed on objects, such as 

allocation, marking and copying. Sometimes, the primitive’s performance is dependent 

on the size of the object. For example, the time of a copy operation depends on the size of 

the object. The system vector for such operation would contain the cost of the operation 

for every object size, as depicted in the following: 
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[costop,size=1, costop,size=2, …,costop,size=n]. 

The corresponding application vector would look like: 

[countsize=1, countsize=2, …, countsize=n]. 

As the size of objects can get very large, a more convenient way to represent the 

two vectors would be to use distribution functions when they are available or can be 

devised. Let Cop(s) denote the cost for operation op as a function of object size s, and let 

N(s) be the object-size distribution function. Then the total cost can be simply denoted by 

∑ ⋅
s

op sNsC )()( , 

or more precisely, 

∫
∞

⋅
0

)()( dssNsCop . 

The basic strategy behind HBench has been to use the simplest model possible 

without sacrificing accuracy. To that end, we use a simple linear model, until we find that 

it is no longer able to provide the predictive and explanatory power we seek. In some 

cases, rather than going to a more complex model, we retain the simplicity of a linear 

model by adding multiple data points for a single primitive. 

3.1.1.1 Advantages 

The vector-based methodology offers several desirable features. First, it allows 

meaningful comparison to be made between systems’ performance. The system and 

application vectors provide an effective way to study and explain performance 



 

 23

differences between different system implementations. Secondly, the vectors reveal 

performance bottlenecks that are useful in guiding performance optimizations in a way 

that will benefit the application of interest. System implementers can improve primitive 

operations that are significant for the application. At the same time, application 

programmers can optimize the application by reducing the number of calls to expensive 

primitive operations. Finally, The vector-based methodology allows one to predict the 

performance of the application on a given system without actually running the application 

on it, as long as the system vector is available. One might also answer “what if” questions 

such as “What if this primitive takes half as much time?” by modifying the appropriate 

system and application vector entries. This feature is particularly useful for capacity 

planning and for designing next generation products. 

3.1.1.2 Limitations 

The vector-based approach has its limitations, however. The underlying 

assumption of this methodology is that each primitive takes a fixed amount of time to 

execute, independent of the context in which it is invoked. The methodology also 

requires that for a given application, the number of times each primitive is invoked is 

fixed, or can be calculated deterministically. These restrictions limit the situations to 

which this approach can be directly applied. For example, in the case of virtual memory, 

the number of page faults of a given application depends on page reference patterns of 

other processes as well. Consequently, the number of page faults for a given application 

cannot be decided ahead of time, even if we know the page replacement algorithm. For 

experiments conducted in this thesis, we assume that the application’s working set fits in 

main memory. Distributed systems are another case that the vector-based approach does 
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not apply directly, since message latencies in such a system can vary widely. However, 

even with these limitations, in practice we find the model applicable to sufficient number 

of cases that it can be used to predict the performance of real-world applications, as 

demonstrated in Chapters 4, 5 and 6. 

3.1.2 The Trace-Based Methodology 

The trace-based methodology is designed for applications whose performance 

relies on the sequence of input data (e.g., web requests). Web servers, for example, 

exhibit drastically different access patterns [36]. In the trace-based approach, the trace (or 

log) of the input request stream, instead of the application, is characterized with a 

stochastic model. The model can then generate request sequences that approximate the 

actual request stream, to be used as a benchmark. Furthermore, one can vary the load by 

adjusting parameters of the model, such as the number of users and the size distribution 

of the file set, allowing one to conduct capacity planning experiments. Manley et al. 

present techniques on characterizing both the web sites and the user access patterns from 

logs of web servers, and demonstrated how these characterizations can then be used to 

generate load that closely matches the original load and to scale the load to reflect growth 

patterns [37]. Wollman extends these techniques to measure the performance of proxy 

servers [63]. In addition to characterizations of the file and user access patterns, latencies 

between the proxy server and actual web sites were derived from logs of the proxy server. 

Wollman demonstrated that HBench:Proxy can generate heavy bursty traffic that cannot 

be achieved by other proxy benchmarks. 
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3.1.3 The Hybrid Methodology 

The hybrid approach is a combination of the previous two approaches, and is 

designed for systems whose primitive operation interferes with each other. In such 

systems, depending on the sequence of the operations, the same operation might take 

different amount of time to execute. For example, in the case of the file system, a file 

read operation might require different amount of time to complete, depending on whether 

the data is in the file cache or on the disk. 

Currently, the hybrid approach is used in HBench:FS, one of the benchmark suites 

in the HBench collection, to measure file system performance [50]. The system vector 

measures cache-specific file operations, e.g., it measures both a cache-hit read and a 

cache-miss read. Then the application trace is fed to a cache simulator, which generates 

an application vector whose elements have specific meaning in terms of the system 

vector, e.g., the number of cache-hit reads and the number of cache-miss reads. Again, 

the dot product of the two vectors produces the estimated time spent in the file system. 

The idea of using the cache simulator to iron out the interdependencies of file 

system primitive operations might be adapted to the virtual memory subsystem, so that 

the number of page faults can be estimated and accounted for in the total running-time 

prediction. 

3.2 Related Approaches 

The transition from traditional benchmarks to a vector-based approach resembles 

the transition from MIPS ratings to the decoupled approach proposed by John Hennessy 

and David Patterson in analyzing performance of RISC (Reduced Instruction Set 
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Computer) architectures [23]. A MIPS rating is obtained by running an arbitrary program 

chosen by the vendor. Therefore, it is not informative in judging how fast a particular 

application will run on the given machine, since the instruction mix used by the 

application is likely to differ from that of the program used by the vendor to derive the 

MIPS rating.  

John Hennessy and David Patterson revolutionized the performance reporting 

methods for computer architectures in the mid 80’s. Instead of using a single metric such 

as MIPS, their method characterizes a computer’s performance with CPIs (Cycle Per 

Instruction) for every instruction supported by the computer. This data, when combined 

with the number of times each instruction is executed by a particular application, yields 

the total number of cycles the computer spends executing the application of interest, 

which in turn yields the total running time in seconds.  

The vector-based approach of HBench is also similar to the abstract machine 

model [45], where the underlying system is viewed as an abstract Fortran machine, and 

each program is decomposed into a collection of Fortran abstract operations called 

AbOps. The machine characterizer obtains a machine performance vector, whereas the 

program analyzer produces an application vector. The linear combination of the two 

vectors gives the predicted running time. This approach requires extensive compiler 

support for obtaining the accurate number of AbOps and is limited to programming 

languages with extremely regular syntax. It is also highly sensitive to compiler 

optimization and hardware architecture [46]. As hardware becomes more sophisticated, 

the accuracy achievable with this technique tends to decrease. 
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3.3 Conclusions 

In conclusion, HBench is a realistic and constructive approach to benchmarking. 

When applied appropriately, it can provide both meaningful comparisons and valuable 

information to system and application developers for future improvement on their 

products. 

The effectiveness of HBench lies in its ability to predict application’s 

performance. We identify three levels of predictive power: prediction on relative 

performance, prediction on ratios of running times, and prediction on actual times. The 

initial goal is to have HBench predict the correct order of relative performance, while 

keeping the vectors small. The vectors can then be improved to achieve more accurate 

prediction. 
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Chapter 4 
HBench:Java: An Application-Specific Benchmark for JVMs 

In this chapter, we demonstrate how we applied the vector-based methodology of 

HBench to evaluating Java Virtual Machine performance. The first task is to identify 

primitive operations for Java Virtual Machines. This topic is treated in Section 4.1. 

Section 4.2 describes the prototype implementation of HBench:Java, the microbenchmark 

suite that measures primitive costs. Section 4.3 presents experimental results. Section 4.4 

discusses some unresolved issues and Section 4.5 concludes. 

4.1 Identifying JVM Primitive Operations 

4.1.1 JVM Overview 

A JVM is a complicated piece of software [58]. Figure 4-1 shows a schematic 

view of a JVM implementation. Much of a JVM’s functionality is supported via the 

system classes (also called built-in classes or bootstrap classes). Sun Microsystems 

publishes the specification of these abstractions, which is supported by any JVM 

implementation that conforms to the Java standard. 

Like many modern programming languages, memory management in Java is 

automatic. A JVM includes a memory management system (also called the garbage 

collector) that automatically frees objects when they are no longer referenced by the 

application. 

The execution engine is responsible for interpreting Java bytecode, resolving and 

loading classes, and interfacing with native methods (methods that comprise of native 
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machine code instead of Java bytecode). It also performs tasks similar to operating 

systems, such as thread scheduling and context switches, exception handling, and 

synchronization. 

The JVM implementation is further complicated by the just in time (JIT) compiler 

component, which compiles Java bytecode into native machine code on the fly. In some 

newer versions of JVM implementations, the JIT also performs various types of dynamic 

code optimizations to improve the performance of the application. 

4.1.2 First Attempt 

In order to create a system vector for a JVM, we need to decompose this 

complexity into a set of primitive operations. At first glance, the JVM assembly 

instruction (Java bytecode) seems to be a perfect candidate. The Java Virtual Machine 

instruction set includes about 200 instructions [35], which is sufficiently small for a 

JVM

Memory System Execution Engine

JIT

User App.

System Classes

 

Figure 4-1. Schematic View of a JVM. 
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complete microbenchmarking to be possible. Bytecode is also universal - all flavors of 

JVM implementations support it.  

This approach, however, proved inadequate primarily due to the presence of the 

JIT. Once bytecodes are compiled into native machine code, optimizations at the 

hardware level such as out-of-order execution, parallel issue and cache effects can lead to 

a running time that is significantly different from the sum of the execution times of the 

individual instructions executed alone. 

For example, Figure 4-2(a) shows two Java code sequences: an empty loop and a 

loop containing an integer addition operation. The corresponding native code produced 

// empty loop
for (int i = 0; i < numIterations; i++) {

;
}

// loop containing integer addition
for (int i = 0; i < numIterations; i++) {

sum += i;
}

Figure 4-2(a). Java Code Sequences 

//empty loop
loop_start:

inc ecx ;; i++
cmp ecx, [esi+04h] ;; i<numIterations
jnge loop_start

// loop containing integer addition
loop_start:

add edi,ecx ;; sum += i
inc ecx ;; i++
cmp ecx, [esi+04h] ;; i<numIterations
jnge loop_start

Figure 4-2(b). Corresponding Native Code Sequences 
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by the JIT is shown in Figure 4-2(b). On a Pentium III processor, both loop iterations take 

2 cycles to execute, due to parallel instruction issues. This leads one to conclude that the 

addition operation is free, which is clearly not true. 

