
Application-Specific
Benchmarking

A thesis presented

by

Xiaolan Zhang

to

The Division of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May, 2001

Copyright © 2001 by Xiaolan Zhang

All rights reserved

 iii

Abstract

This thesis introduces a novel approach to performance evaluation, called

application-specific benchmarking, and presents techniques for designing and

constructing meaningful benchmarks.

A traditional benchmark usually includes a fixed set of programs that are run on

different systems to produce a single figure of merit, which is then used to rank system

performance. This approach often overlooks the relevance between the benchmark

programs and the real applications they are supposed to represent. When the behaviors of

the benchmark programs do not match those of the intended application, the benchmark

scores are uninformative, and sometimes can be misleading. Furthermore, with the rapid

pace of application development, it is impractical to create a new standard benchmark

whenever a new “killer” application emerges.

The application-specific benchmarking approach incorporates characteristics of

the application of interest into the benchmarking process, yielding performance metrics

that reflect the expected behavior of a particular application across a range of different

platforms. It also allows benchmarks to evolve with applications and consequently the

benchmarks are always up-to-date.

This thesis applies the application-specific benchmarking methodology to a

variety of domains covering Java Virtual Machines, garbage collection, and operating

system. The result is a collection of benchmark suites that comprise the HBench

framework, including HBench:Java, HBench:JGC, and HBench:OS.

 iv

This thesis demonstrates HBench’s superiority in predicting application

performance over a more conventional benchmarking approach. It is shown that

HBench:Java is able to correctly predict the rank of running times of three commercial

applications on a variety of Java Virtual Machine implementations. In the realm of

garbage collection, the predicted garbage collection times for a stop-the-world, mark-

sweep garbage collector closely match the actual times. In the domain of operating

system, it is demonstrated that HBench:OS can be used to analyze performance

bottlenecks and to predict performance gains resulting from a common optimization.

 v

Acknowledgments

During my years at Harvard I am fortunate enough to have worked with a group

of brilliant scholars. It is their enthusiasm towards research that inspires me; it is their

encouragement that drives me to achieve the best I can. I owe them a great deal of

gratitude.

Among them is my advisor Margo Seltzer, to whom I am eternally grateful for her

guidance and support, especially during the last two years when I had to work remotely

due to the two-body problem. Her visionary view of systems research has proved

invaluable to my thesis research. Her wonderful personality together with her high

standards for research makes her an ideal advisor. To me, she is more than an advisor –

she is also a role model.

Brad Chen advised me for the first three years of my study. His creative thinking

has had tremendous impact on me. What I learned from him has been very helpful in my

research. Mike Smith provided sound advice in my earlier projects. Mike is also one of

the nicest people I know. This is evidenced by the ping-pong table he donated to the

division, which dramatically improved the quality of life for many graduate students.

Professor Michael Rabin showed me the beauty and elegance of randomized algorithms.

His pursuit for simplicity has profound influence on my approach to problems. Jim

Waldo has the rare combination of both academic strength and a strong sense of business.

I am grateful for the countless help and advice I received from him.

 vi

During my summer internships I have come to know a few great researchers who

helped shape my thesis research. Bill Weihl’s group at Digital’s System Research Center

taught me many things about architecture. Lance Berc helped me find the Java

applications examined in this thesis. In the summer I spent with Steve Heller’s group at

Sun Microsystems Lab East, I learned about garbage collection (GC). That experience

greatly assisted my research on benchmarking garbage collectors. Dave Detlefs and Ole

Agesen know more about GC than anybody else I can think of. Their insights and

guidance have helped me develop a deeper understanding about GC.

I also wish to express gratitude to my fellow students and colleagues who have

made this journey more enjoyable. The VINO group members deserve my thanks for

their assistance in many aspects. I have enjoyed many long interesting conversations with

Keith Smith; I could not thank Kostas Magoutis enough for many rides to the airport and

for numerous lunch discussions on research ideas; Most of my research was conducted on

machines “borrowed” from Dan Ellard; Dave Sullivan and Dave Holland have also

helped in various ways. Thanks to the HUBE group, most notably Cliff Young, Zheng

Wang, and Glen Holloway, for their support in my earlier projects. My daily life would

be less pleasant without the company of my other fellow students, Rebecca Hwa, Racqell

Hill, Xianfeng Gu, Chris Small, Yaz Endo, Chris Stein and Dave Krinsky. Many thanks

to Qingxia Tong for her friendship and for hosting me during the last few weeks of my

stay in Boston. I am also grateful to Chris Lindig for our weekly ping-pong game, which

has been my only physical exercise for the recent years. Finally, Elizabeth Pennell and

Mollie Goldbarg also helped in proofreading my papers.

 vii

This thesis is dedicated to my family, my husband Zhibo Zhang, my parents,

Ruhuai Zhang and Huizhen He. Without their continuous love and support, none of this

would have been possible.

 viii

Table of Contents

1. Introduction... 1

 1.1 How Benchmark Results Can be Misleading – An Example 3
 1.2 Thesis Contributions ... 4
 1.3 Thesis Outline.. 5

2. Background and Related Work .. 7

 2.1 Computer Benchmarks in General.. 7
 2.1.1 Types of Benchmarks ... 7
 2.1.2 Examples of Current Standard Benchmarks 8
 2.2 Non-Traditional Approaches to Benchmarking 9
 2.3 Performance Evaluation of Java Virtual Machines................................ 11
 2.4 Garbage Collector Performance Evaluation... 13
 2.5 Operating System Benchmarking ... 15
 2.6 Performance Prediction Using Queueing Models.................................. 16
 2.7 Conclusions ... 17

3. Application-Specific Benchmarking: the HBench Approach 19

 3.1 The HBench Approach.. 19
 3.1.1 The Vector-Based Methodology .. 20
 3.1.2 The Trace-Based Methodology.. 24
 3.1.3 The Hybrid Methodology... 25
 3.2 Related Approaches... 25
 3.3 Conclusions ... 27

4. HBench:Java: An Application-Specific Benchmark for JVMs 28

 4.1 Identifying Primitive Operations .. 28
 4.1.1 JVM Overview.. 28
 4.1.2 First Attempt ... 29
 4.1.3 A Higher Level Approach .. 31
 4.2 HBench:Java Implementation... 32
 4.2.1 Profiler... 32
 4.2.2 Microbenchmarks ... 33
 4.2.3 JVM Support for Profiling and Microbenchmarking 35
 4.3 Experimental Results... 37
 4.3.1 Experimental Setup... 37
 4.3.2 Results ... 39
 4.4 Discussion.. 45
 4.5 Summary.. 47

 ix

5. Evaluating Garbage Collector Performance with HBench:JGC 48

 5.1 Introduction .. 48
 5.1.1 Basic GC Concepts ... 48
 5.1.2 A GC Implementation Taxonomy.. 49
 5.2 HBench:JGC Design ... 50
 5.2.1 GC Characterization ... 50
 5.2.1.1 Object Allocation... 50
 5.2.1.2 Object Reclamation ... 51
 5.2.2 Application Characterization.. 53
 5.2.3 Predicting GC Time.. 54
 5.3 HBench:JGC Implementation... 55
 5.3.1 Profiler... 55
 5.3.2 Microbenchmarks ... 55
 5.3.3 Analyzer .. 56
 5.4 Experimental Results... 57
 5.4.1 Experimental Setup... 57
 5.4.2 Microbenchmark Results.. 58
 5.4.2.1 GC on Empty Heap ... 59
 5.4.2.2 GC on Fully Reclaimable Heap 60
 5.4.2.3 GC on Fully Live Heap ... 66
 5.4.3 Predicting GC Time.. 69
 5.5 Discussion and Future Work... 78
 5.6 Conclusion ... 80

6. HBench:OS for Evaluating Operating Systems Performance......................... 81

 6.1 Introduction .. 81
 6.2 HBench:OS for Predicting Application Performance............................ 82
 6.2.1 Application Vector and System Vector Formation.................... 82

6.2.2 Summary of Previous Results .. 83
6.2.3 Extension to HBench:OS.. 83

 6.3 Experimental Results... 85
 6.3.1 Experimental Setup... 85
 6.3.2 Static Requests .. 86
 6.3.3 Dynamically Generated Requests .. 87
 6.3.3.1 CGI... 87
 6.3.3.2 FastCGI.. 88
 6.3.3.3 Predicting Performance Improvements....................... 91
 6.4 Summary.. 93

7. Conclusions and Future Work.. 94

 7.1 Results Summary... 94
 7.2 Lessons Learned .. 95
 7.3 Future Research Directions... 96
 7.4 Summary.. 97

 1

Chapter 1
Introduction

 “In the computer industry, there are three kinds of lies: lies, damn

lies, and benchmarks.”

- Unknown

A benchmark is defined as a set of programs (or micro-programs) that are run on

different systems to give a measure of their performance. Results of standard

benchmarks, therefore, reflect only the performance of the set of programs on the system

being measured. In reality, there is often a mismatch between programs included in

standard benchmarks and real applications. Consequently, standard benchmark results

can be uninformative, and sometimes even misleading. We identify two sources of this

gap:

First, the set of programs included in a standard benchmark is fixed. However,

applications used by end-users can vary widely. Frequently, the programs included in

standard benchmarks are not representative of real applications that end-users care about.

The problem can be made worse by vendor over-optimization. As benchmark rating

becomes a more important factor in the buying decision, vendors design their systems

around popular benchmarks. Some vendors even over-optimize their systems for certain

standard benchmark to gain a few percentages points in the benchmark score, often at the

expense of the performance of real applications. Such incidents have been reported in

graphics benchmarks, where graphics card vendors employ an “enhancement” technique

to improve their results in the WinBench [62] Graphics WinMark benchmark, while

 2

severely hampering the performance of other devices in realistic situations [26]. The fact

that the set of programs included in standard benchmarks is generally fixed facilitates this

over-optimization practice, making it even harder to judge the true performance of a

system in the presence of a real application. It is therefore not surprising that many

computer professionals take a cynical view of benchmarks.

Secondly, as the trend of exponential growth in hardware speed and in software

complexity continues, benchmark development has been lagging behind due to both

economic and technical reasons. The cost of developing benchmarks has been increasing

steadily due to the increasing complexity of applications. As a result benchmark

development cycles have lengthened. On the other hand, fierce competitions force

companies to roll out new versions of applications at an accelerated rate. The implied

result is that standard benchmarks often lose out in the technology race and “represent

yesterday’s workloads”, as observed by Dixit in a lecture given at the 2001 High

Performance Computing Architecture conference [14]. The SPEC WEB99 [55]

benchmark is a good example. SPEC WEB99 is a standard benchmark for measuring web

server performance and is endorsed by major web-server vendors. The first version of

SPEC WEB, SPEC WEB96, was introduced in 1996, three years after the world-wide-

web took off, and contained only static files in the workloads. The second version, SPEC

WEB99, was introduced in 1999 and included dynamically generated contents. However

it was again two years after popular usage of dynamic web pages. How long SPEC

WEB99 can stay current (or whether it is still current today) remains to be seen. This

imbalance between application development and benchmark development inevitably

 3

leads to the situation that a gap forms between available benchmarks and state-of-the-art

applications.

1.1 How Benchmark Results Can be Misleading – An Example

The gap between standard benchmark results and real application performance

can be demonstrated with the following simple example. Imagine a hypothetical scenario

where you were a system administrator, and you were asked to buy a new mail server

machine for your department. Suppose that you narrowed down the choice to two, system

A and system B with similar price tags. Which one would you select as the mail server?

A common approach is to run a standard generic benchmark on the two systems and pick

the one with the higher rating. An alternative approach is to use a more specific

benchmark that measures certain aspects of the system that are potentially important to

the application’s performance. Table 1-1 shows the results for SPEC CPU95 [52], a

Standard Benchmark Results
System

SPEC CPU95 PostMark
(transaction/sec)

Actual Results
(email/sec)

A 6.22 16 2.2
B 6.23 6 4.6
Winner none/both A B

Table 1-1. Standard Benchmark Results vs. Actual Application Performance on
Two Similarly Priced Systems. Both benchmarks were run in single-user mode. For
the actual results, the same version of the sendmail mail server was used on both
machines. A fast client machine sends email as quickly as the server machine can
receive, via a dedicated 100Mb/s Ethernet switch.

 4

widely used benchmark for measuring CPU performance1, and those for PostMark [30], a

file system benchmark designed specifically for modern applications such as mail and

news servers. The results of SPEC CPU95 suggest that the two systems are comparable.

From the results of PostMark we can conclude that system A is a better choice. However,

measurements of the actual mail server performance show that system B can handle more

than twice the email traffic than system A can. This example demonstrates that standard

benchmarks often do not represent the behavior of real applications. Consequently, the

benchmark scores offer little indication of real applications’ performance.

1.2 Thesis Contributions

The goal of this thesis is to establish that traditional ways of performance

evaluation is flawed, and that new approaches that can better predict application

performance need to be developed. This thesis introduces one such approach called

application-specific benchmarking, and presents techniques for designing and

constructing benchmarks that reflect performance of real applications.

The basic idea of application-specific benchmarking is to separate

characterization of an application from that of the underlying platform and combine the

two characterizations to form a prediction of the application’s performance. As the

application of interest is incorporated into the “benchmarking” process, the resulting

performance metrics reflects the expected behavior of the application on the given

platform.

1 At the time this research started, there was no standard mail server benchmark. In January of 2001, SPEC

released its first mail server benchmark, SPEC MAIL2001.

 5

The main contributions of this thesis are as follows. This thesis applies the

application-specific benchmarking methodology to a variety of domains covering Java

Virtual Machines, garbage collection, and operating system. Two benchmark suites are

created as a result of this, HBench:Java and HBench:JGC. This thesis also demonstrates

HBench’s predictive power from three different perspectives. It is shown that

HBench:Java is able to correctly predict the rank of running times of three commercial

applications on a variety of Java Virtual Machine implementations. In the realm of

garbage collection, the predicted garbage collection times for a stop-the-world, mark-

sweep garbage collector closely match the actual times. In the domain of operating

system, it is demonstrated that HBench:OS can be used to analyze performance

bottlenecks and to predict performance gains resulting from a common optimization.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 starts with a brief

overview of benchmarks in general and then describes some domain-specific benchmarks

in the areas of Java Virtual Machine, garbage collection, and operating system.

Chapter 3 describes the HBench approach and the methodology developed within

the HBench framework for measuring systems with different degrees of complexity. One

approach, the vector-based methodology, forms the foundation for the three benchmark

suites presented in this thesis, namely, HBench:Java, HBench:JGC, and HBench:OS.

Chapter 4 applies the vector-based methodology to the domain of Java Virtual

Machines. It describes the challenges faced during the design process of HBench:Java

and the solutions to these issues. It also describes the microbenchmark suite included in

 6

HBench:Java and the profiler implementation on Sun Microsystems JDK1.2.2 platform.

Results on a variety of JVMs demonstrate HBench:Java’s superiority over traditional

benchmarking approaches in predicting real application performance and its ability to

pinpoint performance problems.

Chapter 5 applies the vector-based methodology to evaluating garbage collector

performance. Although the discussion is restricted to the context of garbage collection in

the Java Virtual Machine, techniques presented in this chapter apply to garbage collection

in general. Experimental results on the Sun JDK1.2.2 JVM implementation on three

machine configurations show that the predicted garbage collection times track the actual

elapsed times closely.

Chapter 6 applies the methodology to evaluating operating system performance in

the context of the Apache web server. It is shown that HBench:OS can be used to analyze

performance bottlenecks and to predict performance gains resulting from a common

optimization.

Chapter 7 summarizes the research findings and lessons learned and presents

some new research directions.

 7

Chapter 2
Background and Related Work

This chapter first gives an overview of computer benchmarks in general and then

discusses traditional benchmarks in three specific areas, namely, Java Virtual Machines,

garbage collection, and operating systems, for which we have implemented benchmark

suites using the application-specific benchmarking methodology and evaluated their

effectiveness.

2.1 Computer Benchmarks in General

2.1.1 Types of Benchmarks

There are two categories of benchmarks in terms of benchmark size and

complexity, namely, microbenchmarks and macrobenchmarks. Microbenchmarks

measure performance of primitive operations supported by an underlying platform,

whether hardware or software. Sometimes microbenchmarks also include short sequences

of code (kernels) that solve small and well-defined problems. Typically the mean

(typically geometric mean) of the individual times (or scores as a function of the time) is

reported. Examples of primitive operations include the time it takes to fetch a data item

from cache/memory, or the time it takes to draw a line on a graphical terminal.

