

REDUCING THE THRASHING EFFECT USING BIN PACKING

Moses Reuven

Computer Science Department
Bar-Ilan University

Ramat-Gan
Israel

reubenm@cs.biu.ac.il

Yair Wiseman
Computer Science Department

Bar-Ilan University
and School of Computer Science & Engineering

The Hebrew University of Jerusalem
wiseman@cs.huji.ac.il

Abstract

We suggest a method for minimizing the paging on a
system with a very heavy memory usage. Sometimes
there are processes with active memory allocations that
need to be in the physical memory, and their total size
exceeds the physical memory size. In these cases the
operating system will start swapping pages in and out of
the memory on every context switch. We minimize this
thrashing by splitting the processes into a number of bins,
using Bin Packing approximation algorithms. We change
the scheduler to have two levels of scheduling - medium-
term scheduling and short-term scheduling. The medium-
term scheduler switches the bins in a Round-Robin
manner, while the short-term scheduler runs the standard
Linux scheduler among the processes in each bin.
Experimental results show significant improvement on
heavily loaded memories. The code of this project is free
and can be found in: http://www.cs.biu.ac.il/~reubenm

Key Words: Thrashing, Bin-Packing, Kernel
Manipulation.

1 Introduction
Many operating systems implement the virtual memory
scheme[1] using the paging concept i.e. the operating
system loads a memory page into the physical memory
only when a process demands it. If no free memory pages
are available, the operating system swaps some other
pages back onto the secondary memory (hard disk).
Different methods of deciding which pages should be
swapped out to the disk have been proposed over the
years [2].
When too much memory space is needed, the CPU spends
a lot of time swapping pages in and out of the memory.
This effect is called Thrashing [3], and the outcome is a
severe overhead of time, and hence a significant
slowdown of the system. Some studies for reducing the
undesirable effects of the thrashing have been conducted
over the years [4].
In [5,6] The authors suggest giving one of the interactive
processes the privilege of not swapping its page out.
Consequently, the privileged process will succeed in

being executed faster, and will free its memory allocation
earlier. This can help the operating system to clear out the
memory and to return to normal behavior.
In [7] the authors suggest not admitting jobs which do not
fit into the current available memory. Instead, the system
waits for one or more processes to finish their execution,
and only when enough memory is freed a new job will be
admitted. The authors also discuss how to assess the
memory size needed by a new job. This is actually very
similar to what VMS does using the “Balance Sets”
method. However, the authors of this paper taking the
same “Balance Sets” concept to distributed systems.
In [8] the author suggests tackling the thrashing effect by
adjusting the memory needs of the process to the current
available memory. This solution is quite different from
the others, because it modifies the processes instead of
modifying the operating system.
This paper suggests a technique of changing the
traditional process scheduling procedure. This technique
will help the operating system to swap in and out a
smaller number of pages, and thus to minimize the
slowdown stemming from thrashing. The solution
suggested in this paper is not restricted to a specific
operating system; hence it can be implemented on any
multitasking paging system. The figures and the results
given in this paper have been achieved using the Linux
operating system [9]. However, Linux is just a platform to
show the feasibility of the concept.
The rest of the paper is organized as follow. Section 2
describes the Linux scheduling algorithms. Section 3
introduces the Bin Packing problem. Section 4 presents
the reduced paging algorithm. Finally, section 5 gives the
results and evaluates them.

2 The Linux Scheduling

2.1 Linux Scheduling
Linux divides the time into epochs, in which each process
gets its time slice. Time slices are measured in ticks, each
tick is 10.5 milliseconds long. Processes can get between
1 and 30 ticks, the usual time slice being 15 ticks. An
epoch ends when all tasks have exhausted their time
slices. When a process begins, a new time slice for this

