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Abstract 

We suggest a method for minimizing the paging on a 
system with a very heavy memory usage.  Sometimes 
there are processes with active memory allocations that 
need to be in the physical memory, and their total size 
exceeds the physical memory size. In these cases the 
operating system will start swapping pages in and out of 
the memory on every context switch.  We minimize this 
thrashing by splitting the processes into a number of bins, 
using Bin Packing approximation algorithms. We change 
the scheduler to have two levels of scheduling - medium-
term scheduling and short-term scheduling.  The medium-
term scheduler switches the bins in a Round-Robin 
manner, while the short-term scheduler runs the standard 
Linux scheduler among the processes in each bin.  
Experimental results show significant improvement on 
heavily loaded memories. The code of this project is free 
and can be found in: http://www.cs.biu.ac.il/~reubenm 
 
Key Words: Thrashing, Bin-Packing, Kernel 
Manipulation. 
 
1 Introduction 
Many operating systems implement the virtual memory 
scheme[1] using the paging concept i.e. the operating 
system loads a memory page into the physical memory 
only when a process demands it.  If no free memory pages 
are available, the operating system swaps some other 
pages back onto the secondary memory (hard disk).  
Different methods of deciding which pages should be 
swapped out to the disk have been proposed over the 
years [2]. 
When too much memory space is needed, the CPU spends 
a lot of time swapping pages in and out of the memory. 
This effect is called Thrashing [3], and the outcome is a 
severe overhead of time, and hence a significant 
slowdown of the system.  Some studies for reducing the 
undesirable effects of the thrashing have been conducted 
over the years [4]. 
In [5,6] The authors suggest giving one of the interactive 
processes the privilege of not swapping its page out.  
Consequently, the privileged process will succeed in 

being executed faster, and will free its memory allocation 
earlier. This can help the operating system to clear out the 
memory and to return to normal behavior.  
In [7] the authors suggest not admitting jobs which do not 
fit into the current available memory.  Instead, the system 
waits for one or more processes to finish their execution, 
and only when enough memory is freed a new job will be 
admitted. The authors also discuss how to assess the 
memory size needed by a new job. This is actually very 
similar to what VMS does using the “Balance Sets” 
method. However, the authors of this paper taking the 
same “Balance Sets” concept to distributed systems. 
In [8] the author suggests tackling the thrashing effect by 
adjusting the memory needs of the process to the current 
available memory. This solution is quite different from 
the others, because it modifies the processes instead of 
modifying the operating system. 
This paper suggests a technique of changing the 
traditional process scheduling procedure. This technique 
will help the operating system to swap in and out a 
smaller number of pages, and thus to minimize the 
slowdown stemming from thrashing.  The solution 
suggested in this paper is not restricted to a specific 
operating system; hence it can be implemented on any 
multitasking paging system.  The figures and the results 
given in this paper have been achieved using the Linux 
operating system [9]. However, Linux is just a platform to 
show the feasibility of the concept.  
The rest of the paper is organized as follow. Section 2 
describes the Linux scheduling algorithms.  Section 3 
introduces the Bin Packing problem.  Section 4 presents 
the reduced paging algorithm.  Finally, section 5 gives the 
results and evaluates them. 
 
2 The Linux Scheduling 
 
2.1 Linux Scheduling 
Linux divides the time into epochs, in which each process 
gets its time slice. Time slices are measured in ticks, each 
tick is 10.5 milliseconds long.  Processes can get between 
1 and 30 ticks, the usual time slice being 15 ticks.  An 
epoch ends when all tasks have exhausted their time 
slices.  When a process begins, a new time slice for this 



process is calculated.  Linux has two records of all of 
active processes. The “active” record holds the processes 
that have not exhausted their time slices yet.  The record 
has 140 queues, one for each possible priority, and a bit-
map of 140 entries to indicate which queues are not 
empty. The “expired” record has the same structure, and 
holds the processes which have exhausted their time 
slices.  When a process exhausts its time slice, it will be 
moved from the “active” record to the “expired” record, 
and a new priority and time slice are calculated for it.  
When a new process is created, it will get the same 
priority as its parent process, and the reminder of the 
parent’s time slice in the current epoch is equally split 
between the parent and the child.  In the next epoch, the 
parent and the child each get distinct time slices. 
The Linux scheduler is invoked when a process exhausts 
its time slice, when a process stops consuming CPU 
cycles or when a process returns to the “ready” queue.  
Linux then invokes the process with the highest priority.  
When all the processes have exhausted their time slice, 
the “expired” and the “active” records are switched. If no 
process is ready to run an “idle” process is invoked.  
The queues of the priorities are implemented as follow:  
When the priority of a process is changed, it is requeued 
on the appropriate queue, and the corresponding bit is 
marked. The values of the priorities are within the range 
of 0-139, where the values of 0-99 denote real time 
processes of both types (real time FIFO and real time 
Round-Robin), and 100-139 is reserved for user 
applications processes. A bonus within the range of –5 to 
5 is added to the static priority. The bonus is calculated 
according to the time the process has slept during the last 
epoch. The static priority of user applications is initialized 
to 120, so the effective priorities of user applications are 
in the range of 115-125, so actually only 25% of the 
available priorities are used for user processes.  
 