Microbenchmarks reveal a great deal of information about the fundamental costs of a

system and are useful in comparing low-level operations of different systems, but it is

difficult to relate them to actual application performance in a quantitative way.

Macrobenchmarks consist of one or more medium-scale to large-scale programs

that are usually derived from real applications. Macrobenchmarks usually come with

 8

input data that are supposedly representative of typical situations. When the benchmark is

run, the input data are fed to the programs and the total running time is collected. As

macrobenchmarks are typically derived from real applications, they place a significant

amount of stress on the underlying system like real applications do. Therefore, the

benchmark result can be a good indication of the system’s performance, if the normal

load on the system is the same as the programs included in the benchmark.

2.1.2 Examples of Current Standard Benchmarks

Several standard institutes are in charge of the process of defining and distributing

standard benchmarks. Some of the well-known standard entities are: SPEC [56] (System

Performance Evaluation Corporation) and TPC [57] (Transaction Processing

Performance Council).

SPEC defines a wide variety of standard benchmarks, ranging from high-

performance computing to network file servers. Among those, the SPEC CPU benchmark

suite [52] is probably the most widely used benchmark in computer literature. SPEC CPU

is a macrobenchmark that is further divided into two macrobenchmarks, the integer suite

and the floating-point suite. The integer benchmark suite consists of popular UNIX

desktop applications such as gzip [21], a GNU compression program, gcc [17], a GNU

C language compiler, and perl [60], a scripting language created by Larry Wall.

TPC is another standard entity that specializes in benchmarks for transaction

processing and database systems. TPC has produced widely used benchmarks such as

TPC-A, TPC-B, and their successors TPC-C and TPC-D. TPC-C is an OLTP (OnLine

Transaction Processing) benchmark that emulates an interactive order processing system.

 9

TPC-D is decision support benchmark that contains a set of complex business-oriented

queries. The most prominent feature of TPC benchmarks is that they report

price/performance ratio in the benchmark results, a useful metric that helps customers

balance additional performance and cost of the system. The ratio is reported in the form

of dollars per tpm (transaction per minute). Current versions of TPC benchmarks require

significant effort to set up and run. The cost for a TPC-C run, for example, can reach a

half million dollars [19].

2.2 Non-Traditional Approaches to Benchmarking

Many researchers have realized the problem with fixed-workload

benchmarks [41] and have proposed different solutions to this problem [20][51].

In recent work [20], Gustafson et al. present a novel approach of measuring

machine performance that, instead of fixing the task size of the benchmark programs,

fixes the time and measures the amount of work that gets done during the fixed time

period. The benchmark program (called HINT for Hierarchical INTegration) tries to use

interval subdivision to find rational bounds on the integral of the function (1-x)/(1+x)

where x ∈ [0,1]. The amount of work being done in each step is measured by the

improvement on quality of the bound (i.e., the distance between upper and lower

bounds). Because there is no upper limit to the tightness of the bound (subject to the

available precision), HINT is able to scale with the power of the computer being

measured. A fundamental difference between HINT and HBench is that the HINT

program consists of a fixed mix of instructions (e.g., the ratio of computation operations

to memory operations is about 1). HINT is a good performance indicator for applications

 10

that have a similar instruction mix, but not necessarily for applications with different

instruction mixes. HBench, on the other hand, is a general framework that adapts to a

specific application.

Dujmovic et al. [15] propose a systematic approach to constructing benchmark

programs. They employ a block-frame-kernel (BFK) model that recursively constructs

benchmark programs using basic building blocks such as control structures and kernels,

which are either simple statements or a short sequence of code that implements a specific

function. A benchmark program consists of a number of blocks containing one or more

frames, each of which in turn may include kernels or blocks. Parameters of the models

include block breadth, which denotes the number of frames included in the block, and

block depth, which denotes the level of nesting. A benchmark program is characterized

by the probability distributions of these two parameters, the probability distribution of

control structures, and the kernel code. The authors suggest that by carefully selecting

kernels to be included in the benchmark, they can construct benchmark programs that

model any kind of workload.

This approach could conceivably reduce benchmarking development time greatly,

resulting in much shorter benchmark production cycle. However, this approach represents

only an incremental step in the science of benchmarking. Even though benchmark

programs can be produced more quickly, they still need to be run on all possible target

configurations to determine the performance. If the application behavior changes, a new

benchmark must be constructed and run again on each target configuration. HBench, on

the other hand, tries to predict application performance. As we shall see in Chapter 3,

with HBench, once system performance data is collected on a target machine, there is no

 11

need to run the application or benchmark on the target machine to obtain a prediction on

the particular machine’s performance with regard to the application, even if the

application of interest changes over time.

2.3 Performance Evaluation of Java Virtual Machines

Introduced by Sun Microsystems Inc. in the late 90’s, Java quickly became the

popular programming language for the Internet age. The Java concept contains three

parts, the Java programming language, the Java bytecode, and the Java Virtual Machine

(JVM) [2]. Programs written in the Java programming language are compiled into

hardware-independent Java bytecodes, which run on Java Virtual Machines. Java

bytecode is a stack-based language that contains a small set of instructions. Java Virtual

Machine, whose implementation is hardware-dependent, can understand and execute

programs in bytecode format. The hardware-independency of Java bytecode has proved

to be a big win – once a Java application is compiled into bytecode, it can be executed

anywhere a JVM is present. This releases programmers from the mundane task of porting

code to different platforms and allows rapid application development.

There has been a proliferation of Java Virtual Machine implementations and Java

benchmarks since the introduction of the Java technology. By and large the benchmarks

can be classified into three groups, microbenchmark, macrobenchmark, and a

combination of the two.

CaffeineMark [9] is a typical example of microbenchmarks. It measures a set of

JVM primitive operations such as method invocation, string manipulation procedures,

arithmetic and graphics operations. CaffeineMark was once a popular benchmark for

 12

JVMs embedded in web browsers, when the most usage of Java came from Java applet, a

small program in bytecode format that can be downloaded and executed in the local

browser environment. CaffeineMark runs as an applet and requires minimum

configuration to run.

There are many macrobenchmarks for Java, among which SPEC JVM98 is

probably the most popular [53]. The SPEC JVM98 suite includes a set of programs

similar to those found in the SPEC CPU suite, such as a compression program, and a Java

compiler, all written in Java. VolanoMark [59] from Volano LLC is another popular Java

macrobenchmark. VolanoMark is designed to address performance concerns of the

company’s Java-based VolanoChat™ server. As a server benchmark, VolanoMark

focuses on a JVM’s ability to handle long-lasting network connections and threads.

The JavaGrande benchmark suite [8][38] consists of both microbenchmarks and

macrobenchmarks. Designed to compare the ability of different Java Virtual Machines to

run large-scale scientific applications, the JavaGrande benchmark suite contains three

sections. The first section consists of microbenchmarks that measure low-level operations

of a Java Virtual Machine. Examples include arithmetic operations such as addition,

multiplication and division, mathematical functions such as sin() and cos(), and exception

handling, etc. The second section consists of kernels, each of which contains a type of

computation likely to appear in large scientific programs. Examples include Fourier

(Fourier coefficients computation) and Crypt (IDEA encryption and decryption), etc. The

final section includes realistic applications, such as a financial simulation based on Monte

Carlo techniques.

 13

This hybrid approach of combining micro and macro benchmarking provides the

ability to reason about performance disparities between Java Virtual Machines, and is

particularly useful in pinpointing performance anomalies in immature Java Virtual

Machine implementations. For example, based on the results of the JavaGrande suite, the

authors pointed out that the IBM HPJ compiler performs worse than the other JVMs in

the Fourier kernel benchmark, mainly due to an inferior performance in mathematical

functions [8].

This type of reasoning, although proved useful in the domain of scientific

applications, has its limitations. In order to associate the performance of the micro-

benchmarks with that of the application, the user is assumed to have intimate knowledge

about the application, which is seldom true in practice, especially for large and

complicated applications. Even if the user knows the application well, when the

application’s performance depends on more than a handful of primitive operations, it’s

hard to explain what causes the differences and to predict the application’s performance

on a new JVM.

2.4 Garbage Collector Performance Evaluation

Garbage collection is a well-known technique for automatic memory

management. Automatic memory management frees programmers from the burden of

explicitly maintaining reachability information of the data structures and remembering to

free those data structures when they become unreachable. Garbage collection is

commonly used in functional languages such as Lisp, Scheme and ML. As garbage

collection technology advances, the speed of garbage collection has improved

 14

significantly over the years and is almost comparable to the speed of explicit memory

management [67]. Since automatic memory management provides additional advantages

of improved programming productivity and less error-prone code, garbage collection is

employed in many modern object-oriented languages such as Java and Smalltalk. Even

system programming languages such as C++ have started to use garbage collectors.

Many researchers have studied the performance of dynamic memory management

[13][67][49]. This literature provides a good foundation for understanding the inherent

cost of dynamic storage allocation. Our approach differs in the goals we try to achieve.

We emphasize predictability — the ability to predict application performance on different

GC implementations without running the application on the target implementations. In

contrast, past research has focused on comparing the cost of memory management by

running a set of popular applications on target memory management implementations.

Knuth presents a comprehensive analysis and comparison of the time complexity

of several dynamic storage management algorithms [31]. This systematic approach to

benchmarking memory management algorithms offers insight into the efficiency of these

algorithms and helps explain the performance differences. However, the analysis assumes

certain statistical properties for both memory allocation and liberation patterns and only

applies when the system reaches equilibrium.

Cohen et al. compare performance of four compacting algorithms using analytical

models [12]. The analytical models are parameterized by the amount of work to be done,

such as the number of cells (objects), number of pointers (links) and related information,

and the time to perform the basic operations common to all compactors, such as the time

 15

to test a conditional expression. Their goal is similar to ours in that they also try to

estimate GC execution times “without resorting to empirical tests”. The main difference

lies in the level of abstraction used for the primitive (elementary) operations. Their

primitive operations are low-level machine instructions, whereas we conglomerate all

machine instructions performed on an object into a single per-object operation (e.g., per-

live-object overhead). Because their primitives are at such a low-level, their models are

more elaborate and require intimate knowledge of the algorithms (i.e., the complete

source code). Furthermore, as computer architectures become more advanced, machine-

level optimizations and the memory cache hierarchy could introduce significant side

effects such that the analytical model will no longer be applicable. In our case, the cost of

primitives is measured explicitly by microbenchmarks and therefore includes these side

effects.

2.5 Operating System Benchmarking

Microbenchmarks that measure the costs of basic kernel primitives, such as thread

creation and inter-process communication latencies, are often used for characterizing

performance of operating systems, especially microkernels [4] [22]. Ousterhout presented

a comparison of operating system performance using a test suite mostly comprised of

kernel microbenchmarks [42]. The benchmark results revealed differences between RISC

and CISC architectures in terms of OS performance, and provided insights into why

speed-ups in hardware do not translate to the same speed-up in operating systems.

Lmbench, created by Larry McVoy [39], represents more recent development in kernel

microbenchmarking. Lmbench contains a richer set of OS and hardware primitives and is

more portable, making it a valuable tool for analyzing system performance. As in the case

 16

of Java microbenchmarks, although kernel microbenchmarks reveal important

performance details about the primitive operations, they alone are not sufficient to

determine how fast a given application would run on the operating system in question.

Another school of OS benchmarks concentrates on a particular subsystem such as

file system and network system. The Postmark benchmark [30], for example, is a file

system benchmark designed to model the file access patterns of mail servers. Subsystem

benchmarks are similar to kernel microbenchmarks, but typically allow one to specify

probability (weight) for each operation so that the mix of operations more closely

approximates the real workloads. However, the results usually provide only a partial

picture on the overall performance.

When comparing operating system performance, researchers often measure end-

to-end performance of kernel-intensive applications. Benchmarks of this sort are by

definition, macrobenchmarks. Web servers are a popular choice, although more often

researchers just use ad-hoc programs. It is extremely difficult to develop

macrobenchmarks for real-world applications, as can be seen from the lack of standard

news server and mail server benchmarks until fairly recently [47] [54].

2.6 Performance Prediction Using Queueing Models

Queueing models have been used extensively in performance modeling and

analysis. They are based on the client-server scenario, where clients arrive at a certain

rate, possibly wait in the queue for a certain amount of time, and are then served by the

server for a fixed amount of time. Some systems, such as transaction processing systems,

network channels, and time-sharing computing servers, naturally fit into this client-server

 17

scenario. One advantage of a queueing model is its simplicity. The number of parameters

in a typical queueing model is quite small, and they can usually be estimated with

sufficient accuracy from known performance characteristics of the computer hardware.

For systems whose performance can be described with a simple queueing network model,

i.e., they satisfy certain assumptions, the queueing models could produce quite accurate

results – past research indicates that the expected accuracy of queueing network models

is between 10% and 30% for response time [32]. This level of accuracy is sufficient for

most cases.

However, not all systems can be described with a queueing model. A garbage

collector, for example, is not a client-server type of application by its nature. In that

sense, we believe that the HBench approach is complimentary to the queueing model

approach to performance evaluation.

2.7 Conclusions

There is no lack of benchmarks in any field of computer science2. However,

traditional benchmarks fail to address the issue of relevance to real applications. Real-

world applications are so diverse that it is difficult, if not impossible, to find a set of

workloads that are representative of all the important applications, even within a sub-

field. If the behavior of the benchmark’s workloads does not match that of the intended

application, then the benchmark might give misleading information regarding which

platform is the best for the application of interest. This is precisely the problem that the

2 The benchmarks discussed in this chapter are by no means a comprehensive list of benchmarks used in the

industry and the research community. Readers are recommended to read [18] and [19] for a more detailed
coverage about this topic.

 18

application-specific benchmarking approach tries to tackle. I hope that the techniques for

application-specific benchmarking presented in this thesis will help computer scientists

conduct more meaningful performance comparisons and encourage the industry to

participate in searching for better benchmarking methodologies.

 19

Chapter 3
Application-Specific Benchmarking: the HBench Approach

This chapter presents the design of HBench, our approach to application-specific

benchmarking, and describes the vector-based methodology that forms the basis of the

three benchmark suites included in this thesis.

3.1 The HBench Approach

HBench is designed with the belief that systems should be measured in the

context of applications in which end-users are interested. HBench achieves this by

incorporating the application of interest into the benchmarking process. The process

consists of three stages. First, we characterize the system using well-defined and

application-independent metrics based on standard specifications that summarize the

fundamental performance of the system. For example, hard drive vendors describe the

performance of a hard disk in standard terms such as RPM (Rotations Per Minute) and

seek latency of the disk head. Next, we characterize applications with a system-

independent model that captures the amount of demand that the application places on a

system in terms of the standard metrics for system characterizations. Finally we combine

the two characterizations using an analyzer to predict the running time of the application

on the given system. Figure 3-1 depicts the schema of the HBench process. Because

HBench incorporates application characteristics into the benchmarking process, HBench

can provide performance metrics that reflect the expected behavior of a particular

application on a particular platform.

 20

Different systems have varying degrees of complexity, requiring different

techniques for application and system characterization and for combining the two

characterizations. HBench includes three methodologies, namely, the vector-based

methodology, the trace-based methodology, and the hybrid methodology. This thesis

primarily focuses on the vector-based methodology. The other two are included in this

discussion for the purpose of completeness. The following subsections describe them in

detail.

3.1.1 The Vector-Based Methodology

In general, a system’s performance can be determined by the performance of each

individual primitive operation that it supports. A given application’s performance can

then be determined by how much it utilizes the primitive operations of the underlying

system. As the name “vector-based” indicates, we use a vector []ns vvvV ,...,, 21= , to

represent the performance characteristics of an underlying system, with each entry vi

representing the performance of a primitive operation of the system. We call this vector

Vs a system vector, and it is obtained by running a set of microbenchmarks.

Application Application
Characterization

System System
Characterization

Analyzer

Control Information

Predicted
Running

Time

Application Application
Characterization

System System
Characterization

Analyzer

Control Information

Predicted
Running

Time

Figure 3-1. Schematic View of the HBench Process

 21

HBench uses an application vector, []nA uuuV ,...,, 21= to represent the load an

application places on the underlying system. Each element ui represents the number of

times that the corresponding ith primitive operation was performed. The application

vector is typically obtained through profiling. The dot product of the two vectors

produces the predicted running time of the application on a given system.

The vector-based approach has been applied to a number of platforms including

Java Virtual Machines [65], garbage collectors [66] and operating systems and has

demonstrated excellent predictive power. In the domain of operating systems, the

primitives are system calls and popular functions in standard C libraries.

