
Available online at http://docs.lib.purdue.edu/jate

Journal of Aviation Technology and Engineering 2:2 (2013) 45–55

Smaller Flight Data Recorders{

Yair Wiseman and Alon Barkai

Bar-Ilan University

Abstract

Data captured by flight data recorders are generally stored on the system’s embedded hard disk. A common problem is the lack of
storage space on the disk. This lack of space for data storage leads to either a constant effort to reduce the space used by data, or to
increased costs due to acquisition of additional space, which is not always possible. File compression can solve the problem, but carries
with it the potential drawback of the increased overhead required when writing the data to the disk, putting an excessive load on the
system and degrading system performance. The author suggests the use of an efficient compressed file system that both compresses data
in real time and ensures that there will be minimal impact on the performance of other tasks.

Keywords: flight data recorder, data compression, file system

Introduction

A flight data recorder is a small line-replaceable computer unit employed in aircraft. Its function is recording pilots’
inputs, electronic inputs, sensor positions and instructions sent to any electronic systems on the aircraft. It is unofficially
referred to as a "black box". Flight data recorders are designed to be small and thoroughly fabricated to withstand the
influence of high speed impacts and extreme temperatures. A flight data recorder from a commercial aircraft can be seen in
Figure 1.

State-of-the-art high density flash memory devices have permitted the solid state flight data recorder (SSFDR) to be
implemented with much larger memory capacity. A large number of aircraft are now equipped with solid-state recorders and
no longer use disk drives. In the past ten to fifteen years, the density of memory chips has greatly increased and the ability to

{The authors would like to thank Israel Aircraft Industries, Ltd. for its support.

About the Author

Dr. Yair Wiseman was a postdoctoral scholar at the Georgia Institute of Technology in conjunction with Delta Air Lines, Inc. He is now with Bar-Ilan
University and Israel Aircraft Industries, Ltd. Correspondence concerning this article should be sent to wiseman@cs.biu.ac.il.

Mr. Alon Barkai completed an MSc of Computer Science at Bar-Ilan University. Mr. Barkai is the Founder and CEO of Ziroon Ltd.

record thousands of parameters for hundreds of flight hours
in flight data recorders or quick access recorders is now
possible. Compression algorithms are used by the manu-
facturers and may become even more prevalent with the
introduction of video recorders. New video compression
schemes have a significant compression factor which is
usually some hundreds of times; that is, the compressed file
will be less than 1% of the size of original file (Horowitz
et al., 2012). This means that the compression is still useful,
even though the memory capacity is much larger. This
work has been done relative to hard disks of flight data
recorders, but flash memory developers can utilize the
results, as well.

An ordinary difficulty is that flight data recorders run out
of space on hard disks. The concern of encountering this
difficulty leads one to act cautiously, constantly attempting
to reduce the used data space (Wu, Banachowski, & Brandt,
2005). In addition, working with nearly full disks causes the
allocation of new file blocks to be distributed across multiple
platters. Working with files scattered around the hard disk
drive is slow and very demanding on the read/write head,
with unnecessary overhead (Ng, 1998). However, unlike
flight data recorders, in regular desktops the vast majority of
disks are not overloaded and so it is better to keep old
versions of important files on the disk even though, in most
cases, one will not use the old versions (Muniswamy-Reddy,
Wright, Himmer, & Zadok, 2004).

Data are often processed by embedded systems. In the
embedded computing world and especially in flight data
recorders, it is clear that the storage problem is significant, as
the storage area is hundreds of times less than the storage
space available on desktop computers. In a common
embedded computer system there is an electronic card with
a simple processor that supports a small solid state device
which provides barely 1 to 4 GB of space for the system
files. Usually it is not possible to add additional storage
space such as a hard disk drive or even SD reader because of
hardware constraints, system constraints, size constraints,
and power consumption constraints (Yaghmour, Masters,
Gerum, & Ben-Yossef, 2008). A photograph of a flight data
recorder’s storage device can be seen in Figure 2.

It is difficult to install a full operating system environ-
ment which includes a compilation chain (Tool Chain) and

GUI (X Server) in such a small storage space. For the
purpose of illustration, a basic installation of a Gentoo
Linux distribution with a command line user interface, a
stage-3 compilation tool chain, and its Portage package
manager, without any graphical interface or other packages,
occupies 1.5 GB.

The easiest solution to this problem is removing features,
installing only the essentials, and developing lighter ap-
plications for the embedded cards of flight data recorders.

More profitable solutions include the use of disk data
compression (Benini, Bruni, Macii, & Macii., 2002; Roy,
Kumar, & Prvulovic, 2001). Other devices can use
compression of rarely-used data, or compression of all
data, and expansion only of data needed in run time; but
flight data recorders can assume all the data is rarely-used.
Compressing the data will directly yield more storage space
without losing any information. However, this has a serious
impact on system performance, especially when a relatively
small process is located on the same electronic card that
needs to simultaneously compress the file being written to
the disk while continuing running the other applications
without compromising them. For this reason, embedded
developers usually do not use file system compression in
order to not harm valuable system performance.