process is calculated. Linux has two records of all of
active processes. The “active” record holds the processes
that have not exhausted their time slices yet. The record
has 140 queues, one for each possible priority, and a bit-
map of 140 entries to indicate which queues are not
empty. The “expired” record has the same structure, and
holds the processes which have exhausted their time
slices. When a process exhausts its time slice, it will be
moved from the “active” record to the “expired” record,
and a new priority and time slice are calculated for it.
When a new process is created, it will get the same
priority as its parent process, and the reminder of the
parent’s time slice in the current epoch is equally split
between the parent and the child. In the next epoch, the
parent and the child each get distinct time slices.
The Linux scheduler is invoked when a process exhausts
its time slice, when a process stops consuming CPU
cycles or when a process returns to the “ready” queue.
Linux then invokes the process with the highest priority.
When all the processes have exhausted their time slice,
the “expired” and the “active” records are switched. If no
process is ready to run an “idle” process is invoked.
The queues of the priorities are implemented as follow:
When the priority of a process is changed, it is requeued
on the appropriate queue, and the corresponding bit is
marked. The values of the priorities are within the range
of 0-139, where the values of 0-99 denote real time
processes of both types (real time FIFO and real time
Round-Robin), and 100-139 is reserved for user
applications processes. A bonus within the range of –5 to
5 is added to the static priority. The bonus is calculated
according to the time the process has slept during the last
epoch. The static priority of user applications is initialized
to 120, so the effective priorities of user applications are
in the range of 115-125, so actually only 25% of the
available priorities are used for user processes.

2.2 Linux Thrashing Handling
The virtual memory capability, along with the paging
mechanism, gives Linux the ability to handle processes,
even when the real memory needs are larger than the
available physical memory. However, virtual memory
cannot handle every situation. If the demand for memory
pages is very high over a short period of time, the
swapping mechanism cannot satisfy the memory needs
reasonably. Pages are frequently swapped in and out,
because of the thrashing effect, and hence little progress is
made.
Linux only kills processes when thrashing occurs and the
system is out of swap space. In some sense there is
nothing else that the kernel could do in this case, since
memory is needed but there is no more physical or swap
memory to allocate [10,11]. When such a case occurs, the
Linux kernel kills the most memory consuming processes.
This feature is very drastic; hence its implications might
be severe. For example, if a server is running several
applications with mutual dependencies, killing one of the
applications may yield unexpected results.

3 Bin Packing
We would like to have a list of all the processes that are in
the virtual memory, and to split these processes into
groups, so that the total memory size of each group will
be as close as possible to the size of the available real
memory i.e. the size of the bin. How can we build these
groups of processes? We have a set of processes Pi, each
with a memory allocation. Let Mi denote the maximal size
of memory which might be needed by process Pi. We
need an algorithm which divides these Mi’s into as few
groups as possible, with the sum of the Mis in each group
not exceeding the size of the real memory. Moreover, the
kernel and some other daemons occupy part of the
memory, so the sum should not exceed a smaller memory
size. This is a well-known problem, called the Bin
Packing problem [12].
The Bin Packing problem is defined as a set of numbers
X1, X2, ..., Xn, with Xi ∈ [0, 1] for each i. The problem is
to find the smallest natural number m for which:
• X1, X2, ..., Xn can be partitioned into m sets.
• The sum of the members of each set is no higher than 1.
The Bin Packing problem is NP-hard [13]. However,
some polynomial time approximations have been
introduced over the years, such as [14,15,16]. The
approximation algorithms use no more than
(1+E)*OPT(I) number of bins, where OPT(I) is the
number of bins in the optimal solution for case I. If E is
smaller, the result will be closer to the optimal solution,
but unfortunately good approximations are usually time
consuming [17]. We would like to choose one of the
approximation algorithms which is not time consuming,
but yet tries minimizing (1+E)*OPT(I).
A simple idea of an approximation algorithm for the Bin
Packing problem is the greedy approach [18], also known
the First-Fit approach. This algorithm is defined as
follow:
• Sort the vector X1, X2, ..., Xn by the size of allocated
memory.
• Open a new bin and put the biggest number in it.
• While there are more numbers
o If adding the current number to one of the existing
bins will exceed the size of the bin
� Open a new bin and put the current number in it.
o Else
� Put the current number in the current bin.
In our test we used a version of this approximation
algorithm, with a slight change. We usually achieved the
minimal number of bins, and the cost of execution time
was usually low. This version is described below.