The complicated structure of JVMs presents some challenges for identifying the

primitives. Currently HBench focuses on two components of the JVM – standard Java

class APIs and the garbage collector. Chapter 4 describes in detail how HBench applies

the vector-based methodology to JVMs using Java class method APIs as primitive

operations. Chapter 5 presents techniques for application-independent characterization of

garbage collectors, for characterizing applications’ memory behavior independent of the

underlying garbage collector, and for combining the two characterizations to form a

figure of merit.

Primitives of a garbage collector are operations performed on objects, such as

allocation, marking and copying. Sometimes, the primitive’s performance is dependent

on the size of the object. For example, the time of a copy operation depends on the size of

the object. The system vector for such operation would contain the cost of the operation

for every object size, as depicted in the following:

 22

[costop,size=1, costop,size=2, …,costop,size=n].

The corresponding application vector would look like:

[countsize=1, countsize=2, …, countsize=n].

As the size of objects can get very large, a more convenient way to represent the

two vectors would be to use distribution functions when they are available or can be

devised. Let Cop(s) denote the cost for operation op as a function of object size s, and let

N(s) be the object-size distribution function. Then the total cost can be simply denoted by

∑ ⋅
s

op sNsC)()(,

or more precisely,

∫
∞

⋅
0

)()(dssNsCop .

The basic strategy behind HBench has been to use the simplest model possible

without sacrificing accuracy. To that end, we use a simple linear model, until we find that

it is no longer able to provide the predictive and explanatory power we seek. In some

cases, rather than going to a more complex model, we retain the simplicity of a linear

model by adding multiple data points for a single primitive.

3.1.1.1 Advantages

The vector-based methodology offers several desirable features. First, it allows

meaningful comparison to be made between systems’ performance. The system and

application vectors provide an effective way to study and explain performance

 23

differences between different system implementations. Secondly, the vectors reveal

performance bottlenecks that are useful in guiding performance optimizations in a way

that will benefit the application of interest. System implementers can improve primitive

operations that are significant for the application. At the same time, application

programmers can optimize the application by reducing the number of calls to expensive

primitive operations. Finally, The vector-based methodology allows one to predict the

performance of the application on a given system without actually running the application

on it, as long as the system vector is available. One might also answer “what if” questions

such as “What if this primitive takes half as much time?” by modifying the appropriate

system and application vector entries. This feature is particularly useful for capacity

planning and for designing next generation products.

3.1.1.2 Limitations

The vector-based approach has its limitations, however. The underlying

assumption of this methodology is that each primitive takes a fixed amount of time to

execute, independent of the context in which it is invoked. The methodology also

requires that for a given application, the number of times each primitive is invoked is

fixed, or can be calculated deterministically. These restrictions limit the situations to

which this approach can be directly applied. For example, in the case of virtual memory,

the number of page faults of a given application depends on page reference patterns of

other processes as well. Consequently, the number of page faults for a given application

cannot be decided ahead of time, even if we know the page replacement algorithm. For

experiments conducted in this thesis, we assume that the application’s working set fits in

main memory. Distributed systems are another case that the vector-based approach does

 24

not apply directly, since message latencies in such a system can vary widely. However,

even with these limitations, in practice we find the model applicable to sufficient number

of cases that it can be used to predict the performance of real-world applications, as

demonstrated in Chapters 4, 5 and 6.

3.1.2 The Trace-Based Methodology

The trace-based methodology is designed for applications whose performance

relies on the sequence of input data (e.g., web requests). Web servers, for example,

exhibit drastically different access patterns [36]. In the trace-based approach, the trace (or

log) of the input request stream, instead of the application, is characterized with a

stochastic model. The model can then generate request sequences that approximate the

actual request stream, to be used as a benchmark. Furthermore, one can vary the load by

adjusting parameters of the model, such as the number of users and the size distribution

of the file set, allowing one to conduct capacity planning experiments. Manley et al.

present techniques on characterizing both the web sites and the user access patterns from

logs of web servers, and demonstrated how these characterizations can then be used to

generate load that closely matches the original load and to scale the load to reflect growth

patterns [37]. Wollman extends these techniques to measure the performance of proxy

servers [63]. In addition to characterizations of the file and user access patterns, latencies

between the proxy server and actual web sites were derived from logs of the proxy server.

Wollman demonstrated that HBench:Proxy can generate heavy bursty traffic that cannot

be achieved by other proxy benchmarks.

 25

3.1.3 The Hybrid Methodology

The hybrid approach is a combination of the previous two approaches, and is

designed for systems whose primitive operation interferes with each other. In such

systems, depending on the sequence of the operations, the same operation might take

different amount of time to execute. For example, in the case of the file system, a file

read operation might require different amount of time to complete, depending on whether

the data is in the file cache or on the disk.

Currently, the hybrid approach is used in HBench:FS, one of the benchmark suites

in the HBench collection, to measure file system performance [50]. The system vector

measures cache-specific file operations, e.g., it measures both a cache-hit read and a

cache-miss read. Then the application trace is fed to a cache simulator, which generates

an application vector whose elements have specific meaning in terms of the system

vector, e.g., the number of cache-hit reads and the number of cache-miss reads. Again,

the dot product of the two vectors produces the estimated time spent in the file system.

The idea of using the cache simulator to iron out the interdependencies of file

system primitive operations might be adapted to the virtual memory subsystem, so that

the number of page faults can be estimated and accounted for in the total running-time

prediction.

3.2 Related Approaches

The transition from traditional benchmarks to a vector-based approach resembles

the transition from MIPS ratings to the decoupled approach proposed by John Hennessy

and David Patterson in analyzing performance of RISC (Reduced Instruction Set

 26

Computer) architectures [23]. A MIPS rating is obtained by running an arbitrary program

chosen by the vendor. Therefore, it is not informative in judging how fast a particular

application will run on the given machine, since the instruction mix used by the

application is likely to differ from that of the program used by the vendor to derive the

MIPS rating.

John Hennessy and David Patterson revolutionized the performance reporting

methods for computer architectures in the mid 80’s. Instead of using a single metric such

as MIPS, their method characterizes a computer’s performance with CPIs (Cycle Per

Instruction) for every instruction supported by the computer. This data, when combined

with the number of times each instruction is executed by a particular application, yields

the total number of cycles the computer spends executing the application of interest,

which in turn yields the total running time in seconds.

The vector-based approach of HBench is also similar to the abstract machine

model [45], where the underlying system is viewed as an abstract Fortran machine, and

each program is decomposed into a collection of Fortran abstract operations called

AbOps. The machine characterizer obtains a machine performance vector, whereas the

program analyzer produces an application vector. The linear combination of the two

vectors gives the predicted running time. This approach requires extensive compiler

support for obtaining the accurate number of AbOps and is limited to programming

languages with extremely regular syntax. It is also highly sensitive to compiler

optimization and hardware architecture [46]. As hardware becomes more sophisticated,

the accuracy achievable with this technique tends to decrease.

 27

3.3 Conclusions

In conclusion, HBench is a realistic and constructive approach to benchmarking.

When applied appropriately, it can provide both meaningful comparisons and valuable

information to system and application developers for future improvement on their

products.

The effectiveness of HBench lies in its ability to predict application’s

performance. We identify three levels of predictive power: prediction on relative

performance, prediction on ratios of running times, and prediction on actual times. The

initial goal is to have HBench predict the correct order of relative performance, while

keeping the vectors small. The vectors can then be improved to achieve more accurate

prediction.

 28

Chapter 4
HBench:Java: An Application-Specific Benchmark for JVMs

In this chapter, we demonstrate how we applied the vector-based methodology of

HBench to evaluating Java Virtual Machine performance. The first task is to identify

primitive operations for Java Virtual Machines. This topic is treated in Section 4.1.

Section 4.2 describes the prototype implementation of HBench:Java, the microbenchmark

suite that measures primitive costs. Section 4.3 presents experimental results. Section 4.4

discusses some unresolved issues and Section 4.5 concludes.

4.1 Identifying JVM Primitive Operations

4.1.1 JVM Overview

A JVM is a complicated piece of software [58]. Figure 4-1 shows a schematic

view of a JVM implementation. Much of a JVM’s functionality is supported via the

system classes (also called built-in classes or bootstrap classes). Sun Microsystems

publishes the specification of these abstractions, which is supported by any JVM

implementation that conforms to the Java standard.

Like many modern programming languages, memory management in Java is

automatic. A JVM includes a memory management system (also called the garbage

collector) that automatically frees objects when they are no longer referenced by the

application.

The execution engine is responsible for interpreting Java bytecode, resolving and

loading classes, and interfacing with native methods (methods that comprise of native

 29

machine code instead of Java bytecode). It also performs tasks similar to operating

systems, such as thread scheduling and context switches, exception handling, and

synchronization.

The JVM implementation is further complicated by the just in time (JIT) compiler

component, which compiles Java bytecode into native machine code on the fly. In some

newer versions of JVM implementations, the JIT also performs various types of dynamic

code optimizations to improve the performance of the application.

4.1.2 First Attempt

In order to create a system vector for a JVM, we need to decompose this

complexity into a set of primitive operations. At first glance, the JVM assembly

instruction (Java bytecode) seems to be a perfect candidate. The Java Virtual Machine

instruction set includes about 200 instructions [35], which is sufficiently small for a

JVM

Memory System Execution Engine

JIT

User App.

System Classes

Figure 4-1. Schematic View of a JVM.

 30

complete microbenchmarking to be possible. Bytecode is also universal - all flavors of

JVM implementations support it.

This approach, however, proved inadequate primarily due to the presence of the

JIT. Once bytecodes are compiled into native machine code, optimizations at the

hardware level such as out-of-order execution, parallel issue and cache effects can lead to

a running time that is significantly different from the sum of the execution times of the

individual instructions executed alone.

For example, Figure 4-2(a) shows two Java code sequences: an empty loop and a

loop containing an integer addition operation. The corresponding native code produced

// empty loop
for (int i = 0; i < numIterations; i++) {

;
}

// loop containing integer addition
for (int i = 0; i < numIterations; i++) {

sum += i;
}

Figure 4-2(a). Java Code Sequences

//empty loop
loop_start:

inc ecx ;; i++
cmp ecx, [esi+04h] ;; i<numIterations
jnge loop_start

// loop containing integer addition
loop_start:

add edi,ecx ;; sum += i
inc ecx ;; i++
cmp ecx, [esi+04h] ;; i<numIterations
jnge loop_start

Figure 4-2(b). Corresponding Native Code Sequences

 31

by the JIT is shown in Figure 4-2(b). On a Pentium III processor, both loop iterations take

2 cycles to execute, due to parallel instruction issues. This leads one to conclude that the

addition operation is free, which is clearly not true.

4.1.3 A Higher Level Approach

A higher level of abstraction that is immune or less sensitive to hardware

optimization is therefore needed. We identified the following four types of high-level

components of a JVM system vector:

• system classes, with method invocations to the system classes being primitive

operations;

• memory management, where primitive operations could include object

allocation, live-object identification (marking), live-object relocation (for copying

garbage collectors) and dead-object reclamation (see chapter 5 for more details);

• execution engine, where primitive operations include bytecode interpretation,

exception handling, context switching, synchronization operations, etc.;

• JIT, which can be measured by two metrics: overhead and quality of code

generated. JIT overhead can be approximated as a function of bytecode size, in which

case the primitive operation is the time it takes to JIT one bytecode instruction. The

product of this per-bytecode overhead and the number of JITted bytecodes yields the

overall overhead. Note that the number of JITted bytecodes cannot be directly obtained

from the application, as it is JVM dependent. Rather, it is obtained by applying a JVM

dependant function J to the base application vector M, and S, where each entry in M and

 32

S represent each method’s invocation count and bytecode size, respectively. For example,

if a JVM compiles a method the first time it is invoked, then

∑=
i

isSNJ),(

where si is the ith element of S. The quality of JITted-code is harder to quantify,

and is a subject of ongoing research.

The system classes component provides a convenient abstraction layer and is a

good starting point for our prototype implementation of HBench:Java. This chapter

focuses on the system classes component only, as highlighted by the circle in Figure 4-1.

Therefore, HBench:Java at its current stage is intended for applications that are system-

classes bound. Our experience shows that applications tend to spend a significant amount

of time in system classes. Therefore we believe that this simplistic system vector, albeit

crude, can be indicative of application performance. Our results demonstrate that

HBench:Java already provides better predictive power than existing benchmarks.

4.2 HBench:Java Implementation

The implementation of HBench:Java consists of two independent parts: a profiler

that traces an application’s interactions with the JVM to produce an application vector

and a set of microbenchmarks that measures the performance of the JVM to produce a

system vector. The following two sub-sections describe these parts in more detail.

4.2.1 Profiler

The profiler is based on JDK’s Java Virtual Machine Profiling Interface (JVMPI)

[29]. Once attached to the JVM, a profiler can intercept events in the JVM such as

 33

method invocation and object creation. The Java SDK1.2.2 kit from Sun comes with a

default profiling agent called hprof that provides extensive profiling functionality [33].

We use this default profiler to obtain statistics of method invocations from which we

derive an application vector. As a first step, our application vector (and accordingly our

system vector) only contains method invocations to JVM system classes.

A drawback of JVMPI is that it does not provide callbacks to retrieve arguments

of method calls. To remedy this problem, we implemented a second profiler that is able

to record method arguments; it is based on JDK’s Java Virtual Machine Debugger

Interface (JVMDI) [28]. Since JVMDI can only be enabled with JIT turned off (for the

classic version of JDK), we keep both profilers for obvious performance reasons, with the

first profiler responsible for extensive profiling and the second profiler responsible for the

much simpler task of call tracing for a subset of primitives.

4.2.2 Microbenchmarks

The current set of microbenchmarks consists of approximately thirty methods

including frequently invoked methods and methods that take a relatively long time to

complete, based on traces from sample applications. Even though these methods

represent only a tiny portion of the entire Java core API, we found them quite effective in

predicting application performance, as shown later in Section 4.3.

The microbenchmark suite is implemented using an abstract Benchmark class. To

add a microbenchmark to the suite, one implements a class that extends the Benchmark

class. Specifically, this means implementing the runTrial() abstract method. A utility

program facilitates this process by automatically generating the corresponding source

 34

Java program from a template file and a file that specifies key information about the

particular microbenchmark.

Typically, the runTrial() method invokes the method to be measured in a loop

for some number of iterations. A nice feature of our microbenchmarks is that the number

of iterations is not fixed, but rather dynamically determined based on the timer resolution

of the System.currentTimeMillis() function of the specific JVM. A microbenchmark

is run long enough that the total running time is at least n times the timer resolution (to

allow for accurate measurement), and less than 2n times the timer resolution (so that the

benchmark doesn’t run for an unnecessarily long time). For the experiments reported in

this thesis, we used a value of 10 for n.

For methods whose running time also depends on parameters, such as the

BufferedReader.read() method that reads an array of bytes from an input stream, we

measure the per-byte reading cost and the corresponding entry in the application vector

includes the total number of bytes instead of the number of times the read() method is

called. The current prototype implementation supports this simple case of linear

dependency on a single argument, and it is found sufficient for the sample applications

tested. For more complicated argument types, the system vector entry would consist of a

list of (n+1)-tuples, (t, a1, a2, …, an), where ai is the value of the ith argument, and t is the

time it takes to invoke the method with the given arguments. We then measure several

data points in this n-dimension space and extrapolate the running time based on the actual

parameters included in the corresponding application vector entry.

 35

Figure 4-3 shows some sample microbenchmark results for JDK1.2.2 (Windows

NT). The time for the read() method of BufferedReader is the per-byte read cost, and

the Class.forName() method loads an empty class.

4.2.3 JVM Support for Profiling and Microbenchmarking

For some primitive operations such as class loading, the first-time invocation cost

is the true cost and subsequent invocations just return a cached value. As a result we

cannot simply measure the cost by repeatedly calling the method with the same

arguments in a loop and dividing the total time by the number of iterations. In the case of

class loading, it means we need to load a different class for every iteration. With the timer

resolution of current JVM implementations, to achieve reasonable accuracy, the number

of iterations required is on the order of hundreds and increases as processor speed

increases. We could automatically create these dummy classes before starting the loop.

However, not only does this approach not scale well, creating a large number of class

files also perturbs the results since the number of classes within a directory is usually not

that large. A better solution is to have the JVM provide a high-resolution timer API. This

approach has the added advantage of reduced benchmark running time (recall that the

number of loop iterations is inversely proportional to the timer resolution). Most modern

Method Name Method Signature Time(us)

java.lang.Character.toString ()Ljava/lang/String; 2.498

java.lang.String.charAt (I)C 0.092

java.io.BufferedReader.read ([CII)I 6.897

java.lang.Class.forName (Ljava/lang/String;)Ljava/lang/Class; 5309.944

java.net.Socket.<init> (Ljava/net/InetAddress;I)V 2171.552

Figure 4-3. Sample Microbenchmark Results.