With the aim of solving this problem and get the best of
both worlds, the researchers offer a decision algorithm
which decides, at runtime and according to current
available system resources, whether a file should be
compressed and, if so, which compression algorithm and
strength to use. In the worst case, in which the system is
very loaded, none of the new files will be compressed.
However, in most cases, that is not the situation and on
average most files will be compressed using either weak or
strong compression algorithms. Accordingly, use of the
new file system can only improve today’s flight data
recorders.

Figure 1. Flight data recorder.

Figure 2. Flight data recorder’s storage device.

46 Y. Wiseman and A. Barkai / Journal of Aviation Technology and Engineering

Related Work

This section describes the research and development
related to compression in embedded systems for memory
and file systems. Both memory and file systems have a
similar problem of minimum size because of attempts to
reduce the product’s cost and size. Several aspects were
investigated where real-time compression can provide a
significant improvement:

1) Hardware-based memory compression and software
based memory compression. These improve system
performance by reducing the use of I/O means of
storage and increasing the amount of memory
available to applications, and

2) Compression of the file system itself, read-only or
read-write, in which the main goal is to reduce the
consumption of storage media capacity and reduce
the consumption of I/O transfer of compressed
data.

Hardware Based Memory Compression

(Benini et al., 2002) proposed to introduce a compres-
sion/decompression element between the RAM and the
cache, so that any information in the RAM would be saved
in a compressed format and all data in the cache would be
uncompressed.

Kjelso, Gooch and Jones (1996; 1999) proposed a
hardware-based compression scheme for memory. Their
algorithm, X-match, using a dictionary of recently-used
words, is designed for hardware implementation.

Software Based Memory Compression

(Yang, Dick, Lekatsas and Chakradhar, 2010) showed
that using online compression to compress memory pages
that were moved to the storage device (to the swap) in
embedded systems significantly improves the size of usable
memory (about 200%) almost without compromising
performance or power consumption (about 10%).

Swap compression (Tuduce & Gross, 2005; Rizzo, 1997)
compresses pages that were evacuated from the memory
and keeps them in compact form in the software cache
which is also located in RAM. Shared memory issues,
however, have not been addressed in this system (Geva &
Wiseman, 2007). Cortes, Becerra, & Cervera (2000) also
investigated the implementation of the Swap compression
mechanism in the Linux kernel to improve performance
and reduce memory requirements. It seems natural to
assume that if the compression of the swap pages which are
saved in a storage device produces a significant improve-
ment then, for similar considerations, so would the
compression of the rest of the files in the storage device.

Read-only File Systems

In embedded Linux environments, there are several
options for a compressed file system that offers a solution
to the problem of the small storage space that exists in these
small systems (Hammel, 2007). Most of the compressed
file systems are read-only. It is a consequence of the ease of
implementation and the high performance cost of run-time
data compression that performance of the applications in
low-resource cases might be hurt. Typically, two file
systems are used, one for read-only files which are not
going to be changed, and a second uncompressed read-
write file system for the files that do change. The user
should create beforehand a compressed image of the file
system.

CramFS (2010) is a read-only compressed Linux file
system. It uses Zlib compression for each separate page of
each file and so it allows random access to data. The meta-
data is not compressed, but effectively kept smaller to
reduce the space consumed.

SquashFS (2008) is a famous compressed file system in
the Linux environment. It uses the GZIP or LZMA
algorithms for compression. But the drawback is that it is
read-only and so it is not intended for routine work, but
rather for archival purposes.

Cloop (Kitagawa et al., 2006) is a Linux module that
allows a compressed file system to be supported by a
Loopback Device (Lekatsas, Henkel and Wolf, 2000). This
module allows transparent decompression at run-time when
an application is accessing the data without the knowledge
of how files are saved in practice.

CBD (Kitagawa et al., 2006) is a Linux kernel patch that
adds support for a compressed block device designed to
reduce volumes of file systems. CBD is also read-only and
works with a block device, as does Cloop. Data written to
the device is saved in memory and never sent to the
physical device. It uses the Zlib compression algorithm. It
should be noted that in some set of circumstances, CBD
may cause a kernel crash because of kernel stack overflow
(Wiseman, Isaacson & Lubovsky, 2008).

Compressed Read-write File Systems

Implementation of a compressed file system with the
ability for random-access write is much more complicated
and difficult. We provide some examples of such file
systems here.

ZFS is a file system created by Sun Microsystems. ZFS
is used under the Solaris operating system, and is also
supported in other operating systems such as Linux, Mac
OS X Server, and FreeBSD. ZFS is known for its ability to
support high capacity, integrating concepts from file
management and partitioning management, innovative disk
structures, and a simple storage management system. ZFS
is an open source project (Rodeh & Teperman, 2003).

Y. Wiseman and A. Barkai / Journal of Aviation Technology and Engineering 47

One of the features of ZFS is support for transparent
compression. The compression algorithm is configurable
by the user; available algorithms are LZJB, GZIP, or none
(Oracle, 2010). Both LZJB and GZIP are fixed and
deterministic. They do not depend on the characteristics
of system resources available only during the compression-
only file content. The choice of which algorithm to use or
the option to not use compression at all is decided by the
system administrator in advance and this choice is used in
all cases.