2.2 Linux Thrashing Handling 
The virtual memory capability, along with the paging 
mechanism, gives Linux the ability to handle processes, 
even when the real memory needs are larger than the 
available physical memory. However, virtual memory 
cannot handle every situation.  If the demand for memory 
pages is very high over a short period of time, the 
swapping mechanism cannot satisfy the memory needs 
reasonably. Pages are frequently swapped in and out, 
because of the thrashing effect, and hence little progress is 
made.  
Linux only kills processes when thrashing occurs and the 
system is out of swap space. In some sense there is 
nothing else that the kernel could do in this case, since 
memory is needed but there is no more physical or swap 
memory to allocate [10,11]. When such a case occurs, the 
Linux kernel kills the most memory consuming processes.  
This feature is very drastic; hence its implications might 
be severe. For example, if a server is running several 
applications with mutual dependencies, killing one of the 
applications may yield unexpected results. 
 

3 Bin Packing 
We would like to have a list of all the processes that are in 
the virtual memory, and to split these processes into 
groups, so that the total memory size of each group will 
be as close as possible to the size of the available real 
memory i.e. the size of the bin.  How can we build these 
groups of processes? We have a set of processes Pi, each 
with a memory allocation. Let Mi denote the maximal size 
of memory which might be needed by process Pi.  We 
need an algorithm which divides these Mi’s into as few 
groups as possible, with the sum of the Mis in each group 
not exceeding the size of the real memory. Moreover, the 
kernel and some other daemons occupy part of the 
memory, so the sum should not exceed a smaller memory 
size. This is a well-known problem, called the Bin 
Packing problem [12]. 
The Bin Packing problem is defined as a set of numbers 
X1, X2, ..., Xn, with Xi ∈ [0, 1] for each i.  The problem is 
to find the smallest natural number m for which: 
• X1, X2, ..., Xn can be partitioned into m sets. 
• The sum of the members of each set is no higher than 1. 
The Bin Packing problem is NP-hard [13]. However, 
some polynomial time approximations have been 
introduced over the years, such as [14,15,16]. The 
approximation algorithms use no more than 
(1+E)*OPT(I) number of bins, where OPT(I) is the 
number of bins in the optimal solution for case I.  If E is 
smaller, the result will be closer to the optimal solution, 
but unfortunately good approximations are usually time 
consuming [17].  We would like to choose one of the 
approximation algorithms which is not time consuming, 
but yet tries minimizing (1+E)*OPT(I). 
A simple idea of an approximation algorithm for the Bin 
Packing problem is the greedy approach [18], also known 
the First-Fit approach. This algorithm is defined as 
follow: 
• Sort the vector X1, X2, ..., Xn by the size of allocated 
memory. 
• Open a new bin and put the biggest number in it. 
• While there are more numbers 
o If adding the current number to one of the existing 
bins will exceed the size of the bin 
� Open a new bin and put the current number in it. 
o Else 
� Put the current number in the current bin. 
In our test we used a version of this approximation 
algorithm, with a slight change.  We usually achieved the 
minimal number of bins, and the cost of execution time 
was usually low.  This version is described below. 
 
4 Bin Packing Based Paging 
It is well known that increasing the level of multitasking 
in any operating system may sometimes cause thrashing, 
because an excessive demand for real memory causes the 
operating system to spend too much time swapping.  In 
order to avoid thrashing, we would like to suggest a new 
approach:  All the processes will be divided into groups in 
such a manner that the sum of physical memory demand 



within each group will be no greater than the amount of 
physical memory available on the machine.  
 
