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Abstract

English texts are usually written in the ASCII standard.
Unlike the English language, many other languages which
have other characters sets, don’t have one standard. This
plurality of standards causes problems in various infor-
mation retrieval tasks, especially in a web environment,
where one may download a document in an unknown
standard. This paper suggests a purely automatic way
of finding the standard which was used by the document
writer, based on the statistical letters distribution in
the language. The algorithm was applied on various
types of corpora in Hebrew, Russian and English and
provides a full solution to the stated problem in most cases.

Keywords: Alphabet recognition, information retrieval,
national languages, statistical letters distribution, vector-
space model, positions vectors, environmental vectors.

1 Introduction

As the Internet has become a part of our life, people all
over the world access the web and look for information
on a daily basis. The importance of national languages
support is growing together with the growing popularity
and spread of the network.

The ISO-8859 standard defines the mapping of the
higher 128 codes (as ASCII only defines 7-bit codes) for
Latin alphabets and for many other languages, including
Cyrillic, Arabic, Greek, and Hebrew alphabets (these use
different numbers: 8859-5 is Cyrillic, 8859-6 is Arabic,
etc.) [7]. An alternative is the Unicode standard, which
uses 16-bit codes to provide unique codes to the symbols
needed for all commonly used alphabets in the world.

Regrettably, these standards have not come to dominate
usage, as opposed to the dominance of ASCII for English.
For example, the standard used by Microsoft software for
Hebrew characters, known as Windows-1255 [11], does
not conform to ISO-8859. Thus it is relatively common to
download a document in a non-English language, and find
that it uses an unexpected encoding of letters. The result
is that the wrong glyphs are displayed, and the document

Figure 1.1: Results of displaying a Hebrew document with
different fonts, using a Hebrew version of Netscape [12].
The top one provides the correct decoding of the letters.
The second font does not define any glyphs for the higher
128 codes, so the browser displays some special graphical
symbols.

cannot be read (fig. 1.1). Such cases occur quite often
while exploring non-English sites on the web. The typical
solution is to try different fonts supported by the browser,
with the hope that one of them uses the same mapping as
the document.

Another typical problem for Semitic languages is Bi-
directional text, where some text is right-to-left (e.g.
words) and some other (e.g. numbers) is left-to-right.
The visual representation stores the text as it should be
displayed on the screen device. The existing standards
for web pages, HTML-4 [4] and XHTML 1.0 [10] (lat-
est version, which is a reformulation of HTML 4 in XML

1



1.0), support Bi-directional text as defined in Unicode’s
Bi-directional algorithm [11], [8]. According to this stan-
dard the characters are stored in the order they are typed
by the human user (logical representation) and users are
supposed to supply a language, a charset (to identify the
encoding standard) and a dir (the direction of a page - ’rtl’
or ’ltr’) parameters in their HTML pages in order to allow
a browser to process a document correctly.

Unfortunately, this simple solution does not work in
practice since most users don’t provide this information.
Also, many Hebrew documents are encoded visually in
various non-standard ways, and therefore cannot be dis-
played even by standard-conforming browsers.

Our goal in this paper is to develop a methodology that
can be used by a browser to automatically determine which
encoding was used in a document. This ability of the sys-
tem is critical for the successful information retrieval in the
multi-lingual environment.

2 Template-Based Recognition Ap-
proach

The paper’s aim is to find an efficient statistical solution
to the alphabet recognition problem, with no language-
dependent knowledge, such as morphological and syntac-
tic rules or dictionary usage. The basic idea is to pre-
compute universal templates of letters distribution in a lan-
guage based on various corpora examples, and then com-
pare them to the statistics of a given document that needs
to be decoded.

2.1 Positions Vectors
It was shown in [19] that the distribution of letters in a
given human language is generally similar in many texts.

Unfortunately, a good recognition cannot be achieved by
this information. There are groups of 3-4 letters (e.g. A,
B, $, and N) which have very close frequencies, so it will
be hard or even impossible to distinguish between them.
We are interested in getting more detailed characteristics
of each letter in the language. Our first attempt was to
construct a “positions vector” for each letter, by counting
its occurrences at every position in the word separately.