 36

CPUs provide cycle counters that are accessible in user mode, and many popular

operating systems such as Solaris and Windows NT already provide high-resolution timer

APIs.

One of the difficulties of microbenchmarking is that sometimes a good JIT will

recognize the microbenchmark code as dead code and optimize it out. We have to insert

code to fool the JIT into believing that the variables used in the microbenchmark loop are

still live after the loop, and subsequently not optimized out of the loop. However, there is

a limit as to how much this workaround can do. A better solution would be for the JIT to

include command-line options that allow users to specify optimization levels, similar to

those present in C/C++ compilers.

Advanced JIT techniques such as the adaptive compilation used in HotSpot [25]

pose some difficulties measuring JIT overhead, which cannot be overcome without help

from JVM implementers. An adaptive compiler compiles methods based on their usage.

Methods might be interpreted initially. As time progresses, some are compiled into native

code with a lightweight compiler (with little optimization). Frequently executed methods

might be re-compiled with a more powerful backend compiler that performs extensive

optimization. The problem lies in how to model the JVM dependent function J which,

given the number of method invocations and method bytecode sizes, yields the number of

bytecodes compiled/optimized. We think the following enhancement to JVM would be

useful:

• A JVMPI event should be generated at the beginning and end of the

compilation of a method, so that we can model and evaluate J.

 37

• To measure the per-bytecode compiler/optimize overhead, the

java.lang.Compiler class should be augmented with APIs for compiling and

optimizing methods.

4.3 Experimental Results

4.3.1 Experimental Setup

The experiments were run on a variety of Java Virtual Machines. Table 4-1 shows

the list of JVMs tested and their configurations.

Three non-trivial Java applications (Table 4-2) were used to evaluate

HBench:Java. First, the applications were run with profiling turned on, and we derived

application vectors from the collected profiles. For Mercator, which is a web crawling

application, the proxy server and the web crawler were run on two different machines

connected with a 100Mb Ethernet switch, isolated from the outside network. The

JVM CPU Memory
(MB)

Operating
System

JVM
Version Vendor

JDK1.2.2_NT_PRO 1.2.2
Classic

Sun
Microsystems

SDK3.2_NT_PRO

Pentium
Pro

200MHz
128

5.00.3167 Microsoft

JDK1.2.2_NT_II 1.2.2
Classic

Sun
Microsystems

SDK3.2_NT_II

Pentium II
266MHz 64

Windows
NT 4.0

5.00.3167 Microsoft
JDK1.2.2_SunOS_
Classic

1.2.2
Classic

Sun
Microsystems

JDK1.2.1_SunOS_
Prod

Ultra
SPARC IIi
333 MHz

128 Solaris 7
1.2.1_O3
Production

Sun
Microsystems

Table 4-1. Java Virtual Machines Tested.

 38

machine that hosted the proxy server was at least as fast as the machine that hosted the

client, to insure that the proxy server was not the bottleneck. Next the HBench:Java

microbenchmarks were run on the JVMs listed in Table 4-1, which produced their system

vectors. The dot products of the system and application vectors gave the estimated

running time for each application on each JVM, which was then compared with the actual

running time to evaluate the effectiveness of HBench:Java.

Since the initial goal is to correctly predict the ratios of execution times of the

applications on different JVM platforms, normalized speeds were used in reporting

experimental results. This also allows one to compare HBench:Java with conventional

benchmarking approaches such as SPECJVM98 that report results in the form of ratios.

Application Description Input Data

WebL

A scripting language designed
specifically for processing
documents retrieved from the
web [61].

A WebL script that counts the number
of images contained in a sample html
file.

Cloudscape

A Java- and SQL-based
ORDBMS (object-relational
database management system).
The embedded version is used,
i.e., the database is running in the
same JVM as the user program
[11].

The JBMSTours sample application
included in the Cloudscape
distribution kit. Only the BuildATour
program, which simulates the task of
booking flights and hotels, is used.

Mercator

A multi-threaded web crawler
[40].

The synthetic proxy provided by the
Mercator kit that generates web
documents on the fly instead of
retrieving them from the Internet.

Table 4-2. Java Applications Used in the Experiments.

 39

4.3.2 Results

Figure 4-4 shows the results for the scripting language WebL. In this experiment,

three primitive operations account for the majority of the running time, shown in Table 4-

3. Also shown in Table 4-3 is their measured performance on the five Java Virtual

Machines tested. The corresponding application vector is (80, 121, 32768). It is

interesting to note that the SPECJVM98 score of JDK1.2.2 on the PentiumPro NT

machine is higher than that on the SPARC workstation. However, WebL runs close to

three times as fast on the SPARC workstation. HBench:Java’s system vector reveals the

problem. Class loading is twice as fast for the SPARC workstation JDK, and the

BufferedReader.read() method executes almost 35 times faster. It turns out that for

some reason, the NT JDK1.2.2’s JIT didn’t compile the method

sun.io.ByteToCharSingleByte.convert(), an expensive method called many times

by java.io.BufferedReader.read(). The differences result in superior performance

on the SPARC workstation. Besides explaining performance differences, the predicted

ratios of execution speeds are within a small margin of the real execution speed ratios.

Figure 4-5 shows the results for Cloudscape, a database management system. The

result for the Sun JDK1.2.2 classic version on the SPARC workstation was missing

because Cloudscape wasn’t able to run on it. Similarly to what we observed for the WebL

results, not only does HBench:Java correctly predict the order of the running speed on the

different JVM platforms, the predicted ratios of the execution speeds closely match the

actual ratios. On the other hand, SPECJVM98 does not predict the order correctly, and its

predicted speed ratios are off by a large margin in most cases. Also similar to the case of

WebL, Cloudscape spends a large amount of time in class loading.

 40

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

JDK1.2.2_NT_Pro

JDK1.2.2_NT_II

SDK3.2_NT_Pro

JDK1.2.2_SunOS-Classic

JDK1.2.1_SunOS_Prod

SDK3.2_NT_II

JVM

N
or

m
al

iz
ed

 S
pe

ed
SpecJVM98
Actual
HBench Predicted

Figure 4-4. Normalized Running Speeds for WebL. The speeds are normalized
against the reference JVM, JDK1.2.2_NT_PRO, i.e., the normalized speed of
SDK3.2_NT_PRO is the execution time on JDK1.2.2_NT_PRO divided by the
execution time on SDK3.2_NT_PRO. This graph shows that HBench:Java is able to
correctly predict the order of the running speed of WebL on the different JVM
platforms.

Time (µs)
JVM

Class.forName() ClassLoader.loadClass() BufferedReader.read()

JDK1.2.2_NT_PRO 5309.944 4564.824 6.897
SDK3.2_NT_PRO 3011.411 2710.269 0.317
JDK1.2.2_NT_II 4155.065 3961.282 5.108
SDK3.2_NT_II 2281.390 2053.251 0.244
JDK1.2.2_SunOS_Classic 2264.093 2037.331 0.195
JDK1.2.1_SunOS_Prod 2487.306 2145.458 0.139

Table 4-3. Important Primitive Operations for WebL.

 41

Figure 4-6 shows the results for Mercator, the web crawler. Only results for a

limited number of JVMs were collected due to the difficulty of setting up the machines in

an isolated network. The results, however, are quite encouraging. Even though

HBench:Java predicted the order for JDK1.2.2_NT_Pro and SDK3.2_NT_Pro

incorrectly, the predicted ratio still matches the actual ratio quite closely. As a matter of

fact, the actual ratio is so close to one, it is difficult to tell which one is faster.

SPECJVM98 again predicted the wrong order for Sun JDK1.2.2. In this case, two

primitive operations, the constructor of java.net.Socket and

java.net.SocketInputStream.read(), account for the majority of the running time.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

JDK1.2.2_NT_Pro

JDK1.2.2_NT_II

SDK3.2_NT_Pro

JDK1.2.1_SunOS_Prod

SDK3.2_NT_II

JVM

N
or

m
al

iz
ed

 S
pe

ed

SpecJVM98
Actual
HBench Predicted

Figure 4-5. Normalized Running Speeds for Cloudscape. The speeds are
normalized against the reference JVM, JDK1.2.2_NT_PRO. This graph shows that
HBench:Java is able to correctly predict the order of the running speed of
Cloudscape on the different JVM platforms.

 42

Table 4-4 lists the cost of these two primitives for the four Java Virtual Machines tested.

The per-byte socket read time is quite similar for the four JVMs. The socket initialization

time, which includes the cost of creating a TCP connection, varies a lot among the four

JVMs. The corresponding application vector entry is (19525, 147550208).

0.00

0.50

1.00

1.50

2.00

2.50

JDK1.2.2_NT_Pro

SDK3.2_NT_Pro

JDK1.2.2_SunOS_Classic

JDK1.2.1_SunOS_Prod

JVM

N
or

m
al

iz
ed

 S
pe

ed
SpecJVM98
Actual
HBench Predicted

Figure 4-6. Normalized Running Speeds for Mercator. The speeds are
normalized against the reference JVM, JDK1.2.2_NT_PRO. This graph shows
that HBench:Java is able to correctly predict the order of the running speed of
Mercator on the different JVM platforms.

Time (µs)

JVM
Socket.<init>() SocketInputStream.read()

JDK1.2.2_NT_PRO 2171.552 0.210
SDK3.2_NT_PRO 2575.459 0.214
JDK1.2.2_SunOS_Classic 826.780 0.262
JDK1.2.1_SunOS_Prod 660.711 0.254

Table 4-4. Important Primitive Operations for Mercator.

 43

In summary, the three examples presented demonstrate HBench:Java’s ability to

predict real applications’ performance. The results are especially encouraging since the

system vector contains only a small set of system class methods.

To understand why SPECJVM98 was not able to predict application performance

correctly, we compared the behaviors of SPECJVM98 programs with those of the three

sample applications in terms of time breakdown for user versus system classes. Tables 4-

5 and 4-6 show the percentage of time spent in system classes for SPECJVM98 programs

and the three sample applications we tested, respectively. These numbers were obtained

using the sampling facility of the hprof agent included in Sun’s JDK1.2.2. As the data

Program System Time (%) User Time (%)
_201_compress 2.6 97.4
_202_jess 4.5 95.5
_209_db 33.1 66.9
_213_javac 6.1 93.9
_222_mpegaudio 1.4 98.6
_227_mtrt 1.4 98.6
_228_jack 15.1 84.9

Average 9.2 90.8

Table 4-5. Time Breakdown for SPECJVM98 Programs.

Program System Time (%) User Time (%)
WebL 54.0 46.0
Cloudscape 33.9 66.1
Mercator 92.9 7.1

Table 4-6. Time Breakdown for Sample Applications.

 44

show, the SPEC programs spend most of the time in user classes. Our experience

indicates that most real-world Java applications spend a significant amount of time in

system classes. Therefore, SPECJVM98 is a poor predictor for the general class of Java

applications.

Notice that even though a larger percentage of time goes to user classes for the

Cloudscape case, HBench:Java was still able to predict the ratios quite accurately. We

suspect that this is because performance of user classes is largely determined by JIT

quality. System classes are also compiled by the same JIT, thus performance of a

collection of system classes in some way reflects the JIT quality, which applies to user

classes as well.

To test this hypothesis, we used HBench:Java to predict the relative performance

of the db program in the SPECJVM98 suite. Figure 4-7 shows the results. HBench:Java

was able to predict the relative running speeds correctly except for the last two JVMs on

the X-axis, the SDK3.2 on the Pentium II machine and the JDK1.2.1_O3 on the SPARC

workstation. The predicted ratios, however, are quite close to the actual ratios. The results

suggest that system classes can be reasonable indicators for JIT quality, but there is room

for improvement.

 45

One possible approach to improving the estimation of JIT quality for user-defined

classes is to use results from benchmarks that are user-class bound such as SPECJVM98

and the JavaGrande benchmark and combine them with HBench:Java results to form a

prediction. This direction of research is out of the scope of this thesis, but will be

explored in future work.

4.4 Discussion

HBench:Java is still in the early stages of its development. Here we identify a few

unresolved issues and describe how we plan to address them.

0.00

0.50

1.00

1.50

2.00

2.50

JDK1.2.2_NT_Pro

JDK1.2.2_SunOS-Classic

JDK1.2.2_NT_II

SDK3.2_NT_Pro

SDK3.2_NT_II

JDK1.2.1_SunOS_Prod

JVM

N
or

m
al

iz
ed

 S
pe

ed
Actual
HBench Predicted

Figure 4-7. Prediction for the db Program of SPECJVM98 Using
HBench:Java. The speeds are normalized against the reference JVM. This graph
shows that HBench:Java is able to predict the relative running speeds correctly
except for the last two JVMs, the SDK3.2 on the Pentium II machine and the
JDK1.2.1_O3 on the SPARC workstation.

 46

The first issue is the large number of API method calls. We plan to attack this

problem by identifying a set of core methods, including methods executed frequently by

most applications (such as those in the String class), and methods upon which many other

methods are built (such as those in the FileInputStream class). We then plan to analyze

method inter-dependencies and derive running time estimates of non-core methods from

the running times of the core methods. For instance, a length() method typically takes

the same time as a size() method. We believe that it is acceptable if the estimates of

non-core classes are not 100% accurate, since we expect these methods to be infrequently

invoked.

A related issue is how do we determine the core set of methods. We currently rely

on application traces to identify them because Java is relatively new and we do not yet

have enough experience to decide ahead of time what methods are important. As we gain

more experience, we will have a better knowledge of what primitives should be included

in the core set and what primitives should be estimated. We are confident this would be

the situation. HBench:OS (see Chapter 6), for example, does not rely on application

traces to determine the primitives, as we have extensive knowledge about how OS

primitives are used.

When identifying the set of core methods, there is a tradeoff between simplicity

and accuracy. The more methods we include in the core set, the better the prediction

becomes, however at the expense of measurement complexity. Since our first goal is to

be able to predict the relative order correctly, while keeping the vector as simple as

possible, we do not try to account for all contributions. Rather, we look for a subset that

gives good but not perfect coverage. It is conceivable that we might miss important

 47

methods in some corner cases, but the HBench:Java methodology should still provide

much better predictive power than standard benchmarks.

Another issue is that JIT compilers could alter an application enough that no

single application vector could be used across all JVM platforms. Our experience so far

indicates that this is not yet a problem. However, we will closely follow this issue as JIT

technologies become more advanced.

4.5 Summary

HBench:Java is a vector-based, application-specific benchmarking framework for

JVMs. The performance results demonstrate HBench:Java’s superiority over traditional

benchmarking methods in predicting the performance of real applications and in

pinpointing performance problems. By taking the nature of target applications into

account and offering fine-grained performance characterizations HBench:Java can

provide meaningful metrics to both consumers and developers of JVMs and Java

applications.

 48

Chapter 5
HBench:JGC for evaluating GC Performance

In this chapter, we present the techniques for applying the vector-based

methodology to the domain of garbage collection and evaluate its effectiveness. We first

give an overview on basic concepts of garbage collection in Section 5.1. Section 5.2

describes the design of HBench:JGC in detail. Section 5.3 describes its prototype

implementation. Section 5.4 presents experimental results on applying HBench:JGC to

predicting GC times. Section 5.5 discusses open issues and future work. Although the

HBench:JGC is implemented using Java, the methodology of HBench:JGC described in

this paper is applicable to GC implementations for other languages such as Lisp, Scheme,

Smalltalk, and C++.

5.1 Introduction

5.1.1 Basic GC Concepts

The garbage collector manages the collection of free space from which new

objects are allocated. The free space can be represented as a list of free blocks, a single

chunk of contiguous space, or a combination of the two.

When the allocator fails to satisfy an allocation request, it initiates a garbage

collection run. A garbage collection run typically starts with a marking phase, when live

objects are identified and marked. This phase may be followed by one or more phases

(typically called the sweep phases) that free the space occupied by the dead objects,

making it available for allocation. A non-copying collector does not move the live

objects, whereas a copying collector typically compacts the live objects to one end of the

 49

heap in order to create a large contiguous free space at the other end of the heap.

Examples of non-copying collectors include the most widely adopted mark-sweep

garbage collector [5] and its variants. Examples of copying collectors include the Lisp 2

collector [31], which is a mark-compact collector, and Cheney’s two-space copying

collector [10]. For a complete treatment of this topic, readers are encouraged to refer to

the book by Jones et al. [27].

