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Abstract

Metrics ought to be objective, as they are the judge of performance. Workloads ought to be
representative, so that evaluations will lead to applicable results. But sometimes metrics and
workloads collude to taint the performance evaluation process, leading to results of dubious
merit. We use a case study dealing with parallel job scheduling to exemplify these issues.
An analysis of interactions among the metrics, the workloads, and the systems being studied
reveals that such interactions may dominate the evaluation results. Moreover, in some cases
factors that were originally thought to be minor and ignorable are actually very important, and
may overshadow the differences between the different systems. It is therefore recommended
that multiple workloads and metrics be used in performance evaluation studies, and that the
causes of inconsistent results be studied thoroughly.
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1 Introduction

The goal of performance evaluation is often to compare different system designs or implemen-
tations. The evaluation is expected to bring out performance differences that will allow for an
educated decision regarding what design to employ or what system to buy. It is assumed that
observed performance differences reflect important differences between the systems.

However, performance differences may also be an artifact of the evaluation methodology. The
performance of a system is not only a function of the system design and implementation. It may
also be effected by the workload to which the system is subjected. In addition, different metrics
measure different things. In this paper we focus on the identification and analysis of situations in
which workloads and metrics sway the results of performance evaluation.

There are two main approaches to performance evaluation: analysis and simulation. Analysis
necessarily involves simplifications in the interest of mathematical tractability. Simulation is more
realistic, and in particular, can directly use recordings of real workloads. The problems we discuss
are more relevant to simulation, but we claim that this is not a deficiency of simulation. Rather, it
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echos the fact that simulation may directly reflect complex situations, even if they are not known
or understood by the person performing the evaluation.

The domain used in this work is that of parallel job scheduling. Workloads in this field are
interesting due to the combination of being relatively small (the size of typical workloads is tens
of thousands of jobs) and at the same time relatively complex (jobs are characterized by attributes
including size, runtime, runtime estimate, and arrival, and these attributes may be correlated).
Naturally, the methodological concerns extend to other domains.

2 Experimental Design

We start by considering a simple question: what has more impact on performance results, the
system being studied, or the methodology?

2.1 Factors and Levels

Experimental design is a useful technique to study the effect of different factors on a system’s
performance [9]. One first identifies the factors and their typical values (called “levels™), and
then designs a set of experiments that will determine the relative importance of each factor. For
example, when studying process scheduling, factors that affect the performance can be the use (or
lack of use) of time slicing, the average process length, the arrival rate, the order in which queued
processes are considered for scheduling, and so on.

We use this methodology with a twist: rather than studying factors that affect the system be-
havior, we study factors that affect the evaluation procedure. Specifically, we identify four main
factors, each with several levels.

The first factor is the metric being used in the evaluation. The different metrics we consider
are:

e Response time (the time from when a job is submitted until it terminates), using either an
arithmetic average or a geometric average [1].

e Wait time, which is that part of the response time that is up to the system.
e Slowdown, which is the response time normalized by the job’s actual running time.

e Bounded slowdown, in which the running time is used to normalize the response time only
if it is higher than a certain threshold value [4]. This prevents very short jobs from creating
very high values. Thresholds of 10, 60, and 600 seconds were used.

e Per-processor bounded slowdown, in which the bounded slowdown is further normalized by
the number of processors used [12].

The second factor is the load on the system. When systems are underloaded, their performance
is typically very similar. Higher load conditions expose differences in how systems react to load.
Load conditions considered were 50%, 65%, and 80% of the system capacity, which are typical
in production systems [5, 11]. The different load conditions were achieved by systematically
changing the interarrival times of the jobs. However, due to burstiness in the workloads, this
led to some variations in the loads experienced in the actual simulations.



The third factor is the system. The whole point of performance evaluation is to uncover per-
formance differences between different systems, and our goal is to compare the magnitude of
such differences with differences due to methodology. We compared systems with three different
schedulers:

e Backfilling schedules jobs on dedicated partitions of processors, based on their order of
arrival. However, if fragmentation occurs and processors are left idle, jobs from the back
of the queue are allowed to bypass jobs that precede them (provided they fit). Two versions
were used: in conservative backfilling jobs may backfill only if they will not cause delays
for any bypassed jobs, whereas EASY is more aggressive and allows backfilling provided
only the first queued job is not delayed [10]. Estimates of the runtimes are used to determine
whether delays will occur; in real logs, the original estimates provided by users are used,
whereas in models the actual runtime is used as an estimate.

e Gang scheduling is a preemptive scheme in which jobs are assigned to rows of a scheduling
matrix, where columns represent the nodes of the system and rows represent time slots.
The jobs in each row are scheduled in turn using coordinated context switching across all
the nodes. The packing of the matrix is based on a variant of the Distributed Hierarchical
Control scheme [3], which uses a buddy system to allocate processors in blocks that are
powers of two.