FuseCompress (2009) is a Linux file system environment
which has transparent compression to compress the file’s
content when written to the storage device and decompress
the data when it is being read from the device. This is done
in a transparent manner so the application does not know
how the files were really saved; it can therefore work with
any application transparently. Compression is executed on
the fly, and currently supports four compression algo-
rithms: LZO, ZLIB, BZIP2, and LZMA. The missing
feature is the choice of which algorithm is the best one to
use at the moment of compression need. The algorithm is
selected by the user in advance when mounting the file
system.

In the Microsoft NTFS environment there is an option to
compress selected files so that application will still be able
to access and use them while their data is transparently
decompressed when needed. This option is not automatic
and the user must give a specific command and select the
files that he wants to keep in a compressed format. There is
only one algorithm, LZ77, in use for all compressed files.
There are only two options for a file: with or without
compression (Makatos et al., 2010).

DriveSpace (initially known as DoubleSpace) is a disk
compression utility supplied with MS-DOS starting with
version 6.0. The purpose of DriveSpace is to increase
the amount of data the user can store on disks by
transparently compressing and decompressing data on the
fly. It is primarily intended for use with hard drives, but
use with floppy disks is also supported. However,
DriveSpace belongs in the past since FAT32 is not
supported by DriveSpace tools and NTFS has its own
compression technology ("compact") native to Windows
NT-based operating systems instead of DriveSpace
(Qualls, 1997).

Finally, Sun Microsystems has a patent related to file
system compression using a concept of "holes". A mapping
table in a file system maps the logical blocks of a file to
actual physical blocks on disk where the data is stored.
Blocks may be arranged in units of a cluster, and the file
may be compressed cluster-by-cluster. Holes are used
within a cluster to indicate not only that a cluster has been
compressed, but also the compression algorithm used.
Different clusters within a file may be compressed with
different compression algorithms (Madany, Nelson, &
Wong, 1998).

Adaptive Compressed File System

We propose to improve space utilization by adding
adaptive compression features to ZFS, FuseCompress, or
others. If good results are obtained for memory pages that
are saved in the storage device in compressed format, then
one would expect similar results when other files are also
saved in a compressed format.

The file system which is being proposed, ACFS
(Adaptive Compressed File System), will make use of
some features in the authors’ previous work (Wiseman,
Schwan & Widener, 2003) and will demonstrate better
performance in low resource conditions or in loaded
systems than other file systems. Its superior performance
is attributed to features that existing file systems do not take
into account; in particular, the ability to dynamically decide
at runtime whether to compress the file data and which
algorithm is the best one to use considering the available
resources of the system at that particular moment. To our
knowledge, no currently existing file system takes into
account current system characteristics while saving a file.

The ACFS algorithm can be described as follows: Let us
denote a compression type as C. For example, known
algorithms which have been used by Yaghmour et al.
(2008) include Czip-fastest, Czip-best, Crar-fast, Crar-
good, Clzw, and Cnone. We refer to different compression
levels as different compressions, and will use only lossless
compression algorithms (Zhang, 2012; Arnold & Bell,
1997).

Let us denote a group of compression algorithms as X;
for example, X 5 {Czip-best, Czip-fast, Cnone}. The
number of compression algorithms in a group is |X|. For
example, we can select a group X, where |X| 5 3, which
contains:

1. A strong compression algorithm which can highly
compress the data; however, it takes a lot of CPU
power and memory while compressing, such as BWT
(Burrows & Wheeler, 1994).

2. A weak compression algorithm which uses fewer
system resources while compressing, but is also less
effective in the compression rate of the data, such as
(Huffman, 1952).

3. An identity algorithm which does not compress at all;
it will produce the same output as input, as such it
will not take any resources while compressing.

When there are no resources available while compres-
sing, we will use the third algorithm. When the system is
idle, we will want to use the first algorithm (the strongest
one). And when the system is doing some other things but
there are still available resources, we will want to use the
second, lighter algorithm.

Let us denote by R the total available system resources,
as percentages, where R5[0, 100]. From R, we will choose
which compression algorithm to use. The value of R will be

48 Y. Wiseman and A. Barkai / Journal of Aviation Technology and Engineering

calculated based on resources available at runtime, at the
moment that the compression algorithm has to be chosen.
Note that there are many different properties which can
affect R values; for example, available CPU, available
RAM, available disk space, and available DMA.

These properties do not have to be only available
resources; they can also be more subtle properties such as
the number of I/O requests at a recent time, or estimation of
compression of a certain file type which is to be compressed
(we do not wish to use many system resources for trying to
heavily compress a file which is already compressed).
Sometimes I/O operations can be concurrently executed with
CPU tasks (Wiseman & Feitelson, 2003).

We start by identifying the properties we want to
consider. Each of these properties will be presented on a
scale of percentages between 0, which means not available,
to 100, which means it is completely available.

There are two options to consider: 1) each time we need
to make a choice, we recalculate each of these properties’
values, and 2) recalculate only when a certain amount of
time has passed since the last calculation, to minimize the
burden on system resources. Property information is
received in two dimensions (each property has its value)
and we need to convert this to a single dimension value.
This can be done by several different means; the simplest is
choosing the worst property. That means we select our
compression algorithm in relation to the least available
resource, as apparently it is the bottleneck.