5.1.2 A GC Implementation Taxonomy

Independent of the GC algorithms (e.g., copying vs. non-copying), we can

classify GC implementations according to the four attributes described in Table 5-1. The

first attribute represents the axis between stopping all execution for garbage collection

and running the collector completely in parallel with program execution [3]. The second

attribute describes the internal architecture of the collector itself, whether it is sequential

(single-threaded) or parallel (multi-threaded). The third attribute describes the granularity

of collection, whether collection occurs in a single, complete pass (batch-oriented) or

whether just some of the available memory is reclaimed during each iteration

(incremental). The fourth and last attribute distinguishes generational garbage

Attributes of GC Implementations

Stop-the-world ↔ Concurrent

Sequential ↔ Parallel

Batch ↔ Incremental

Non-generational ↔ Generational

Table 5-1. GC Implementation Techniques

 50

collectors [34] from non-generational collectors. Generational collectors implement a set

of heaps that are cleaned with varying frequency depending on the age of the objects

stored in the heap. Each heap corresponds to a different age group.

The four attributes in the taxonomy are largely orthogonal, with a few exceptions.

For example, a GC algorithm can be both stop-the-world and parallel, but it cannot be

both concurrent and batch mode.

In this thesis we consider only sequential, stop-the-world, batch-mode and non-

generational garbage collectors. We chose to start with this type of collector because it

involves the fewest variables and thus allows faster prototyping of the analytical models

and more controllable experimentation. Furthermore, this type of collector is still in wide

use. For example, Sun’s standard JDK1.1 and JDK1.2 Java Virtual Machines use this

type of collector. Section 5.5 discusses how we envision enhancing our approach to cope

with concurrent, parallel, incremental and generational garbage collectors.

5.2 HBench:JGC Design

5.2.1 GC Characterization

Like all memory management systems, a garbage collector implementation

supports two primitive operations, namely, object allocation and reclamation.

5.2.1.1 Object Allocation

For a given memory management algorithm, the cost of object allocation is

typically determined by the following two factors:

1. the size of the allocation,

 51

2. the state of the heap, such as the number of free blocks and their sizes.

We can represent this cost with a function Calloc(heap_state, allocation_size).

Depending on the memory management algorithm, Calloc carries different forms. In the

case of copying garbage collectors, the free space is a contiguous area, and allocation can

be implemented by a simple pointer advancement. Therefore, in the case of a copying

collector, Calloc is a constant function. In the case of non-copying collectors, such as a

non-copying mark and sweep collector, the allocation time depends on the state of the

free-block lists maintained by the collector. If we characterize the heap state with simple

statistical measures, such as a normal distribution with a given mean and standard

deviation, or a uniform distribution with a given range, we can represent Calloc in a

concise way. Furthermore, we can measure Calloc using microbenchmarks that initialize

the heap according to the statistical measures.

5.2.1.2 Object Reclamation

An interesting aspect of garbage collection performance is that the cost of dead

object reclamation depends on the amount of live data on the heap, since the way a

garbage collector identifies live objects is to traverse the connected object graph from a

set of root objects.

We divide the cost of object reclamation into three parts: the fixed cost (Cfixed), the

per-live-object cost (Clive), and the per-dead-object cost (Cdead). Cfixed corresponds to the

fixed cost associated with a garbage collection run, such as the initialization of data

structures. Cfixed normally depends only on the heap size. Clive is the overhead measured

per live object (objects that survive the collection). For non-copying collectors, Clive is

 52

typically constant. For copying collectors, Clive is a function of the size of live objects, as

live objects are compacted (copied) at the end of a collection run. Cdead corresponds to the

per-object cost of releasing the space of a dead object. In most cases, this involves

updating bookkeeping information for the freed object, and thus Cdead is usually constant

for a given collector algorithm. In summary, the cost of object reclamation can be

represented by three functions, Cfixed(heap_size), Clive(object_size), and Cdead. Let Nl be

the distribution function of the sizes of live objects, i.e., Nl(s) is the number of surviving

objects with size s. Let Nd be the distribution function of dead object sizes. The total cost

of garbage collecting a heap of size h can then be calculated using the following formula:

∑∑ +⋅+=
s

ddead
s

llivefixedGC sNCsNsChCT)()()()((1)

The above reasoning makes the simplifying assumption that every live object is

traversed exactly once during marking. For cases where an object is referenced by several

live objects, the object will be visited multiple times by the collector. We characterize

this additional cost by adding a second variable, di, the fan-in degree of an object, in the

per-live-object overhead function Clive. The middle term of the formula thus becomes:

∑∑ ⋅
s id

ililive dsNdsC),(),(

The situation is further complicated by the fact that certain copying collectors

need to update an object’s references, if the objects it points to are copied to a different

place. We characterize this additional cost by adding yet another variable, do, the fan-out

degree of an object, in the per-live-object overhead function Clive. The middle term now

becomes:

 53

∑∑∑ ⋅
s id od

oiloilive ddsNddsC),,(),,(

The difficulty of characterizing object reclamation costs lies in deriving the three

cost functions Cfixed, Clive, and Cdead using results from microbenchmarks. Our experience

indicates that the simplified formula (1) for estimating GC time works well in practice for

a mark-sweep GC algorithm.

5.2.2 Application Characterization

The following metrics describe an application’s memory usage behavior:

1. Object allocation rate (both in terms of the number of objects and the

number of bytes);

2. Object death rate (both in terms of the number of objects and the number

of bytes);

3. Object age (the time an object remains alive);

4. Connectivity of the live object graph, i.e., the number of references to an

object (fan-in degree) and the number of references it contains (fan-out

degree).

Some of the metrics, such as object allocation rate, can be obtained quite easily.

Some other metrics, such as object age, are difficult to measure and can only be estimated

using profiling tools.

 54

One significant challenge in characterizing an application’s memory behavior is

that of GC (and JVM) independence. For example, if we use the number of objects per

second as the unit for object allocation speed, it is not portable to other JVM or GC

implementations, as this unit is system dependent. To solve this problem, we use objects

per bytecode as our basic unit for both object allocation rate and object death rate.

5.2.3 Predicting GC Time

Object allocation cost is an important part of the performance metric of GC

systems. It is, however, not directly measurable for a given application. As a first step,

this paper focuses on predicting the time the application spends on garbage collection, or

the time between the start and finish of a garbage collection run. Unless otherwise

specified, GC time refers to the cost of object reclamation, and does not include

allocation costs.

The total GC time of an application can be determined by two factors: the number

of GC runs and the time for each GC run.

With the knowledge of object allocation rate and object death rate, one can

estimate the amount of live data at a given execution point, from which one can then

calculate the number of GCs deterministically, assuming a heap that is fixed-size or one

whose growth policy is known a priori.

The time for each GC run can be estimated using formula (1) described in Section

5.2.1.2. The total GC time is the sum of times of all individual GC runs.

 55

5.3 HBench:JGC Implementation

The major components of HBench:JGC are: the profiler that traces an

application’s memory behavior, the set of microbenchmarks whose measurement results

form the characterization of the given garbage collection implementation, and finally, the

analyzer that estimates the GC time given both application and GC characterizations. The

following three subsections describe each component in more detail.

5.3.1 Profiler

We again implement our profiler based on the JVMPI profiling interface provided

by Sun Microsystems’s JDK 1.2.2. We are interested in the following events: GC start

and finish, object allocation, free and move, heap dump and object dump. Object

allocation and free events can be used to estimate object lifetimes and the number of

free/live objects at a given execution point. Heap dumps help determine the object

connectivity such as fan-in and fan-out degrees. Our current implementation includes all

the events except heap and object dump.

5.3.2 Microbenchmarks

The goal of microbenchmarking is to measure the fixed and per-object costs of

memory reclamation. Our first microbenchmark deals with singular linked list data

structures. In the future, we will include microbenchmarks that model more complicated

object types with different fan-in and fan-out degrees.

The microbenchmark first populates the heap with an array of linked lists of

objects. The size of array, the length of the list, and the object size can all be dynamically

 56

configured with command-line options. The microbenchmark then explicitly invokes

garbage collection at three different times:

1. When all objects on the heap are alive;

2. When all objects on the heap are reclaimable, i.e., after the

microbenchmark sets the pointers to the heads of the linked lists to null;

3. When the heap is entirely empty, i.e., after the GC following step 2.

To measure Cfixed, we run the microbenchmark with different heap sizes, fixing

the other two parameters. We then plot the GC times measured in step 3 above against

the heap sizes. The resulting regression formula is the approximate function for Cfixed.

Similarly, to measure Clive, we run the microbenchmark with a varying numbers

of objects, fixing the other two parameters. The GC times measured in step 1 above are

then plotted against the number of objects for a given object size s and the resulting

regression function defines Clive(s). Since Clive might also depend on object sizes, we

again repeat the microbenchmark for different object sizes.

The same process is performed to measure Cdead, except that in this case the GC

times of step 2 are used.

5.3.3 Analyzer

Given both the application and GC characterizations, the analyzer tries to estimate

the time the application spends on garbage collection. The analyzer also needs certain

configuration information, such as the heap size, in order to determine the total GC time.

 57

Note that heap sizes may change dynamically. For example, if the memory system cannot

satisfy the allocation request even after a GC, or if the percentage of free space is below a

certain threshold, the heap is expanded. The policies as to when and how much to expand

the heap should be specified to the analyzer.

5.4 Experimental Results

5.4.1 Experimental Setup

We ran our experiments on Sun Microsystems’s JDK1.2.2 classic version on three

different machine configurations. Table 5-2 shows the hardware properties.

Sun Microsystems’ JDK1.2.2 classic JVM uses a mark-sweep (with compaction)

collector. Mark-sweep collection is one of the classical garbage collection algorithms that

remains in wide usage today. Due to its conservative nature, it is popular for type-unsafe

languages such as C/C++. The collector of the JDK1.2.2 classic JVM is a variation of the

classical mark-sweep collector — it occasionally moves live objects around the heap.

Although compaction does not occur often for the applications we tested, it does generate

some uncertainties that make it harder to predict the GC time.

CPU Memory
(MB)

Operating
System

JVM
Version

GC
Algorithm

Pentium Pro 200MHz 128 Windows NT 4.0
Pentium III 550 MHz 256 Windows 2000
Ultra SPARC IIi 333 MHz 128 Solaris 7

1.2.2
Classic

Mostly mark-
sweep

Table 5-2. Test Platform Configurations.

 58

We use Java applications included in the SPECJVM98 benchmark suite [53] and

the R2mark benchmark [24] to evaluate the predictive power of our approach. Most

SPECJVM98 applications induce extensive GC activities, except _222_mpegaudio,

which is excluded from our set of test applications. R2mark stands for a Radiosity and

Ray-tracing based benchmark. It implements a multi-pass rendering algorithm that

simulates the lighting of a computer-generated graphic scene. R2mark is a demanding

Java application that also stresses the JVM’s memory system. Table 5-3 lists the GC

related information about our test applications.

5.4.2 Microbenchmark Results

We report the GC times of the three steps described in Section 5.3.2. Unless

otherwise specified, all data points reported in this section are means of 10 runs of the

microbenchmark. In most cases, the standard deviation is within 1%.

Application Allocation (MB)

_201_compress 334
_202_jess 748
_209_db 224
_213_javac 518
_227_mtrt 355

SPEC

_228_jack 481
R2mark 1552

Table 5-3. GC Activity of Test Applications. Data for SPEC is obtained from the
benchmark’s documentation. The actual numbers appear to differ but the magnitude
is the same. Data for R2mark is obtained from actual measurement on a SPARC IIi
333MHz machine. This table shows that the applications induce extensive GC
activities.

 59

5.4.2.1 GC on Empty Heap

Figure 5-1 shows the garbage collection times of an empty heap (see step 3 in

section 5.3.2) on the Sun SPARC workstation. The regression formula indicates that GC

times of empty heaps are linearly dependent on the size of the heap and that the per-

megabyte cost of an empty heap GC for this particular GC implementation is 3.75ms.

The y-intercept (0.02) is negligible. We therefore derive the following formula for

Cfixed(h) (described in Section 5.2.1.2) for this GC algorithm:

hhC fixed ⋅= 75.3)(,

where h is the size of the heap in megabytes. The value of the slope (3.75)

remains the same (variations within 5%) for different object sizes and numbers of objects.

y = 3.75x - 0.02

0

100

200

300

400

500

600

0 50 100 150
Heap Size (MB)

G
C

 T
im

e
(m

s)

Figure 5-1. GC Time of Empty Heap on Sun SPARC. We use an object size of
28 bytes, and 512 lists each with 512 objects. The number of objects and the size of
objects remain fixed as the total heap size varies. This graph shows that the GC
times are linearly dependent on the heap size when collecting an empty heap.

 60

Similar results were obtained for the other machine configurations, albeit with a different

slope value.

5.4.2.2 GC on Fully Reclaimable Heap

Figure 5-2 shows the garbage collection times of a fully reclaimable heap (see

step 2 in section 5.3.2). The GC time again shows a linear dependence on the size of the

heap, and the slope value (3.73) is close to the slope value of Cfixed (3.75). If we remove

the fixed cost Cfixed(h), the remaining time is essentially independent of heap size. Since

all objects on the heap are free and are reclaimed by the collector, this remaining time,

when divided by the number of dead objects, represents the per-dead-object cost Cdead. In

y = 3.73x + 108.61

y = 3.75x - 0.02

0

100

200

300

400

500

600

700

0 50 100 150
Heap Size (MB)

G
C

 T
im

e
(m

s)

Free Heap

Empty Heap

Figure 5-2. GC Time of Fully Reclaimable Heap With Respect to Heap Size on
Sun SPARC. We use an object size of 28 bytes, and 512 lists each with 512 objects.
The number of objects and the size of objects remain fixed as the total heap size
varies. This graph shows that the collection time of a fully reclaimable heap is also
linearly dependent on the heap size. The cumulative cost for dead objects, measured
by the distance between the two curves, stays constant while the heap size varies.

 61

this particular case, Cdead takes on a value of 108.6/(512*512), or 0.4 ns/object. Again,

similar results are observed from runs on the other machine configurations.

Theoretically, Cdead is independent of object size, since dead objects are neither

scanned nor copied. However, to our surprise, our measurements suggest that Cdead is

indeed dependent on object size. Figure 5-3(a) shows the results on the Sun SPARC

workstation. The GC time seems to grow as the object size increases, until the object size

hits 60 bytes, and stays at around 180ms thereafter. Similar dependence patterns are

observed on the Pentium Pro and Pentium III machines, as shown in Figures 5-3(b) and

3(c), respectively. In both cases, Cdead is independent of object size, except when the

object size is less than 28 bytes.

We hypothesize that the dependence on the object size is due to memory cache

effects. More specifically, we believe that the size dependence threshold (60 bytes for

Ultra SPARC family chips and 28 bytes for Pentium family chips) is determined by the

L2 cache-line size of the processor3. The L2 cache-line size is 64 bytes for the Ultra

SPARC IIi processor, and 32 bytes for the Pentium processor family. When the garbage

collector cleans up dead objects, it strides through the heap, inspecting each dead object’s

header and updates bookkeeping information of free spaces. Notice that normally only

the dead object’s header is accessed; the content of the object is not touched. For the

processors included in our experiments (and for most processor types), the entire heap

does not fit in the L2 cache. Consequently, for objects larger than the cache line size,

each read on a dead object’s header results in a cache miss in both L1 and L2 caches,

 62

requiring the processor to fetch the cache line containing the object header from the main

memory. Moreover, this cost is independent of object size. This explains why Cdead is

constant for objects larger than 60 bytes on the Ultra SPARC IIi workstation, and for

objects larger than 28 bytes on the Pentium family machines. For objects smaller than the

cache line size, a cache line can pack more than one object. Thus the cost of memory read

is amortized across multiple objects accesses. The smaller the object, the more the

amortization is. This explains the linear dependence on object size for objects smaller

than the cache line size for both the Ultra SPARC IIi workstation and the Pentium family

machines.

3 The object size here does not include the size of object header, which is 4 bytes for the garbage collector

tested.