The final factor is the workload. Seven different workloads were used, of which four were
models and three were traces. Models are essentially representations of the workload using statis-
tical distributions [6]. This has many benefits and can be used in analysis in addition to simulation.
However, models are always a simplification of reality, and using the wrong statistical model can
yield misleading results [7]. It is therefore sometimes argued that more reliable results are ob-
tained by simulations that are driven directly by a trace that records the actual workload that was
observed on a real production system. This has the benefit of including all the complexities of the
real workload, even if they are unknown to the person performing the evaluation

The models used were those proposed by Feitelson, Jann, Downey, and Lublin. The real work-
loads are from three IBM SP2 systems, installed at KTH, CTC, and SDSC. Additional information,
including software for the models and data for the logs, is available from the Parallel Workloads
Archive at URL http://www.cs.huji.ac.il/labs/parallel/workload/.

We used a full factorial design, in which all combinations of the different levels were measured
by simulation. Thus, for example, we ran a simulation of conservative backfilling using the Lublin
workload model at a load level of 0.50, and measured all ten metrics. Overall there were 60 such
simulations, for a total of 600 results (there should have been 63 simulations, but the combination
of the Downey model and gang scheduling was problematic, as noted below).

2.2 Analysis of Variation

Analysis of variation (ANOVA) is a statistical technique used to assess the relative importance of
different factors [9]. First, the average of all results is computed. Then the differences between
specific groups of results and this global average are attributed to different factors and interactions.
For example, if factor A has two levels a; and a,, and the results of experiments using level a, lead
to a higher average than the experiments using level a,, then we say that the difference between
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| factors | contribution |

A (metric) 80.43%
B (load) 1.66%
C (scheduler) 3.18%
D (workload) 3.06%
AB 0.12%
AC 3.32%
AD 6.38%
BC 0.05%
BD 0.16%
CD 0.98%
ABC 0.05%
ABD 0.08%
ACD 0.45%
BCD 0.03%
ABCD 0.05%

Table 1: Results of analysis of variation (ANOVA).

these two averages (which is part of the overall differences) is attributed to factor A. Likewise,
interactions measure how combinations of multiple factors at specific levels effect the outcome.
For example, given two factors A and B, if the experiments using the combination of A at level
a, and B at level b, lead to very low results on average, we attribute this deviation to the AB
interaction.

The results from the simulations described above were analyzed using Design-Expert 6 soft-
ware from Stat-Ease, Inc. (http://www.statease.com/dx6descr.html). A logarithmic transform
(base 10) was applied first, to reduce the range of values.

2.3 Results

The results of the analysis, showing the contribution of each factor and interaction to the variation,
are given in Table 1.

The most striking result is obviously that over 80% of the variation® has been assigned to
the metrics factor (designated A). However, this is not all that meaningful. Some metrics, like
response time or wait time, are indeed very high on average. And they stay high regardless of the
other factors. Others, like variants of bounded slowdown, are inherently lower. Thus this finding
just means we should not mix metrics and compare them to each other without making sure that
they are in the same units.

The contribution of load (designated B) is surprisingly low. Given that performance deteri-
orates as load increases, we would expect a larger effect. The explanation is probably that the
highest load level, that of 80%, is still a moderate load, and does not push the systems to their

1The ANOVA methodology uses the square of deviations from the global average, so that deviations that are above
and below it do not cancel out. This tends to inflate the largest values and diminish the smallest ones.
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Figure 1: Results for all 10 metrics when comparing the three schedulers, using an average of all
workloads and loads (excluding the Downey workload for which gang scheduling results are not
available).

limit.

The scheduler (designated C) has some net effect, which is gratifying. It means that one of the
compared schedulers is in general better than the others, for many different combinations of the
other factors. This is the sort of results we are actually looking for in performance evaluation.