4.1.3 A Higher Level Approach 

A higher level of abstraction that is immune or less sensitive to hardware 

optimization is therefore needed. We identified the following four types of high-level 

components of a JVM system vector: 

•  system classes, with method invocations to the system classes being primitive 

operations; 

•  memory management, where primitive operations could include object 

allocation, live-object identification (marking), live-object relocation (for copying 

garbage collectors) and dead-object reclamation (see chapter 5 for more details); 

•  execution engine, where primitive operations include bytecode interpretation, 

exception handling, context switching, synchronization operations, etc.; 

•  JIT, which can be measured by two metrics: overhead and quality of code 

generated. JIT overhead can be approximated as a function of bytecode size, in which 

case the primitive operation is the time it takes to JIT one bytecode instruction. The 

product of this per-bytecode overhead and the number of JITted bytecodes yields the 

overall overhead. Note that the number of JITted bytecodes cannot be directly obtained 

from the application, as it is JVM dependent. Rather, it is obtained by applying a JVM 

dependant function J to the base application vector M, and S, where each entry in M and 
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S represent each method’s invocation count and bytecode size, respectively. For example, 

if a JVM compiles a method the first time it is invoked, then  

∑=
i

isSNJ ),(  

where si is the ith element of S. The quality of JITted-code is harder to quantify, 

and is a subject of ongoing research. 

The system classes component provides a convenient abstraction layer and is a 

good starting point for our prototype implementation of HBench:Java. This chapter 

focuses on the system classes component only, as highlighted by the circle in Figure 4-1. 

Therefore, HBench:Java at its current stage is intended for applications that are system-

classes bound. Our experience shows that applications tend to spend a significant amount 

of time in system classes. Therefore we believe that this simplistic system vector, albeit 

crude, can be indicative of application performance. Our results demonstrate that 

HBench:Java already provides better predictive power than existing benchmarks. 

4.2 HBench:Java Implementation 

The implementation of HBench:Java consists of two independent parts: a profiler 

that traces an application’s interactions with the JVM to produce an application vector 

and a set of microbenchmarks that measures the performance of the JVM to produce a 

system vector. The following two sub-sections describe these parts in more detail. 

4.2.1 Profiler 

The profiler is based on JDK’s Java Virtual Machine Profiling Interface (JVMPI) 

[29]. Once attached to the JVM, a profiler can intercept events in the JVM such as 
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method invocation and object creation. The Java SDK1.2.2 kit from Sun comes with a 

default profiling agent called hprof that provides extensive profiling functionality [33]. 

We use this default profiler to obtain statistics of method invocations from which we 

derive an application vector. As a first step, our application vector (and accordingly our 

system vector) only contains method invocations to JVM system classes. 

A drawback of JVMPI is that it does not provide callbacks to retrieve arguments 

of method calls. To remedy this problem, we implemented a second profiler that is able 

to record method arguments; it is based on JDK’s Java Virtual Machine Debugger 

Interface (JVMDI) [28]. Since JVMDI can only be enabled with JIT turned off (for the 

classic version of JDK), we keep both profilers for obvious performance reasons, with the 

first profiler responsible for extensive profiling and the second profiler responsible for the 

much simpler task of call tracing for a subset of primitives. 

4.2.2 Microbenchmarks 

The current set of microbenchmarks consists of approximately thirty methods 

including frequently invoked methods and methods that take a relatively long time to 

complete, based on traces from sample applications. Even though these methods 

represent only a tiny portion of the entire Java core API, we found them quite effective in 

predicting application performance, as shown later in Section 4.3. 

The microbenchmark suite is implemented using an abstract Benchmark class. To 

add a microbenchmark to the suite, one implements a class that extends the Benchmark 

class. Specifically, this means implementing the runTrial() abstract method. A utility 

program facilitates this process by automatically generating the corresponding source 
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Java program from a template file and a file that specifies key information about the 

particular microbenchmark. 

Typically, the runTrial() method invokes the method to be measured in a loop 

for some number of iterations. A nice feature of our microbenchmarks is that the number 

of iterations is not fixed, but rather dynamically determined based on the timer resolution 

of the System.currentTimeMillis() function of the specific JVM. A microbenchmark 

is run long enough that the total running time is at least n times the timer resolution (to 

allow for accurate measurement), and less than 2n times the timer resolution (so that the 

benchmark doesn’t run for an unnecessarily long time). For the experiments reported in 

this thesis, we used a value of 10 for n. 

For methods whose running time also depends on parameters, such as the 

BufferedReader.read() method that reads an array of bytes from an input stream, we 

measure the per-byte reading cost and the corresponding entry in the application vector 

includes the total number of bytes instead of the number of times the read() method is 

called. The current prototype implementation supports this simple case of linear 

dependency on a single argument, and it is found sufficient for the sample applications 

tested. For more complicated argument types, the system vector entry would consist of a 

list of (n+1)-tuples, (t, a1, a2, …, an), where ai is the value of the ith argument, and t is the 

time it takes to invoke the method with the given arguments. We then measure several 

data points in this n-dimension space and extrapolate the running time based on the actual 

parameters included in the corresponding application vector entry. 
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Figure 4-3 shows some sample microbenchmark results for JDK1.2.2 (Windows 

NT). The time for the read() method of BufferedReader is the per-byte read cost, and 

the Class.forName() method loads an empty class. 

4.2.3 JVM Support for Profiling and Microbenchmarking 

For some primitive operations such as class loading, the first-time invocation cost 

is the true cost and subsequent invocations just return a cached value. As a result we 

cannot simply measure the cost by repeatedly calling the method with the same 

arguments in a loop and dividing the total time by the number of iterations. In the case of 

class loading, it means we need to load a different class for every iteration. With the timer 

resolution of current JVM implementations, to achieve reasonable accuracy, the number 

of iterations required is on the order of hundreds and increases as processor speed 

increases. We could automatically create these dummy classes before starting the loop. 

However, not only does this approach not scale well, creating a large number of class 

files also perturbs the results since the number of classes within a directory is usually not 

that large. A better solution is to have the JVM provide a high-resolution timer API. This 

approach has the added advantage of reduced benchmark running time (recall that the 

number of loop iterations is inversely proportional to the timer resolution). Most modern 

Method Name Method Signature Time(us)

java.lang.Character.toString ()Ljava/lang/String; 2.498

java.lang.String.charAt (I)C 0.092

java.io.BufferedReader.read ([CII)I 6.897

java.lang.Class.forName (Ljava/lang/String;)Ljava/lang/Class; 5309.944

java.net.Socket.<init> (Ljava/net/InetAddress;I)V 2171.552

Figure 4-3. Sample Microbenchmark Results. 
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CPUs provide cycle counters that are accessible in user mode, and many popular 

operating systems such as Solaris and Windows NT already provide high-resolution timer 

APIs. 

One of the difficulties of microbenchmarking is that sometimes a good JIT will 

recognize the microbenchmark code as dead code and optimize it out. We have to insert 

code to fool the JIT into believing that the variables used in the microbenchmark loop are 

still live after the loop, and subsequently not optimized out of the loop. However, there is 

a limit as to how much this workaround can do. A better solution would be for the JIT to 

include command-line options that allow users to specify optimization levels, similar to 

those present in C/C++ compilers. 

Advanced JIT techniques such as the adaptive compilation used in HotSpot [25] 

pose some difficulties measuring JIT overhead, which cannot be overcome without help 

from JVM implementers. An adaptive compiler compiles methods based on their usage.  

Methods might be interpreted initially. As time progresses, some are compiled into native 

code with a lightweight compiler (with little optimization). Frequently executed methods 

might be re-compiled with a more powerful backend compiler that performs extensive 

optimization. The problem lies in how to model the JVM dependent function J which, 

given the number of method invocations and method bytecode sizes, yields the number of 

bytecodes compiled/optimized. We think the following enhancement to JVM would be 

useful: 

•  A JVMPI event should be generated at the beginning and end of the 

compilation of a method, so that we can model and evaluate J. 



 

 37

•  To measure the per-bytecode compiler/optimize overhead, the 

java.lang.Compiler class should be augmented with APIs for compiling and 

optimizing methods. 

4.3 Experimental Results 

4.3.1 Experimental Setup 

The experiments were run on a variety of Java Virtual Machines. Table 4-1 shows 

the list of JVMs tested and their configurations. 

Three non-trivial Java applications (Table 4-2) were used to evaluate 

HBench:Java. First, the applications were run with profiling turned on, and we derived 

application vectors from the collected profiles. For Mercator, which is a web crawling 

application, the proxy server and the web crawler were run on two different machines 

connected with a 100Mb Ethernet switch, isolated from the outside network. The 

JVM CPU Memory 
(MB) 

Operating 
System 

JVM 
Version Vendor 

JDK1.2.2_NT_PRO 1.2.2 
Classic 

Sun 
Microsystems 

SDK3.2_NT_PRO 

Pentium 
Pro 

200MHz 
128 

5.00.3167 Microsoft 

JDK1.2.2_NT_II 1.2.2 
Classic 

Sun 
Microsystems 

SDK3.2_NT_II 

Pentium II 
266MHz 64 

Windows 
NT 4.0 

5.00.3167 Microsoft 
JDK1.2.2_SunOS_
Classic 

1.2.2 
Classic 

Sun 
Microsystems 

JDK1.2.1_SunOS_ 
Prod 

Ultra 
SPARC IIi 
333 MHz 

128 Solaris 7 
1.2.1_O3 
Production 

Sun 
Microsystems 

Table 4-1. Java Virtual Machines Tested. 
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machine that hosted the proxy server was at least as fast as the machine that hosted the 

client, to insure that the proxy server was not the bottleneck. Next the HBench:Java 

microbenchmarks were run on the JVMs listed in Table 4-1, which produced their system 

vectors. The dot products of the system and application vectors gave the estimated 

running time for each application on each JVM, which was then compared with the actual 

running time to evaluate the effectiveness of HBench:Java. 

Since the initial goal is to correctly predict the ratios of execution times of the 

applications on different JVM platforms, normalized speeds were used in reporting 

experimental results. This also allows one to compare HBench:Java with conventional 

benchmarking approaches such as SPECJVM98 that report results in the form of ratios. 

Application Description Input Data 

WebL 

A scripting language designed 
specifically for processing 
documents retrieved from the 
web [61]. 

A WebL script that counts the number 
of images contained in a sample html 
file. 

Cloudscape 

A Java- and SQL-based 
ORDBMS (object-relational 
database management system).  
The embedded version is used, 
i.e., the database is running in the 
same JVM as the user program 
[11]. 

The JBMSTours sample application 
included in the Cloudscape 
distribution kit.  Only the BuildATour 
program, which simulates the task of 
booking flights and hotels, is used. 

Mercator 

A multi-threaded web crawler 
[40]. 

The synthetic proxy provided by the 
Mercator kit that generates web 
documents on the fly instead of 
retrieving them from the Internet. 