4.1 The Medium-Term Scheduler 
A new scheduler procedure will be added to the Linux 
operating system.  The new scheduler will operate in the 
manner of the medium-term scheduler, which was part of 
some operating systems [19].  The medium-term 
scheduler will load the groups into the Ready queue of the 
Linux scheduler in a Round-Robin manner.  The 
traditional Linux scheduler will do the scheduling within 
the current group in the same way the scheduling is 
originally done on Linux machines. The time slice of each 
group in the medium-term scheduler will be significantly 
higher than the average time allocated to the processes by 
the Linux scheduler. The processes in the real memory 
will not be able to cause thrashing during the execution of 
the group because their total size is no greater than the 
size of the available physical memory i.e. the size of the 
bin. Only at the beginning of a group execution will there 
be intensive swapping, when the new group’s pages are 
swapped into the memory.  This can improve the ability 
of the system to support memory-consuming processes in 
a more tolerant way than killing them. 
In our implementation, we used a group time slice of one 
or two seconds, while the Linux scheduler gives time 
slices of some dozen milliseconds.  When Linux thrashes, 
any context switch causes many page faults, while with 
the medium-term scheduler, intensive swapping will 
occur only when switching between groups. This makes 
the operating system in our implementation swap a 
significant amount of pages only in a few percents of the 
cases, in contrast to conventional Linux during thrashing 
conditions.    
When the medium-term scheduler replaces the current 
running group by the next group, the processes which are 
not in the current group should be kept on a different 
queue, so that the Linux scheduler will not be able to see 
them. In order to implement this feature, we added a new 
record to the code of Linux kernel.  This record has the 
same structure as the “active” and “expired” records 
which we described in section 2.2, and this record holds 
the hidden processes.  
When the last group completes its execution, the medium-
term scheduler is invoked, and rebuilds the process 
groups, taking into account any changes to the old 
processes (e.g. exited or stopped) and adding any new 
processes to the groups.   
Sometimes the current group finishes all of the processes 
within the time slice awarded to it by the medium-term 
scheduler. Even if there are still some processes in the 
group, these processes might be sleeping.  If all the 
processes in the group are not ready to be executed, the 
Linux scheduler has been changed to invoke the medium-
term scheduler, which in turn switches to the next waiting 
group.  
The medium-term scheduler takes the sum of the memory 
sizes that are currently resident in the physical memory 
and divides this sum by the bin size. The quotient is taken 

to be the number of bins.  Then, the medium-term 
scheduler scatters the processes between these bins. The 
medium-term scheduler uses the greedy algorithm until 
the medium-term scheduler is unable to fit another 
process into the bins.  Next, the medium-term scheduler 
tries to find room for all the remaining processes in the 
existing bins.  If it fails to find room in one of the existing 
bins, it exceeds the size of the smallest bin by adding the 
unfitting process to it.  The original Bin Packing problem 
does not allow such a solution, but in this case it might be 
preferable to have a few page faults within a group than 
adding an additional bin. 
 
4.2 Swapping Management 
When the time slice of a group ends, a context switch of 
groups will be performed. This context switch would 
probably cause a lot of page faults: The kernel uses its 
swap management to make room for the processes of the 
new group, and this procedure might be long and 
fatiguing.  The previous group of processes has most 
probably used up most of the available physical memory, 
and when the swap thread executes the LRU function to 
find the best pages to swap out to the disk, it will find 
pages of the old group.  This procedure is wasteful 
because the paging functions is performed separately for 
every new page required.  The Linux kernel does not 
know at the context switch time that even the hottest 
pages, which were recently used, will not be needed for a 
long time, and can be swapped out.  
In order to take care of this issue, when the medium-term 
scheduler is invoked, it calls the Linux swap management 
functions to swap out all of the pages that belong to the 
processes of the previous group.  This will give Linux a 
significant amount of empty frames for the new group.  
This swapping management approach will be much 
quicker than loading the pages of the new process group, 
and for each page fault searching for the oldest page in 
the physical memory to swap out.  When a round of the 
medium-term scheduler is completed, the medium-term 
scheduler rebuilds the groups of processes, and some 
processes may migrate from one group to another; hence 
the medium-term scheduler does not call the Linux swap 
management, because it might swap out pages that may 
be needed again for the next group.  
 