More formally, define ���������
	�� 
 to be the number of times
letter � appears in position � in the word. We distinguish
two cases : when position � is the last one in the word,
and when it is not; thus ���������
	�� 
������������
���
��� 	���� �	�� 
 ���������� 	���� �	�� 
 . The position vector � 	 is then defined to be� �"!$#%�'&(#*)�)+)+#%�,!
-.#%� 	��/� �
0 , where

� 
 �21 �43��$�6587:96;.<>=%?@9<�A B�@�
� �C	 DFE*G.G , and� 	���� � �IH B 1 �%3��$� <>=4? 9<�A B�@�4� �C	 DJE8G�G . �
��� � � denotes the total number
of all the letters in the text and words are assumed to be
shorter than 20 letters long. Based on this information, the
position of each letter can be discovered.
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Figure 2.1: Positions vectors for the four most frequent let-
ters (I, W, H, M) in the Hebrew Scientific Journals (HSJ in
Table 1). While in this and other graphs the x axis is actu-
ally discrete, plotting lines that connect the values aids the
eye in making the comparison. As we can see the vectors
are very different.

Comparing the vectors of frequencies of the letters,
rather than single values, provides much more accurate re-
sults (fig. 2.1, 3.2).

2.2 Environmental Vectors
So far we looked at the text as a 0th order Markov Chain,
as we treated each letter independently. However, it may
be helpful to consider the closest neighbors of the letter in
order to identify it and for that purpose to extend our model
to a higher order Markov Chain.

Markov Chains are commonly used in a human language
processing to define compression rules [1], [3] and to com-
pute the probability of the next letter by its precedents [6],
[20]. For example, in English “u” tends to appear after “q”,
while “x” almost never occurs after “z” [19], [21]. Such
rules are a very strong feature in English, but less so in He-
brew writing, which puts almost no restrictions on letters
combinations, since it does not contain vowels. Neverthe-
less, the differences in the probabilities of different pairs
are sufficient to aid in recognition.

First, we collect information about all possible pairs of
letters occurrences in the corpus. This data may be viewed
as a matrix K of the size: L�MONQPSRUT"VXW8YZL\[]L�MON^P�R_T'V�W*Y`L ,
where every cell Kba@c d contains the frequency of the cor-
responding pair of letters. The next step is to use this
matrix of pairs to find characteristics for individual let-
ters. We notice that rows and columns of K represent
the successors and precedents vectors of all the letters, re-
spectively. So here again we took a vector-space-model
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Figure 2.2: Environmental vectors of the most frequent
letters in the Hebrew Scientific Journals (HSJ in Table 1).
The difference between the letters is even bigger than as
determined by the positions vectors in fig. 2.1.

to represent a letter’s closest environment (fig. 2.2, 3.3).
For each letter N in the alphabet, we define its “environ-
mental vector” to be its row K � of frequencies of differ-
ent successors: K ����� T � c ��� T � c ���
	�	�	�� T � c�
 � � �
��������� 
�� , where

T � c � ����� ��! �#"�$ %� � �#�&�('*)
+,+ , where - is N ’s successor in the text.
The main problem of both algorithms is ambiguity,

when several distinct letters are mapped to a single letter
in the other text.

Note, that we still did not use the information contained
in the columns of the matrix, the precedents “environmen-
tal vectors” ( .ZK ). This redundant information is useful to
disambiguate the results, thus increasing our model to 2nd
order Markov chains.

2.3 On-line Matching
Once the off-line construction of templates for various lan-
guages is completed, the system can start to work on-line,
getting new documents and matching their vectors to the
templates.

The matching procedure receives two sets of vectors,/10 � /32
generated from two texts, and output is a set of

pairs, that are the closest to each other: .54 �(67�98 �;: �=<8?> /10 � : > /@2 �3A �98 �;: � �CBED�FHGJI�KML
N A �98 �;:�O �&P .
/10

usu-
ally stands for the template vectors and

/Q2
for the new text

vectors set.
Another question to be discussed in this context is the

A function, i.e. the vectors distance metrics. We exper-
imented with two versions of the norm formula: A 0 �R /10TSU/32 R 0 �WV 0YX a X ! L�Z a S?[ a L vs. A 2 � R /Q0TSU/32 R 2 �\ V 0YX a X ! � Z_a S][ a � 2 . The latter norm decreased the accu-

racy by up to 10% as demonstrated in fig. 3.4, so we chose
A 0 as the better metric for our purposes.