Table 4-2. Java Applications Used in the Experiments. 
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4.3.2 Results 

Figure 4-4 shows the results for the scripting language WebL. In this experiment, 

three primitive operations account for the majority of the running time, shown in Table 4-

3. Also shown in Table 4-3 is their measured performance on the five Java Virtual 

Machines tested. The corresponding application vector is (80, 121, 32768). It is 

interesting to note that the SPECJVM98 score of JDK1.2.2 on the PentiumPro NT 

machine is higher than that on the SPARC workstation. However, WebL runs close to 

three times as fast on the SPARC workstation. HBench:Java’s system vector reveals the 

problem. Class loading is twice as fast for the SPARC workstation JDK, and the 

BufferedReader.read() method executes almost 35 times faster. It turns out that for 

some reason, the NT JDK1.2.2’s JIT didn’t compile the method 

sun.io.ByteToCharSingleByte.convert(), an expensive method called many times 

by java.io.BufferedReader.read(). The differences result in superior performance 

on the SPARC workstation. Besides explaining performance differences, the predicted 

ratios of execution speeds are within a small margin of the real execution speed ratios.  

Figure 4-5 shows the results for Cloudscape, a database management system. The 

result for the Sun JDK1.2.2 classic version on the SPARC workstation was missing 

because Cloudscape wasn’t able to run on it. Similarly to what we observed for the WebL 

results, not only does HBench:Java correctly predict the order of the running speed on the 

different JVM platforms, the predicted ratios of the execution speeds closely match the 

actual ratios. On the other hand, SPECJVM98 does not predict the order correctly, and its 

predicted speed ratios are off by a large margin in most cases. Also similar to the case of 

WebL, Cloudscape spends a large amount of time in class loading.  
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Figure 4-4. Normalized Running Speeds for WebL. The speeds are normalized 
against the reference JVM, JDK1.2.2_NT_PRO, i.e., the normalized speed of 
SDK3.2_NT_PRO is the execution time on JDK1.2.2_NT_PRO divided by the 
execution time on SDK3.2_NT_PRO. This graph shows that HBench:Java is able to 
correctly predict the order of  the running speed of WebL on the different JVM 
platforms. 

Time (µs) 
JVM 

Class.forName() ClassLoader.loadClass() BufferedReader.read() 

JDK1.2.2_NT_PRO 5309.944 4564.824 6.897 
SDK3.2_NT_PRO 3011.411 2710.269 0.317 
JDK1.2.2_NT_II 4155.065 3961.282 5.108 
SDK3.2_NT_II 2281.390 2053.251 0.244 
JDK1.2.2_SunOS_Classic 2264.093 2037.331 0.195 
JDK1.2.1_SunOS_Prod 2487.306 2145.458 0.139 

Table 4-3. Important Primitive Operations for WebL. 
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Figure 4-6 shows the results for Mercator, the web crawler. Only results for a 

limited number of JVMs were collected due to the difficulty of setting up the machines in 

an isolated network. The results, however, are quite encouraging. Even though 

HBench:Java predicted the order for JDK1.2.2_NT_Pro and SDK3.2_NT_Pro 

incorrectly, the predicted ratio still matches the actual ratio quite closely. As a matter of 

fact, the actual ratio is so close to one, it is difficult to tell which one is faster. 

SPECJVM98 again predicted the wrong order for Sun JDK1.2.2. In this case, two 

primitive operations, the constructor of java.net.Socket and 

java.net.SocketInputStream.read(), account for the majority of the running time. 
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Figure 4-5. Normalized Running Speeds for Cloudscape. The speeds are 
normalized against the reference JVM, JDK1.2.2_NT_PRO. This graph shows that 
HBench:Java is able to correctly predict the order of  the running speed of 
Cloudscape on the different JVM platforms. 
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Table 4-4 lists the cost of these two primitives for the four Java Virtual Machines tested. 

The per-byte socket read time is quite similar for the four JVMs. The socket initialization 

time, which includes the cost of creating a TCP connection, varies a lot among the four 

JVMs. The corresponding application vector entry is (19525, 147550208). 
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Figure 4-6. Normalized Running Speeds for Mercator. The speeds are 
normalized against the reference JVM, JDK1.2.2_NT_PRO. This graph shows 
that HBench:Java is able to correctly predict the order of  the running speed of 
Mercator on the different JVM platforms. 

 
Time (µs) 

JVM 
Socket.<init>() SocketInputStream.read() 

JDK1.2.2_NT_PRO 2171.552 0.210 
SDK3.2_NT_PRO 2575.459 0.214 
JDK1.2.2_SunOS_Classic 826.780 0.262 
JDK1.2.1_SunOS_Prod 660.711 0.254 

 

Table 4-4. Important Primitive Operations for Mercator. 
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In summary, the three examples presented demonstrate HBench:Java’s ability to 

predict real applications’ performance. The results are especially encouraging since the 

system vector contains only a small set of system class methods. 

To understand why SPECJVM98 was not able to predict application performance 

correctly, we compared the behaviors of SPECJVM98 programs with those of the three 

sample applications in terms of time breakdown for user versus system classes. Tables 4-

5 and 4-6 show the percentage of time spent in system classes for SPECJVM98 programs 

and the three sample applications we tested, respectively. These numbers were obtained 

using the sampling facility of the hprof agent included in Sun’s JDK1.2.2. As the data 

Program System Time (%) User Time (%) 
_201_compress 2.6 97.4 
_202_jess 4.5 95.5 
_209_db 33.1 66.9 
_213_javac 6.1 93.9 
_222_mpegaudio 1.4 98.6 
_227_mtrt 1.4 98.6 
_228_jack 15.1 84.9 

Average 9.2 90.8 

Table 4-5. Time Breakdown for SPECJVM98 Programs. 

 

Program System Time (%) User Time (%) 
WebL 54.0 46.0 
Cloudscape 33.9 66.1 
Mercator 92.9 7.1 

Table 4-6. Time Breakdown for Sample Applications. 
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show, the SPEC programs spend most of the time in user classes. Our experience 

indicates that most real-world Java applications spend a significant amount of time in 

system classes. Therefore, SPECJVM98 is a poor predictor for the general class of Java 

applications. 

Notice that even though a larger percentage of time goes to user classes for the 

Cloudscape case, HBench:Java was still able to predict the ratios quite accurately. We 

suspect that this is because performance of user classes is largely determined by JIT 

quality. System classes are also compiled by the same JIT, thus performance of a 

collection of system classes in some way reflects the JIT quality, which applies to user 

classes as well. 

To test this hypothesis, we used HBench:Java to predict the relative performance 

of the db program in the SPECJVM98 suite. Figure 4-7 shows the results. HBench:Java 

was able to predict the relative running speeds correctly except for the last two JVMs on 

the X-axis, the SDK3.2 on the Pentium II machine and the JDK1.2.1_O3 on the SPARC 

workstation. The predicted ratios, however, are quite close to the actual ratios. The results 

suggest that system classes can be reasonable indicators for JIT quality, but there is room 

for improvement. 
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One possible approach to improving the estimation of JIT quality for user-defined 

classes is to use results from benchmarks that are user-class bound such as SPECJVM98 

and the JavaGrande benchmark and combine them with HBench:Java results to form a 

prediction. This direction of research is out of the scope of this thesis, but will be 

explored in future work. 

4.4 Discussion 

HBench:Java is still in the early stages of its development. Here we identify a few 

unresolved issues and describe how we plan to address them. 
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Figure 4-7. Prediction for the db Program of SPECJVM98 Using 
HBench:Java. The speeds are normalized against the reference JVM. This graph 
shows that HBench:Java is able to predict the relative running speeds correctly 
except for the last two JVMs, the SDK3.2 on the Pentium II machine and the 
JDK1.2.1_O3 on the SPARC workstation.  
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The first issue is the large number of API method calls. We plan to attack this 

problem by identifying a set of core methods, including methods executed frequently by 

most applications (such as those in the String class), and methods upon which many other 

methods are built (such as those in the FileInputStream class). We then plan to analyze 

method inter-dependencies and derive running time estimates of non-core methods from 

the running times of the core methods. For instance, a length() method typically takes 

the same time as a size() method. We believe that it is acceptable if the estimates of 

non-core classes are not 100% accurate, since we expect these methods to be infrequently 

invoked. 

A related issue is how do we determine the core set of methods. We currently rely 

on application traces to identify them because Java is relatively new and we do not yet 

have enough experience to decide ahead of time what methods are important. As we gain 

more experience, we will have a better knowledge of what primitives should be included 

in the core set and what primitives should be estimated. We are confident this would be 

the situation. HBench:OS (see Chapter 6), for example, does not rely on application 

traces to determine the primitives, as we have extensive knowledge about how OS 

primitives are used. 

When identifying the set of core methods, there is a tradeoff between simplicity 

and accuracy. The more methods we include in the core set, the better the prediction 

becomes, however at the expense of measurement complexity. Since our first goal is to 

be able to predict the relative order correctly, while keeping the vector as simple as 

possible, we do not try to account for all contributions. Rather, we look for a subset that 

gives good but not perfect coverage. It is conceivable that we might miss important 
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methods in some corner cases, but the HBench:Java methodology should still provide 

much better predictive power than standard benchmarks.  

Another issue is that JIT compilers could alter an application enough that no 

single application vector could be used across all JVM platforms. Our experience so far 

indicates that this is not yet a problem. However, we will closely follow this issue as JIT 

technologies become more advanced. 

4.5 Summary 

HBench:Java is a vector-based, application-specific benchmarking framework for 

JVMs. The performance results demonstrate HBench:Java’s superiority over traditional 

benchmarking methods in predicting the performance of real applications and in 

pinpointing performance problems. By taking the nature of target applications into 

account and offering fine-grained performance characterizations HBench:Java can 

provide meaningful metrics to both consumers and developers of JVMs and Java 

applications. 
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Chapter 5 
HBench:JGC for evaluating GC Performance 

In this chapter, we present the techniques for applying the vector-based 

methodology to the domain of garbage collection and evaluate its effectiveness. We first 

give an overview on basic concepts of garbage collection in Section 5.1. Section 5.2 

describes the design of HBench:JGC in detail. Section 5.3 describes its prototype 

implementation. Section 5.4 presents experimental results on applying HBench:JGC to 

predicting GC times. Section 5.5 discusses open issues and future work. Although the 

HBench:JGC is implemented using Java, the methodology of HBench:JGC described in 

this paper is applicable to GC implementations for other languages such as Lisp, Scheme, 

Smalltalk, and C++. 

5.1 Introduction 

5.1.1 Basic GC Concepts  

The garbage collector manages the collection of free space from which new 

objects are allocated. The free space can be represented as a list of free blocks, a single 

chunk of contiguous space, or a combination of the two.  

When the allocator fails to satisfy an allocation request, it initiates a garbage 

collection run. A garbage collection run typically starts with a marking phase, when live 

objects are identified and marked. This phase may be followed by one or more phases 

(typically called the sweep phases) that free the space occupied by the dead objects, 

making it available for allocation. A non-copying collector does not move the live 

objects, whereas a copying collector typically compacts the live objects to one end of the 
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heap in order to create a large contiguous free space at the other end of the heap. 