4 Bin Packing Based Paging
It is well known that increasing the level of multitasking
in any operating system may sometimes cause thrashing,
because an excessive demand for real memory causes the
operating system to spend too much time swapping. In
order to avoid thrashing, we would like to suggest a new
approach: All the processes will be divided into groups in
such a manner that the sum of physical memory demand

within each group will be no greater than the amount of
physical memory available on the machine.

4.1 The Medium-Term Scheduler
A new scheduler procedure will be added to the Linux
operating system. The new scheduler will operate in the
manner of the medium-term scheduler, which was part of
some operating systems [19]. The medium-term
scheduler will load the groups into the Ready queue of the
Linux scheduler in a Round-Robin manner. The
traditional Linux scheduler will do the scheduling within
the current group in the same way the scheduling is
originally done on Linux machines. The time slice of each
group in the medium-term scheduler will be significantly
higher than the average time allocated to the processes by
the Linux scheduler. The processes in the real memory
will not be able to cause thrashing during the execution of
the group because their total size is no greater than the
size of the available physical memory i.e. the size of the
bin. Only at the beginning of a group execution will there
be intensive swapping, when the new group’s pages are
swapped into the memory. This can improve the ability
of the system to support memory-consuming processes in
a more tolerant way than killing them.
In our implementation, we used a group time slice of one
or two seconds, while the Linux scheduler gives time
slices of some dozen milliseconds. When Linux thrashes,
any context switch causes many page faults, while with
the medium-term scheduler, intensive swapping will
occur only when switching between groups. This makes
the operating system in our implementation swap a
significant amount of pages only in a few percents of the
cases, in contrast to conventional Linux during thrashing
conditions.
When the medium-term scheduler replaces the current
running group by the next group, the processes which are
not in the current group should be kept on a different
queue, so that the Linux scheduler will not be able to see
them. In order to implement this feature, we added a new
record to the code of Linux kernel. This record has the
same structure as the “active” and “expired” records
which we described in section 2.2, and this record holds
the hidden processes.
When the last group completes its execution, the medium-
term scheduler is invoked, and rebuilds the process
groups, taking into account any changes to the old
processes (e.g. exited or stopped) and adding any new
processes to the groups.
Sometimes the current group finishes all of the processes
within the time slice awarded to it by the medium-term
scheduler. Even if there are still some processes in the
group, these processes might be sleeping. If all the
processes in the group are not ready to be executed, the
Linux scheduler has been changed to invoke the medium-
term scheduler, which in turn switches to the next waiting
group.
The medium-term scheduler takes the sum of the memory
sizes that are currently resident in the physical memory
and divides this sum by the bin size. The quotient is taken

to be the number of bins. Then, the medium-term
scheduler scatters the processes between these bins. The
medium-term scheduler uses the greedy algorithm until
the medium-term scheduler is unable to fit another
process into the bins. Next, the medium-term scheduler
tries to find room for all the remaining processes in the
existing bins. If it fails to find room in one of the existing
bins, it exceeds the size of the smallest bin by adding the
unfitting process to it. The original Bin Packing problem
does not allow such a solution, but in this case it might be
preferable to have a few page faults within a group than
adding an additional bin.

4.2 Swapping Management
When the time slice of a group ends, a context switch of
groups will be performed. This context switch would
probably cause a lot of page faults: The kernel uses its
swap management to make room for the processes of the
new group, and this procedure might be long and
fatiguing. The previous group of processes has most
probably used up most of the available physical memory,
and when the swap thread executes the LRU function to
find the best pages to swap out to the disk, it will find
pages of the old group. This procedure is wasteful
because the paging functions is performed separately for
every new page required. The Linux kernel does not
know at the context switch time that even the hottest
pages, which were recently used, will not be needed for a
long time, and can be swapped out.
In order to take care of this issue, when the medium-term
scheduler is invoked, it calls the Linux swap management
functions to swap out all of the pages that belong to the
processes of the previous group. This will give Linux a
significant amount of empty frames for the new group.
This swapping management approach will be much
quicker than loading the pages of the new process group,
and for each page fault searching for the oldest page in
the physical memory to swap out. When a round of the
medium-term scheduler is completed, the medium-term
scheduler rebuilds the groups of processes, and some
processes may migrate from one group to another; hence
the medium-term scheduler does not call the Linux swap
management, because it might swap out pages that may
be needed again for the next group.

