
Mordechai Geva and Yair Wiseman

Bar Ilan University

Israel

DSM Portability

The DSM performance issues have been
preferred over portability issues.
The APIs of DSMs fit only specific systems.

Migration might require a significant revision.
Programs for SMPs should be rewritten if a
scale up for a cluster is needed.
Programmers need to acquire new
programming skills for each DSM system.

What do We Aim for?

A DSM API that will be identical to the
standard UNIX API.
A DSM that is not bundled within other IPC
elements.

As an expansion, we require that all IPC
elements will not be bundled within other IPC
elements.

The very same program can be compiled on
a PC, an SMP or a cluster with even not a
single change.

Approaches of DSM systems

Virtual DSM
Object DSM
Thread Migration
Compiler supported DSM

Virtual DSM

Each page on each node can be available or
unavailable
A process may handle only available pages.
If a process encounters an unavailable
page, the page will be fetched to the node
and it status will become available.
A page can be available only at one node.

Object DSM

The page resides only at one node.
Each process that has to access the page
will connect the page’s host.
Some systems allows the page having a
replicas on one or more machine.

In such cases a writing should be done in all the
replicas.

Thread Migrations

Move the processes or the threads towards
the pages, instead of moving the pages
towards the processes.
A process that tries to access a page, will be
moved to the page’s host.

Complier Supported DSM

The program hints the compiler regarding
the shared memory access manner.
For example, hinting that a page is write-
shared, will allow multiple threads to
change its content without disallowing other
threads from doing so.
This approach is very efficient, but the API
becomes very cumbersome.

Portable DSM

Portability - Built as a user level lib.
Usability - Having the same API as in
standard UNIX systems.
Disjointing - Creating a portable, stand-
alone, multiple-processor IPCs, i.e. not a
kernel implementation.

The Implementation

The implementation was done in the most
common approach - Virtual DSM; however
it obviously can be implemented by any
other approach.
The well-known “Segmentation Fault” signal
was used to check whether the page is
available on current host.

Daemons
dsmserver - Running only on the server
processor and responsible for:

Allocations of page numbers to processes.
Saving pages after process termination.

mcdaemon - Running on each processor
and responsible for:

Transferring a locally available pages upon
requests.

Handling Segmentation Faults
When a process accesses an unavailable page, UNIX
will send the process a “segmentation fault” signal.
A dedicated signal handler in the library will catch the
signal.
The signal handler checks whether it is a real
“segmentation fault” or an unavailable page.
If it is an unavailable page, a multicast is sent
requesting the page.
The mcdaemon in the processor that has the page, will
send the page and will mark it as an unavailable page.

Semaphores
A supplementary IPC element for the DSM
is the Remote Semaphores.
Similarly to DSM, the Remote Semaphores
have two daemons:
Server Daemon on the server processor that
handles the id numbers and the location of
the semaphores.
Client Daemon on each client processor that
handles the real semaphores.

Benchmark - Dense Matrix Multiplication

0

0.5

1

Runtime
Percentage

Matrix sizes

Runtime reduction

Single computer
Two computers
Four computers

Single computer 1 1 1 1

Two computers 0.517 0.521 0.527 0.542

Four computers 0.258 0.271 0.283 0.295

1024 2048 3072 4096

Oevrhead

Overhead

0

0.02

0.04

0.06

Matrix size

O
ve

rh
ea

d
pe

rc
et

ag
e

2p overhead
4p overhead

2p overhead 0.0166667 0.0213319 0.0266627 0.042375

4p overhead 0.0083333 0.0205515 0.0331037 0.0453565

1024 X 2048 X 3072 X 4096 X

Conclusions
Nowadays DSMs are very sophisticated and
complicated; thus can help solve many
advanced problems.
However, the cumbersome API deters
programmers from using advanced DSM
packages.
We believe this common UNIX API for
DSM can bring the integration of advanced
DSM packages into play.