Other methods could include calculating the average of
all values using weights of the importance of each property,
or, more appropriately, calculating the desired compression
level by taking into account the results of past decisions. At
the end of the process we obtain a single value R indicating
how much resources are available, and this value will be
used in selecting the strength of the compression algorithm
that we will use to compress the data.

We define a function F that for each instance of a group
X will give a value Y from the range 0 to 100. This Y value
is the minimum value of free resources that is needed so
that we can use this compression method. This function
does not need to be linear, but it must be monotonically
increasing. To do this, we will sort the group X by its Y
values from smallest to the largest, when Cnone (no
compression) will always result in a value of 0. This
function is depicted in Figure 3.

We define the Select function as C 5 Select(X,F,R),
which will get the compressions group that we would like
to use (X), the available resources required for every
compression function (F), the currently available resources
(R), and will return the selected compression algorithm to
use (C). This is done by simply choosing the best match
respecting minimal resources required for each given
compression algorithm.

In theory, the S function has to perform a binary search
of R in F because F is a monotonic increasing function.
However, in practice, |X| is very small, so a simple run on F
searching for the first value Y which is equal or greater than
R could be much faster than a binary search, resulting in
complexity of O(1).

Calculating the R values of the different properties will
take O(n), but because of the small number of properties
and the fact that it is not dependent on the size of the data
being compressed, we may say this time is constant. Only
the time of running the selected compression algorithm and
actually writing the compressed information to the storage
device is substantial.

We will show later that the decompression time is not
really an issue, and most of the time it is better than the
time required to read the uncompressed data from the
storage device.

There exist some special lossless compressions designed
for better compression of certain file types that perform

Figure 3. The compression-available resource function.

Y. Wiseman and A. Barkai / Journal of Aviation Technology and Engineering 49

better than general compression algorithms. PNG compres-
sion for BMP files is an example. Moreover, one can tweak
some general purpose algorithms to be more effective using
a change of parameters; for example, by specifying that the
file is a video or a text file. In addition to selecting the
compressing algorithm by available resources, one could
extend the ACFS algorithm and select the compression by
file type, also. We could define some general file types
such as text, executable, graphics, or other. For every file
type, we will define a group of compression algorithms X
and a function F; for example, Xtext, Ftext. For each file,
we will analyze the file for file type using methods
suggested by FileType (2008) and McDaniel and Heydari
(2003). Using this information, the algorithm will call the
Select function with the X and F that are related to this file
type. If the file type is unknown, it will fall into the other
group. Figure 4 demonstrates the selection flow of a
compression algorithm according to both file type and
available resources.

In most systems the resources are not always fully used;
sometimes they are less available and sometimes they are
more available. Because of the ability to measure
availability of resources, one could go back and compress
files using a stronger and better compression algorithm
those files or file parts which had been compressed using a

lighter compression because at the time they were written
to the storage device there were no available resources.

In this manner, we can develop ACFS as a file system
with delayed compression which will take advantage of the
idle times of the system for compressing the data that is
saved quickly at busy system times. This dynamic
reassessment will maximize the space usage of the storage
device, since once all data is compressed using the
strongest compression available then there is no way to
achieve a higher data-per-space rate.

An additional feature of ACFS is that it can increase
efficiency by adding frequency of file usage to decision
parameters. We can easily monitor the number of recent
accesses to a file. When we detect a file that is more
frequently accessed than other files, we can lower its
compression complexity to a lower compression algorithm
in the same group X.

Putting together both expansions above, delayed com-
pression and lowering the compression complexity for
commonly used files, we achieve a file system that will
dynamically increase or lower the compression complexity
of files in idle times by the history of their usage.

A third extension, different compression groups for
different file types, can be added. This allows increasing or
lowering the selected compression algorithm within the

Figure 4. Selecting the compression algorithm.

50 Y. Wiseman and A. Barkai / Journal of Aviation Technology and Engineering

compression algorithms group relevant to this specific file
type.

A file system with these properties will be very efficient
because it adapt based on the usage of the system,
providing close to maximum compression and maximum
performance simultaneously.

Implementation

We do not need to implement a completely new file
system. Instead, we can take an existing open source
compressed file system and improve it by changing it to
dynamic selection of compression algorithms as previously
described.

For this work we have chosen the FuseCompress file
system that was described in the related work section. This
file system compresses all files (except file types that are
already in compressed format) using a previously defined
compression algorithm, and is a good starting point for the
proposed development.

All of the files9 operating system APIs will be redirected
to our user-space application which will actually perform
the requested operations. That application will return the
information from the real files when browsing the
directory, and if some application reads data from a file
in this folder, the uncompressed version of the data will be
returned to the read API. Copying files into the virtual
mount point or creating or changing file there will cause the
data to be compressed on-the-fly and saved in the real
directory as compressed files, while being shown at the
virtual directory as uncompressed. Reading files from the
virtual directory will cause on-the-fly decompression and
return the uncompressed original data to the reader
application. Thus, any application can work with the
compressed file system exactly as it would a normal file
system without awareness of the compression.