4.3 Group Time Slice
Sometimes the sizes of the total memory needs in the
different groups are almost equal. This is the best
situation, because the fixed time slice that will be given to
the groups is usually quite fair. However, when the sizes
of the memory allocations are significantly different,
some processes might get an implicit high priority. When
the medium-term scheduler uses the greedy
approximation, such a situation usually occurs when the
last processes are assigned to a bin. The last bin is
sometimes almost empty; hence the processes in this bin
gain precedence, because in the time slice of this bin,
there are less processes competing for CPU cycles. It

should be noted that when the size of the last bin is not
small, this solution will function efficiently.
One possible solution is to break up the small group, and
to scatter the processes owned by the small group into the
other groups. This solution is good when the size of the
small group is not big, and when there is just one small
group. If the size of the small group is big, scattering it
might cause thrashing in the other groups.
A better solution can be a dynamic group time slices,
instead of constant time slices. E.g. if the size vector is
[1,1,0.5] and the default group time slice is one second,
the medium-term scheduler should assign each of the first
two groups one second, while the last group will get only
0.5 second. (The vector representing the group’s memory
size as the total memory allocations divided by the total
memory available for user application). This solution
gave us the best results; therefore, it has been
implemented.

4.4 Interactive Processes
The interactive processes should be dealt with differently.
If we treat them the same as the non-interactive processes,
they will not be able to be executed as long as their group
is not current. This is not a disadvantage for non-
interactive processes, because the total execution time is
smaller. However, interactive processes need fast
response time, and a few seconds delay can be a major
drawback.
To remedy this drawback, we will allow an interactive
process, which can be identified by directly quantifying
the I/O between an application and the user (keyboard,
mouse and screen activity) [20], to run in each of the
process groups. So, actually the process will belong to all
of the groups, but with a smaller time slice in each group:
p->time_slice = time_slice(p)/num_of_groups;
This feature can assure us a short response time for
interactive processes while keeping fairness towards other
processes. The resident pages of interactive processes will
be marked as low priority swappable, so the interactive
processes will not be swapped when a group context
switch is done. However, we need to calculate the
memory needs of the interactive processes in every group.

4.5 Real Time Processes
The handling of real time processes is somewhat similar
to interactive processes. Real time processes must get the
CPU as fast as possible. The management of these
processes will be the same as interactive processes, but
with a slight difference. Real time processes will belong
to all of the groups, as the interactive processes do, but
they will not have a shrunken time slice.
The real-time processes will not be swapped out, because
they belong to all of the groups. In addition, they will
have the same privilege Linux traditionally gives them.
Indeed, we need to calculate their memory needs in every
group as we did for the interactive processes. This
handling is identical for FIFO Real-Time processes and
for RR Real-Time processes. This treatment has also been

given to the “init” process and the “Idle and Swapper”
process of Linux, which cannot be suspended.