Examples of non-copying collectors include the most widely adopted mark-sweep 

garbage collector [5] and its variants. Examples of copying collectors include the Lisp 2 

collector [31], which is a mark-compact collector, and Cheney’s two-space copying 

collector [10]. For a complete treatment of this topic, readers are encouraged to refer to 

the book by Jones et al. [27]. 

5.1.2 A GC Implementation Taxonomy 

Independent of the GC algorithms (e.g., copying vs. non-copying), we can 

classify GC implementations according to the four attributes described in Table 5-1. The 

first attribute represents the axis between stopping all execution for garbage collection 

and running the collector completely in parallel with program execution [3]. The second 

attribute describes the internal architecture of the collector itself, whether it is sequential 

(single-threaded) or parallel (multi-threaded). The third attribute describes the granularity 

of collection, whether collection occurs in a single, complete pass (batch-oriented) or 

whether just some of the available memory is reclaimed during each iteration 

(incremental). The fourth and last attribute distinguishes generational garbage 

Attributes of GC Implementations 

Stop-the-world   ↔ Concurrent 

Sequential  ↔ Parallel 

Batch  ↔ Incremental 

Non-generational  ↔ Generational 

Table 5-1. GC Implementation Techniques 
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collectors [34] from non-generational collectors. Generational collectors implement a set 

of heaps that are cleaned with varying frequency depending on the age of the objects 

stored in the heap. Each heap corresponds to a different age group. 

The four attributes in the taxonomy are largely orthogonal, with a few exceptions. 

For example, a GC algorithm can be both stop-the-world and parallel, but it cannot be 

both concurrent and batch mode.  

In this thesis we consider only sequential, stop-the-world, batch-mode and non-

generational garbage collectors. We chose to start with this type of collector because it 

involves the fewest variables and thus allows faster prototyping of the analytical models 

and more controllable experimentation. Furthermore, this type of collector is still in wide 

use. For example, Sun’s standard JDK1.1 and JDK1.2 Java Virtual Machines use this 

type of collector. Section 5.5 discusses how we envision enhancing our approach to cope 

with concurrent, parallel, incremental and generational garbage collectors. 

5.2 HBench:JGC Design 

5.2.1 GC Characterization 

Like all memory management systems, a garbage collector implementation 

supports two primitive operations, namely, object allocation and reclamation. 

5.2.1.1 Object Allocation 

For a given memory management algorithm, the cost of object allocation is 

typically determined by the following two factors: 

1. the size of the allocation, 
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2. the state of the heap, such as the number of free blocks and their sizes. 

We can represent this cost with a function Calloc(heap_state, allocation_size). 

Depending on the memory management algorithm, Calloc carries different forms. In the 

case of copying garbage collectors, the free space is a contiguous area, and allocation can 

be implemented by a simple pointer advancement. Therefore, in the case of a copying 

collector, Calloc is a constant function. In the case of non-copying collectors, such as a 

non-copying mark and sweep collector, the allocation time depends on the state of the 

free-block lists maintained by the collector. If we characterize the heap state with simple 

statistical measures, such as a normal distribution with a given mean and standard 

deviation, or a uniform distribution with a given range, we can represent Calloc in a 

concise way. Furthermore, we can measure Calloc using microbenchmarks that initialize 

the heap according to the statistical measures. 

5.2.1.2  Object Reclamation 

An interesting aspect of garbage collection performance is that the cost of dead 

object reclamation depends on the amount of live data on the heap, since the way a 

garbage collector identifies live objects is to traverse the connected object graph from a 

set of root objects. 

We divide the cost of object reclamation into three parts: the fixed cost (Cfixed), the 

per-live-object cost (Clive), and the per-dead-object cost (Cdead). Cfixed corresponds to the 

fixed cost associated with a garbage collection run, such as the initialization of data 

structures. Cfixed normally depends only on the heap size. Clive is the overhead measured 

per live object (objects that survive the collection). For non-copying collectors, Clive is 
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typically constant. For copying collectors, Clive is a function of the size of live objects, as 

live objects are compacted (copied) at the end of a collection run. Cdead corresponds to the 

per-object cost of releasing the space of a dead object. In most cases, this involves 

updating bookkeeping information for the freed object, and thus Cdead is usually constant 

for a given collector algorithm. In summary, the cost of object reclamation can be 

represented by three functions, Cfixed(heap_size), Clive(object_size), and Cdead. Let Nl be 

the distribution function of the sizes of live objects, i.e., Nl(s) is the number of surviving 

objects with size s. Let Nd be the distribution function of dead object sizes. The total cost 

of garbage collecting a heap of size h can then be calculated using the following formula: 

∑∑ +⋅+=
s

ddead
s

llivefixedGC sNCsNsChCT )()()()(  (1) 

The above reasoning makes the simplifying assumption that every live object is 

traversed exactly once during marking. For cases where an object is referenced by several 

live objects, the object will be visited multiple times by the collector. We characterize 

this additional cost by adding a second variable, di, the fan-in degree of an object, in the 

per-live-object overhead function Clive. The middle term of the formula thus becomes: 

∑∑ ⋅
s id

ililive dsNdsC ),(),(  

The situation is further complicated by the fact that certain copying collectors 

need to update an object’s references, if the objects it points to are copied to a different 

place. We characterize this additional cost by adding yet another variable, do, the fan-out 

degree of an object, in the per-live-object overhead function Clive. The middle term now 

becomes: 
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∑∑∑ ⋅
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The difficulty of characterizing object reclamation costs lies in deriving the three 

cost functions Cfixed, Clive, and Cdead using results from microbenchmarks. Our experience 

indicates that the simplified formula (1) for estimating GC time works well in practice for 

a mark-sweep GC algorithm. 

5.2.2 Application Characterization 

The following metrics describe an application’s memory usage behavior: 

1. Object allocation rate (both in terms of the number of objects and the 

number of bytes); 

2. Object death rate (both in terms of the number of objects and the number 

of bytes); 

3. Object age (the time an object remains alive); 

4. Connectivity of the live object graph, i.e., the number of references to an 

object (fan-in degree) and the number of references it contains (fan-out 

degree). 

Some of the metrics, such as object allocation rate, can be obtained quite easily. 

Some other metrics, such as object age, are difficult to measure and can only be estimated 

using profiling tools. 
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One significant challenge in characterizing an application’s memory behavior is 

that of GC (and JVM) independence. For example, if we use the number of objects per 

second as the unit for object allocation speed, it is not portable to other JVM or GC 

implementations, as this unit is system dependent. To solve this problem, we use objects 

per bytecode as our basic unit for both object allocation rate and object death rate. 

5.2.3 Predicting GC Time 

Object allocation cost is an important part of the performance metric of GC 

systems. It is, however, not directly measurable for a given application. As a first step, 

this paper focuses on predicting the time the application spends on garbage collection, or 

the time between the start and finish of a garbage collection run. Unless otherwise 

specified, GC time refers to the cost of object reclamation, and does not include 

allocation costs.  

The total GC time of an application can be determined by two factors: the number 

of GC runs and the time for each GC run. 

With the knowledge of object allocation rate and object death rate, one can 

estimate the amount of live data at a given execution point, from which one can then 

calculate the number of GCs deterministically, assuming a heap that is fixed-size or one 

whose growth policy is known a priori. 

The time for each GC run can be estimated using formula (1) described in Section 

5.2.1.2. The total GC time is the sum of times of all individual GC runs. 



 

 55

5.3 HBench:JGC Implementation 

The major components of HBench:JGC are: the profiler that traces an 

application’s memory behavior, the set of microbenchmarks whose measurement results 

form the characterization of the given garbage collection implementation, and finally, the 

analyzer that estimates the GC time given both application and GC characterizations. The 

following three subsections describe each component in more detail. 

5.3.1 Profiler 

We again implement our profiler based on the JVMPI profiling interface provided 

by Sun Microsystems’s JDK 1.2.2. We are interested in the following events: GC start 

and finish, object allocation, free and move, heap dump and object dump. Object 

allocation and free events can be used to estimate object lifetimes and the number of 

free/live objects at a given execution point. Heap dumps help determine the object 

connectivity such as fan-in and fan-out degrees. Our current implementation includes all 

the events except heap and object dump. 

5.3.2 Microbenchmarks 

The goal of microbenchmarking is to measure the fixed and per-object costs of 

memory reclamation. Our first microbenchmark deals with singular linked list data 

structures. In the future, we will include microbenchmarks that model more complicated 

object types with different fan-in and fan-out degrees. 

The microbenchmark first populates the heap with an array of linked lists of 

objects. The size of array, the length of the list, and the object size can all be dynamically 



 

 56

configured with command-line options. The microbenchmark then explicitly invokes 

garbage collection at three different times: 

1. When all objects on the heap are alive; 

2. When all objects on the heap are reclaimable, i.e., after the 

microbenchmark sets the pointers to the heads of the linked lists to null; 

3. When the heap is entirely empty, i.e., after the GC following step 2. 

To measure Cfixed, we run the microbenchmark with different heap sizes, fixing 

the other two parameters. We then plot the GC times measured in step 3 above against 

the heap sizes. The resulting regression formula is the approximate function for Cfixed. 

Similarly, to measure Clive, we run the microbenchmark with a varying numbers 

of objects, fixing the other two parameters. The GC times measured in step 1 above are 

then plotted against the number of objects for a given object size s and the resulting 

regression function defines Clive(s). Since Clive might also depend on object sizes, we 

again repeat the microbenchmark for different object sizes. 

The same process is performed to measure Cdead, except that in this case the GC 

times of step 2 are used. 

5.3.3 Analyzer 

Given both the application and GC characterizations, the analyzer tries to estimate 

the time the application spends on garbage collection. The analyzer also needs certain 

configuration information, such as the heap size, in order to determine the total GC time. 
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Note that heap sizes may change dynamically. For example, if the memory system cannot 

satisfy the allocation request even after a GC, or if the percentage of free space is below a 

certain threshold, the heap is expanded. The policies as to when and how much to expand 

the heap should be specified to the analyzer. 

5.4 Experimental Results 

5.4.1 Experimental Setup 

We ran our experiments on Sun Microsystems’s JDK1.2.2 classic version on three 

different machine configurations. Table 5-2 shows the hardware properties. 

Sun Microsystems’ JDK1.2.2 classic JVM uses a mark-sweep (with compaction) 

collector. Mark-sweep collection is one of the classical garbage collection algorithms that 

remains in wide usage today. Due to its conservative nature, it is popular for type-unsafe 

languages such as C/C++. The collector of the JDK1.2.2 classic JVM is a variation of the 

classical mark-sweep collector — it occasionally moves live objects around the heap. 