The workload (designated D) turns out to have a similar effect to the scheduler. As in the case
of metrics, this is not necessarily bad. Some workloads may have longer jobs on average, leading
to longer response times. Again, this just means that results obtained with one workload should
not be compared directly with results obtained using a different workload: only results from the
same workload on different systems are comparable.

The real problems exposed by the analysis are the interactions. For example, the AC interaction
indicates that some metrics favor one scheduler, while other metrics favor another scheduler. Thus
the selection of metric might determine the outcome of the evaluation in terms of which scheduler
seems to be better! The AD interaction indicates that there is an even stronger interaction between
the metric and the workload, and this interaction may swamp out the effect of the scheduler by
itself.

3 TheDoublelnteractions

We start with explaining the interactions between metrics, workloads, and schedulers. Load did not
have any strong interactions, meaning that there were no system designs or metrics that consistently
worked better under high or low loads.

3.1 Interaction of Metrics with Schedulers

In retrospect, the fact that metrics interact with schedulers should not be too surprising. Different
schedulers are designed with different objectives in mind. If successful, they should therefore
satisfy these diverse objective, among which are diverse performance goals. Oftentimes, satisfying
one goal comes at the expense of another. Therefore metrics that are fashioned after specific goals
will tend to give higher ranks to schedulers that include these goals among their stated objectives,
and lower ranks to schedulers that do not.
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Figure 2: Performance results based on select metrics, compared for the different workloads. Each
bar is the average of the two backfill schedulers and all loads.

In our testcase, a detailed study of the results reveals that the ten metrics may be divided into
two groups. One group includes the response-related metrics: response time with either arithmetic
or geometric averaging, and waiting time. These metrics, on average, show gang scheduling to
be similar to EASY backfilling (first three charts in Figure 1). The other group, including the
seven slowdown-based metrics, show gang scheduling to be significantly better than backfilling
(following seven charts). This distinction can be explained by the fact that gang scheduling is
preemptive, with the goal of preventing short jobs from waiting in queue until long ones terminate.
Thus, while it should also reduce the average response time, it should reduce the response time of
short jobs by much more. And this is precisely what is measured by the slowdown metrics.

3.2 Interaction of Metrics with Workloads

The interaction of metrics and workloads, like the interaction of metrics and schedulers, can be
benign. For example, if one workload is characterized by jobs that are on average longer than
those in another workload, their response times will also be longer on average. In other words,
metrics that are naturally linked with a certain workload feature will cause interactions.

A more problematic case is when no such direct link is present, and especially if the metrics
interact in conflicting ways with different workloads. An example is provided by the relative
performance obtained by different workloads according to the different metrics (Figure 2). For
example, the KTH workload has the highest slowdown by far, but the Feitelson and Lublin models
have much higher bounded slowdowns; the CTC and SDSC workloads have higher response times
than the Downey model (for both arithmetic and geometric averaging), but lower slowdowns (with
and without a bound).

The problem with these results is not that we cannot rank workloads, as this is not our goal
anyway and is rather meaningless. The problem is that there is a large effect that is due to the inter-
action of the metric and the workload. Thus when we use several workload/metric combinations,
we might end up measuring these effects and not the system effects.
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Figure 3: Distributions of job sizes in the different workloads. Downey’s model generates larger
jobs than the others. The steps are due to the discreteness of the values, and preferences for powers
of two.

3.3 Interaction of Scheduler with Workload

Interactions of the scheduler with the workload are actually rather important, as they may uncover
vulnerabilities of the system. For example, if a certain scheduler cannot handle a certain work-
load, this has two implications: first, this scheduler should not be used in systems whose workload
resembles the specific problematic workload. Second, this information can be used to better un-
derstand the behavior of the scheduler and to improve it.

An example of this type occurred in the simulation of gang scheduling using the Downey
workload. These simulations did not complete successfully. Specifically, the simulations for high
loads became very backlogged and stretched the simulated time so much that the measured load
was much lower than the input load.