Evaluation

The test-set for this evaluation was the/lib directory of a
standard Ubuntu 10.10 installation, with a size of 233 MB.
The computer was an Intel Core i7 950 CPU @ 3.07 GHz
(8 Cores, so host processes would not interfere with the
tests), 6 GB of RAM, a Windows 7 64 bit operating system
with an Ubuntu 10.10 32 bit virtual machine, a 60 GB hard
drive with Flash SSD for the operating system and + 1 TB
WDC SATA III for data. The virtual machine can allow the
availability of only one CPU when needed. A parallel
approach can be also applied, as suggested by Klein and
Wiseman (2003; 2005).

Firstly, we executed a normal folder copy command "cp-
r" to copy the test-set from its original location to a
different location that was not inside a compressed file
system mount point, taking 17 seconds. Then we executed
the same command with a destination location in the
compressed file system virtual folder, taking 53 seconds, or
312% of the original time, due to heavy compression
calculations occurring while writing the files to the
destination directory.

To evaluate the decompression time we copied the files
from the compressed location to uncompressed location,
thereby reading the files to cause the decompression. The
copying time decreased from 17 seconds to 14 seconds, or
82% of the original time, since less data had to be read from
the slow hard disk. The fact that less I/O is involved
indicates another benefit of using a compressed file system.

Next we evaluated the effectiveness of an on-the-fly file
system compression. We used the same collection of files
that were used in the previous test. The size was reduced
from 233 MB to 105 MB; that is, 45% of the original size.
Figure 5 shows the results in logarithmic scale.

Then we tested the effects on system resources while
compressing. When a compression was invoked, the CPU

Figure 5. Compression ratio in logarithmic scale. The bright bars indicate the original folders; the dark bars indicate the compressed folders.

Y. Wiseman and A. Barkai / Journal of Aviation Technology and Engineering 51

was loaded to 96.0% in user mode, 4.0% in kernel mode
and 0.0% idle. The memory usage was 502196 kB. When
no compression was invoked, the CPU was loaded 2.0% in
user mode, 1.0% in kernel mode and 97.0% idle. The
memory usage was 498720 kB.

Also, while compressing, we can see that a new user-
mode process appears to handle the compression, which
takes 94.9% CPU and 2.2% memory. Here, the compres-
sion process is taking nearly all of the CPU power, while it
has almost no effect on the memory usage.

If the CPU is needed for other assignments, these
assignments will have poorer performance. With the ACFS,
we overcome this problem by selecting and switching
compression algorithms on the fly according to available
CPU power in order to avoid a performance decline. A
possible performance decline is the main drawback of using
compressed file systems as a default in all computer
systems. If we can eliminate this potential performance
decline by actively monitoring and avoiding it, dynamically
selecting different levels of compression algorithms, or
even choosing not to compress at all, then we will have no
problem using a compressed file system in every computer
system. By doing so, we will attain the benefits of a
compressed file system without the drawbacks.

Another test we made was conducted by implementing a
CPU-Eater process. This process had a loop that executed a
very small constant set of instructions called the "Frame".
The process counted the number of frames that had been
executed and each second printed how many frames it
could execute in that second. Obviously, if any other
program takes the CPU, it will harm the performance by
decreasing the number of loops.

We compared three scenarios. In the first, Test #1, we
invoked the CPU-Eater test process alone, when no other

operation takes place in the system. In the second, Test #2,
we checked the performance of our innocent application
(the CPU-Eater process) while an on-the-fly compression
takes place for the copied files. In Test #3 we copy files
without performing any compression. In this last test since
there is an application running in the background that takes
high amounts of CPU (. 90%), ACFS will decide not to
use compression at all, just like a normal file copying
operation.

We measured the performance by the average FPS
(Frames Per Second) rate the innocent application (the
CPU-Eater process) generates and by average %CPU
metric. The results are an average of 50 executions and
are shown in Figures 6 and 7.

Test #1 is a reference case; since no file operation
occurred in the time of the test, these values are a
maximum. In Test #2 the FPS rate decreased to 33.3% and
the %CPU metric was reduced by half while the
compression algorithm takes the other half. Test #3 shows
that a normal file copy operation barely harms the
performance of processes, whereas the CPU consumption
of the compression operation heavily harms the perfor-
mance of other running processes.

We can see that the %CPU metric of the innocent
application was noticeably reduced when compressing was
used to compress the files using the on-the-fly compressed
file system, whereas it returned to normal when copying
files with no compression. This indicates that by using
ACFS applications overall performance will not suffer due
to less available CPU because of file system compression
operations. If the CPU is busy, the compression strength
will be automatically reduced or even completely turned
off, so it will not consume more CPU cycles than the
available idle CPU cycles.

Figure 6. Average FPS rate.

52 Y. Wiseman and A. Barkai / Journal of Aviation Technology and Engineering

Optimally, if a process uses a certain number of CPU
cycles (e.g., 50%), while a compression does not take place
we will attempt to continue using the same number of CPU
cycles at the same level of performance and the compres-
sion process will only use the idle resources. Then, the
compression algorithm itself can be chosen according to
available idle CPU resources.

We also tested different priorities of both the user’s
process and the compression process. The user task for this
test was the CPU-Eater program from the previous tests.
This program takes as much CPU resources as are available
(,100%) and shows its actual performance as FPS value.