 63

0

50

100

150

200

0 50 100 150

Object Size (Bytes)
G

C
 T

im
e

(m
s)

(a). Results on 333MHz Sun Ulatra SPARC IIi

0
50

100
150
200
250
300
350

0 50 100 150

Object Size (Bytes)

G
C

 T
im

e
(m

s)

(b). Results on Pentium Pro

0
20
40
60
80

100
120
140

0 50 100 150

Object Size (Bytes)

G
C

 T
im

e
(m

s)

(c). Results on Pentium III

Figure 5-3. GC Time (Excluding Fixed Overhead) of Fully Reclaimable Heap
with Respect to Object Size. The GC time is calculated from the regression
formula as shown in Figure 5-2. The cost of dead object grows linearly with the
object size up to a certain threshold size, and stays constant afterwards.

 64

To verify our hypothesis, we used the performance counters on the Ultra SPARC

IIi chip to record the number of memory-read accesses during garbage collection. We

accomplished this with the help of the perfmon tool [43]. The perfmon tool provides a

device driver through which user level programs can access the performance counters

using standard system call APIs such as open() and ioctl(). We implemented a profiler

that enables the performance counters to monitor the appropriate events at the start of a

GC run and reads the counter value at the end of the GC. We then ran the

microbenchmarks on the Java Virtual Machine with the profiler attached. We recorded

the counts for three types of memory events: L1 data cache read, L1 data cash read hit,

L2 cache hit, denoted as NL1_cache_read_total, NL1_cahce_read_miss, and NL2_cache_read_hits,

respectively. The memory-read accesses can then be calculated using the following

simple formula:

hitsreadcacheLmissreadcacheLtotalreadcacheL

hitsreadcacheLtotalreadcacheLreadmemory

NNN
NNN

___2___1___1

___2___2_

)(−−=

−=

 65

Figure 5-4 shows the memory-read reference counts. The top series represent the

memory reference counts for the case of a reclaimable heap (stage 2 in Section 5.3.2).

The bottom series represent the memory reference counts minus those for the empty heap

case (stage 1 in Section 5.3.2). As one can see, the shape of the data series matches

exactly with that in Figure 5-3(a), validating our hypothesis. In addition, the memory

reference counts (excluding counts for the empty heap case, shown in the bottom data

series in Figure 5-4) for objects size of 28 bytes (32 bytes including the object header) is

262,088, about one half of 535059, the counts for object size of 60 bytes (64 bytes

including the object header).

(28, 262088)

(60, 535059)

0E+0

2E+5

4E+5

6E+5

8E+5

1E+6

1E+6

1E+6

2E+6

0 20 40 60 80 100 120 140

Object Size

M
em

or
y

R
ea

d
R

ef
er

en
ce

s
Fully Reclaimable Heap
Fully Reclaimable Heap - Empty Heap

Figure 5-4. Memory-Read Reference Counts as a Function of Object Sizes on
333MHz Sun Ultra SPARC IIi. The top data series represent the case for a
reclaimable heap; the bottom data series exclude the counts for the empty heap.

 66

5.4.2.3 GC on Fully Live Heap

Figure 5-5 shows the garbage collection times of a fully live heap (see step 1 in

section 5.3.2). In this case, all objects on the heap are live and survive the garbage

collection. Similar to the case of a fully reclaimable heap, the GC time shows a linear

dependence on the size of the heap. If we exclude the fixed cost Cfixed, the remaining time

is independent of heap size. The GC time, when divided by the number of total objects on

the heap, yields the per-live-object cost Clive. In this particular case, Clive takes on a value

of 229.1/(512×512), or about 0.9ns/object. Again similar results are observed from runs

on other machine configurations.

y = 3.75x - 0.02

y = 3.79x + 229.08

0
100
200
300
400
500
600
700
800

0 50 100 150
Heap Size (MB)

G
C

 T
im

e
(m

s)

Empty Heap
Live Heap

Figure 5-5. GC Time of Fully Live Heap with Respect to Heap Size on Sun
SPARC. We use an object size of 28 bytes, and 512 lists each with 512 objects.
The number of objects and the size of objects remain fixed as the total heap size
varies. This graph shows that the collection time of a fully live heap is also linearly
dependent on the heap size. The cumulative cost for live objects, measured by the
distance between the two curves, stays constant while the heap size varies.

 67

0
50

100
150
200
250
300
350
400
450

0 20 40 60 80 100 120 140

Object Size (Bytes)

G
C

 T
im

e
(m

s)

(a). Results on Sun SPARC

(124, 467.0)
(60, 521.2)

0
100
200
300
400
500
600
700
800
900

0 20 40 60 80 100 120 140

Object Size (Bytes)

G
C

 T
im

e
(m

s)

(b). Results on Pentium Pro

(124, 175.6)

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

Object Size (Bytes)

G
C

 T
im

e
(m

s)

(c). Results on Pentium III

Figure 5-6. GC Time (Excluding Fixed Overhead) of Fully Live Heap with
Respect to Object Size. The GC time is calculated from the regression formula as
shown in Figure 5-5. Similar to the case of a fully reclaimable heap, the cost of
live object grows linearly with the object size up to a certain threshold size, and
stays constant afterwards.

 68

Figures 5-6(a), 5-6(b) and 5-6(c) show Clive as a function of object size on the Sun

SPARC workstation, the Pentium Pro machine, and the Pentium III machine,

respectively. We observe patterns similar to those of the fully reclaimable heap case,

albeit with much larger variations. For the Sun SPARC workstation case, the value of

Clive seems to grow linearly as the object size increases, until the object size hits 60 bytes

and stays at approximately 380ms thereafter. For the Pentium Pro machine case, the

value of Clive seems to oscillate between 600ms and 700ms after the object size hits 28

bytes. Similarly, for the Pentium III machine case, the value of Clive oscillates between

220ms and 250ms after the object size hits 28 bytes.

Similar to the case of a fully reclaimable heap, the memory-read reference counts

obtained from the performance counters explain the size dependence of Clive, as shown in

Figure 5-7. Interestingly, the memory access counts also show an oscillating pattern for

objects larger than 60 bytes. Since there is no reason that cleaning up a 84-byte object

will take more memory accesses than cleaning up a 92-byte object, we believe that the

oscillation observed in Figure 5-6(a) might be due to memory cache effects such as

conflict misses in the L2 cache. This effect is also detected with two anomalous data

points for the Pentium Pro configuration: at object sizes of 60 bytes and 124 bytes. There

is also a similar anomalous data point for the Pentium III at object size of 124 bytes in

Figures 5-6(b) and 5-6(c). One explanation for the fact that this variation exists only in

the case of live objects (and not dead objects) is that live object manipulation requires

looking beyond the object header for pointers to other objects. These extra memory

access activities induce more complicated reference patterns of the memory cache,

resulting in larger variations in GC times.

 69

5.4.3 Predicting GC Time

In this section we demonstrate how the microbenchmark results can be used to

predict garbage collection time for a given Java application.

First, we calculate the values of the three functions that characterize a GC

algorithm, namely, Cfixed, Clive, and Cdead. Table 5-4 shows the coefficient values of the

three functions for the JVM on the Sun SPARC workstation. For objects with size larger

than 132 bytes, the values for 132 bytes are used.

Next we obtain characterizations of the applications’ memory behavior. Our

current profiler implementation generates information such as the number of live objects,

the number of dead objects, and the object size distribution. Assuming that live and dead

0E+0

5E+5

1E+6

2E+6

2E+6

3E+6

0 20 40 60 80 100 120 140

Object Size

M
em

or
y

R
ea

d
R

ef
er

en
ce

s

Fully Live Heap

Fully Live Heap - Empty Heap

Figure 5-7. Memory-Read Reference Counts as a Function of Object Sizes on
333MHz Sun Ultra SPARC IIi. The top data series represent the case for a fully
live heap; the bottom data series exclude the counts for the empty heap.

 70

objects have the same size distribution, we can approximate the GC time function TGC

(section 5.2.1.4) with the following formula

where n(s) is the normalized object size distribution function, i.e., n(12) is the

percentage of objects with size equal to 12 bytes, L is the number of live objects and D is

the number of dead objects. Figure 5-8 shows the accumulative object size distribution

function for the test applications. Applications such as db and mtrt are dominated by one

Object Size Cfixed
Per MB

Clive
Per Object

Cdead
Per Object

12 3.75 7.04E-04 3.02E-04
20 3.75 7.51E-04 3.49E-04
28 3.75 8.67E-04 4.03E-04
36 3.75 9.55E-04 4.71E-04
44 3.75 1.07E-03 5.49E-04
52 3.75 1.24E-03 6.15E-04
60 3.75 1.30E-03 6.83E-04
68 3.75 1.38E-03 6.85E-04
76 3.75 1.44E-03 6.83E-04
84 3.75 1.41E-03 6.85E-04
92 3.75 1.59E-03 6.85E-04
100 3.75 1.40E-03 6.82E-04
108 3.75 1.33E-03 6.87E-04
116 3.75 1.40E-03 6.91E-04
124 3.75 1.33E-03 6.92E-04
132 3.75 1.46E-03 7.17E-04

Table 5-4. GC Characteristics on 333MHz Ultra SPARC IIi

∑ ⋅⋅+∑ ⋅⋅+=
s

dead
s

livefixedGC snsCDsnsCLhCT)()()()()(

 71

object size, whereas other applications use multiple object sizes. In general, the majority

(more than 90%) of objects are small, i.e., less than 100 bytes, except for compress.

So far our formula has not taken into consideration the cost of the occasional

copying performed by the collector. For our test cases, copying only occurred in two

applications in four GC invocations (out of a total of over seventy GC invocations).

Three of those four GC invocations were explicit garbage collections made by the

application, which trigger unnecessary copying. Currently we approximate this copying

overhead by dividing the number of bytes copied over the memory bandwidth, and we

use the actual number of bytes copied. In the future, we will enhance our analyzer to

estimate this information from the application memory characterization, assuming that

the algorithm that decides when to perform a copy is known. We will also explore

0
10
20
30
40
50
60
70
80
90

100

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07
Object Size (Bytes)

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)
db
mtrt
R2mark
javac
jack
compress
jess

Figure 5-8. Cumulative Object Size Distribution in Number of Objects. This graph
shows that the applications differ in the sizes of objects they create. Overall, the majority
of objects are small, i.e., less than 100 bytes, except for compress.

 72

techniques to design microbenchmarks that would trigger a copy and measure the cost

directly.

Figure 5-9 shows the predicted versus actual GC running times for the six SPEC

applications on the Sun SPARC workstation. A summary of the percentage time

difference between the predicted and the actual GC times is presented in Table 5-5.

For compress (Figure 5-9(a)), there are five garbage collections during the

execution of the compress application. The predicted GC times match the actual times

quite closely (with 0.2% error rate), showing that our prediction model works well in this

case. In the fourth GC run, the collector copied certain live objects to the beginning of the

heap, which accounts for the boost in the GC time. The result shows that our

approximation on the copying time works well in this case also.

Figures 5-9(b), 5-9(c), 5-9(e) and 5-9(f) show the results for jess, db, mtrt and

jack, respectively. The predicted times track the actual times quite closely. No copying

occurred in these cases.

Figure 5-9(d) shows the results for javac. The predicted times track the actual

times nicely except for the 3rd, 5th, and 7th GC runs. It turns out that these three GCs

were invoked explicitly by the application at times when the heap space had not been

exhausted and most objects on the heap were live objects. The explicit GCs also trigger

unnecessary copying of live objects. In this case, our approximation on the copying cost

does not work well. This might be due to the fact that the approximation does not include

the overhead for initiating a copy. Therefore it underestimates the cost in cases when

many small objects are copied.

 73

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5
GC Run

Ti
m

e
(m

s)

Actual
Predicted

 (a). _201_compress. This graph shows that HBench provides a good
prediction of actual GC time, with an error rate of 0.2%.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10
GC Run

Ti
m

e
(m

s)

Actual
Predicted

(b). _202_jess. This shows that HBench provides a good prediction of actual
GC time, with an error rate of 2.2%.

Figure 5-9. Predicted versus Actual GC Times for SPEC Applications. All tests
were run on the Sun SPARC workstation using a heap size of 32MB, except for
javac and mtrt, which were run on a heap size of 64MB to eliminate the variation on
the number of GCs from different runs.

 74

0
50

100
150
200
250
300
350

1 2 3 4 5
GC Run

Ti
m

e
(m

s)

Actual
Predicted

(c). _209_db. This graph shows that HBench provides a good prediction of
actual GC time, with an error rate of 8.3%.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

GC Run

Ti
m

e
(m

s)

Actual
Predicted

(d). _213_javac. This graph shows that the predicted GC times track closely
with the actual times except for runs 3, 5 and 7. These three runs are explicit
GCs invoked by the application, in which case the approximation of the
copying cost is not sufficiently accurate.

Figure 5-9. Predicted versus Actual GC Times for SPEC Applications. Continued.

 75

0
100
200
300
400
500
600
700
800
900

1 2 3 4
GC Run

Ti
m

e
(m

s)

Actual
Predicted

(e). _227_mtrt. This graph shows that HBench provides a good prediction of
actual GC time, with an error rate of 3.1%.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
GC Run

Ti
m

e
(m

s)

Actual
Predicted

(f). _228_jack. This graph shows that HBench provides a good prediction of
actual GC time, with an error rate of 0.2%.

Figure 5-9. Predicted versus Actual GC Times for SPEC Applications. Continued.

 76

Figure 5-10 shows the results for R2mark. Again, the predicted GC times match

actual times fairly closely, except for a few GC runs. One such noticeable exception is

the second GC run, where the predicted time is off by almost 50%. A closer look at the

data shows that in one particular run of the application, the second GC takes an

abnormally long time to finish, pushing the average time higher. In fact, the standard

deviation of the actual time of the second GC run is higher than the difference observed

between the predicted and actual times. Notice that even though for this particular GC

invocation, the variation is large. The average variation is quite small, only 9.9%, as

indicated in Table 5-5. Furthermore, the average percentage difference between predicted

and actual GC times is only about 2%.

In summary, HBench:JGC is able to predict the actual GC times within 10% for

six out of the seven applications (Table 5-5). In the case of javac, the error rate is –6.4%

if we disregard the three explicit GCs. The results demonstrate that the vector-based

methodology used by HBench:JGC is a promising technique for predicting application

performance. In addition, we believe that when equipped with a better profiler and

analyzer, the prediction accuracy of HBench:JGC can be improved further.

 77

0 500 1000 1500 2000

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

G
C

 R
un

Time (ms)

Predicted
Actual

Figure 5-10. Predicted versus Actual GC Times for R2mark. The test was run on the
Sun SPARC workstation using a heap size of 96MB. Data shown are average of 3 runs.
This graph shows that HBench provides a good prediction of actual GC time, with an
error rate of 1.9%.

 78

5.5 Discussion and Future Work

In this section we discuss issues that might arise when using HBench:JGC on

more sophisticated GC implementations such as those presented in Section 5.1.2, and

how we plan to address these issues.

Concurrent garbage collection presents some technical challenges. With

concurrent garbage collection, the application can continue to allocate new objects and

access objects on the heap while a garbage collection is in process. Measuring the GC

time is difficult because the GC time is dispersed in application execution time. We plan

to approach this problem in the following way. We run a standard Java application

without garbage collection, and then we run the same application with an additional

thread that continuously allocates objects and invokes garbage collection. The

performance degradation observed when the application is run with the additional GC

intensive thread should be a good approximation of the GC time.

Application Stdev (%) Time Difference (%)

_201_compress 0.5 0.2
_202_jess 0.4 -2.2
_209_db 0.8 8.3
_213_javac 0.5 -15.8(-6.4*)
_227_mtrt 9.5 3.1

SPEC

_228_jack 0.5 -0.2
R2mark 9.9 -1.9

* Results if we discard 3 explicit GCs.

Table 5-5. Summary of Predicted vs. Actual GC Times

 79

Many concurrent collectors are also incremental. Therefore, we will need to

estimate the percentage of the heap that is scanned by the collector. In most cases, an

incremental collector sets an upper bound on the number of root objects to be processed,

from which one can estimate the number of objects on the heap to be scanned.

Predicting the performance of parallel garbage collectors can be potentially

difficult because the speed-up of a parallel GC run over its sequential counterpart

depends not only on the degree of parallelism, but also on how balanced each thread’s

load is and the interactions between the threads such as lock contention. Analyzing

performance of multi-threaded applications in general is still an active area of research.

To apply HBench:JGC to generational garbage collectors, we model the collector

performance for each generation, and then combine them together to form the total GC

time. To achieve that, our profiler needs to be enhanced with the capability to estimate

the object life expectancy. This can be implemented by sampling the heap at certain time

interval t and identifying objects that are still alive. Their ages are then incremented by t.