The reason for this appears to be the distribution of job sizes. Downey’s model employs a
log-uniform distribution (actually, this is the distribution of the average parallelism of the jobs, as
this model is designed for moldable jobs rather than for rigid ones). The other models and the
logs have distributions that start with more small jobs and have a bit of a tail (Figure 3), leading
to much smaller sizes throughout the distribution. Apparently, the packing algorithm used in the
simulation of gang scheduling was unable to deal effectively with the log-uniform distribution,
leading to high fragmentation: processors were left idle because allocations were in powers of
2, and for large jobs, this causes significant waste. This led to saturation at relatively low loads,
starting from about 60%. The other distributions did not cause this problem, and the workloads
were packed successfully even at loads of 80%.



number response time bound. slodwn. T=10

job class | of jobs* EASY | cons EASY | cons
Jann model
short 214715 | 8015.42 | 6403.52 142.99 109.16
long 118585 | 52654.77 | 65173.01 1.85 2.32
all 333300 | 23900.09 | 27313.15 92.77 71.15
CTC workload

short 48020 | 3784.75 | 4632.44 22.85 45.39
long 30480 | 33866.62 | 37762.92 1.47 1.65
all 78500 | 15464.95 | 17496.77 14.55 28.41

* the numbers may differ slightly for the two schedulers as different
jobs may remain in the queue at the end of the simulation.

Table 2: Simulation results for different job classes. EASY backfilling is better in all cases for the
CTC workload, and for long jobs in the Jann workload. Results shown are for load of 0.8.

4 TheTriplelnteraction of Metrics, Schedulers,
and Workloads

A more difficult situation occurs when three factors are involved in the interaction. An example
is provided by the comparison of the conservative and EASY backfilling schemes. It turns out
that, at least for some workloads, the response time metric favors EASY backfilling, whereas the
(bounded) slowdown metric favored conservative backfilling. Particularly worrying is the fact that
the Jann and CTC workloads, which are statistically very similar (the Jann model specifically tries
to emulate the CTC workload), produce different results: the Jann model interacts with the metric,
and produces opposite results for the two metrics, while the CTC workload favors EASY for both
metrics (Table 2). This is therefore actually a triple interaction (denoted ACD in Table 1). The
following analysis is based on reference [2].

4.1 Producing Conflicting Results

First, we try to understand the mechanism that causes the different metrics to produce conflicting
results. Slowdown is known to be very sensitive to short jobs, as the job runtime appears in the
denominator of the formula; thus short jobs that are delayed for even moderate times lead to high
slowdown values. The effect of backfilling is also related to job duration, as short jobs have a
better chance to fit into a hole in the schedule. Thus tabulating short jobs separately may lead to
important insights.

Table 2 shows the results, defining short jobs as those shorter than one hour. For the CTC
workload, both metrics favor EASY backfilling for each class individually, and also for both of
them together. But in the Jann workload we indeed see a difference that depends on job class. For
jobs that are longer than 1 hour, both metrics favor EASY. But for the shorter jobs both metrics
favor conservative backfilling.

Given that for each job class both metrics agree, how does this turn into conflicting results
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Figure 4: Amount of backfilling (top) and increased backfilling with EASY relative to conservative
(bottom). A value of 0.1 means that EASY did 10% more backfilling.

when the whole workload is considered? The answer is that averages are dominated by the higher
values. For response times the high values come from the long jobs, whereas when we calculate
the average slowdown the high values come from the short jobs. Thus the average response time
is similar to the response time for long jobs, which favors EASY, whereas the average slowdown
is similar to the slowdown of short jobs, which favors conservative.

4.2 Underlying Performance Differences

For both workloads, the response times and slowdowns of long jobs under the EASY scheduler are
substantially lower than under conservative scheduling. The difference in the results is due to the
short jobs, that fare better under conservative in the Jann workload, but not in the CTC workload.
To try and understand why this happens, we need to understand how the scheduler interacts with
the workload.

Figure 4 shows the amount of backfilling achieved by the two Schedulers. Surprisingly, it turns
out that the better performance for short jobs in the Jann/conservative combination is not the result
of more backfilling. On the contrary, the main difference between the workloads is that under
Jann/conservative there is less backfilling of long jobs. This result is most likely the consequence
of a seemingly minor difference between the workloads: the fact that the CTC workload includes



user estimates of runtime that are used in the backfilling process, whereas the Jann model does not.
Simulations based on the Jann model therefore use the actual runtime as an estimate. This leads to
much less backfilling under the conservative scheme, because backfill jobs must fit into the smaller
space that is left available by the tighter estimates.