5 Evaluation and Results

5.1 Testbed
We tested the performance of the kernel with the new
scheduling approach using two different benchmarks, to
get the widest view we could:
1. SPEC – cpu2000 [21]. The SPEC manual explicitly
notes that attempting to run the suite with less than
256Mbytes of memory will cause a measuring of the
paging system speed instead of the CPU speed. This suits
us well, because our aim is precisely to measure the
paging system speed.
2. A synthetic benchmark that forks processes which
demand a constant number of pages – 8MBytes. The
processes use the memory in a random access; therefore
they cause thrashing. This benchmark was tested within
the range of 16MBytes-136MBytes. The parent process
forks processes whose total size is the required one, and
collects the information from the children. Let us denote
this test by SYN8.
The benchmarks were executed on a Pentium 400MHZ
machine, with 128MBytes of internal memory and
512KBytes of cache, running Redhat 9.2 kernel version
2.4.20-8. The size of the page was 4KBytes and one tick
of the scheduler was 10.5 milliseconds. It should be noted
that even though the platform machine had 128MBytes of
physical memory, we should take into the bin size
considerations that a certain portion of this memory is
occupied by the daemons of Linux/RedHat and the X-
windows, plus the kernel itself along with its threads, so
after an evaluation of the extra size, we used bins of
96MBytes.

5.2 Execution Time
Figure 1a and Figure 1b show the performance of the
synthetic benchmark SYN8. Figure 1a shows the number
of swaps that were performed in both the schedulers as a
function of the total size of the processes, while Figure 1b
shows the execution time of SYN8 as a function of the
same processes’ total size. In this figure, the time slice of
the medium-term scheduler was 2 seconds.

0
0.5

1
1.5

2
2.5

3

16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

Processes' total size

m
ill

io
n

of
 s

w
ap

s

Strict Linux Medium-Term Scheduler

Figure 1a

0
4
8

12
16
20

16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

Processes' total size

Ti
m

e
(h

ou
rs

)

Strict Linux Medium-Term Scheduler

Figure 1b

From roughly 64MB Linux swaps more pages, but there
is no noteworthy influence on the I/O time, because Linux
lets other processes run while the I/O is performed.
Roughly from 128MB the I/O buffer is incapable of
responding to all the paging requests. The medium-term
scheduler dramatically reduces the number of the page
faults; thus less swaps are performed and the execution
time remains reasonable. Processes that require 144MB
were sustainable for the medium-term scheduler, but not
for the Linux scheduler. Actually, after 7 days of running
on the Linux scheduler, we killed the processes.
Figure 2a and Figure 2b show the performance of the
medium-term scheduler vs. the Linux kernel using the
tests of SPEC cpu2000 benchmarks. The prefix 3 (or 2)
before the test name indicates that we iterated the test 3
(or 2) times. Sometimes we divided the numbers by some
constants in order to fit the data to the scale of the
diagram. These constants are denoted as Test/Constant.
When we used more than one test, we added a ‘+’ sign
between the names of the tests.

0
1
2
3
4
5
6
7

3b
zip

2
3g

zip

3g
ap

/10

(gz
ip+

3v
pr)

/2

(ga
p+

5p
erl

bm
k+

3m
cf)

/30

bz
ip2

+p
ars

er+
vo

rte
x

gc
c+

gz
ip+

vp
r

2c
raf

ty+
2p

erl
bm

k

Test name

m
ill

io
ns

 o
f s

w
ap

s

Linux Scheduler

Medium-Term
Scheduler

Figure 2a

0
0.5

1
1.5

2
2.5

3

3b
zip

2
3g

zip

3g
ap

/10

(gz
ip+

3v
pr)

/2

(ga
p+

5p
erl

bm
k+

3m
cf)

/30

bz
ip2

+p
ars

er+
vo

rte
x

gc
c+

gz
ip+

vp
r

2c
raf

ty+
2p

erl
bm

k

Test name

Ti
m

e
(h

ou
rs

)