In this test we invoked long copy operations into a
compressed file system while the user process was running.
We executed this test multiple times with different nominal
task level values and took the average of each value. The
results are shown in Table 1.

One can clearly see from the results that the division of
the CPU cycles between the user’s process and the
compression process is strongly affected by the level
setting. This means that the priority setting does have an
effect on how much impact the user task will have when a
compression is taking place. Actually, the operating system
scheduler increases or decreases the time slice of the

processes according to the user task level value, explaining
why the %CPU metric is nearly linear in that value.

It is also apparent from these results that there exists a
setting (-20) at which a user’s task will result in almost no
reduction in performance. In this situation a compression
will be very long; however, the file system should select a
lighter compression method or no compression when
writing files.

Changing the priority of the compression process,
however, has no effect on the results. Setting the
compression process level to any priority with each of
the different user process levels gives almost the same
results. Unlike the user’s process, the compression process
adapts itself to employ only free CPU cycles.

In the previous tests we employed a 100% CPU intensive
process because this is the worst case scenario, but this is
not how an embedded system normally operates. Our
objective is that a user’s task will have minimal reduced
performance and our compression algorithm will only use
the remaining idle CPU cycles. Consequently, another test
examined different levels of CPU consumption. The CPU-
Eater process from the previous tests was slightly modified
so it would set manually to use only a certain amount of
%CPU. The change is actually that the process sleeps
during a certain part of each second. All the tests here were
run with a -20 task level setting so the user task will have a
minimal impact. The results are shown in Table 2. In this
Table, "Alone" indicates that only the user process is
executed with no compression. The values are average
values.

We can clearly see that none of the tests shows a
noteworthy reduction of the performance of the innocent
user’s process while copying files to a compressed file

Figure 7. CPU-Eater process %CPU metric.

Table 1
Priority Effect on FPS and %CPU

FPS %CPU Compression %CPU User Task User Task’s Level

1000 70% 25% 0
1800 55% 40% -5
2850 30% 65% -10
3600 11% 85% -15
4150 3% 95% -20

Y. Wiseman and A. Barkai / Journal of Aviation Technology and Engineering 53

system, and that the compression algorithm used only
unclaimed CPU cycles.

Conclusions

Data that generated by embedded systems are commonly
kept on a hard disk, but the hard disk of the typical
embedded computer system is small (Lekatsas, Dick,
Chakradhar, & Yang, 2005; Xu, Clarke, & Jones, 2004).
In particular, flight data recorders have small disk drives
and generally only write the disk drives and almost never
read them; therefore, compression can be beneficial for
such systems. The ACFS suggests a method of using a
compressed file system while ensuring that the innocent
other tasks will not experience reduced performance. The
compression algorithm (whichever algorithm is chosen by
the file system) will only use the available CPU cycles.

The file system should select the compression algorithm
strength and whether to compress or not in real time based
on available CPU resource, so that the application that
waits for the file operation to be completed will not have to
wait too long.

References

Arnold, R., & Bell, T. (1997). A corpus for the evaluation of lossless
compression algorithms. In Proceedings of the Data Compression
Conference (pp. 201–210). http://dx.doi.org/10.1109/DCC.1997.
582019

Benini, L., Bruni, D., Macii, A., & Macii, E. (2002). Hardware-assisted
data compression for energy minimization in systems with embedded
processors. Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (p. 0449). http://dx.doi.org/10.1109/DATE.
2002.998312

Burrows, M., & Wheeler, D. (1994). A block-sorting lossless data
compression algorithm (SRC Research Report 124). Palo Alto, CA:
Digital System Research Center.

Cortes, T., Becerra, Y., & Cervera, R. (2000). Swap compression: Resurrecting
old ideas. Journal of Software: Practice and Experience, 30(5), 567–
587. http://dx.doi.org/10.1002/(SICI)1097-024X(20000425)30:5,567::AID-
SPE312.3.0.CO;2-Z

Cramfs. (2010). Cramfs: Cram a filesystem onto a small ROM. Retrieved
from http://sourceforge.net/projects/cramfs

FileType. (2008). FileType detection system, open source project.
Retrieved from http://pldaniels.com/filetype

FuseCompress. (2009). FuseCompress file system. Retrieved from http://
code.google.com/p/fusecompress/

Geva, M., & Wiseman, Y. (2007). Distributed shared memory integration.
Proceedings of the IEEE Conference on Information Reuse and
Integration, (pp. 146–151). Washington, DC: IEEE Conference
Publications. http://dx.doi.org/10.1109/IRI.2007.4296612

Hammel, M. J. (2007). Embedded Linux: Using compressed file systems.
LWN.net. Retrieved from http://lwn.net/Articles/219827

Horowitz, M. J., Kossentini, F., Mahdi, N., Xu, S., Guermazi, H., Tmar,
H., … Xu, J. (2012). Informal subjective quality comparison of video
compression performance of the HEVC and H. 264/MPEG-4 AVC
standards for low-delay applications.In, A. G. Tescher, Ed., Pro-
ceedings of SPIE, Volume 8499 (p. 84990W). http://dx.doi.org/10.
1117/12.953235

Huffman, D. A. (1952). A method for the construction of minimum
redundancy codes. Proceedings of the Institute of Radio Engineers,
40(9), 1098–1101. http://dx.doi.org/10.1109/JRPROC.1952.273898