Mapping is executed in both directions:
/ 0E^ / 2

and/ 2_^ / 0
to reduce ambiguity and make sure that every

letter gets a pair from the other set. The two results are
then merged. This helped increase the hit ratio by up to
6% in 25% of the cases as shown in fig. 3.4.

2.4 Combined Method - The Final
Version

Another way to eliminate ambiguity is to combine the two
proposed algorithms, the “environmental vectors” and the
“positions vectors”. The “combined” method resulted in
better accuracy percentage, as shown in Table 1. The final
version of the proposed algorithm is summarized below.

1. Compute positions ( . 0
) and environmental

( K 0 � .ZK 0 � vectors for the templates set. This
is done off-line.

2. Get a new document from the user.

3. Compute positions ( . 2 � and environmental
( K 2 � .ZK 2 � vectors for the document.

4. Pick a template, either the default “Newspapers Style”
or according to a user selection.

5. Compare the successors environmental vectors of the
template, K 0

, to those of the document, K 2
, using

A 0 .
6. For letters that got none or several mappings do:

` Execute the 4th step mapping in the opposite di-
rection:K 2a^ K 0

` Check:

(a) If a letter N 2d in K 2
was mapped to F dif-

ferent letters in K 0
and if it got a unique

mapping N 0a now (which is one of those F � :
– Add a pair � N 0a � N

2
d � as a match in .54

(the final matched pairs set).

(b) If a letter N 2d in K 2
was not mapped at all

and if it got a unique mapping N 0a now:

– Add a pair � N 0a � N
2
d � as a match in .54

(the final matched pairs set).

7. For letters that are still not resolved:

` Compare the precedents environmental vectors
of the template, .ZK 0

, and the document, .ZK 2
,

in both directions, using A 0 . Repeat step 6 with
.ZK ) , and .ZK 2

.



� Compare the positions vectors of the template,� !
and the document, � &

, in both directions, us-
ing

� !
. Repeat step 6 with � !

, and � &
.

8. If there is only one unidentified letter �
&

� left in the
document alphabet:

� Match it to the remaining letter in the language
alphabet.

3 Experimental Results

We checked our methods on various types of texts in
three languages: Hebrew, Russian, and English. The
sources types in Hebrew experiments were on-line news-
papers (HN, HN1, HN2), the Parliament protocols (HS),
which represent the spoken language, several on-line sci-
entific journals (HSJ) [5], and the Bible (HB). The English
sources included Computer Science text (EC) [16], Spoken
language (ES) [17], and the complete works of William
Shakespeare (EL) [18]. The Russian corpus contained on-
line newspapers (RN), scientific articles collection (RS),
and prose of A. S. Pushkin’s books (RP), and F. M. Dosto-
jevsky (RD) [14].

We also examined the influence of the text size on the
computed statistics in order to find the lower bound on the
new documents size. We ran the algorithms on texts of
sizes varying from 200Bytes (30-40 words) to 100 MB
( � 15 million words). Significant changes occur below
10K ( � 1,500 words), mostly in the bottom half of this
range; the difference between 5K and 10KB was of 2-3 let-
ters. Starting from 10K the matching results never changed
(as shown in fig. 3.1).

Figures 3.2, 3.3, 3.4 are some illustrative graphs for dif-
ferent stages of the algorithm . The comparative results of
the described algorithms are detailed in Table 2.

Both vector methods in isolation worked fine for homo-
geneous corpora, but produced some mismatching for dif-
ferent types of text. The best case is therefore when we
compared two similar sources, such as two newspapers, the
same author’s books or two halves of the same source, such
as the Bible, that was divided into two parts and matched
one to the other. The worst case is when comparing an-
cient text to modern one, or written to spoken language.
The lower hit ratio for spoken language samples can be
explained by their high number of participants and since
spoken language has almost no norms, or restrictions.