Although compaction does not occur often for the applications we tested, it does generate 

some uncertainties that make it harder to predict the GC time. 

CPU Memory 
(MB) 

Operating 
System 

JVM 
Version 

GC 
Algorithm 

Pentium Pro 200MHz 128 Windows NT 4.0
Pentium III 550 MHz 256 Windows 2000 
Ultra SPARC IIi 333 MHz 128 Solaris 7 

1.2.2 
Classic 

Mostly mark-
sweep 

Table 5-2. Test Platform Configurations. 
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We use Java applications included in the SPECJVM98 benchmark suite [53] and 

the R2mark benchmark [24] to evaluate the predictive power of our approach. Most 

SPECJVM98 applications induce extensive GC activities, except _222_mpegaudio, 

which is excluded from our set of test applications. R2mark stands for a Radiosity and 

Ray-tracing based benchmark. It implements a multi-pass rendering algorithm that 

simulates the lighting of a computer-generated graphic scene. R2mark is a demanding 

Java application that also stresses the JVM’s memory system. Table 5-3 lists the GC 

related information about our test applications. 

5.4.2 Microbenchmark Results 

We report the GC times of the three steps described in Section 5.3.2. Unless 

otherwise specified, all data points reported in this section are means of 10 runs of the 

microbenchmark. In most cases, the standard deviation is within 1%. 

Application Allocation (MB) 

_201_compress 334 
_202_jess 748 
_209_db 224 
_213_javac 518 
_227_mtrt 355 

SPEC 

_228_jack 481 
R2mark 1552 

Table 5-3. GC Activity of Test Applications. Data for SPEC is obtained from the 
benchmark’s documentation. The actual numbers appear to differ but the magnitude 
is the same. Data for R2mark is obtained from actual measurement on a SPARC IIi 
333MHz machine. This table shows that the applications induce extensive GC 
activities. 
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5.4.2.1 GC on Empty Heap 

Figure 5-1 shows the garbage collection times of an empty heap (see step 3 in 

section 5.3.2) on the Sun SPARC workstation. The regression formula indicates that GC 

times of empty heaps are linearly dependent on the size of the heap and that the per-

megabyte cost of an empty heap GC for this particular GC implementation is 3.75ms. 

The y-intercept (0.02) is negligible. We therefore derive the following formula for 

Cfixed(h) (described in Section 5.2.1.2) for this GC algorithm: 

hhC fixed ⋅= 75.3)( , 

where h is the size of the heap in megabytes. The value of the slope (3.75) 

remains the same (variations within 5%) for different object sizes and numbers of objects. 
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Figure 5-1. GC Time of Empty Heap on Sun SPARC. We use an object size of 
28 bytes, and 512 lists each with 512 objects. The number of objects and the size of 
objects remain fixed as the total heap size varies. This graph shows that the GC 
times are linearly dependent on the heap size when collecting an empty heap. 



 

 60

Similar results were obtained for the other machine configurations, albeit with a different 

slope value. 

5.4.2.2 GC on Fully Reclaimable Heap 

Figure 5-2 shows the garbage collection times of a fully reclaimable heap (see 

step 2 in section 5.3.2). The GC time again shows a linear dependence on the size of the 

heap, and the slope value (3.73) is close to the slope value of Cfixed (3.75). If we remove 

the fixed cost Cfixed(h), the remaining time is essentially independent of heap size. Since 

all objects on the heap are free and are reclaimed by the collector, this remaining time, 

when divided by the number of dead objects, represents the per-dead-object cost Cdead. In 
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Figure 5-2. GC Time of Fully Reclaimable Heap With Respect to Heap Size on 
Sun SPARC. We use an object size of 28 bytes, and 512 lists each with 512 objects. 
The number of objects and the size of objects remain fixed as the total heap size 
varies. This graph shows that the collection time of a fully reclaimable heap is also 
linearly dependent on the heap size. The cumulative cost for dead objects, measured 
by the distance between the two curves, stays constant while the heap size varies. 
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this particular case, Cdead takes on a value of 108.6/(512*512), or 0.4 ns/object. Again, 

similar results are observed from runs on the other machine configurations. 

Theoretically, Cdead is independent of object size, since dead objects are neither 

scanned nor copied. However, to our surprise, our measurements suggest that Cdead is 

indeed dependent on object size. Figure 5-3(a) shows the results on the Sun SPARC 

workstation. The GC time seems to grow as the object size increases, until the object size 

hits 60 bytes, and stays at around 180ms thereafter. Similar dependence patterns are 

observed on the Pentium Pro and Pentium III machines, as shown in Figures 5-3(b) and 

3(c), respectively. In both cases, Cdead is independent of object size, except when the 

object size is less than 28 bytes. 

We hypothesize that the dependence on the object size is due to memory cache 

effects. More specifically, we believe that the size dependence threshold (60 bytes for 

Ultra SPARC family chips and 28 bytes for Pentium family chips) is determined by the 

L2 cache-line size of the processor3. The L2 cache-line size is 64 bytes for the Ultra 

SPARC IIi processor, and 32 bytes for the Pentium processor family. When the garbage 

collector cleans up dead objects, it strides through the heap, inspecting each dead object’s 

header and updates bookkeeping information of free spaces. Notice that normally only 

the dead object’s header is accessed; the content of the object is not touched. For the 

processors included in our experiments (and for most processor types), the entire heap 

does not fit in the L2 cache. Consequently, for objects larger than the cache line size, 

each read on a dead object’s header results in a cache miss in both L1 and L2 caches, 
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requiring the processor to fetch the cache line containing the object header from the main 

memory. Moreover, this cost is independent of object size. This explains why Cdead is 

constant for objects larger than 60 bytes on the Ultra SPARC IIi workstation, and for 

objects larger than 28 bytes on the Pentium family machines. For objects smaller than the 

cache line size, a cache line can pack more than one object. Thus the cost of memory read 

is amortized across multiple objects accesses. The smaller the object, the more the 

amortization is. This explains the linear dependence on object size for objects smaller 

than the cache line size for both the Ultra SPARC IIi workstation and the Pentium family 

machines.

                                                                                                                                                 
3 The object size here does not include the size of object header, which is 4 bytes for the garbage collector 

tested. 
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(a). Results on 333MHz Sun Ulatra SPARC IIi 
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(b). Results on Pentium Pro 
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(c). Results on Pentium III 

 
Figure 5-3. GC Time (Excluding Fixed Overhead) of Fully Reclaimable Heap 
with Respect to Object Size. The GC time is calculated from the regression 
formula as shown in Figure 5-2. The cost of dead object grows linearly with the 
object size up to a certain threshold size, and stays constant afterwards. 
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To verify our hypothesis, we used the performance counters on the Ultra SPARC 

IIi chip to record the number of memory-read accesses during garbage collection. We 

accomplished this with the help of the perfmon tool [43]. The perfmon tool provides a 

device driver through which user level programs can access the performance counters 

using standard system call APIs such as open() and ioctl(). We implemented a profiler 

that enables the performance counters to monitor the appropriate events at the start of a 

GC run and reads the counter value at the end of the GC. We then ran the 

microbenchmarks on the Java Virtual Machine with the profiler attached. We recorded 

the counts for three types of memory events: L1 data cache read, L1 data cash read hit, 

L2 cache hit, denoted as NL1_cache_read_total, NL1_cahce_read_miss, and NL2_cache_read_hits, 

respectively. The memory-read accesses can then be calculated using the following 

simple formula: 

hitsreadcacheLmissreadcacheLtotalreadcacheL

hitsreadcacheLtotalreadcacheLreadmemory

NNN
NNN

___2___1___1

___2___2_

)(                  −−=

−=
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Figure 5-4 shows the memory-read reference counts. The top series represent the 

memory reference counts for the case of a reclaimable heap (stage 2 in Section 5.3.2). 

The bottom series represent the memory reference counts minus those for the empty heap 

case (stage 1 in Section 5.3.2). As one can see, the shape of the data series matches 

exactly with that in Figure 5-3(a), validating our hypothesis. In addition, the memory 

reference counts (excluding counts for the empty heap case, shown in the bottom data 

series in Figure 5-4) for objects size of 28 bytes (32 bytes including the object header) is 

262,088, about one half of 535059, the counts for object size of 60 bytes (64 bytes 

including the object header). 
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Figure 5-4. Memory-Read Reference Counts as a Function of Object Sizes on 
333MHz Sun Ultra SPARC IIi. The top data series represent the case for a 
reclaimable heap; the bottom data series exclude the counts for the empty heap. 
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5.4.2.3  GC on Fully Live Heap 

Figure 5-5 shows the garbage collection times of a fully live heap (see step 1 in 

section 5.3.2). In this case, all objects on the heap are live and survive the garbage 

collection. Similar to the case of a fully reclaimable heap, the GC time shows a linear 

dependence on the size of the heap. If we exclude the fixed cost Cfixed, the remaining time 

is independent of heap size. The GC time, when divided by the number of total objects on 

the heap, yields the per-live-object cost Clive. In this particular case, Clive takes on a value 

of 229.1/(512×512), or about 0.9ns/object. Again similar results are observed from runs 

on other machine configurations. 
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Figure 5-5. GC Time of Fully Live Heap with Respect to Heap Size on Sun 
SPARC. We use an object size of 28 bytes, and 512 lists each with 512 objects. 
The number of objects and the size of objects remain fixed as the total heap size 
varies. This graph shows that the collection time of a fully live heap is also linearly 
dependent on the heap size. The cumulative cost for live objects, measured by the 
distance between the two curves, stays constant while the heap size varies. 
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(a). Results on Sun SPARC 
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(b). Results on Pentium Pro 
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(c). Results on Pentium III 

 
Figure 5-6. GC Time (Excluding Fixed Overhead) of Fully Live Heap with 
Respect to Object Size. The GC time is calculated from the regression formula as 
shown in Figure 5-5. Similar to the case of a fully reclaimable heap, the cost of 
live object grows linearly with the object size up to a certain threshold size, and 
stays constant afterwards. 
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Figures 5-6(a), 5-6(b) and 5-6(c) show Clive as a function of object size on the Sun 

SPARC workstation, the Pentium Pro machine, and the Pentium III machine, 

respectively. We observe patterns similar to those of the fully reclaimable heap case, 

albeit with much larger variations. For the Sun SPARC workstation case, the value of 

Clive seems to grow linearly as the object size increases, until the object size hits 60 bytes 

and stays at approximately 380ms thereafter. For the Pentium Pro machine case, the 

value of Clive seems to oscillate between 600ms and 700ms after the object size hits 28 

bytes. Similarly, for the Pentium III machine case, the value of Clive oscillates between 

220ms and 250ms after the object size hits 28 bytes. 