Linux Scheduler

Medium-Term
Scheduler

Figure 2b

When each group contains just a few big processes, the
idle task might be invoked too often, even though there
are other processes that can be executed. This can reduce
the time saved by eliminating the thrashing effect. When
the test was big, and was executed in a different group,
the results were not as good as when executing several
smaller SPEC tests concurrently in one group, due to the
higher idle time when the content of each group is just
one process. Thus the results of Figures 2a and 2b are not
as good as the results of Figures 1a and 1b. However, the
elimination of the thrashing saved more time than was
wasted idling, and the medium-term scheduler still
outperformed the traditional Linux scheduler.
Figure 3a and Figure 3b show the effect of the medium-
term scheduler time slice on the process’ execution time.
The tests were conducted using SPEC. It can be seen that
when the time slice exceeds a certain limit, the execution
time might suffer. This damage is caused by the higher
average idle time. When the number of processes per
group is too small, a situation that all of the processes in
the current group will not be on the Ready queue can
occur. Such a case can happen due to a lot of I/O
operations. Clearly, this might happen with a lower group
time slice as well, but it will not happen as often as with a
higher time slice, because at the beginning of the time
slice all the processes are ready to run and not waiting for
an I/O. Also, new processes are not admitted until the
Round-Robin of the medium-term scheduler finishes a
complete cycle.

0

2

4

6

8

3b
zip

2
3g

zip

3g
ap

/10

(gz
ip+

3v
pr)

/2

(ga
p+

5p
erl

bm
k+

3m
cf)

/30

bz
ip2

+p
ars

er+
vo

rte
x

gc
c+

gz
ip+

vp
r

2c
raf

ty+
2p

erl
bm

k

Test name

m
ill

io
ns

 o
f s

w
ap

s

1 second
2 seconds

Figure 3a

0
0.5

1
1.5

2
2.5

3b
zip

2
3g

zip

3g
ap

/10

(gz
ip+

3v
pr)

/2

(ga
p+

5p
erl

bm
k+

3m
cf)

/30

bz
ip2

+p
ars

er+
vo

rte
x

gc
c+

gz
ip+

vp
r

2c
raf

ty+
2p

erl
bm

k

Test name

Ti
m

e
(h

ou
rs

)

1 second
2 seconds

Figure 3b

An extremely high time slice will actually make the
medium-term scheduler behave like a FIFO scheduler. On
the other hand, the page faults rate is lower for the 2-
second scheduler, because of the longer time slice.

0

1

2

3

4

5

16 32 48 64 80 96 112 128

processes' total size

Ti
m

e
(h

ou
rs

)

2 seconds
1second

Figure 4

Pages are usually swapped when the group context is
switched, so if all the pages are replaced on context
switch, the one-second scheduler should have twice the
number of pages faults the two-second scheduler has.
However, sometimes the bins are not full, and some
shared memory can be present, so the ratio between the
rates is actually less than 2.
Figure 4 shows the same time slices but with more
processes. This test was conducted using the synthetic
benchmark SYN8. It can clearly be seen that the effect of
increasing the time slice damages the execution time
when processes for more than one bin are present.

6 Conclusions and Future Work
The results of the experiments are promising. Given a
high memory load used by some processes, the medium-
term scheduler can drastically reduce the thrashing
overhead. In addition, no decline in the performance is
observed when the load is low and no swapping is
needed. The medium-term scheduler has been written as a
patch to the kernel and can be easily installed on any
Linux machine. Such an installation can help the machine
handling the massive paging in a more tolerant way than
killing processes. Moreover, the responsiveness keeps
being reasonable for heavier load. The medium-term
scheduler does not require special resources or extensive
needs; hence it can be easily adapted by many Linux
machines. Moreover, there is no obstruction to implement
the medium-term scheduler on a cluster; hence heavy load
projects like the Human Genome Project can benefit from
such a kernel.
In the future we would like to check the shared memory
effect on the medium term scheduler and how different
priority of the processes can influence the medium term
scheduler. In addition, we would like to check the
performance of some approximations for the Bin Packing
problem and even to adaptively change the approximation
according to the current conditions in the system. In
addition, we would like to dynamically change the group
time slice of the medium-term scheduler. This feature can
improve the performance when there are too few
processes and the idle process is invoked too often.