4.3 Group Time Slice 
Sometimes the sizes of the total memory needs in the 
different groups are almost equal. This is the best 
situation, because the fixed time slice that will be given to 
the groups is usually quite fair.  However, when the sizes 
of the memory allocations are significantly different, 
some processes might get an implicit high priority. When 
the medium-term scheduler uses the greedy 
approximation, such a situation usually occurs when the 
last processes are assigned to a bin. The last bin is 
sometimes almost empty; hence the processes in this bin 
gain precedence, because in the time slice of this bin, 
there are less processes competing for CPU cycles. It 



should be noted that when the size of the last bin is not 
small, this solution will function efficiently.  
One possible solution is to break up the small group, and 
to scatter the processes owned by the small group into the 
other groups. This solution is good when the size of the 
small group is not big, and when there is just one small 
group.  If the size of the small group is big, scattering it 
might cause thrashing in the other groups.  
A better solution can be a dynamic group time slices, 
instead of constant time slices.  E.g. if the size vector is 
[1,1,0.5] and the default group time slice is one second, 
the medium-term scheduler should assign each of the first 
two groups one second, while the last group will get only 
0.5 second. (The vector representing the group’s memory 
size as the total memory allocations divided by the total 
memory available for user application). This solution 
gave us the best results; therefore, it has been 
implemented. 
 
4.4 Interactive Processes 
The interactive processes should be dealt with differently. 
If we treat them the same as the non-interactive processes, 
they will not be able to be executed as long as their group 
is not current.  This is not a disadvantage for non-
interactive processes, because the total execution time is 
smaller. However, interactive processes need fast 
response time, and a few seconds delay can be a major 
drawback. 
To remedy this drawback, we will allow an interactive 
process, which can be identified by directly quantifying 
the I/O between an application and the user  (keyboard, 
mouse and screen activity) [20], to run in each of the 
process groups. So, actually the process will belong to all 
of the groups, but with a smaller time slice in each group: 
p->time_slice  =  time_slice(p)/num_of_groups; 
This feature can assure us a short response time for 
interactive processes while keeping fairness towards other 
processes. The resident pages of interactive processes will 
be marked as low priority swappable, so the interactive 
processes will not be swapped when a group context 
switch is done. However, we need to calculate the 
memory needs of the interactive processes in every group.   
 
4.5 Real Time Processes 
The handling of real time processes is somewhat similar 
to interactive processes.  Real time processes must get the 
CPU as fast as possible. The management of these 
processes will be the same as interactive processes, but 
with a slight difference. Real time processes will belong 
to all of the groups, as the interactive processes do, but 
they will not have a shrunken time slice. 
The real-time processes will not be swapped out, because 
they belong to all of the groups. In addition, they will 
have the same privilege Linux traditionally gives them.  
Indeed, we need to calculate their memory needs in every 
group as we did for the interactive processes.  This 
handling is identical for FIFO Real-Time processes and 
for RR Real-Time processes. This treatment has also been 

given to the “init” process and the “Idle and Swapper” 
process of Linux, which cannot be suspended.  
 
5 Evaluation and Results 
 
5.1 Testbed 
We tested the performance of the kernel with the new 
scheduling approach using two different benchmarks, to 
get the widest view we could: 
1. SPEC – cpu2000 [21].  The SPEC manual explicitly 
notes that attempting to run the suite with less than 
256Mbytes of memory will cause a measuring of the 
paging system speed instead of the CPU speed. This suits 
us well, because our aim is precisely to measure the 
paging system speed. 
2. A synthetic benchmark that forks processes which 
demand a constant number of pages – 8MBytes.  The 
processes use the memory in a random access; therefore 
they cause thrashing. This benchmark was tested within 
the range of 16MBytes-136MBytes. The parent process 
forks processes whose total size is the required one, and 
collects the information from the children. Let us denote 
this test by SYN8. 
The benchmarks were executed on a Pentium 400MHZ 
machine, with 128MBytes of internal memory and 
512KBytes of cache, running Redhat 9.2 kernel version 
2.4.20-8. The size of the page was 4KBytes and one tick 
of the scheduler was 10.5 milliseconds. It should be noted 
that even though the platform machine had 128MBytes of 
physical memory, we should take into the bin size 
considerations that a certain portion of this memory is 
occupied by the daemons of Linux/RedHat and the X-
windows, plus the kernel itself along with its threads, so 
after an evaluation of the extra size, we used bins of 
96MBytes. 
 