Similar to the case of a fully reclaimable heap, the memory-read reference counts 

obtained from the performance counters explain the size dependence of Clive, as shown in 

Figure 5-7. Interestingly, the memory access counts also show an oscillating pattern for 

objects larger than 60 bytes. Since there is no reason that cleaning up a 84-byte object 

will take more memory accesses than cleaning up a 92-byte object, we believe that the 

oscillation observed in Figure 5-6(a) might be due to memory cache effects such as 

conflict misses in the L2 cache. This effect is also detected with two anomalous data 

points for the Pentium Pro configuration: at object sizes of 60 bytes and 124 bytes. There 

is also a similar anomalous data point for the Pentium III at object size of 124 bytes in 

Figures 5-6(b) and 5-6(c). One explanation for the fact that this variation exists only in 

the case of live objects (and not dead objects) is that live object manipulation requires 

looking beyond the object header for pointers to other objects. These extra memory 

access activities induce more complicated reference patterns of the memory cache, 

resulting in larger variations in GC times. 
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5.4.3 Predicting GC Time 

In this section we demonstrate how the microbenchmark results can be used to 

predict garbage collection time for a given Java application. 

First, we calculate the values of the three functions that characterize a GC 

algorithm, namely, Cfixed, Clive, and Cdead. Table 5-4 shows the coefficient values of the 

three functions for the JVM on the Sun SPARC workstation. For objects with size larger 

than 132 bytes, the values for 132 bytes are used. 

Next we obtain characterizations of the applications’ memory behavior. Our 

current profiler implementation generates information such as the number of live objects, 

the number of dead objects, and the object size distribution. Assuming that live and dead 

0E+0

5E+5

1E+6

2E+6

2E+6

3E+6

0 20 40 60 80 100 120 140

Object Size

M
em

or
y 

R
ea

d 
R

ef
er

en
ce

s

Fully Live Heap

Fully Live Heap - Empty Heap

 
Figure 5-7. Memory-Read Reference Counts as a Function of Object Sizes on 
333MHz Sun Ultra SPARC IIi. The top data series represent the case for a fully 
live heap; the bottom data series exclude the counts for the empty heap. 
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objects have the same size distribution, we can approximate the GC time function TGC 

(section 5.2.1.4) with the following formula 

 

where n(s) is the normalized object size distribution function, i.e., n(12) is the 

percentage of objects with size equal to 12 bytes, L is the number of live objects and D is 

the number of dead objects. Figure 5-8 shows the accumulative object size distribution 

function for the test applications. Applications such as db and mtrt are dominated by one 

Object Size Cfixed 
Per MB 

Clive 
Per Object 

Cdead 
Per Object 

12 3.75 7.04E-04 3.02E-04 
20 3.75 7.51E-04 3.49E-04 
28 3.75 8.67E-04 4.03E-04 
36 3.75 9.55E-04 4.71E-04 
44 3.75 1.07E-03 5.49E-04 
52 3.75 1.24E-03 6.15E-04 
60 3.75 1.30E-03 6.83E-04 
68 3.75 1.38E-03 6.85E-04 
76 3.75 1.44E-03 6.83E-04 
84 3.75 1.41E-03 6.85E-04 
92 3.75 1.59E-03 6.85E-04 
100 3.75 1.40E-03 6.82E-04 
108 3.75 1.33E-03 6.87E-04 
116 3.75 1.40E-03 6.91E-04 
124 3.75 1.33E-03 6.92E-04 
132 3.75 1.46E-03 7.17E-04 

Table 5-4. GC Characteristics on 333MHz Ultra SPARC IIi 

∑ ⋅⋅+∑ ⋅⋅+=
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object size, whereas other applications use multiple object sizes. In general, the majority 

(more than 90%) of objects are small, i.e., less than 100 bytes, except for compress. 

So far our formula has not taken into consideration the cost of the occasional 

copying performed by the collector. For our test cases, copying only occurred in two 

applications in four GC invocations (out of a total of over seventy GC invocations). 

Three of those four GC invocations were explicit garbage collections made by the 

application, which trigger unnecessary copying. Currently we approximate this copying 

overhead by dividing the number of bytes copied over the memory bandwidth, and we 

use the actual number of bytes copied. In the future, we will enhance our analyzer to 

estimate this information from the application memory characterization, assuming that 

the algorithm that decides when to perform a copy is known. We will also explore 
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Figure 5-8. Cumulative Object Size Distribution in Number of Objects. This graph 
shows that the applications differ in the sizes of objects they create. Overall, the majority 
of objects are small, i.e., less than 100 bytes, except for compress. 
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techniques to design microbenchmarks that would trigger a copy and measure the cost 

directly. 

Figure 5-9 shows the predicted versus actual GC running times for the six SPEC 

applications on the Sun SPARC workstation. A summary of the percentage time 

difference between the predicted and the actual GC times is presented in Table 5-5. 

For compress (Figure 5-9(a)), there are five garbage collections during the 

execution of the compress application. The predicted GC times match the actual times 

quite closely (with 0.2% error rate), showing that our prediction model works well in this 

case. In the fourth GC run, the collector copied certain live objects to the beginning of the 

heap, which accounts for the boost in the GC time. The result shows that our 

approximation on the copying time works well in this case also. 

Figures 5-9(b), 5-9(c), 5-9(e) and 5-9(f) show the results for jess, db, mtrt and 

jack, respectively. The predicted times track the actual times quite closely. No copying 

occurred in these cases.  

Figure 5-9(d) shows the results for javac. The predicted times track the actual 

times nicely except for the 3rd, 5th, and 7th GC runs. It turns out that these three GCs 

were invoked explicitly by the application at times when the heap space had not been 

exhausted and most objects on the heap were live objects. The explicit GCs also trigger 

unnecessary copying of live objects. In this case, our approximation on the copying cost 

does not work well. This might be due to the fact that the approximation does not include 

the overhead for initiating a copy. Therefore it underestimates the cost in cases when 

many small objects are copied. 
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 (a). _201_compress. This graph shows that HBench provides a good 
prediction of actual GC time, with an error rate of 0.2%. 
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(b). _202_jess. This shows that HBench provides a good prediction of actual 
GC time, with an error rate of 2.2%. 

Figure 5-9. Predicted versus Actual GC Times for SPEC Applications. All tests 
were run on the Sun SPARC workstation using a heap size of 32MB, except for 
javac and mtrt, which were run on a heap size of 64MB to eliminate the variation on 
the number of GCs from different runs. 
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(c). _209_db. This graph shows that HBench provides a good prediction of 
actual GC time, with an error rate of 8.3%. 
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(d). _213_javac. This graph shows that the predicted GC times track closely 
with the actual times except for runs 3, 5 and 7. These three runs are explicit 
GCs invoked by the application, in which case the approximation of the 
copying cost is not sufficiently accurate. 

Figure 5-9. Predicted versus Actual GC Times for SPEC Applications. Continued. 
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(e). _227_mtrt. This graph shows that HBench provides a good prediction of 
actual GC time, with an error rate of 3.1%. 

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
GC Run

Ti
m

e 
(m

s)

Actual
Predicted

 
 

(f). _228_jack. This graph shows that HBench provides a good prediction of 
actual GC time, with an error rate of 0.2%. 

Figure 5-9. Predicted versus Actual GC Times for SPEC Applications. Continued. 
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Figure 5-10 shows the results for R2mark. Again, the predicted GC times match 

actual times fairly closely, except for a few GC runs. One such noticeable exception is 

the second GC run, where the predicted time is off by almost 50%. A closer look at the 

data shows that in one particular run of the application, the second GC takes an 

abnormally long time to finish, pushing the average time higher. In fact, the standard 

deviation of the actual time of the second GC run is higher than the difference observed 

between the predicted and actual times. Notice that even though for this particular GC 

invocation, the variation is large. The average variation is quite small, only 9.9%, as 

indicated in Table 5-5. Furthermore, the average percentage difference between predicted 

and actual GC times is only about 2%. 

In summary, HBench:JGC is able to predict the actual GC times within 10% for 

six out of the seven applications (Table 5-5). In the case of javac, the error rate is –6.4% 

if we disregard the three explicit GCs. The results demonstrate that the vector-based 

methodology used by HBench:JGC is a promising technique for predicting application 

performance. In addition, we believe that when equipped with a better profiler and 

analyzer, the prediction accuracy of HBench:JGC can be improved further. 
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Figure 5-10. Predicted versus Actual GC Times for R2mark. The test was run on the 
Sun SPARC workstation using a heap size of 96MB. Data shown are average of 3 runs. 
This graph shows that HBench provides a good prediction of actual GC time, with an 
error rate of 1.9%. 
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5.5 Discussion and Future Work 

In this section we discuss issues that might arise when using HBench:JGC on 

more sophisticated GC implementations such as those presented in Section 5.1.2, and 

how we plan to address these issues.  

Concurrent garbage collection presents some technical challenges. With 

concurrent garbage collection, the application can continue to allocate new objects and 

access objects on the heap while a garbage collection is in process. Measuring the GC 

time is difficult because the GC time is dispersed in application execution time. We plan 

to approach this problem in the following way. We run a standard Java application 

without garbage collection, and then we run the same application with an additional 

thread that continuously allocates objects and invokes garbage collection. The 

performance degradation observed when the application is run with the additional GC 

intensive thread should be a good approximation of the GC time. 

Application Stdev (%) Time Difference (%) 

_201_compress 0.5 0.2 
_202_jess 0.4 -2.2 
_209_db 0.8 8.3 
_213_javac 0.5 -15.8(-6.4*) 
_227_mtrt 9.5 3.1 

SPEC 

_228_jack  0.5 -0.2 
R2mark 9.9 -1.9 

* Results if we discard 3 explicit GCs. 

Table 5-5. Summary of Predicted vs. Actual GC Times 



 

 79

Many concurrent collectors are also incremental. Therefore, we will need to 

estimate the percentage of the heap that is scanned by the collector. In most cases, an 

incremental collector sets an upper bound on the number of root objects to be processed, 

from which one can estimate the number of objects on the heap to be scanned. 

Predicting the performance of parallel garbage collectors can be potentially 

difficult because the speed-up of a parallel GC run over its sequential counterpart 

depends not only on the degree of parallelism, but also on how balanced each thread’s 

load is and the interactions between the threads such as lock contention. Analyzing 

performance of multi-threaded applications in general is still an active area of research.  

To apply HBench:JGC to generational garbage collectors, we model the collector 

performance for each generation, and then combine them together to form the total GC 

time. To achieve that, our profiler needs to be enhanced with the capability to estimate 

the object life expectancy. This can be implemented by sampling the heap at certain time 

interval t and identifying objects that are still alive. Their ages are then incremented by t. 