References
[1] Denning P., Virtual Memory, ACM Computing Surveys,
Vol. 2(3), ACM Press, NY, USA, pp. 153-189, 1970.
[2] Belady, L. A. A Study of Replacement Algorithms for
Virtual Storage Computers, IBM System Journal Vol. 5(2), pp.
78-101, 1966.
[3] Abrossimov V., Rozier M. and Shapiro M., Virtual Memory
Management for Operating System Kernels, Proceedings of the
12th ACM Symposium on Operating Systems Principles,
Litchfield Park, AZ, December 3-6, pp. 123-126, 1989.
[4] Galvin P. B. and Silberschatz A., Operating System
Concepts (Sixth Edition), Addison Wesley, MA, USA, 1998.
[5] Jiang S. and Zhang X., Adaptive Page Replacement to
Protect Thrashing in Linux, Proceedings of the 5th USENIX
Annual Linux Showcase and Conference, (ALS'01), Oakland,
California, November 5-10, pp. 143-151, 2001.
[6] Jiang S. and Zhang X., TPF: a System Thrashing Protection
Facility, Software - Practice & Experience, Vol. 32, Issue 3, pp.
295-318, 2002.
[7] Batat A. and Feitelson, D. G. Gang scheduling with memory
considerations, In 14th Intl. Parallel and Distributed Processing
Symp., pp. 109-114, May 2000.
[8] Nikolopoulos D. S., Malleable Memory Mapping: User-
Level Control of Memory Bounds for Effective Program
Adaptation, Proc. of the 17th International Parallel and
Distributed Processing Symposium (IPDPS'2003), Nice, France,
April 2003.
[9] Card R., Dumas E. and Mevel F., The Linux Kernel Book,
John Wiley & Sons, New York, N.Y., 1998.
[10] Gorman M., Understanding The Linux Virtual Memory
Management, B. Peren's Open Book Series, Chapter 13, 2004.
[11] Marti D., System Development Jump Start Class, Linux
Journal 7, 2002.
[12] Scholl A., Klein R. and Jurgens, BISON: A Fast Hybrid
Procedure for Exactly Solving the One-Dimensional Bin
Packing Problem, Computers and Operations Research 24, pp.
627-645, 1997.
[13] Karp R. M., Reducibility Among Combinatorial Problems,
Complexity of Computer Computations (R.E. Miller and J.M.
Thatcher, eds), Plenum Press, pp. 85-103, 1972.
[14] Fekete S. P. and Schepers J., New Classes of Fast Lower
Bounds for Bin Packing Problems, Mathematical Programming
91(1) pp. 11-31, 2001.
[15] Gent I., Heuristic Solution of Open Bin Packing Problems,
Journal of Heuristics 3 pp. 299-304, 1998.
[16] Martello S. and Toth P., Lower Bounds and Reduction
Procedures for the Bin Packing Problem, Discrete Applied
Mathematics 28, pp. 59-70, 1990.
[17] Coffman Jr. E. G., Garey M. R., and Johnson D. S.,
Approximation Algorithms for Bin Packing: A Survey,
Approximation Algorithms for NP-Hard Problems, D.
Hochbaum (editor), PWS Publishing, Boston pp. 46-93, 1997.
[18] Albers, S. and Mitzenmacher, M. Average-Case Analyses
of First Fit and Random Fit Bin Packing. Random Structures
Alg. 16, pp. 240-259, 2000.
[19] Stallings W., Operating Systems Internals and Design
Principles, 3rd Edition, Prentice-Hall, New-Jersey, p. 383, 1998.
[20] Etsion Y., Tsafrir,D. and Feitelson D. G., "Desktop
Scheduling: How Can We Know What the User Wants?". In the
14th ACM Intl. Workshop on Network & Operating Systems
Support for Digital Audio & Video (NOSSDAV), 2004.
[21] SPEC, Standard Performance Evaluation Corporation,
Warrenton, Virginia, http://www.spec.org/.

	Introduction
	The Linux Scheduling
	Linux Scheduling
	Linux Thrashing Handling

	Bin Packing
	Bin Packing Based Paging
	The Medium-Term Scheduler
	Swapping Management
	Group Time Slice
	Interactive Processes
	Real Time Processes

	Evaluation and Results
	Testbed
	Execution Time

	Conclusions and Future Work