Kitagawa, K., Tan, H., Abe, D., Chiba, D., Suzaki, K., Iijima, K., & Yagi, T.
(2006). File system (Ext2) optimization for compressed loopback device. In
Proceedings of the 13th International Linux System Technology Conference.
http://unit.aist.go.jp/itri/knoppix/ext2optimizer/tmpfiles/LinuxKongress_
Ext2optimizer_kitagawa.pdf

Kjelso, M., Gooch, M., & Jones, S. (1996). Design and performance of a
main memory hardware data compressor. In Proceedings of the 22nd

EUROMICRO Conference (pp. 423–430). Washington, DC: IEEE
Conference Publications. http://dx.doi.org/10.1109/EURMIC.1996.
546466

Kjelso, M., Gooch, M., & Jones, S. (1999). Performance evaluation of
computer architectures with main memory data compression. Journal
of Systems Architecture. 45(8), 571–590. http://dx.doi.org/10.1016.
S1383-7621(98)00006-X

Klein, S. T., & Wiseman, Y. (2003). Parallel Huffman decoding with
applications to JPEG files. The Computer Journal, 46(5), 487–497.

Klein, S. T., & Wiseman, Y. (2005). Parallel Lempel Ziv coding. Journal
of Discrete Applied Mathematics, 146(2), 180–191. http://dx.doi.org/
10.1016/j.dam.2004.04.013

Lekatsas, H., Dick, R. P., Chakradhar, S., & Yang, L., (2005). CRAMES:
Compressed RAM for embedded systems. In Proceedings of the
IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (pp. 93–98). Washington, DC: IEEE
Conference Publications. http://dx.doi.org/10.1145/1084834.1084861.

Lekatsas, H., Henkel, J., & Wolf, W. (2000). Code compression for low
power embedded system design. In Proceedings of the 37th Design
Automation Conference (pp. 294–299). New York: Association for
Computing Machinery. http://dx.doi.org/10.1109/DAC.2000.855323

Madany, P. W., Nelson, M. N., & Wong, T. K. (1998). U.S. Patent No.
5,774,715. Washington, DC: U.S. Patent and Trademark Office.

Makatos, T., Klonatos, Y., Marazakis, M., Flouris, M. D., & Bilas, A.
(2010). Using transparent compression to improve SSD-based I/O
caches. In Proceedings of the 5th European Conference on Computer
Systems (pp. 1–14). New York: Association for Computing Machinery.
http://dx.doi.org/10.1145/1755913.1755915

McDaniel, M., & Heydari, M. H. (2003). Content based file type detection
algorithms. In Proceedings of the 36th Annual Hawaii International
Conference on System Sciences. Washington, DC: IEEE Conference
Publications. http://dx.doi.org/10.1109/HICSS.2003.1174905

Muniswamy-Reddy, K., Wright, C. P., Himmer, A., & Zadok, E. (2004).
A versatile and user-oriented versioning file system. In Proceedings of
the Third USENIX Conference on File and Storage Technologies (pp.
115–128). Berkeley, CA: USENIX Association.

Table 2
Different Levels of CPU Consumption

FPS while compressing
%CPU of the

compression itself
%CPU of User Task
while compressing FPS Alone %CPU Alone Sleep Setting (In mSec)

4250 2% 96% 4300 98% 0
3100 20% 73% 3200 75% 220
2000 47% 47% 2100 50% 500
1000 70% 25% 1000 25% 750

54 Y. Wiseman and A. Barkai / Journal of Aviation Technology and Engineering

http://dx.doi.org/10.1109/DCC.1997.582019
http://dx.doi.org/10.1109/DCC.1997.582019
http://dx.doi.org/10.1109/DATE.2002.998312
http://dx.doi.org/10.1109/DATE.2002.998312
http://dx.doi.org/10.1002/(SICI)1097-024X(20000425)30:5,567::AIDSPE312.3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1097-024X(20000425)30:5,567::AIDSPE312.3.0.CO;2-Z
http://sourceforge.net/projects/cramfs
http://pldaniels.com/filetype
http://code.google.com/p/fusecompress/
http://code.google.com/p/fusecompress/
http://dx.doi.org/10.1109/IRI.2007.4296612
http://lwn.net/Articles/219827
http://dx.doi.org/10.1117/12.953235
http://dx.doi.org/10.1117/12.953235
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://unit.aist.go.jp/itri/knoppix/ext2optimizer/tmpfiles/LinuxKongress_Ext2optimizer_kitagawa.pdf
http://unit.aist.go.jp/itri/knoppix/ext2optimizer/tmpfiles/LinuxKongress_Ext2optimizer_kitagawa.pdf
http://dx.doi.org/10.1109/EURMIC.1996.546466
http://dx.doi.org/10.1109/EURMIC.1996.546466
http://dx.doi.org/10.1016.S1383-7621(98)00006-X
http://dx.doi.org/10.1016.S1383-7621(98)00006-X
http://dx.doi.org/10.1016/j.dam.2004.04.013
http://dx.doi.org/10.1016/j.dam.2004.04.013
http://dx.doi.org/10.1145/1084834.1084861
http://dx.doi.org/10.1109/DAC.2000.855323
http://dx.doi.org/10.1145/1755913.1755915
http://dx.doi.org/10.1109/HICSS.2003.1174905

