Distributed Shared Menory Integrotion

Mordechai Geva and Yair Wiseman
Bar Ilan University

Israel

DSM Portability

® The DSM performance 1ssues have been

preferred over portability 1ssues.
® The APIs of DSMs fit only specific systems.
= Migration might require a significant revision.

® Programs for SMPs should be rewritten if a
scale up for a cluster 1s needed.

® Programmers need to acquire new
programming skills for each DSM system.

What do We Aim for?

A DSM API that will be identical to the
standard UNIX API.

® A DSM that i1s not bundled within other IPC
clements.
m As an expansion, we require that all IPC

elements will not be bundled within other IPC
elements.

® The very same program can be compiled on
a PC, an SMP or a cluster with even not a
single change.

Approaches of DSM systems

® Virtual DSM

® Object DSM

B Thread Migration

® Compiler supported DSM

Virtual DSM

® Each page on each node can be available or
unavailable

® A process may handle only available pages.

® If a process encounters an unavailable
page, the page will be fetched to the node
and 1t status will become available.

B A page can be available only at one node.

Object DSM

® The page resides only at one node.

& Each process that has to access the page
will connect the page’s host.

® Some systems allows the page having a
replicas on one or more machine.

m In such cases a writing should be done 1n all the
replicas.

Thread Migrations

® Move the processes or the threads towards
the pages, instead of moving the pages
towards the processes.

® A process that tries to access a page, will be
moved to the page’s host.

Complier Supported DSM

® The program hints the compiler regarding
the shared memory access manner.

® For example, hinting that a page 1s write-
shared, will allow multiple threads to
change its content without disallowing other
threads from doing so.

® This approach 1s very efficient, but the API
becomes very cumbersome.

Portable DSM

& Portability - Built as a user level lib.

® Usability - Having the same API as in
standard UNIX systems.

® Disjointing - Creating a portable, stand-
alone, multiple-processor IPCs, 1.e. not a
kernel implementation.

The Implementation

®# The implementation was done in the most
common approach - Virtual DSM; however
it obviously can be implemented by any
other approach.

®# The well-known “Segmentation Fault” signal
was used to check whether the page 1s
available on current host.

Daemons

®dsmserver - Running only on the server
processor and responsible for:

m Allocations of page numbers to processes.
m Saving pages after process termination.

mcdaemon - Running on each processor
and responsible for:

m Transferring a locally available pages upon
requests.

Handling Segmentation Faults

® When a process accesses an unavailable page, UNIX
will send the process a “segmentation fault” signal.

® A dedicated signal handler in the library will catch the
signal.

® The signal handler checks whether it 1s a real
“segmentation fault” or an unavailable page.

& If it 1s an unavailable page, a multicast 1s sent
requesting the page.

® The mcdaemon in the processor that has the page, will
send the page and will mark 1t as an unavailable page.

Semaphores

® A supplementary IPC element for the DSM
1s the Remote Semaphores.

® Similarly to DSM, the Remote Semaphores
have two daemons:

® Server Daemon on the server processor that
handles the 1d numbers and the location of
the semaphores.

® Client Daemon on each client processor that
handles the real semaphores.

Benchmark - Dense Matrix Multiplication

Runtime reduction

Runtime
Percentage
O Single computer
0 B Two computers
1024 | 2048 | 3072 | 4096 O Four computers
Single computer| 1 1 1 1

Two computers 1 0.517] 0.521 | 0.527 0.542

Four combouters | 0.258 | 0.271 1 0.283 | 0.295
Matrix sizes

Oevrhead

Overhead percetage

O 2p overhead
m 4p overhead

Overhead
0.06
0.04
e
1024 X | 2048 X | 3072 X | 4096 X
@ 2p overhead 0.0166667/0.0213319/0.0266627) 0.042375
m 4p overhead 0.0083333 0.0205515/0.0331037/0.0453565

Matrix size

Conclusions

® Nowadays DSMs are very sophisticated and
complicated; thus can help solve many
advanced problems.

However, the cumbersome API deters
programmers from using advanced DSM
packages.

® We believe this common UNIX API for
DSM can bring the integration of advanced
DSM packages into play.