The age obtained this way can differ from the real age by at most t. One might adjust the

sampling frequency to attain the degree of accuracy desired. Our analyzer should also be

able to predict when objects are promoted to older generations, i.e., it needs to know the

age threshold for promotion. Some GC implementations make this knowledge public. For

implementations that do not, we need to design our microbenchmark suite such that it can

deduce the age threshold by creating and deleting objects at different rates.

 80

Currently, the memory cache effect is included in our cost functions as a function

of object size. Our results indicate that in some cases, this simple model might be

insufficient. We are investigating ways to model the memory cache hierarchy explicitly.

5.6 Conclusion

HBench:JGC is a vector-based, application-specific benchmarking framework for

evaluating garbage collector performance. Our results demonstrate HBench:JGC’s unique

predictive power. By taking the nature of target applications into account and offering

fine-grained performance characterizations of garbage collectors that reflect hardware

features such as cache line sizes, HBench:JGC can provide meaningful metrics that help

better understand and compare GC performance.

 81

Chapter 6
HBench:OS for Evaluating Operating Systems Performance

In this chapter, we demonstrate how HBench can be applied to the domain of

operating systems to analyze and predict performance of kernel-intensive real-world

applications.

6.1 Introduction

Operating system performance is critical for many modern server applications

such as web servers, as they tend to spend a significant amount of time in kernel.

Brown et al. developed HBench:OS [7], initially to study the performance of

different layers in the operating system’s structural hierarchy and their inter-

dependencies. HBench:OS consists of a collection of microbenchmarks that measure the

performance of common system operations and library routines. Originally derived from

lmbench [39], HBench:OS contains a set of enhancements that make it more suitable for

the task of performance prediction. For example, the timing methodology of the original

lmbench was modified such that the program automatically determines the number of

iterations required for accurate measurement with a given timer resolution. A new

reporting method, n%-trimmed mean, was used for most microbenchmarks to get rid of

out-of-band data points. The tests were made more parameterizable to measure

bandwidth of small reads/writes that fit in first-level (L1) and second-level (L2) caches.

The original context switch measurement included the cost of cache conflict, which often

showed large variation. The new revised microbenchmark excluded this cost and only

measured the repeatable pure OS overhead for context switches.

 82

6.2 HBench:OS for Predicting Application Performance

Using the improved microbenchmarks of HBench:OS, one can predict application

performance with the vector-based methodology. The system vector consists of operating

system primitives that characterizes the performance of the system. The application

vector entries are counts of invocations to the corresponding system primitives, which

represent the load the application places on the operating system. The dot product of the

two vectors yields the predicted time spent in kernel. Note that this is kernel time only.

HBench:OS is not intended for applications whose performance is dominated by user

time.

6.2.1 Application Vector and System Vector Formation

Most operating systems provide utility programs to trace system calls and calls

made to the standard libc library by a process and its children. On the Solaris operating

system, for example, the tracing tool is called truss. We can trace the application

running on a certain platform, and then process the trace to obtain the system call counts,

which form the application vector. As was done for HBench:Java, the bandwidth metric

is converted to a latency metric by calculating per-unit cost. The corresponding

application vector entry is then the number of units instead of the number of calls.

The system vector for a given platform can be obtained by running HBench:OS

on that platform. Note that the system vector is only acquired once for a given platform

and can be combined with different application vectors to predict the application

performance on this particular platform.

 83

6.2.2 Summary of Previous Results

Brown used the results of HBench:OS to predict relative performance of the

Apache web server on a variety of hardware/OS combinations [6]. He traced the Apache

web server serving a single document and derived the application vector from the trace.

There were over 100 system calls in the trace, but Brown used a simplified

characterization vector containing only six elements: file read, file write, TCP transfer,

TCP connection, single handler installation, and “null” system call. Most lightweight

system calls were counted as “null” system call, which measured the cost of entering and

leaving the kernel and provided a lower bound on the actual system call cost. With this

simplified characterization vector, Brown showed that the calculated latency times could

correctly rank the machines in the order of relative performance as measured

experimentally.

6.2.3 Extension to HBench:OS

One reason that HBench:OS worked well then was that the performance of

Apache was dominated by the read() system calls to the so-called “scoreboard” file for

synchronization. The version of NetBSD that Brown used for his study did not support

the mmap() interface needed by Apache. Consequently, Apache performed

synchronization among its worker processes through reads to the scoreboard file.

HBench:OS’s ability to predict the performance of the read system call resulted in the

correct ranking of Apache’s performance on a variety of platforms, even with a

simplified characterization vector.

 84

Since that study, both the operating systems and web server workloads have

evolved substantially. Current versions of operating systems typically support the mmap()

interface needed by Apache. Consequently, scoreboard file reads no longer dominate the

execution times. A more complex characterization vector is therefore needed for good

prediction. On the application side, dynamically generated pages have become common.

Therefore, the new application vector must be updated to reflect this change in

application behavior. Our goal in this chapter is to extend HBench:OS sufficiently to

more accurately predict the performance of today’s web servers.

To evaluate the performance of a web server, we need a workload driver that

produces web traffic that is sufficiently close to a realistic environment. We decide to use

SPEC WEB99 [55]. SPEC WEB99 simulates real-world clients by maintaining a number

of simultaneous connections to the server and limiting the bandwidth of each connection

to be within the range from 320Kb/s to 400Kb/s. SPEC WEB99 generates both static and

dynamic requests. It supports persistent connections specified by HTTP version 1.1,

which allows multiple requests to be sent on the same TCP connection. Furthermore, it

can also be configured to produce traffic with desired mixes of different types of

requests.

The application vector obtained via tracing a web server’s processing of a single

request, of course, only characterizes the performance of the web server serving that

particular request. For this vector to characterize an entire workload generated by SPEC

WEB, we need to modify the entries to reflect the average case of the workload. In

particular, we modify two entries of the vector: average request size, and average TCP

connections per request. The average request size can be calculated based on the

 85

distribution of request sizes for a given workload. The reason we need to modify the TCP

connections per request entry is that for persistent connections, multiple requests can be

sent on a single TCP connection. The cost of TCP connection setup is therefore

amortized over multiple requests. The average TCP connections per request can be

calculated from the percentage of HTTP 1.1 requests and the number of requests per

persistent connection.

In some cases, we need to perform manual analysis on the trace to consolidate

sequences of system calls into a larger, semantically higher-level system primitive. For

instance, a high-level primitive such as forking a child process that in turn executes

another program, usually corresponds to many system calls, including fork(), exec(),

and mmap() which is called by the loader to load the executable image.

6.3 Experimental Results

6.3.1 Experimental Setup

We run the experiments on the machines listed in Table 6-1. Unless otherwise

specified, all timings reported are the average of five runs. The application under

consideration is the Apache web server version 1.3.19 [1]. SPEC WEB99 is used to drive

the web server.

System Processor Memory (MB) OS

Sun-333 Ultra SPARC IIi 333 MHz 256
Sun-400 Ultra SPARC II 400 MHz 4096

Solaris 7

Intel-550 Pentium III 550 MHz 384 Solaris 8

Table 6-1. Test Machine Configurations.

 86

We decide to use operations per second as the performance metric, as opposed to

number of connections used by SPEC WEB99, since we believe that it is less sensitive to

the variation of the simulated line speed, which can vary between 320Kb and 400Kb.

Furthermore, to make the experiments more controllable, we include only two types of

requests: static GET and standard dynamic GET4. Therefore, our results should not be

compared against published SPEC WEB results.

6.3.2 Static Requests

Table 6-2 lists the application vector for a static HTTP request and the

corresponding system vector for the three platforms described in Table 6-1. Figure 6-1

shows the normalized throughputs compared to the predicted throughputs using

calculated latencies. As one can see, HBench:OS is able to predict the relative

performance ranking correctly. It is interesting to compare the two platforms: Sun-400

and Intel-550. Most primitives of the Intel-550 are about 50% faster than those of the

Sun-400, except for TCP bandwidth, TCP connection, and fcntl. The first two primitives

happen to account for about 60% of the predicted latency. If one looks only at the

performance of these two primitives, one might reach the erroneous conclusion that the

Sun-400 is better than the Intel-550. On the other hand, if one accounts for only the other

primitives, then one might reach the erroneous conclusion that the Intel-550 is 50% faster

than the Sun-400. The fact that HBench uses a weighted average makes sure that the

contribution to the total running time made by each primitive is accurately counted. As a

4 “Standard dynamic GET” requests accounts for more than 40% of the total dynamic requests of the SPEC

WEB running configuration, therefore we believe our simplified test configuration reflects important
characteristics of real web environments.

 87

result, a correct ordering and a reasonably good estimate of relative performance (ratio)

can be achieved.

6.3.3 Dynamically Generated Requests

6.3.3.1 CGI

Dynamically generated pages are commonly seen in today’s web servers. The

standard approach to implement dynamic pages is through the Common Gateway

Interface (CGI). The process that receives a CGI request forks a child process and hands

it the request. The child process then calls the exec() system call to execute the CGI

Sun-333 Sun-400 Intel-550
Vector

Element
Application

Vector
System
Vector

(µs)

Total
Time
(µs)

System
Vector

(µs)

Total
Time
(µs)

System
Vector

(µs)

Total
Time
(µs)

tcp_transfer 14712 2.49E-2 366.388 1.66E-2 243.690 1.67E-2 245.661

tcp_connect 0.37 425.833 157.558 353.000 130.610 373.833 138.318

tcp_latency 1 119.509 119.509 88.685 88.685 85.082 85.082

mmap_read 14712 6.20E-3 91.259 3.47E-3 51.021 2.23E-3 32.778

open & close 1 31.841 31.841 24.735 24.735 15.196 15.196

fcntl 1 27.349 27.349 22.987 22.987 29.369 29.369

stat 1 24.226 24.226 20.875 20.875 11.447 11.447

mmap 1 19.750 19.750 17.003 17.003 14.760 14.760

signal_handler
_install 3 3.196 9.587 2.566 7.699 1.642 4.925

file_write 1 3.312 3.312 2.682 2.682 1.871 1.871

Other 7 3.337 23.360 2.678 18.745 1.869 13.080

Total (µs) 874.139 628.732 592.487

Table 6-2. System and Application Vectors for Static Request. The request size,
14712, is the average request size calculated from the size distribution function of the
SPEC WEB99 workload. Costs of light-weight system calls that do not have
corresponding HBench:OS measurement are approximated using the “null” system call,
shown above in the “Other” category. TCP related primitives are taken from the
measurements on the loopback interface.

 88

program that is specified in the request. The results are returned to the parent process

through a pipe.

Table 6-3 and Table 6-4 list the system and application vectors for the parent and

child process, respectively. From Table 6-4 we can see that standard CGI requests are an

order of magnitude more expensive than static requests, primarily due to the time it takes

to fork and execute the CGI application.

6.3.3.2 FastCGI

FastCGI [16] is a newly formed standard that aims to speed up CGI-based

dynamic page accesses. The basic idea is to eliminate the costly startup times due to

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sun-333 Sun-400 Intel-550

Platforms

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Actual
Predicted

Figure 6-1. Normalized throughputs. Throughputs are normalized against the
reference platform Sun-333. This graph shows that HBench is able to predict the
relative performance ranking correctly.

 89

exec() and fork() for every incoming dynamic request. Instead, a persistent FastCGI

server process is created when the web server starts up or when the first FastCGI request

is received. The process is persistent because it does not terminate after serving the

Vector Element System Vector
(µs)

Application
Vector

Total
Time (µs)

Percentage
(%)

tcp_transfer 1.66E-2 15006 248.559 34.16
pipe_read 1.05E-2 15051 157.388 21.63
tcp_connect 425.833 0.37 130.610 17.95
tcp_latency 88.685 1 88.685 12.19
other 2.678 18 48.202 6.62
fcntl 22.987 1 22.987 3.16
stat 20.875 1 20.875 2.87
signal_handler_install 2.566 3 7.699 1.06
file_write 2.682 1 2.682 0.37

Total 727.687

Table 6-3. System and Application Vectors for Dynamic CGI Request. Parent
process. Measurements were taken on the Sun-400 machine.

Vector Element System Vector
(µs)

Application
Vector

Total
Time (µs)

Percentage
(%)

proc_simple 8256.201 1 8256.201 97.88
file_read 6.46E-3 14712 95.025 1.13
other 2.678 21 56.236 0.67
open & close 24.735 1 24.735 0.29
singal_handler_install 2.566 1 2.566 0.03

Total 8434.763

Table 6-4. System and Application Vectors for Dynamic CGI Request. Child
process. Measurements were taken on the Sun-400 machine. The time to fork and
execute the CGI application is approximated using the cost of the primitive that forks
and executes a simple dynamically linked program. This table shows that dynamically
generated requests are an order of magnitude more expensive than static requests.

 90

request. Subsequent FastCGI requests are routed to the server process. There is no costly

overhead for forking a process to serve the request. There is, however, additional cost

introduced due to the communication between the process that first receives the request

and the server process.

Table 6-5 lists the vectors for serving a FastCGI request. As one can see, the

elimination of the fork() and exec() overhead dramatically improved the latency. As

expected, the latency is higher than that of the static case because of the extra cost of

communicating between the process servicing the request and the FastCGI server

process.

Vector Element System Vector
(µs)

Application
Vector

Total
Time (µs)

Percentage
(%)

tcp_transfer 1.66E-2 15082 249.818 23.51
socket_rw 1.50E-2 16263 245.132 23.06
tcp_connect 425.833 0.37 130.610 12.29
file_read 6.46E-3 14712 95.025 8.94
tcp_latency 88.685 1 88.685 8.34
stream_connect 79.190 1 79.190 7.45
open & close 24.735 2 49.470 4.65
fcntl 22.987 2 45.975 4.33
stat 20.875 2 41.749 3.93
other 2.678 10 26.779 2.52
signal_handler_install 2.566 3 7.699 0.72
file_write 2.682 1 2.682 0.25

Total 1062.814

Table 6-5. System and Application Vectors for FastCGI Request. Measurements
were taken on the Sun-400 machine.

 91

6.3.3.3 Predicting Performance Improvements

Using the characterization vectors for the three cases: static, standard CGI, and

FastCGI, we can try to predict the performance gains obtained by switching from

standard CGI to FastCGI for workloads with different mixes of dynamic and static

requests.

Let s1 be the calculated latency for the original unoptimized case (CGI), and s2 be

the calculated latency for the optimized case (FCGI), then in theory,

2

1

s
sr =

should be the speedup due to the optimization. However, note that both s1 and s2 include

only kernel times. The real speedup should be

1

1

11

2

1

2

1

1

11
'

s
u

r

s
u

s
u

s
s

s
u

us
usr

+

+
=

+

+
=

+
+= ,

where u is the user time, assuming that the user-level functionality remains unchanged

despite the optimization at the kernel level. When rsu 11 << , the above formula

approaches r. This is the case for small r and small u values. However, when r is large,

the term 1su can significantly affect the value of r’. In those cases, we need to include

1su in the calculation of r’. 1su is the ratio of user time vs. kernel time in the

unoptimized case. In this particular case, the unoptimized case spends about 10%-15%

time in user-level. So we use a value of 11.09.01.01 ==su or 18.085.015.01 ==su .

 92

Figure 6-2 shows the predicted vs. actual speedups for three workload configurations, 5%

dynamic (95% static), 15% dynamic (85% static) and 30% dynamic (70% static). Note

that the more dynamic requests are included, the larger the speedup. When the user time

is not included in the calculation, the predicted speedup deviates significantly from the

actual speedup, especially when r is large (30% dynamic). With a rough estimate of user

vs. system time, the accuracy is dramatically improved. In addition, the graph shows that

the estimate of 1su need not be very accurate. Changing the value of 1su from 0.11 to

0.18 (~70% difference) results in less than 15% change in the calculated r’ in the worst

case. Note that the formula presented here applies only to the case where the user time

remains unchanged. This does not apply to the case of comparing two different platforms,

for example, since the user times would have been different.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

5% dynamic 15% dynamic 30% dynamic

SPEC WEB99 Workloads

Sp
ee

du
p

Actual
Predicted w/o u/s1
u/s1=0.11
u/s1=0.18

Figure 6-2. Predicted vs. Actual Speedup. Measurements were taken on the
Sun-400 machine. This graph shows that HBench is able to predict the
performance speedups within 15% margin. Variations of u/s1 do not significantly
affect the accuracy of the prediction.

 93

6.4 Summary

In summary, we have shown how HBench:OS can be used to analyze

performance bottlenecks of complex applications and predict their performance when the

application vectors change as a result of optimization.