Ng, S.W. (1998). Advances in disk technology: Performance issues.
Computer, 31(5), 75–81. http://dx.doi.org/10.1109/2.675643

Oracle (2010). Oracle Solaris ZFS administration guide. Retrieved from
http://docs.oracle.com/cd/E19253-01/819-5461/index.html

Qualls, J. H. (1997). The PC corner. Business Economics, 32(3), 70–72.
Rizzo, L. (1997). A very fast algorithm for RAM compression. ACM

SIGOPS Operating Systems Review, 31(2), 36–45. http://dx.doi.org/10.
1145/250007.250012

Rodeh, O., & Teperman, A. (2003). zFS-A scalable distributed file system
using object disks. In Proceedings of the 20th IEEE/11th NASA
Goddard Conference on Mass Storage Systems and Technologies (pp.
207–218). Washington, DC: IEEE Conference Publications. http://dx.
doi.org/10.1109/MASS.2003.1194858

Roy, S., Kumar, R., & Prvulovic, M. (2001). Improving system
performance with compressed memory. In Proceedings of the 15th

International Parallel & Distributed Processing Symposium (p. 66).
Washington, DC: IEEE Conference Publications.

SquashFS (2008). SquashFS. Retrieved from http://squashfs.sourceforge.
net.

Tuduce, I. C., & Gross, T. (2005). Adaptive main memory compression. In
Proceedings of the USENIX 2005 Annual Technical Conference (pp.
237–250). Berkeley, CA: USENIX Association.

Wiseman, Y., & Feitelson, D. G.. (2003). Paired gang scheduling. IEEE
Transactions on Parallel and Distributed Systems, 14(6), 581–592.
http://dx.doi.org/10.1109/TPDS.2003.1206505

Wiseman, Y., Isaacson, J., & Lubovsky, E. (2008). Eliminating the threat
of kernel stack overflows. In Proceedings of the IEEE International
Conference on Information Reuse and Integration (pp. 116–121).

Washington, DC: IEEE Conference Publications. http://dx.doi.org/10.
1109/IRI.2008.4583015

Wiseman, Y., Schwan, K., & Widener, P. (2004). Efficient end to end data
exchange using configurable compression. In Proceedings of the 24th
IEEE International Conference on Distributed Computing Systems (pp.
228–235). Washington, DC: IEEE Conference Publications. http://dx.
doi.org/10.1109/ICDCS.2004.1281587

Wu, J. C., Banachowski, S., & Brandt, S. A. (2005). Hierarchical disk
sharing for multimedia systems. In Proceedings of the International
Workshop on Network and Operating Systems Support for Digital
Audio and Video (pp. 189–194). New York: Association for
Computing Machinery. http://dx.doi.org/10.1145/1065983.1066026

Xu, X., Clarke, C. T., and Jones, S. R. (2004). High performance code
compression architecture for the embedded ARM/Thumb processor.In,
S. Vassiliadis, J. L. Gaudiot, & V. Piuri, Eds., Proceedings of the 1st

Conference on Computing Frontiers (pp. 451–456). New York:
Association for Computing Machinery. http://dx.doi.org/10.1145/
977091.977154

Yaghmour, K., Masters, J., Gerum, P., & Ben-Yossef, G.. (2008). Building
embedded linux systems. Sebastopol, CA: O’Reilly Media, Inc.

Yang, L., Dick, R. P., Lekatsas, H. and Chakradhar, S. (2010). Online
memory compression for embedded systems. ACM Transactions on
Embedded Computing Systems, 9(3), 1–29. http://dx.doi.org/10.1145/
1698772.1698785

Zhang, C. S. (2012). Design of real-time lossless compression system based
on DSP and FPGA, In C. S. Zhang, Ed., Materials Science and In-
formation Technology, (pp. 4173–4177). Durnten-Zurich, Switzerland:
Trans Tech Publications, Inc.

Y. Wiseman and A. Barkai / Journal of Aviation Technology and Engineering 55

http://dx.doi.org/10.1109/2.675643
http://docs.oracle.com/cd/E19253-01/819-5461/index.html
http://dx.doi.org/10.1145/250007.250012
http://dx.doi.org/10.1145/250007.250012
http://dx.doi.org/10.1109/MASS.2003.1194858
http://dx.doi.org/10.1109/MASS.2003.1194858
http://squashfs.sourceforge.net
http://squashfs.sourceforge.net
http://dx.doi.org/10.1109/TPDS.2003.1206505
http://dx.doi.org/10.1109/IRI.2008.4583015
http://dx.doi.org/10.1109/IRI.2008.4583015
http://dx.doi.org/10.1109/ICDCS.2004.1281587
http://dx.doi.org/10.1109/ICDCS.2004.1281587
http://dx.doi.org/10.1145/1065983.1066026
http://dx.doi.org/10.1145/977091.977154
http://dx.doi.org/10.1145/977091.977154
http://dx.doi.org/10.1145/1698772.1698785
http://dx.doi.org/10.1145/1698772.1698785