The age obtained this way can differ from the real age by at most t. One might adjust the 

sampling frequency to attain the degree of accuracy desired. Our analyzer should also be 

able to predict when objects are promoted to older generations, i.e., it needs to know the 

age threshold for promotion. Some GC implementations make this knowledge public. For 

implementations that do not, we need to design our microbenchmark suite such that it can 

deduce the age threshold by creating and deleting objects at different rates. 
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Currently, the memory cache effect is included in our cost functions as a function 

of object size. Our results indicate that in some cases, this simple model might be 

insufficient. We are investigating ways to model the memory cache hierarchy explicitly. 

5.6 Conclusion 

HBench:JGC is a vector-based, application-specific benchmarking framework for 

evaluating garbage collector performance. Our results demonstrate HBench:JGC’s unique 

predictive power. By taking the nature of target applications into account and offering 

fine-grained performance characterizations of garbage collectors that reflect hardware 

features such as cache line sizes, HBench:JGC can provide meaningful metrics that help 

better understand and compare GC performance. 
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Chapter 6 
HBench:OS for Evaluating Operating Systems Performance 

In this chapter, we demonstrate how HBench can be applied to the domain of 

operating systems to analyze and predict performance of kernel-intensive real-world 

applications. 

6.1 Introduction 

Operating system performance is critical for many modern server applications 

such as web servers, as they tend to spend a significant amount of time in kernel. 

Brown et al. developed HBench:OS [7], initially to study the performance of 

different layers in the operating system’s structural hierarchy and their inter-

dependencies. HBench:OS consists of a collection of microbenchmarks that measure the 

performance of common system operations and library routines. Originally derived from 

lmbench [39], HBench:OS contains a set of enhancements that make it more suitable for 

the task of performance prediction. For example, the timing methodology of the original 

lmbench was modified such that the program automatically determines the number of 

iterations required for accurate measurement with a given timer resolution. A new 

reporting method, n%-trimmed mean, was used for most microbenchmarks to get rid of 

out-of-band data points. The tests were made more parameterizable to measure 

bandwidth of small reads/writes that fit in first-level (L1) and second-level (L2) caches. 

The original context switch measurement included the cost of cache conflict, which often 

showed large variation. The new revised microbenchmark excluded this cost and only 

measured the repeatable pure OS overhead for context switches. 
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6.2 HBench:OS for Predicting Application Performance 

Using the improved microbenchmarks of HBench:OS, one can predict application 

performance with the vector-based methodology. The system vector consists of operating 

system primitives that characterizes the performance of the system. The application 

vector entries are counts of invocations to the corresponding system primitives, which 

represent the load the application places on the operating system. The dot product of the 

two vectors yields the predicted time spent in kernel. Note that this is kernel time only. 

HBench:OS is not intended for applications whose performance is dominated by user 

time. 

6.2.1 Application Vector and System Vector Formation 

Most operating systems provide utility programs to trace system calls and calls 

made to the standard libc library by a process and its children. On the Solaris operating 

system, for example, the tracing tool is called truss. We can trace the application 

running on a certain platform, and then process the trace to obtain the system call counts, 

which form the application vector. As was done for HBench:Java, the bandwidth metric 

is converted to a latency metric by calculating per-unit cost. The corresponding 

application vector entry is then the number of units instead of the number of calls. 

The system vector for a given platform can be obtained by running HBench:OS 

on that platform. Note that the system vector is only acquired once for a given platform 

and can be combined with different application vectors to predict the application 

performance on this particular platform. 
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6.2.2 Summary of Previous Results 

Brown used the results of HBench:OS to predict relative performance of the 

Apache web server on a variety of hardware/OS combinations [6]. He traced the Apache 

web server serving a single document and derived the application vector from the trace. 

There were over 100 system calls in the trace, but Brown used a simplified 

characterization vector containing only six elements: file read, file write, TCP transfer, 

TCP connection, single handler installation, and “null” system call. Most lightweight 

system calls were counted as “null” system call, which measured the cost of entering and 

leaving the kernel and provided a lower bound on the actual system call cost. With this 

simplified characterization vector, Brown showed that the calculated latency times could 

correctly rank the machines in the order of relative performance as measured 

experimentally. 

6.2.3 Extension to HBench:OS 

One reason that HBench:OS worked well then was that the performance of 

Apache was dominated by the read() system calls to the so-called “scoreboard” file for 

synchronization. The version of NetBSD that Brown used for his study did not support 

the mmap() interface needed by Apache. Consequently, Apache performed 

synchronization among its worker processes through reads to the scoreboard file. 

HBench:OS’s ability to predict the performance of the read system call resulted in the 

correct ranking of Apache’s performance on a variety of platforms, even with a 

simplified characterization vector. 
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Since that study, both the operating systems and web server workloads have 

evolved substantially. Current versions of operating systems typically support the mmap() 

interface needed by Apache. Consequently, scoreboard file reads no longer dominate the 

execution times. A more complex characterization vector is therefore needed for good 

prediction. On the application side, dynamically generated pages have become common. 

Therefore, the new application vector must be updated to reflect this change in 

application behavior. Our goal in this chapter is to extend HBench:OS sufficiently to 

more accurately predict the performance of today’s web servers. 

To evaluate the performance of a web server, we need a workload driver that 

produces web traffic that is sufficiently close to a realistic environment. We decide to use 

SPEC WEB99 [55]. SPEC WEB99 simulates real-world clients by maintaining a number 

of simultaneous connections to the server and limiting the bandwidth of each connection 

to be within the range from 320Kb/s to 400Kb/s. SPEC WEB99 generates both static and 

dynamic requests. It supports persistent connections specified by HTTP version 1.1, 

which allows multiple requests to be sent on the same TCP connection. Furthermore, it 

can also be configured to produce traffic with desired mixes of different types of 

requests. 

The application vector obtained via tracing a web server’s processing of a single 

request, of course, only characterizes the performance of the web server serving that 

particular request. For this vector to characterize an entire workload generated by SPEC 

WEB, we need to modify the entries to reflect the average case of the workload. In 

particular, we modify two entries of the vector: average request size, and average TCP 

connections per request. The average request size can be calculated based on the 
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distribution of request sizes for a given workload. The reason we need to modify the TCP 

connections per request entry is that for persistent connections, multiple requests can be 

sent on a single TCP connection. The cost of TCP connection setup is therefore 

amortized over multiple requests. The average TCP connections per request can be 

calculated from the percentage of HTTP 1.1 requests and the number of requests per 

persistent connection. 

In some cases, we need to perform manual analysis on the trace to consolidate 

sequences of system calls into a larger, semantically higher-level system primitive. For 

instance, a high-level primitive such as forking a child process that in turn executes 

another program, usually corresponds to many system calls, including fork(), exec(), 

and mmap() which is called by the loader to load the executable image. 

6.3 Experimental Results 

6.3.1 Experimental Setup 

We run the experiments on the machines listed in Table 6-1. Unless otherwise 

specified, all timings reported are the average of five runs. The application under 

consideration is the Apache web server version 1.3.19 [1]. SPEC WEB99 is used to drive 

the web server. 

System Processor Memory (MB) OS 

Sun-333 Ultra SPARC IIi 333 MHz 256 
Sun-400 Ultra SPARC II 400 MHz 4096 

Solaris 7 

Intel-550 Pentium III 550 MHz 384 Solaris 8 

Table 6-1. Test Machine Configurations. 
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We decide to use operations per second as the performance metric, as opposed to 

number of connections used by SPEC WEB99, since we believe that it is less sensitive to 

the variation of the simulated line speed, which can vary between 320Kb and 400Kb. 

Furthermore, to make the experiments more controllable, we include only two types of 

requests: static GET and standard dynamic GET4. Therefore, our results should not be 

compared against published SPEC WEB results. 

6.3.2 Static Requests 

Table 6-2 lists the application vector for a static HTTP request and the 

corresponding system vector for the three platforms described in Table 6-1. Figure 6-1 

shows the normalized throughputs compared to the predicted throughputs using 

calculated latencies. As one can see, HBench:OS is able to predict the relative 

performance ranking correctly. It is interesting to compare the two platforms: Sun-400 

and Intel-550. Most primitives of the Intel-550 are about 50% faster than those of the 

Sun-400, except for TCP bandwidth, TCP connection, and fcntl. The first two primitives 

happen to account for about 60% of the predicted latency. If one looks only at the 

performance of these two primitives, one might reach the erroneous conclusion that the 

Sun-400 is better than the Intel-550. On the other hand, if one accounts for only the other 

primitives, then one might reach the erroneous conclusion that the Intel-550 is 50% faster 

than the Sun-400. The fact that HBench uses a weighted average makes sure that the 

contribution to the total running time made by each primitive is accurately counted. As a 

                                                 
4 “Standard dynamic GET” requests accounts for more than 40% of the total dynamic requests of the SPEC 

WEB running configuration, therefore we believe our simplified test configuration reflects important 
characteristics of real web environments. 
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result, a correct ordering and a reasonably good estimate of relative performance (ratio) 

can be achieved. 

6.3.3 Dynamically Generated Requests 

6.3.3.1 CGI 

Dynamically generated pages are commonly seen in today’s web servers. The 

standard approach to implement dynamic pages is through the Common Gateway 

Interface (CGI). The process that receives a CGI request forks a child process and hands 

it the request. The child process then calls the exec() system call to execute the CGI 

Sun-333  Sun-400 Intel-550 
Vector 

Element 
Application 

Vector 
System 
Vector 

(µs) 

Total 
Time 
(µs) 

System 
Vector 

(µs) 

Total 
Time 
(µs) 

System 
Vector 

(µs) 

Total 
Time 
(µs) 

tcp_transfer 14712 2.49E-2 366.388 1.66E-2 243.690 1.67E-2 245.661 

tcp_connect 0.37 425.833 157.558 353.000 130.610 373.833 138.318 

tcp_latency 1 119.509 119.509 88.685 88.685 85.082 85.082 

mmap_read 14712 6.20E-3 91.259 3.47E-3 51.021 2.23E-3 32.778 

open & close 1 31.841 31.841 24.735 24.735 15.196 15.196 

fcntl 1 27.349 27.349 22.987 22.987 29.369 29.369 

stat 1 24.226 24.226 20.875 20.875 11.447 11.447 

mmap 1 19.750 19.750 17.003 17.003 14.760 14.760 

signal_handler
_install 3 3.196 9.587 2.566 7.699 1.642 4.925 

file_write 1 3.312 3.312 2.682 2.682 1.871 1.871 

Other 7 3.337 23.360 2.678 18.745 1.869 13.080 

Total (µs) 874.139 628.732 592.487 

Table 6-2. System and Application Vectors for Static Request. The request size, 
14712, is the average request size calculated from the size distribution function of the 
SPEC WEB99 workload. Costs of light-weight system calls that do not have 
corresponding HBench:OS measurement are approximated using the “null” system call, 
shown above in the “Other” category. TCP related primitives are taken from the 
measurements on the loopback interface. 
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program that is specified in the request. The results are returned to the parent process 

through a pipe. 