 94

Chapter 7
Conclusions and Future Work

This thesis proposes a non-traditional approach to performance evaluation that

decomposes the benchmarking process into two independent sub-processes: application

performance characterization via profiling and system performance characterization via

microbenchmarking. Results from the two sub-processes are then linearly combined to

form a prediction of the application running time. The decomposition allows applications

to participate in the benchmark process, thus the benchmark scores reflect the expected

performance of the system in light of the application of interest. As a result, more

meaningful comparisons can be made, and better analysis of system and application

bottlenecks is possible to provide useful feedback information for future optimization.

This thesis examines three case studies in three different fields of computer

sciences that demonstrate the viability of the HBench approach. Section 7.1 summarizes

the research findings. Section 7.2 describes the lessons learned, and Section 7.3 explores

future research directions.

7.1 Results Summary

In the domain of Java Virtual Machines, we implement a microbenchmark suite

that measures the performance of a subset of standard Java system APIs. These results

are then used with application profiles to predict realistic Java applications’ performance.

Results on a variety of JVMs demonstrate HBench:Java’s superiority over traditional

benchmarks in reflecting real applications’ performance and in its ability to pinpoint

performance problems.

 95

In the domain of garbage collection, we measure per-object manipulation cost and

devise theoretical models to predict GC times. Our microbenchmark results capture

architectural features such as memory cache-line size, which are typically excluded from

conventional models, and we are able to predict GC times with less than 10% error rate

for all but one application.

In the domain of operating systems, we apply the methodology to evaluating the

performance of the Apache web server using system calls as primitives. We demonstrate

that HBench:OS can be used to analyze performance bottlenecks and to predict

performance gains resulting from a common optimization.

7.2 Lessons Learned

The most important decision in designing HBench benchmarks is choosing the

interface, i.e., where to draw the line between system and application. In some cases, this

is straightforward – for example, in the case of operating systems, it is clear that one

should draw the line between the user and kernel address spaces. In some cases, there are

multiple choices. For example, in the case of Java Virtual Machines, one could draw the

line at the bytecode level or at the system API level. In yet other cases, the choice is not

clear. For example, in the case of garbage collection, there is no clearly defined API for

the garbage collector, except for object allocation. From our experience, we learned a few

guidelines that might help in making a decision in situations where the best choice of

interface is not obvious:

1. The interface should be based on well-maintained standard such that the

microbenchmarks are portable across different platforms (systems). In cases

 96

where such a standard is not available, e.g., garbage collectors, one might

define primitives as parameters of the standard algorithm upon which different

implementations are based.

2. The number of primitives defined by the interface must be manageable, i.e., in

the order of a few hundreds. Otherwise, it would be too time-consuming to

measure each primitive.

3. The performance characterization of the primitives themselves must be

deterministic. In other words, the primitives’ performance can be measured

via repeated invocations and the primitives exhibit the same performance even

when invoked in a different context. This is often not true in the presence of

heavy hardware or compiler optimization, as in the case of Java bytecode and

Just-In-Time compiler.

7.3 Future Research Directions

In the short term, we would like to extend the HBench approach to more domains

such as database systems. Database systems resemble operating systems in that they also

assume the role of resource management. The difference lies in the interface. Most

relational database systems employ a standard query language called SQL [48]. Using

SQL one can specify operations such as inserting records, searching a table for records

that satisfy certain conditions, and deleting records. A straightforward way of applying

HBench to database systems would be to use simple queries as primitive operations and

decompose complex queries into these simple primitives. The costs of primitives can be

measured and then used to predict the performance of complex queries.

 97

So far, we have discussed benchmark suites for several different domains in the

HBench framework. A complex application might span several domains. For example, a

Java application might connect to a database backend and execute queries. In such cases,

we need to compose the predictions from all domains involved to obtain the total running

time prediction. The composition process can be as straightforward as just a summation

of the predictions from all domains, or it can get quite complicated. For example, a Java

application might incur paging activity, which cannot be directly inferred from the

application’s profiles. In the future, we would like to explore techniques that would

detect such cases automatically and derive application vectors for all domains from the

application profile.

Another area for future investigation is program optimization. Application-

specific benchmarks offer performance information with finer granularity and richer

semantics that could help application and system programmers tune their code for better

performance. However, this is largely a manual process. On the other hand, both the

compiler and the operating system community have explored techniques of automatic

profiled-based optimization [25] [44] [64]. The runtime dynamically optimizes the

application code depending on real-time program behavior. We could enhance these

techniques with finer-granularity performance characterizations and analysis to improve

optimization quality and to direct optimization efforts more effectively.

7.4 Summary

This thesis presented application-specific benchmarking, a non-traditional

approach to performance evaluation, based on the principle that systems performance

 98

should be measured in the context of the application of interest to a particular end user.

This approach is applied to the domains of Java Virtual Machines, garbage collection,

and operating systems. These three case studies demonstrate that application-specific

benchmarking is a promising approach that can better predict real application’s

performance than traditional approaches.

 99

Bibliography

[1] The Apache Software Foundation. http://www.apache.org/.

[2] Arnold, K., and Gosling, J., The Java Programming Language. Addison-Wesley,
Reading, MA, 1996.

[3] Baker, H. G. Jr., “List Processing in Real Time on a Serial Computer.”
Communications of the ACM, 21(4), pages 280-294, April 1978.

[4] Bershad, B. N., Savage, S., Pardyak, P., and Sirer, E. G., “Extensibility, Safety
and Performance in the SPIN Operating System.” In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SOSP ’95), pages 267-284,
Copper Mountain, CO, December 3-6, 1995.

[5] Boehm, H., and Weiser, M., “Garbage Collection in an Uncooperative
Environment.” Software–Practice and Experience, pages 807-820, September
1988.

[6] Brown, A. B., “A Decompositional Approach to Computer System Performance
Evaluation.” Technical Report TR-03-97, Center for Research in Computing
Technology, Harvard University, 1997.

[7] Brown, A. B., and Seltzer, M., “Operating System Benchmarking in the Wake of
Lmbench: A Case Study of the Performance of NetBSD on the Intel x86
Architecture.” In Proceedings of the 1997 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 214-224, Seattle, WA,
June 15-18, 1997.

[8] Bull, J. M., Smith, L. A., Westhead, M. D., Henty, D. S., and Davey, R. A., “A
Methodology for Benchmarking Java Grande Applications.” In Proceedings of
the ACM 1999 Conference on Java Grande, pages 81-88, Palo Alto, CA, June 12-
14, 1999.

[9] CaffeineMark. http://www.webfayre.com/pendragon/cm3/runtest.html.

[10] Cheney, C. J., “A Non-Recursive List Compacting Algorithm.” Communications
of the ACM, 13(11), pages 677-678, November 1970.

[11] Cloudscape. http://www.cloudscape.com.

 100

[12] Cohen, J., and Nicolau, A., “Comparison of Compacting Algorithms for Garbage
Collection.” ACM Transactions on Programming Languages and Systems, 5(4),
pages 532-553, 1983.

[13] Detlefs, D., Dosser, A., and Zorn, B., “Memory Allocation Costs in Large C and
C++ Programs.” Software–Practice and Experience, 24(6), pages 527-542, June
1994.

[14] Dixit, K. M., “Performance SPECulations – Benchmarks, Friend or Foe.” Lecture
on SPEC and Benchmarks. In Seventh International Symposium on High
Performance Computer Architecture (HPCA-7), Monterrey, Mexico, January 20-
24, 2001. Slides available at http://www.csl.cornell.edu/hpca7/presentation.pdf.

[15] Dujmovic, J. J., and Howard, L., “A Method for Generating Benchmark
Programs.” Technical Report SFSU-CS-TR-00.09, Department of Computer
Science, San Francisco State University, June 16, 2000.

[16] FastCGI. http://www.fastcgi.com.

[17] The gcc home page. http://gcc.gnu.org.

[18] Grace, R., The Benchmark Book. Prentice Hall, Upper Saddle River, New Jersey,
1996.

[19] Gray, J., The Benchmark handbook: for database and transaction processing
systems. Second Edition, San Mateo, California; Morgan Kaufmann Publishers,
1993.

[20] Gustafson, J. L., and Snell, Q. O., “HINT: A New Way To Measure Computer
Performance.” In Proceedings of the HICSS-28 Conference, Wailela, Maui,
Hawaii, January 3-6, 1995.

[21] The gzip home page. http://www.gzip.org.

[22] Härtig, H., Hohmuth, M., Liedtke, J., Schönberg, S., and Wotler, J., “The
Performance of µ-Kernel-Based Systems.” In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP ’97), pages 66-77, St. Malo,
France, October 5-8, 1997.

[23] Hennessy, J., and Patterson, D., Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, San Mateo, California, 1990.

 101

[24] Hitoshi, Y., Maeda, A., and Kobayashi, H., “Developing a practical parallel multi-
pass renderer in Java and C++ - Toward a Grande Application in Java.” In
Proceedings of the ACM 2000 Conference on Java Grande, San Francisco, CA,
June 3-4, 2000.

[25] HotSpot. http://java.sun.com/products/hotspot/.

[26] Jones, M., and Regehr, J., “The Problems You’re Having May Not Be the
Problems You Think You’re Having: Results from a Latency Study of Windows
NT.” In Proceedings of the 1999 Workshop on Hot Topics in Operating Systems
(HotOS VII), pages 96-102, Rio Rico, AZ, March 29-30, 1999.

[27] Jones, R., and Lins, R. D., Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley & Son Ltd, New York, 1996.

[28] JVMDI, Java Virtual Machine Debugger Interface.
http://java.sun.com/products/jdk/1.2/docs/guide/jvmdi/index.html.

[29] JVMPI, Java Virtual Machine Profiling Interface.
http://java.sun.com/products/jdk/1.2/docs/guide/jvmpi/index.html.

[30] Katcher, J., “PostMark: A New File System Benchmark.” Technical Report
TR3022, Network Appliance. http://www.netapp.com/tech_library/3022.html.

[31] Knuth, D. E., Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Second Edition, Addison Wesley, Reading, MA, 1973.

[32] Lazowska, E. D., Zohorjan, J., Graham, G. S., and Sevcik, K. C., Quantitative
System Performance, Computer System Analysis Using Queueing Network
Models. Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

[33] Liang, S., and Viswanathan, D., “Comprehensive Profiling Support in the Java
Virtual Machine.” In 5th USENIX Conference on Object-Oriented Technologies
and Systems (COOTS ’99), pages 229-240, San Diego, CA, May 3-7, 1999.

[34] Lieberman, H., and Hewitt, C., “A Real-Time Garbage Collector Based on the
Lifetimes of Objects.” Communications of the ACM, 26(6), pages 419-429, June
1983.

[35] Lindholm, T., and Yellin, F., The Java Virtual Machine Specification. Second
Edition, Reading, MA, Addison-Wesley, 1999.

 102

[36] Manley, S., and Seltzer, M., “Web Facts and Fantasy.” In Proceedings of the
Symposium on Internet Technologies and Systems, pages 125-134, Monterey, CA,
December 8-11, 1997.

[37] Manley, S., Courage, M., and Seltzer, M., “A Self-Scaling and Self-Configuring
Benchmark for Web Servers.” Technical Report TR-17-97, Center for Research in
Computing Technology, Harvard University, 1997.

[38] Mathew, J. A., Coddington, P. D., and Hawick, K. A., “Analysis and
Development of Java Grande Benchmarks.” In Proceedings of the ACM 1999
Conference on Java Grande, pages 72-80, Palo Alto, CA, June 12-14, 1999.

[39] McVoy, L., and Staelin, C., “lmbench: Portable Tools for Performance Analysis.”
In Proceedings of the 1996 USENIX Technical Conference, pages 279-294, San
Diego, CA, January 22-26, 1996.

[40] Mercator. http://www.research.digital.com/SRC/mercator/.

[41] Mogul, J. C. “Brittle Metrics in Operating Systems Research.” In Proceedings of
the 1999 Workshop on Hot Topics in Operating Systems (HotOS VII), pages 90-
95, Rio Rico, AZ, March 29-30, 1999.

[42] Ousterhout, J., “Why Aren’t Operating Systems Getting Faster As Fast As
Hardware?” In Proceedings of the 1990 Summer USENIX Technical Conference,
pages 247-256, Anaheim, CA, June 11-15, 1990.

[43] Perfmon Performance Monitoring Tool.
http://www.cse.msu.edu/~enbody/perfmon.html.

[44] Pu, C., Autrey, T., Black, A., Consel, C., Cowan, C., Inouye, J., Kethana, L.,
Walpole, J., and Zhang, K., “Optimistic Incremental Specialization: Streamlining
a Commercial Operating System.” In Proceedings of the 15th ACM Symposium
on Operating Systems Principles (SOSP ’95), pages 15-26, Copper Mountain
Resort, CO, December 3-6, 1995.

[45] Saavedra-Barrera, R. H., Smith, A. J., and Miya, E., “Machine Characterization
Based on an Abstract High-Level Language Machine.” IEEE Transactions on
Computer, 38(12), December 1989, 1659-1679.

[46] Saavedra-Barrera, R. H., and Smith, A. J., “Analysis of Benchmark
Characteristics and Benchmark Performance Prediction.” ACM Transactions on
Computer Systems, 14(4), November 1996, 344-384.

 103

[47] Saito, Y., Mogul, J., and Verghese, B., “A Usenet Performance Study.”
http://www.research.digital.com/wrl/projects/newsbench/usenet.ps. November,
1998.

[48] Silberschatz, A., Korth, H., Sudarshan, S., Database System Concepts. Third
Edition, McGraw-Hill, 1998.

[49] Smith, F., and Morrisett, G., “Comparing Mostly-Copying and Mark-Sweep
Conservative Collection.” In Proceedings of the 1998 International Symposium
on Memory Management, pages 68-78, Vancouver Canada, October 17-19, 1998.

[50] Smith, K., Workload-Specific File System Benchmarks. Ph.D. thesis, Harvard
University, 2000.

[51] Snelling, D. A., “Philosophical Perspective on Performance Measurement.”
Computer Benchmarks, Dongarra, J., and Gentzsch, W., editors, North Holland,
pages 97-103, Amsterdam, 1993.

[52] SPEC CPU2000. http://www.spec.org/osg/cpu2000/. As of July 2000, SPEC
CPU95 is officially retired by SPEC CPU2000. Information about SPEC CPU95
can be found at http://www.spec.org/osg/cpu95/.

[53] SPEC JVM98 Benchmarks. August 1998 release,
http://www.spec.org/osg/jvm98/.

[54] SPEC MAIL2001. http://www.spec.org/osg/mail2001/.

[55] SPEC WEB99 Benchmark. http://www.spec.org/osg/web99/. As of April 2000,
SPEC WEB96 is officially retired by SPEC WEB99. Information about SPEC
WEB96 can be found at http://www.spec.org/osg/web96/.

[56] Standard Performance Evaluation Corporation. http://www.spec.org/.

[57] Transaction Processing Performance Council. http://www.tpc.org.

[58] Venners, B., Inside the Java 2 Virtual Machine. Second Edition, McGraw-Hill,
1999.

[59] VolanoMark. http://www.volano.com/benchmarks.html.

[60] Wall, L., Christiansen T., and Schwartz R. L., Programming Perl. Second
Edition, O’Reilly & Associates, Inc., Sebastopol, CA, 1996.

[61] WebL. http://www.research.digital.com/SRC/WebL/.

 104

[62] WinBench. http://www.zdnet.com/zdbop/winbench/winbench.html, Ziff-Davis.

[63] Wollman, J. D., Hbench:Proxy – A Realistic Proxy Server Benchmark, Senior
thesis, Harvard University, 1999.

[64] Zhang, X., Wang, Z., Gloy, N., Chen, J. B., and Smith, M. D., “System Support
for Automatic Profiling and Optimization.” In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP ’97), pages 15-26, St. Malo,
France, October 5-8, 1997.

[65] Zhang, X., and Seltzer, M., “HBench:Java – An Application-Specific
Benchmarking Framework for Evaluating Java Virtual Machines.” In
Proceedings of the ACM 2000 Conference on Java Grande, pages 62-70, San
Francisco, CA, June 3-4, 2000.

[66] Zhang, X., and Seltzer, M., “HBench:JGC – An Application-Specific Benchmark
Suite for Evaluating JVM Garbage Collector Performance.” In 6th USENIX
Conference on Object-Oriented Technologies and Systems (COOTS ’01), pages
47-59, San Antonio, Texas, January 29 – February 2, 2001.

[67] Zorn, B., “The Measured Cost of Conservative Garbage Collection.” Software–
Practice and Experience, 23(7), pages 733-756, July 1993.