To confirm this hypothesis, we re-ran the CTC simulations but using the actual runtimes rather
than the original user estimates to control the backfilling. The results, also shown in Figure 4,
confirm the conjecture. Moreover, in these runs the performance of short jobs was better under
conservative than under EASY (as in the Jann workload), indicating that the disparity in backfilling
long jobs is determinative for the performance of short jobs.

But how does the reduced backfilling of long jobs under conservative translate into better per-
formance for short jobs? The answer is that in both workloads, many long jobs are serial. They
are therefore prime candidates for backfilling. The question of whether backfilling will actually
occur depends on the scheduler. EASY will backfill provided the job does not delay the first job
in the queue. The conservative scheduler is stricter, and requires that no previously queued job be
delayed. Given that the jobs in question are long, there is a significant danger that they delay some
job even if they do not delay the first queued job. Short jobs that are thus delayed will suffer from
high slowdown values. Thus by achieving less backfill for large jobs, conservative avoids delays
for short jobs, resulting in better slowdown scores.

4.3 Discussion

To summarize, our analysis exposed the following triple interaction:

e The Jann and CTC workloads differ (among other things) in that the CTC workload is a
real trace including user estimates of runtime, whereas the Jann model does not include this
detail.

e Due to using accurate estimates for the Jann model, the conservative scheduler achieved
less backfilling of long jobs that use few processors. This is obviously detrimental to the
performance of these long jobs, but turned out to be beneficial to short jobs that don’t get
delayed by the long jobs.

e As response time is dominated by long jobs, the response time metric showed that EASY is
better than conservative for the Jann workload. The slowdown metric, on the other hand, is
dominated by short jobs, so it showed conservative to be better.

As real workloads have inaccurate runtime estimates [10], it seems that in this particular case the
CTC results should be favored over the Jann results, leading to an unequivocal preference of EASY
over conservative. However, this hinges on the very high number of long serial jobs, which is
unique to the CTC machine and Jann workload (which is based on it) due to its history: it replaced
a large mainframe, and inherited the mainframe’s workload. Thus the results may actually not be
representative.

The results of the analysis are interesting also because of what it didn’t find. Specifically,
seemingly important features of the workload turned out to be unimportant. An example is the
details of the runtime distribution in the two models. The CTC workload is bounded at about 18
hours (an administrative issue), whereas the Jann workload has a tail that extends beyond 30 hours.
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The CTC workload hardly has any jobs shorter than 30 seconds, probably due to the fact that the
measurement includes the time to start up the required processes on all the nodes, and to report
their termination. In the Jann model, by contradistinction, over 10% of the jobs are shorter than 30
seconds, and many jobs only run for a fraction of a second. However, rerunning the simulations on
a truncated version of this workload, in which all jobs shorter than 30 seconds or longer than 18
hours were removed, did not change the results much.

Another major difference between the workloads is that in the original CTC workload most
jobs use power-of-two nodes, whereas in the Jann model jobs are spread evenly between each two
consecutive powers of two. Previous work has shown that the fraction of jobs that are powers of
two is important for performance, as it is easier to pack power-of-two jobs [8]. However, in our
case this seemed not to make a qualitative difference. It was checked by running the simulations
on a modified version of the Jann workload in which the sizes of 80% of the jobs were rounded up
to the next power of two.

5 Conclusions

An unstated assumption of performance evaluation is that the measured results are largely due to
the systems begin studied. Another part of the variation is assumed to be related in the predictable
way to the load conditions. Our simulations and analysis indicate that this is not necessarily the
case: both the metrics and the workloads being used may have a large effect on the results, as well
as interactions between these factors.

The reason for this is that real systems and real workloads are rather complex. When evaluating
their performance, all sorts of unexpected interactions occur, and all sorts of problems that were
thought to be marginal actually play a larger role than expected. Great care must be taken to
understand such interactions, and to avoid them when they compromise the validity of the results.

In term of practical advice, our results indicate that it is desirable to use all relevant metrics
and all available workloads for performance comparisons, and not settle for just one combination.
If conflicting results are observed, this is an indication that a detailed study is needed in order
to determine which results deserve to be given more weight. This can start by comparing the
workloads, and trying to identify the differences between them. These differences can then be
inspected for possible interactions with the various metrics, based on a thorough understanding of
the domain. However, suspect interactions must be checked carefully, as complex systems tend to
breed unexpected and counter-intuitive effects.
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