Still, there are quite a few “strongly characterized
letters” that never produce misses as shown in Table 1.
Assuming the constant alphabetic order of the encoding
tables they enable us to determine the rest of the alphabet
by the distances between letters in the alphabet, thus
bringing the method to 100% accuracy even in the worst
case. However we would like to stress that the worst case
is practically very uncommon, since usually people view
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Figure 3.1: The document size has a crucial influence
on the accuracy of the statistical alphabet recognition.
The larger the document is the more accurate results are
achieved. Naturally, the accuracy is really low for ex-
tremely small documents (of 30-150 words). It grows
steadily with increasing text size, and reaches a maximum
accuracy in texts 700-1,500 words in length.
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Figure 3.2: Example of identification of 3 letters that have
similar frequencies, based on position vectors. The vectors
are for A, B, N, obtained from two different texts in He-
brew: Scientific Journals (HSJ in Table 2) vs. Newspapers
articles (test no. 4 in Table 2). Despite the similar frequen-
cies, there is no ambiguity in matching by position vectors:
the two vectors for each letter are nearly overlapping. Note
that N never occurs at the last position since it has a special
character for the final form.
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Figure 3.3: Matching three medium-frequency letters from
Hebrew Scientific Journals (HSJ in Table 2) vs. News-
papers articles (test no. 4 in Table 2), using environmen-
tal vectors. These vectors consist of over 20 meaningful
points (dimensions) while in the positions vectors usually
only the first 10 and the last one were informative, there-
fore the similarity of the corresponding letters vectors is
even more distinct in this model.
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Figure 3.4: Comparison of the accuracy achieved by 3 on-
line matching schemes, based on different combinations of
the vector distance norm

���
vs.

���
and the use of one-

way or two-way mapping (denoted ’ ���	� ’ or ’ 
��	� ’).
The tests numbers refer to Table 2. As we can see, the� �
��
��	� combination is always better than or equal to
the other two.

Sources Accuracy in %
Compared Positions Environmental Combined
Types Vectors Vectors Method
HN-HN*** 100 100 100
HN1-HN2* 91(2,1)** 100 100
HSJ-HSJ 100 100 100
HSJ-HN 100 100 100
HS-HS 94(2,0) 94(2,0) 100
HB-HB 100 100 100
HS-HN 76(6,2) 91(2,1) 91(2,1)
HB-HS 76(8,0) 91(3,0) 91(3,0)
HB-HSJ 76(6,2) 94(2,0) 94(2,0)

EC-EC 100 100 100
ES-ES 100 100 100
EL-EL 100 100 100
EL-ES 94(0,2) 94(2,0) 100
EL-EC 94(2,0) 94(2,0) 94(2,0)
ES-EC 76(4,4) 85(3,2) 91(1,2)

RN-RN 100 100 100
RS-RS 100 100 100
RP-RP 100 100 100
RD-RD 100 100 100
RP-RD 91(3,0) 91(2,1) 94(2,0)
RN-RP 80(5,2) 88(4,0) 88(4,0)

Table 2: The Final Results Table.
* We denote HN1 - HN2 for comparison of two different
newspapers.
** The numbers of the errors of two types: (i) multiple
matches (including the correct one), and (ii) unmatched
letters, are shown in the parenthesis, respectively.
*** We denote X - X for comparison of two distinct parts
of the same source.

Heb D H X I L M N k m n
Eng A B C D E F G L M N
Rus B V D E Zh I J K L M

Table 1: The “strongly characterized letters” lists in He-
brew, Russian and English. We used the Latin translitera-
tion to represent Hebrew and Russian alphabet as described
in [15], [13].

and download scientific and news articles, which both
belong to the written-modern language style.

4 Conclusions and Future Work

We developed and presented a purely automatic method
for alphabet recognition, based on a vector-space model. It
produced fine results for languages from different families:
Semitic, Slavic, and Indo-European. The time complexity
of the vectors generation process is ������� , where � is a



number of characters in the new document. The matching
procedure performance is bound by

� ����� ����� �
	�� � � 
 0 .
We would like to suggest some possible extensions and

further applications of our research. The method may be
naturally used to easily identify the language of the doc-
ument, by comparing its statistics to pre-computed tem-
plates of given languages. Only one of them will have a
relatively small number of unmatched or multiple-matched
letters. It can also be applied to determine documents di-
rection (’ltr’, ’rtl’) and representation type (visual, logi-
cal) by simply running the “positions vectors” algorithm
in both ways and comparing the results to the templates.
Obviously, only one of the two obtained vectors sets will
match the templates, which reveals the correct direction
and representation of the text. These are common difficul-
ties since people tend not to supply this information de-
spite the fact that it is mandated by the HTML 4 standard.
In summary, the only thing our algorithm needs to receive
in order to recognize the alphabet of a given piece of text
is the list of candidate languages to choose from. Given
this, it executes the three following stages, first identifies
the language, then the representation type and the direc-
tion, and finally the character set.
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