Table 6-3 and Table 6-4 list the system and application vectors for the parent and 

child process, respectively. From Table 6-4 we can see that standard CGI requests are an 

order of magnitude more expensive than static requests, primarily due to the time it takes 

to fork and execute the CGI application. 

6.3.3.2 FastCGI 

FastCGI [16] is a newly formed standard that aims to speed up CGI-based 

dynamic page accesses. The basic idea is to eliminate the costly startup times due to 
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Figure 6-1. Normalized throughputs. Throughputs are normalized against the 
reference platform Sun-333. This graph shows that HBench is able to predict the
relative performance ranking correctly. 
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exec() and fork() for every incoming dynamic request. Instead, a persistent FastCGI 

server process is created when the web server starts up or when the first FastCGI request 

is received. The process is persistent because it does not terminate after serving the

Vector Element System Vector 
(µs) 

Application 
Vector 

Total 
Time (µs) 

Percentage 
(%) 

tcp_transfer 1.66E-2 15006 248.559 34.16
pipe_read 1.05E-2 15051 157.388 21.63
tcp_connect 425.833 0.37 130.610 17.95
tcp_latency 88.685 1 88.685 12.19
other 2.678 18 48.202 6.62
fcntl 22.987 1 22.987 3.16
stat 20.875 1 20.875 2.87
signal_handler_install 2.566 3 7.699 1.06
file_write 2.682 1 2.682 0.37

Total 727.687 

Table 6-3. System and Application Vectors for Dynamic CGI Request. Parent 
process. Measurements were taken on the Sun-400 machine. 

 
 

Vector Element System Vector 
(µs) 

Application 
Vector 

Total 
Time (µs) 

Percentage 
(%) 

proc_simple 8256.201 1 8256.201 97.88
file_read 6.46E-3 14712 95.025 1.13
other 2.678 21 56.236 0.67
open & close 24.735 1 24.735 0.29
singal_handler_install 2.566 1 2.566 0.03

Total 8434.763 
 
Table 6-4. System and Application Vectors for Dynamic CGI Request. Child 
process. Measurements were taken on the Sun-400 machine. The time to fork and 
execute the CGI application is approximated using the cost of the primitive that forks 
and executes a simple dynamically linked program. This table shows that dynamically 
generated requests are an order of magnitude more expensive than static requests. 
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request. Subsequent FastCGI requests are routed to the server process. There is no costly 

overhead for forking a process to serve the request. There is, however, additional cost 

introduced due to the communication between the process that first receives the request 

and the server process. 

Table 6-5 lists the vectors for serving a FastCGI request. As one can see, the 

elimination of the fork() and exec() overhead dramatically improved the latency. As 

expected, the latency is higher than that of the static case because of the extra cost of 

communicating between the process servicing the request and the FastCGI server 

process. 

Vector Element System Vector 
(µs) 

Application 
Vector 

Total 
Time (µs) 

Percentage 
(%) 

tcp_transfer 1.66E-2 15082 249.818 23.51
socket_rw 1.50E-2 16263 245.132 23.06
tcp_connect 425.833 0.37 130.610 12.29
file_read 6.46E-3 14712 95.025 8.94
tcp_latency 88.685 1 88.685 8.34
stream_connect 79.190 1 79.190 7.45
open & close 24.735 2 49.470 4.65
fcntl 22.987 2 45.975 4.33
stat 20.875 2 41.749 3.93
other 2.678 10 26.779 2.52
signal_handler_install 2.566 3 7.699 0.72
file_write 2.682 1 2.682 0.25

Total 1062.814 

Table 6-5. System and Application Vectors for FastCGI Request. Measurements 
were taken on the Sun-400 machine. 
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6.3.3.3 Predicting Performance Improvements 

Using the characterization vectors for the three cases: static, standard CGI, and 

FastCGI, we can try to predict the performance gains obtained by switching from 

standard CGI to FastCGI for workloads with different mixes of dynamic and static 

requests. 

Let s1 be the calculated latency for the original unoptimized case (CGI), and s2 be 

the calculated latency for the optimized case (FCGI), then in theory,  
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where u is the user time, assuming that the user-level functionality remains unchanged 

despite the optimization at the kernel level. When rsu 11 << , the above formula 

approaches r. This is the case for small r and small u values. However, when r is large, 

the term 1su  can significantly affect the value of r’. In those cases, we need to include 

1su  in the calculation of r’. 1su is the ratio of user time vs. kernel time in the 

unoptimized case. In this particular case, the unoptimized case spends about 10%-15% 

time in user-level. So we use a value of 11.09.01.01 ==su  or 18.085.015.01 ==su . 



 

 92

Figure 6-2 shows the predicted vs. actual speedups for three workload configurations, 5% 

dynamic (95% static), 15% dynamic (85% static) and 30% dynamic (70% static). Note 

that the more dynamic requests are included, the larger the speedup. When the user time 

is not included in the calculation, the predicted speedup deviates significantly from the 

actual speedup, especially when r is large (30% dynamic). With a rough estimate of user 

vs. system time, the accuracy is dramatically improved. In addition, the graph shows that 

the estimate of 1su  need not be very accurate. Changing the value of 1su  from 0.11 to 

0.18 (~70% difference) results in less than 15% change in the calculated r’ in the worst 

case. Note that the formula presented here applies only to the case where the user time 

remains unchanged. This does not apply to the case of comparing two different platforms, 

for example, since the user times would have been different. 
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Figure 6-2. Predicted vs. Actual Speedup. Measurements were taken on the 
Sun-400 machine. This graph shows that HBench is able to predict the 
performance speedups within 15% margin. Variations of u/s1 do not significantly 
affect the accuracy of the prediction. 
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6.4 Summary 

In summary, we have shown how HBench:OS can be used to analyze 

performance bottlenecks of complex applications and predict their performance when the 

application vectors change as a result of optimization. 
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Chapter 7 
Conclusions and Future Work 

This thesis proposes a non-traditional approach to performance evaluation that 

decomposes the benchmarking process into two independent sub-processes: application 

performance characterization via profiling and system performance characterization via 

microbenchmarking. Results from the two sub-processes are then linearly combined to 

form a prediction of the application running time. The decomposition allows applications 

to participate in the benchmark process, thus the benchmark scores reflect the expected 

performance of the system in light of the application of interest. As a result, more 

meaningful comparisons can be made, and better analysis of system and application 

bottlenecks is possible to provide useful feedback information for future optimization.  

This thesis examines three case studies in three different fields of computer 

sciences that demonstrate the viability of the HBench approach. Section 7.1 summarizes 

the research findings. Section 7.2 describes the lessons learned, and Section 7.3 explores 

future research directions. 

7.1 Results Summary 

In the domain of Java Virtual Machines, we implement a microbenchmark suite 

that measures the performance of a subset of standard Java system APIs. These results 

are then used with application profiles to predict realistic Java applications’ performance. 

Results on a variety of JVMs demonstrate HBench:Java’s superiority over traditional 

benchmarks in reflecting real applications’ performance and in its ability to pinpoint 

performance problems. 
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In the domain of garbage collection, we measure per-object manipulation cost and 

devise theoretical models to predict GC times. Our microbenchmark results capture 

architectural features such as memory cache-line size, which are typically excluded from 

conventional models, and we are able to predict GC times with less than 10% error rate 

for all but one application. 

In the domain of operating systems, we apply the methodology to evaluating the 

performance of the Apache web server using system calls as primitives. We demonstrate 

that HBench:OS can be used to analyze performance bottlenecks and to predict 

performance gains resulting from a common optimization. 

7.2 Lessons Learned 

The most important decision in designing HBench benchmarks is choosing the 

interface, i.e., where to draw the line between system and application. In some cases, this 

is straightforward – for example, in the case of operating systems, it is clear that one 

should draw the line between the user and kernel address spaces. In some cases, there are 

multiple choices. For example, in the case of Java Virtual Machines, one could draw the 

line at the bytecode level or at the system API level. In yet other cases, the choice is not 

clear. For example, in the case of garbage collection, there is no clearly defined API for 

the garbage collector, except for object allocation. From our experience, we learned a few 

guidelines that might help in making a decision in situations where the best choice of 

interface is not obvious: 

1. The interface should be based on well-maintained standard such that the 

microbenchmarks are portable across different platforms (systems). In cases 
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where such a standard is not available, e.g., garbage collectors, one might 

define primitives as parameters of the standard algorithm upon which different 

implementations are based. 

2. The number of primitives defined by the interface must be manageable, i.e., in 

the order of a few hundreds. Otherwise, it would be too time-consuming to 

measure each primitive. 

3. The performance characterization of the primitives themselves must be 

deterministic. In other words, the primitives’ performance can be measured 

via repeated invocations and the primitives exhibit the same performance even 

when invoked in a different context. This is often not true in the presence of 

heavy hardware or compiler optimization, as in the case of Java bytecode and 

Just-In-Time compiler. 

7.3 Future Research Directions 

In the short term, we would like to extend the HBench approach to more domains 

such as database systems. Database systems resemble operating systems in that they also 

assume the role of resource management. The difference lies in the interface. Most 

relational database systems employ a standard query language called SQL [48]. Using 

SQL one can specify operations such as inserting records, searching a table for records 

that satisfy certain conditions, and deleting records. A straightforward way of applying 

HBench to database systems would be to use simple queries as primitive operations and 

decompose complex queries into these simple primitives. The costs of primitives can be 

measured and then used to predict the performance of complex queries. 
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So far, we have discussed benchmark suites for several different domains in the 

HBench framework. A complex application might span several domains. For example, a 

Java application might connect to a database backend and execute queries. In such cases, 

we need to compose the predictions from all domains involved to obtain the total running 

time prediction. The composition process can be as straightforward as just a summation 

of the predictions from all domains, or it can get quite complicated. For example, a Java 

application might incur paging activity, which cannot be directly inferred from the 

application’s profiles. In the future, we would like to explore techniques that would 

detect such cases automatically and derive application vectors for all domains from the 

application profile. 

Another area for future investigation is program optimization. Application-

specific benchmarks offer performance information with finer granularity and richer 

semantics that could help application and system programmers tune their code for better 

performance. However, this is largely a manual process. On the other hand, both the 

compiler and the operating system community have explored techniques of automatic 

profiled-based optimization [25] [44] [64]. The runtime dynamically optimizes the 

application code depending on real-time program behavior. We could enhance these 

techniques with finer-granularity performance characterizations and analysis to improve 

optimization quality and to direct optimization efforts more effectively. 

7.4 Summary 

This thesis presented application-specific benchmarking, a non-traditional 

approach to performance evaluation, based on the principle that systems performance 
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should be measured in the context of the application of interest to a particular end user. 

This approach is applied to the domains of Java Virtual Machines, garbage collection, 

and operating systems. These three case studies demonstrate that application-specific 

benchmarking is a promising approach that can better predict real application’s 

performance than traditional approaches. 
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