5.2 Execution Time 
Figure 1a and Figure 1b show the performance of the 
synthetic benchmark SYN8. Figure 1a shows the number 
of swaps that were performed in both the schedulers as a 
function of the total size of the processes, while Figure 1b 
shows the execution time of SYN8 as a function of the 
same processes’ total size. In this figure, the time slice of 
the medium-term scheduler was 2 seconds.  
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Figure 1a 
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Figure 1b 

From roughly 64MB Linux swaps more pages, but there 
is no noteworthy influence on the I/O time, because Linux 
lets other processes run while the I/O is performed. 
Roughly from 128MB the I/O buffer is incapable of 
responding to all the paging requests. The medium-term 
scheduler dramatically reduces the number of the page 
faults; thus less swaps are performed and the execution 
time remains reasonable. Processes that require 144MB 
were sustainable for the medium-term scheduler, but not 
for the Linux scheduler. Actually, after 7 days of running 
on the Linux scheduler, we killed the processes. 
Figure 2a and Figure 2b show the performance of the 
medium-term scheduler vs. the Linux kernel using the 
tests of SPEC cpu2000 benchmarks. The prefix 3 (or 2) 
before the test name indicates that we iterated the test 3 
(or 2) times. Sometimes we divided the numbers by some 
constants in order to fit the data to the scale of the 
diagram.  These constants are denoted as Test/Constant.  
When we used more than one test, we added a ‘+’ sign 
between the names of the tests. 
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Figure 2b 

When each group contains just a few big processes, the 
idle task might be invoked too often, even though there 
are other processes that can be executed.  This can reduce 
the time saved by eliminating the thrashing effect. When 
the test was big, and was executed in a different group, 
the results were not as good as when executing several 
smaller SPEC tests concurrently in one group, due to the 
higher idle time when the content of each group is just 
one process. Thus the results of Figures 2a and 2b are not 
as good as the results of Figures 1a and 1b.  However, the 
elimination of the thrashing saved more time than was 
wasted idling, and the medium-term scheduler still 
outperformed the traditional Linux scheduler. 
Figure 3a and Figure 3b show the effect of the medium-
term scheduler time slice on the process’ execution time. 
The tests were conducted using SPEC. It can be seen that 
when the time slice exceeds a certain limit, the execution 
time might suffer.  This damage is caused by the higher 
average idle time. When the number of processes per 
group is too small, a situation that all of the processes in 
the current group will not be on the Ready queue can 
occur. Such a case can happen due to a lot of I/O 
operations. Clearly, this might happen with a lower group 
time slice as well, but it will not happen as often as with a 
higher time slice, because at the beginning of the time 
slice all the processes are ready to run and not waiting for 
an I/O.  Also, new processes are not admitted until the 
Round-Robin of the medium-term scheduler finishes a 
complete cycle. 
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Figure 3a  
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Figure 3b 

An extremely high time slice will actually make the 
medium-term scheduler behave like a FIFO scheduler. On 
the other hand, the page faults rate is lower for the 2-
second scheduler, because of the longer time slice.  
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Figure 4 

Pages are usually swapped when the group context is 
switched, so if all the pages are replaced on context 
switch, the one-second scheduler should have twice the 
number of pages faults the two-second scheduler has. 
However, sometimes the bins are not full, and some 
shared memory can be present, so the ratio between the 
rates is actually less than 2. 
Figure 4 shows the same time slices but with more 
processes. This test was conducted using the synthetic 
benchmark SYN8. It can clearly be seen that the effect of 
increasing the time slice damages the execution time 
when processes for more than one bin are present. 

 
6 Conclusions and Future Work 
The results of the experiments are promising.  Given a 
high memory load used by some processes, the medium-
term scheduler can drastically reduce the thrashing 
overhead. In addition, no decline in the performance is 
observed when the load is low and no swapping is 
needed. The medium-term scheduler has been written as a 
patch to the kernel and can be easily installed on any 
Linux machine. Such an installation can help the machine 
handling the massive paging in a more tolerant way than 
killing processes. Moreover, the responsiveness keeps 
being reasonable for heavier load. The medium-term 
scheduler does not require special resources or extensive 
needs; hence it can be easily adapted by many Linux 
machines. Moreover, there is no obstruction to implement 
the medium-term scheduler on a cluster; hence heavy load 
projects like the Human Genome Project can benefit from 
such a kernel.  
In the future we would like to check the shared memory 
effect on the medium term scheduler and how different 
priority of the processes can influence the medium term 
scheduler. In addition, we would like to check the 
performance of some approximations for the Bin Packing 
problem and even to adaptively change the approximation 
according to the current conditions in the system. In 
addition, we would like to dynamically change the group 
time slice of the medium-term scheduler. This feature can 
improve the performance when there are too few 
processes and the idle process is invoked too often.  
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